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I. INTRODUCTION

The idea that matter curves space allowed Einstein to
develop general relativity theory (GR) [1], which general-
izes Newton’s theory of gravitation [2–6] and is a gener-
ally accepted theory of gravitation and of the space-time
structure. The predictions of local gravitational phenom-
ena made by GR agree with the results of experiments.

GR is based on Einstein’s equation relating the space–
time curvature tensor to the energy–momentum density
tensor of matter:

Rij −
1

2
Rgij = −8πkTij , (1)

where Rij = Rkikj are the components of the Ricci tensor,

R = Rijg
ij is the scalar curvature of the space, Tij are

the components of the energy–momentum density ten-
sor of matter, and k = 6.673 × 10−8cm3g−1s−2 is the
gravitation constant. Hilbert [7] established that Ein-
stein’s equation can be derived from the variational prin-
ciple if the Lagrangian of the gravitational field (GF) is
given by the scalar curvature of space–time and the grav-
itational potentials are given by the components of the
metric tensor. In this approach, which can be called the
Einstein–Hilbert approach, the curvature of space–time
is determined by the energy–momentum density tensor
of all kinds of matter, except for the GF. The GF it-
self has no energy–momentum density. The reason is
the covariant constancy of the metric tensor. According
to Einstein, the GF can be defined without introducing
the field strength and energy density [8]; therefore, this
field may essentially differ from other fields, in particular,
from electromagnetic field.

A variety of gravity theories have been developed and
proposed (see, for example, the surveys in [9–22]). As
pointed out in [20], most variants of gravity theory are
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based on a modification or extension of the Einstein–
Hilbert approach, and the Lagrangian of the GF is based
on the scalar curvature of space–time. This may apply to
both earlier and modern studies. In particular, in scalar–
tensor theories of gravity [17], in addition to the field of
the metric tensor components, scalar fields are used as
the gravitational potentials.

A somewhat different approach is implemented in the
two-metric formalism (see, for example, [9, 11, 23–26]).
In space–time, one simultaneously considers two metric
tensors. Gravitational phenomena occur in planar geom-
etry, while all the other phenomena of the material world
occur in pseudo-Riemannian geometry described by a
metric tensor depending on the GF. In contrast to GR,
there is a well-defined energy–momentum density tensor
of the GF in two-metric theories. However, the ques-
tion remains open of whether it is necessary that the two
geometries—a plane (background) and a locally curved
pseudo-Riemannian—should exist simultaneously.

The description of gravitational phenomena by a ten-
sor field in a flat space (see, for example, [16]) is not as
consistent as GR.

In this study, we support Einstein’s point of view: all
phenomena occur in the same curved pseudo-Riemannian
space–time with the metric tensor gµν . We assume that
at each point in space-time, in addition to the metric ten-
sor gµν , are given two more tensors — the tensor field
of gravity Gµν , and a tensor ηµν , which will be called
the background tensor. The tensors gµν , ηµν , Gµν as-
sociated asymptotic ratio gµν → ηµν with Gµν → 0.
The tensor ηµν is a given value and describes the met-
ric properties of space - time that could take place in
the absence of a gravitational field. Not used to describe
the geometry of any space. This distinguishes the ap-
proach proposed from two-metric formalism. The only
metric tensor gµν is an algebraic function of the ten-
sor ηµν and Gµν . The covariant derivative of GF yields
its strength; accordingly, the GF has energy–momentum
density tensor. The question is if such a consistent de-
scription of all gravitational phenomena is possible? The
goal of this study is to show that such an approach is
possible. To this end, we define a relation between the
gravitational potentials and the metric tensor, establish a
variational principle, and derive field equations and con-
servation laws of the energy–momentum of matter and
the GF. As the Lagrangian of the GF, we take the sim-
plest scalar invariant composed of GF strengths. Con-
sider an example of a specific Lagrangian of the GF that
correctly describes all observable local gravitational phe-
nomena in the second-order approximation in the same
manner as in GR. This is a nontrivial result, because, on
the one hand, the GF in the theory proposed is an ordi-
nary physical field in the sense of Faraday–Maxwell that
has positive energy density, and, on the other hand, all
phenomena occur, just as in GR, in curved space–time.

Conventionally, tensor and spinor fields in GR are con-
sidered as a set of components that are defined at each
point of the space in a given system of coordinates and

are appropriately transformed when passing to another
coordinate system. A variation of the fields in the space
is described by covariant derivatives [10, 27, 28]. There
also exists another approach, in which all fields are as-
sumed to be abstract geometric objects [10, 29]. Below,
we will apply a method of abstract tensor and spinor in-
dices proposed by Penrose [29, 30]. This method allows
us to operate with tensors irrespective of the coordinate
system and coordinate bases and retains all the advan-
tages of the component approach.

