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Abstract

We finalize the project initiated in [1, 2, 3, 4, 7, 8, 9, 10] by studying
graviton theory in our setting. Given the results in [1, 3, 9, 10], there is not
so much left to accomplish and we start by deepening our understanding
of some points left open in [1, 10]. Perturbative finiteness of the theory
follows ad-verbatim from the analysis in [3, 9] and we do not bother here
about writing it down explicitly. Rather, our aim is to provide for a
couple of new physical and mathematical insights regarding the genesis
of the structure of the quantal graviton theory.

1 Introduction.

This paper is the culmination of a series [1, 2, 3, 4, 7, 8, 9, 10] of papers by
this author about how to obtain a well defined covariant quantum theory in
any time-orientable curved spacetime background. This is a very remarkable
thing to say and, indeed, the construction relies upon many fine points stan-
dard quantum field theory does not take into account. In [1], we prepared the
ground for defining a covariant quantum theory for particles of spin 0, 12 , 1 on
any background whereas in [3, 4] we have defined the interacting theory for
bosonic spin-0 particles and later on showed that the theory is well defined,
in any case perturbatively finite. Thereafter, [9, 10] we extended those results
to quantum electrodynamics and non-abelian gauge theory in general, thereby
including particles of spin- 12 , 1. In this paper, we perform the extension to gravi-
tons which is somewhat exceptional since one of the regularization parameters,
as we will show soon, is expected to have a lower bound determined by the Planck
length and the details of the geometry. Indeed, the introduction of a dynamical
length scale appears to put lower bounds on the “friction” associated to the cre-
ation and annihilation process and clears out some mathematical unwarranted
assumption made in [11]. The idea of this paper is the same than the one in
[10]: we provide for an alternative, covariant, derivation of graviton theory in
our setting starting from a couple of physical principles it has to obey. We will
distantiate ourselves from a perturbation analysis of the Einstein-Hilbert action
assuming infinitesimal perturbations hαβ and analycity of a series expansion
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which is, later on, evaluated outside its domain of convergence [11] when cal-
culating the path integral. At least, this is the case in the latter approach but
not so in our philosophy of regulated propagators with two friction parameters
µ, κ > 0 of dimension length2 and length−1 respectively where, roughly speak-
ing, αµ forms an upper bound [3] on the absolute value of the propagator where
the dimensionless number α depends, amongst others, on some characteristics of
the geometry. Therefore, one needs that αl2p < µ for the modified perturbation
series to converge. Hence, friction on the creation and annihilation process of
gravitons, as well as on the propagation process, is going to make the theory
well defined given some additional assumption on supression of scattering pro-
cesses with many gravitons. In conventional approaches, it is not clear what the
meaning of diffeomorphism invariance is at quantal level. Indeed, in a path inte-
gral language, one should show that the primary “measure” is diffeomorphism
invariant and no such “measure”, in contrast to non-abelian gauge theory, has
ever been constructed. Most physicists take diffeomorphism invariance to mean
“diffeomorphism invariance of the action” but then, in a path integral language,
one should gauge fix the action in order to make it well defined. This will involve
ghosts and terms which are not diffeomorphism invariant in the primary sense.
In contrast to some gauge choices, I prefer to maintain a manifestly covariant
formulation and one which is diffeomorphism invariant in another sense; those
terms, which are covariant in the second sense but not in the first should couple
to the ghosts.

I wished I could argue even more directly, just as it was the case in [10] for the
correct structure of non-abelian gauge theory at the quantal level. In principle,
Einstein’s theory delivers only one interaction “vertex” which is then regarded
as an infinite series of interaction vertices because we have to invert gµν + lphµν ,
something I have to do [11] too with that difference that the operation is go-
ing to be made well defined, in contrast to that reference, where the expansion
diverges for large perturbations in the path integral. What do I mean by this
precisely? If you write out the interaction vertices coming from a series expan-
sion of the Einstein-Hilbert action for g+ lph, then the only things which matter
are vacuum expectation values