Denote by Greek letters α,β,γ, ... abstract vector in-
dices and by Latin letters i, j, k, ... taking values of 0, 1,
2, 3, vector components in a given basis. We assume that
the space–time is a 4-dimensional manifold whose points
are uniquely parameterized, at least in one of the coordi-
nate charts, by a coordinate system ri = (r0, r1, r2, r3),
where r0 = ct, t is time, r1, r2, r3 are spatial coordinates,
and c is the velocity of light. The coordinate system is
assigned a natural vector basis eµi . By a small variation
of the coordinates dri, we can obtain an abstract small-
displacement vector

drµ = drieµi . (2)

Here the standard convention of summing over repeated
upper and lower indices is used. Similarly, any abstract
vector Aµ can be represented as Aieµi , and any abstract
multicomponent tensor, as Sµ

νρ = Sijke
µ
i e

j
νe
k
ρ, where Ai

and Sijk are the components of the vector and tensor,
respectively.

Let us define a metric structure on the manifold con-
sidered. To this end, at each point we define 16 numbers
gij , called covariant metric coefficients, which define the
scalar product of two vectors eµi and eνj of the coordinate
basis,

gij = gµνe
µ
i e

ν
j = eµie

µ
j , (3)

where gµν is a symbol of convolution over two abstract
indices. Identical upper and lower indices also imply con-
volution. From the relations

gikg
jk = δji , eiµe

µ
j = δij , (4)

where δji is the Levi-Civita symbol (δji = 1 for i = j

and δji = 0 for i 6= j), we obtain the contravariant metric
coefficients gik and a basis eiµ dual to the coordinate basis

eµj .
The representation

gµν = gije
i
µe

j
ν (5)

gives a convenient expression for the metric coefficients,
which are the components of the abstract metric tensor
in the coordinate basis. For abstract indices, we have

gµσg
νσ = δνµ, δµµ = 4, (6)

where δνµ is an abstract analog of the Levi-Civita coordi-
nate symbol. The square of the invariant interval

ds2 = gµνdr
µdrν = gijdr

idrj (7)
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can be expressed in either the abstract or the coordinate
form. By definition, gij = gji and gij have 10 indepen-
dent components.

Let ∂k = ∂
∂rk

be the coordinate derivative. When pass-
ing from one point of the space to another, the vectors
of the coordinate basis are changed by the quantity

δeµj = ∂ie
µ
j dr

i = Γnije
µ
ndr

i, (8)

where Γnij—the Christoffel symbols—are connection coef-
ficients of the coordinate basis. For example, the deriva-
tive of the second-rank tensor field

∂kS
µν = (∂kS

ij + ΓiknS
nj + ΓjknS

in)eµi e
ν
j

has components that coincide with the components of the
covariant derivative. Let us restrict our consideration to
torsion-free spaces; then the connection coefficients are
symmetric:

Γnij = Γnji. (9)

The metric space is a Riemannian space if

∂k(gµνe
µ
i e

ν
j ) = gµν∂k(eµi e

ν
j ). (10)

Conditions (9) and (10) lead to the following relation-
ship between the Christoffel symbols and the metric co-
efficients:

Γkij =
1

2
gkn(∂ignj + ∂jgin − ∂ngij). (11)

When we use abstract indices, the covariant derivative
is replaced by the differential operator ∂µ [29, 30], which
we define as

∂µ = ejµ∂j . (12)

Condition (10) can be rewritten as

∂σgµν = 0, (13)

which corresponds to covariant constancy of the metric
tensor. Let us define the commutator of derivatives in a
similar way:

∆µν = ∂µ∂ν − ∂ν∂µ. (14)

For a tensor field, we have [29, 30]

∆µνG
π
χ = Rπ

µνσG
σ
χ −Rσ

µνχG
π
σ,

where Rπ
µνσ is the curvature tensor of space–time with

components Rnijk = ∂iΓ
n
jk − ∂jΓnik + ΓmjkΓnim − ΓmikΓnjm.

Let g = det(gij) be a determinant composed of metric
coefficients. We have

∂µ
√
−g =

1

2

√
−ggij∂µgij . (15)

The following relation holds for an arbitrary vector field
Xµ:

√
−g∂σXσ = ∂k(Xk√−g), (16)

which shows that
√
−g∂σXσ is a total derivative.

II. GRAVITATIONAL FIELD AND ITS
RELATION TO THE METRIC STRUCTURE OF

THE SPACE

The world in which we live is a space with dis-
tributed matter. The space is three-dimensional. The
forth dimension—time—is a parameter whose variation
changes the distribution of matter in the space. Mat-
ter consists of various fields distributed in the space.
According to Einstein’s idea, all phenomena occur in
curved pseudo-Riemannian space–time, and the matter
distributed in the space affects its structure. In partic-
ular, in GR Einstein represented this effect as a direct
relationship between the curvature of space–time and the
energy–momentum density of matter. A variation in the
density of energy-momentum of matter changes the cur-
vature of space–time, and accordingly, the metric struc-
ture of space-time.

In the present study, we consider another possibility.
Matter is a source of the GF. The GF affects the metric
structure of space–time. A variation in the metric struc-
ture of space–time leads to a change in the curvature of
space–time.

As a gravitational potential, we take a symmetric ten-
sor Gµν , which is the sole dynamical field. The main
assumption of this paper is as follows: the GF tensor
and the metric tensor are related by the formula

gµν = ηµν +Gµν , (17)

where ηµν is the background tensor. When Gµν = 0,
there is no GF, gµν = ηµν . When considering the local
properties of space–time, the background tensor can be
called the Minkowski tensor. The equation

ηµαζ
αν = δνµ (18)

defines the second background tensor ζαν , which is the
inverse of the tensor ηµα. The tensors thus defined pos-
sess the following properties:

∂σgµν = 0,

∂σηµν = −∂σGµν , (19)

∂σζ
µν = ζµαζνβ∂σGαβ.

The derivative of the tensor Gµν , unlike the derivative
of the metric tensor, is not identically zero.

The assumptions made allow us to formulate a theory
of GF within the standard classical field theory and the
principle of stationary action.

III. FIELD EQUATIONS

Consider a system consisting of the GF Gµν and the
fields of matter, which we denote by a generalized symbol
Ψ. The field equations are derived from the extremality
of action, which we write as

Ss =

∫
L
√
−gd4r, (20)
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where L is the Lagrangian density of the system and√
−gd4r is an invariant volume. Assume that the mat-

ter field and the GF satisfy the Euler–Lagrange equa-
tions of at most second order. Then, L generally depends
on the metric tensor, the background tensor, the matter
and gravitational fields, and the first-order derivatives of
these fields:

L = L(gµν , ζµν ,Ψ, ∂σΨ, Gµν , ∂σGµν). (21)

Let us subject the fields to infinitesimal variations:

Ψ→ Ψ + δΨ, (22)

Gµν → Gµν + δGµν ,

where δΨ is a variation of the matter fields and δGµν is a
variation of the GF. The background tensors ηµν and ζµν

are given quantities, and their variations vanish. Taking
into account the relation

δgσπ = −gσαgβπδgαβ, (23)

and the relation (17), we obtain the following variations
related to the metric tensor:

δgσπ = δGσπ, (24)

δgσπ = −gσµgπνδGµν , (25)

δ
√
−g =

1

2

√
−ggµνδGµν . (26)

The total variation of the action is expressed as

δSs =

∫
δL
√
−gd4r, (27)

where

δL =
1√
−g

δ(L
√
−g)

=

[
∂L

∂Ψ
− ∂σ

∂L

∂∂σΨ

]
δΨ

+

[
∂L

∂Gµν
− ∂σ

∂L

∂∂σGµν
− 1

2
Tσπg

σµgπν

]
δGµν (28)

+∂σ

[
∂L

∂∂σΨ
δΨ +

∂L

∂∂σGµν
δGµν

]
.

The tensor

Tσπ =
2√
−g

∂(L
√
−g)

∂gσπ
(29)

is the metric tensor of energy–momentum density of the
system. Setting the coefficients of the variations δΨ and
δGµν to zero, we obtain the Euler–Lagrange equations.

For the matter field, we have

∂L

∂Ψ
− ∂σ

∂L

∂∂σΨ
= 0, (30)

while, for the gravitational field, we have

∂L

∂Gµν
− ∂σ

∂L

∂∂σGµν
=

1

2
Tµν . (31)

IV. ENERGY–MOMENTUM DENSITY
TENSOR IN CURVED SPACE-TIME

To obtain the energy–momentum density tensor and
its conservation law, we apply a method similar to that
of [27, 31]. Since the Lagrangian L of the system of the
matter field and the GF does not explicitly depend on co-
ordinates, applying the rule of differentiation of complex
functions, we can write the identity

∂πL =
∂L

∂Ψ
∂πΨ +

∂L

∂∂σΨ
∂π∂σΨ (32)

+
∂L

∂ζµν
∂πζ

µν +
∂L

∂Gµν
∂πGµν +

∂L

∂∂σGµν
∂π∂σGµν .