T 〈hhhh∇h∇h〉Z

where h has to appear an even number of times as does the Levi-Civita connec-
tion ∇ of g; the latter appears, moreover, at most twice. Z is a tensor composed
out of g and the Riemann tensor of g which ensures that the identity is a scalar
and T is, as usual, the time ordering product. Any such “vertex” can be written
down as a closed graph made out of an even number of vertices with two legs
and zero or two vertices with three legs. The number of contractions associated
to it is given by (2n)! where 2n is the number of h symbols or vertices of the
“vertex” graph. So, when evaluating convergence of the perturbation series, we
have to replace hhhh∇h∇hZ by (2n)!Cn where

||T 〈hh〉||, ||T 〈h∇h〉||, ||T 〈∇h∇h〉|| < C

where the norm is the standard supremum norm for operators on R4 ⊗ R4

defined with respect to an orthonormal basis associated to a unit timelike vec-
torfield (see later for details). Actually, the bounds on the derivative terms are
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not important since there are only two of them at most and they, therefore,
do not influence convergence of the series. The reader notices that (2n)!Cn

blows up to infinity in the limit for n to infinity for any C and therefore the
expansion series does not converge unless we impose that in the quantum the-
ory vertices with a large number of terms come with surpression factors which
are of similar magnitude as n−2n or e−2n lnn. In an operational language, this
would mean that the definition of the product of fields depends upon the num-
ber of operandi and that, therefore, associativity has to be given up. In our
language, it simply means that scattering processes associated to many gravi-
tons are super-exponentially surpressed in terms of the number of participating
gravitons. This is new physics and a feature which distinguishes gravitons from
spin one non-abelian gauge particles where, given the fact that only two self-
interaction vertices of valence 3 and 4 exist, no such detailed analysis matters.
In [10], we immediately constructed the right interaction vertices for non-abelian
gauge theory, a remarkable thing indeed; in this paper, we can only partially
generalize this virtue to graviton theories.

The same comments regarding the perturbative finiteness of the theory apply
ad-verbatim [3, 9, 10]: the proof has been delivered before and only minor ad-
justments need to be made. As in [10], I show that any graviton theory has
to be generally covariant by means of analysis of spin two. Then, I look for a
novel point of view on what it means and subsequently, we derive the correct
interaction vertices and propagator. Ghost particles will show up naturally in
the analysis as it was the case in [10]. I have omitted many details in the con-
struction as not to duplicate results which exist already in the aforementioned
references. I shall explain the physics behind every introduced concept but leave
the reader the duty to flesh out the mathematical details by consulting the men-
tioned citations. This should give a feeling as to why things work out as I say
they do, the rigorous mathematical treatment being obvious for anyone having
gone through the entire series.

2 Massless spin two particles and general covari-
ance.

Given that a (massless) spin-one particle was described by means of a Lorentz
vector, it is natural to look for a tensor product representation of the Lorentz
group

ΛabΛcdh
bd.

There exist two irreducible components, the symmetric and anti-symmetric ten-
sors and the massless spin two particle resides in the symmetric part. Indeed, as
is well known, we should look for symmetric states carrying helicity ±2, There
are exactly two of them (++) and (−−) where ± denotes the state of helicity
±1 in the defining representation of the Lorentz group; moreover, we have 2
particles of helicity ±1 each (0i±) + (± 0i), where 0i; i = 1, 2 is a state of he-
licity zero in the Lorentz representation, and 4 particles of helicity zero making
up a total of 10 as it should. Therefore, we need a four dimensional symmetry
group to eliminate 8 local degrees of freedom; the only such group being the
diffeomorphism group. Hence, it is said that the graviton theory needs to be
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generally covariant.

The big distinction with gauge theory is that the generators of the diffeomor-
phism Lie-algebra act quasi-locally, instead of ultra-locally, on the “gauge po-
tential” hµν , where we have gotten from hab to hµν by means of the vierbein
eaµ, associated to the Lorentzian spacetime metric gµν . Indeed, the Lie algebra
of the diffeomorphism group is given by the vectorfields V which are realized
by means of the Lie-derivative

δV = LV.

The Lie algebra is preserved given that

[LV,LW] = L[V,W].

The Lie derivative on a general tensor field Tµ1...µr
ν1...νs is given by

LVT
µ1...µr
ν1...νs = Tµ1...µr

ν1...νs;αV
α − T β...µr

ν1...νsV
µ1

;β − . . .+ Tµ1...µr

β...νs
V β;ν1 + . . .

where we have used the Levi-Civita connection associated any spacetime metric.
We now come to the definition of what we mean with a generally covariant
theory: under the usual action of spacetime diffeomorphisms, the spacetime
metric gµν as well as the graviton polarization hµν transform as

g → g + LεVg, h→ h+ LεVh.

Subsequent application gives

(g + LεVg) + LW(g + LεVg) = g + Lε(V+W)g + LεWLεVg

and the property
[δεV, δεW] = δε2[V,W]

is needed for this to be an action. In order for gµν to remain stationary we
therefore form the combination

gµν + lphµν

and define
δ′εVh = δεVh+ (lp)

−1δεVg, δ
′
εVg = 0

where the Plank length has been inserted because the graviton propagator has
dimension mass2. It is readily verified that

δ′ε(V+W) = δ′εV + δ′εW

and
[δ′εV, δ

′
εW] = δ′ε2[V,W]

given that
δ′εVδ

′
εW = δεVδ

′
εW.

The symmetries of a graviton theory require that internal interaction vertices
between gravitons are constructed from scalar densities under the action δ′ while
interactions with ghost particles are constructed from tensor densities under the
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action δ. The rationale is the same as the one in non-abelian gauge theory where
one adds all covariant interaction terms which do not stem from a local gauge
symmetric scalar density to the theory and couples them to ghost particles.

As is well known [3, 4, 9, 10], the interaction vertices and two point function are
all we need to define a generally covariant quantum theory; we do not have any
problems regarding the definition of a covariant measure. In the next section,
we introduce the graviton propagator as well as the mandatory spin-0 ghost
particles.

3 The regularized graviton propagator and spin-
zero ghost particles.

The unregularized graviton propagator can be defined from a generalized
Schrodinger equation as we did for spin 0, 12 , 1 particles in [1]. For simplicity of
presentation, we shall assume that any two points in spacetime can be connected
by means of a unique geodesic, the extension to the generic situation of an
arbitrary number of geodesics (including no geodesic at all) is discussed in [3,
8, 9]. These fine points would just obscure the simplicity of the result and it
has been shown before [8, 9] that they can be suitably taken into account. The
result is that the regularized Feynman propagator has to be of the form

∆µκ
F (x, y)αβ,α′β′ =

(
gαα′(x, y)gββ′(x, y) + gβα′(x, y)gαβ′(x, y)− 1

2
gαβ(x)gα′β′(y)

)
∆µκ
F (x, y).

Here, (un)primed indices refer to y (x) and

gαβ′(x, y) = Λ−1(x, y)ββ′gαβ(x)

where
Λ(x, y)β

′

β

denotes the transporter along the geodesic from x to y. The factor 1
2 in the last

term stems from the demand that

∆µκ
F (x, y)αβ,α′β′gαβ(x) = ∆µκ

F (x, y)αβ,α′β′gα
′β′

(y) = 0

because
gαα′(x, y)gββ′(x, y)gαβ(x) = gα′β′(y).

Therefore, in the definition of the propagator, we at least eliminated the graviton
trace degrees of freedom. Here, as mentioned in the introduction and explained
in [3, 9], µ, κ > 0 are two friction parameters of dimension length squared and
length inverse associated to the creation-annihilation process and the propa-
gation of information along the geodesic respectively. The way both of them
are implemented is by means of a preferred, unit norm, timelike vectorfield V µ

associated to the Lorentzian geometry gµν , the existence of which is a generic
property for general backgrounds as is well known by relativists. The vectorfield
is unique in the sense that there exists a procedure giving exactly one V µ; how-
ever, different procedures may lead to other answers. In any case V µ uniquely
defines a Riemannian tensor qµν and a class of reference frames connected by
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an SO(3) transformation which constitute a vierbein for both g and q. With
respect to such vierbein, the propagator reduces to

∆µκ
F (x, y)αβ,α′β′ = eaα(x)ebβ(x)ea

′

α′(y)eb
′

β′(y)

(
Λ(x, y)a′aΛ(x, y)b′b + Λ(x, y)a′bΛ(x, y)b′a −

1

2
ηabηa′b′

)
∆µκ
F (x, y)

where lowering of the a′, b′ indices occured with respect to ηa′b′ . We have shown

in [3, 9] that ∆µκ
F (x, y) can be bounded by C(g,V,κ,ε)

µ e−(κ−ε)d(x,y) where d(x, y)

is the global Riemannian distance associated to qµν , 0 < ε� κ and C(g, V, κ, ε)
is a dimensionless constant which only depends upon g, V and κ, ε.

Now, as explained in the introduction, any internal interaction vertex with 2n-
legs is going to contribute an amplitude which is bounded by

(lp)
2n(2n)!Dn

where D constituted a universal bound on the propagator in the sup-norm
attached to our class of reference frames. Hence, we look for a norm estimate
of the tensor

W (x, y)ba
′

ab′ = Λ(x, y)a
′

a Λ(x, y)bb′ + Λ(x, y)a
′bΛ(x, y)b′a −

1

2
δbaδ

a′

b′

which naturally leads to bounds of the kind√
Tr (Λ(x, y)†Λ(x, y)) < D(g, V )eδd(x,y)

with regard to this special class of reference frames, where 0 < 2δ < κ− ε and
the factor of two emerges because we are dealing with a particle of spin two. We
hinted in the introduction that it would be desirable to surpress these vertices
with a factor a(n) such that a(n)(2n)! → 1 in the limit for n to infinity. This
would lead to a bound of the kind

1 > l2p
C(g, V, κ, ε)

µ
||W (x, y)ba

′

ab′ || > 0

which implies that
µ > l2pα(g, V, κ, ε)

is the kind of bound on the friction term µ one should anticipate in a graviton
theory on a generic background. Finally, it has been explained in full detail in
[3, 9] why the specific friction terms added do not lead to a violation of local
Lorentz invariance in a well defined sense; therefore, there is no conflict with
observation whatsoever.

Regarding ghosts, there is not much to say and all relevant details have been
fleshed out in [1, 10]. The only difference with non-abelian gauge theory is
that the ghosts must effectively transform in the vector representation of the
diffeomorphism group, which we denote by vα; the two point functions being

Wp(x, y)αβ
′

= gαβ
′
(x, y)θ(x)θ(y)W (x, y)
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and
Wa(x, y)αβ

′
= gαβ

′
(x, y)θ(x)θ(y)W (x, y)

leading to a well defined Feynman propagator. Here, we have dropped all ref-
erence regarding the friction parameters. As mentioned in section two, all co-
variant interaction terms with regard to the action δ, which do not stem from
the Einstein-Hilbert action, must be coupled to ghosts.

4 The proof that the theory is perturbatively
finite.

This section is obvious for anyone having gone through [3, 9]; effectively, it boils
down to the fact that we have shown for a generic class of geometries that

||P (∇sea(x),∇
s
eb(y)

)∆µκ
F (x, y)|| < C(g, V, κ, µ, ε)

µ
e−(κ−ε−2δ)d(x,y)

where the sup-norm has been taken with respect to any vierbein with e0 = V ,
P (xa, yb) = xaxc, ybyd, xayb, xa, yb, 1 and ∇s is the spin covariant derivative. In
the case of gravitation, we will need supplementary bounds on the Riemann
tensor of g such as

Rabcd(x)δaa
′
δbb

′
δcc

′
δdd

′
Ra′b′c′d′(x) < C

where the Lorentz indices are taken with respect to the g, q tetrads. This implies
that all interaction intertwiners Z(x) are uniformly bounded in these Lorentz
frames. Therefore, the contribution of any Feynman diagram is estimated by

V∏
i=1

C(Zi)

(
C(g, V, κ, µ, ε)

µ

)E ∫
dz1
√
h(z1) . . .

∫
dzV

√
h(zV )

∏
edges (α,β)

e−(κ−ε−2δ)d(α,β)

where C(Zi) is a constant depending upon the intertwiners Zi, V is the number
of internal vertices, E the number of edges (internal and external) and α, β
are the coordinates of an internal or external vertex respectively. It has been
shown in [3, 9] what kind of bounds one can impose on such integrals proving
the assertion that the theory is perturbatively finite.

As commented in [3, 9] it may be necessary that additional surpression factors
on diagrams with a large number of internal vertices are necessary are necessary
to make the perturbation series analytic; we leave the investigation of such issues
open to a forthcoming book publication about this topic.

5 Conclusions.

Although we have not filled in all details of the construction, any reader inter-
ested in those fine points should consult [3, 9] where they have been explained
in the utmost detail. Admitted, we have skipped a small issue in [10] and in
this publication regarding the bounds placed upon the covariant derivatives of
Feynman propagator, something which was not required for φ4 theory and QED,
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but any reader with a minimal amount of skill can fill in those small gaps whose
detailed treatment would only ask for more space while adding little physical
insight.

I leave those details for a forthcoming book publication on the matter where
it is the luxurious space granted by a book which allows me to dwell on such
fine points. In this publication, we have shown that under reasonable conditions
regarding the background geometry, the graviton theory is perturbatively finite.
Moreover, it can be made analytic in a suitable range of the physical constants
if large vertices as well as diagrams with a large number of vertices are (super-
exponentially) surpressed. These deviations from standard quantum mechanics
appear mandatory for obtaining a consistent theory of gravitons; it appears logi-
cal to me, as I have repeatedly stated, that such modifications are also necessary
regarding the so-called non-perturbative approaches towards quantum gravity.

All this is very exciting since it would mean that friction as well as some finite
number of colliding gravitons dominate interactions at the Planck scale and that
these were the missing ingredients in the standard, unitary, theory. It was, more-
over, the principle of general covariance [2, 1] which pointed into the direction
of these novel physical ingredients and this constitutes a powerful motivation
indeed. It is important to realize that no strings or extended objects have been
necessary to obtain these wonderful features and that the point-particle theory
is alive and well.

I close here the series of papers on generally covariant quantum theory and
postpone the treatment of the remaining little, but rather obvious, details to a
forthcoming book publication on the matter given that the generality and depth
of the obtained results are truly wonderful.
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