Taking into account the noncommutativity of the deriva-
tives, we rewrite it as

∂πL =

(
∂L

∂Ψ
− ∂σ

∂L

∂∂σΨ

)
∂πΨ

+

(
∂L

∂ζγδ
ζγµζδν +

∂L

∂Gµν
− ∂σ

∂L

∂∂σGµν

)
∂πGµν (33)

+∂σ

(
∂L

∂∂σΨ
∂πΨ +

∂L

∂∂σGµν
∂πGµν

)
+

∂L

∂∂σΨ
∆πσΨ +

∂L

∂∂σGµν
∆πσGµν .

Assuming that the Euler–Lagrange equations (30), (31)
hold, we find that the tensor

tσπ = −Lδσπ +
∂L

∂∂σΨ
∂πΨ +

∂L

∂∂σGµν
∂πGµν , (34)

which is the canonical tensor of energy–momentum den-
sity of the system, satisfies the following conservation
law:

∂σt
σ
π = fπ, (35)

where

fπ = −
(

1

2
Tµν +

∂L

∂ζγδ
ζγµζδν

)
∂πGµν

− ∂L

∂∂σΨ
∆πσΨ− ∂L

∂∂σGµν
∆πσGµν (36)

is the four-vector of the density of forces caused by
the curvature of the space and by the effect of the GF
strength ∂πGµν on the density of the metric tensor of
energy–momentum of the system. The force fπ is an
analog of the density of the Lorentz force Fµνj

ν for elec-
tromagnetic interaction.

In the case of a real GF, the Lagrangian density of the
system can be represented as

L = Lm + Lg, (37)

where Lm is the density of the matter Lagrangian and Lg
is the density of the GF Lagrangian. We will consider the
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case of minimal coupling, when the Lagrangian density of
gravitation depends only on the GF and the Lagrangian
density of matter depends only on the matter fields and
the metric tensor. In this case, the general conservation
law (35) can be represented as two separate conservation
laws. Indeed, writing, for Lg and Lm, identities similar
to (32) and applying the field equations (30) and (31), we
obtain the canonical energy–momentum density tensors.
For the GF, we have

tσ(g)
π = −Lgδσπ +

∂Lg
∂∂σGµν

∂πGµν , (38)

with the conservation law

∂σt
σ(g)
π = f (g)

π , (39)

where

f (g)
π = −

(
1

2
Tµν +

∂L

∂ζγδ
ζγµζδν

)
∂πGµν

− ∂L

∂∂σGµν
∆πσGµν . (40)

For the matter fields, we have

tσ(m)
µ = −Lmδσµ +

∂Lm
∂∂σΨ

∂µΨ, (41)

with the conservation law

∂σt
σ(m)
π = f (m)

π = − ∂Lm
∂∂σΨ

∆πσΨ, (42)

where f
(m)
π is the force due to the curvature of space act-

ing on the matter field. This force vanishes for scalar
fields, as well as for spinor fields of spin- 1

2 particles (lep-
tons, quarks) due to the algebraic structure of the La-
grangian density of such fields. For an ideal fluid, which
will be used as a model of matter, we should set

∂σt
σ(m)
π = 0, (43)

just as in GR. For the canonical energy–momentum den-
sity tensor (34) we obtain

tσπ = tσ(m)
π + tσ(g)

π . (44)

A similar decomposition can be obtained for the metric
tensor (29):

Tσπ = T (m)
σπ + T (g)

σπ , (45)

where

T (m)
σπ =

2√
−g

∂(Lm
√
−g)

∂gσπ
,

T (g)
σπ =

2√
−g

∂(Lg
√
−g)

∂gσπ
. (46)

The metric energy–momentum density tensor may dif-
fer from the canonical tensor for both matter anthe GF.

We choose Lagrangians Lm, Lg so that the tensors are
consistent:

Tσπ = g(σαt
α
π) + ∂(σZπ), (47)

where Zπ is a vector field.
In the general case, fπ (36) is different from zero; this

leads to nonconservation of the energy of the system,
whereas, for an isolated static system consisting of matter
and GFs, the energy must be conserved. The conserva-
tion of energy can be achieved by using the nonunique-
ness of the Lagrangian density L. Let us introduce an
additional quantity

Lc =
c4

64πk
∂σ(Uσ + gσπDπ) (48)

to the Lagrangian, which is the 4-divergence of the vector
fields Uσ and Dπ. The quantity Lc does not lead to
additional field equations and does not affect the form
of equations (30),(31); however, it makes an additional
contribution to the metric tensor of energy–momentum
density of the form

T (c)
σπ =

c4

64πk
(∂σDπ + ∂πDσ)− gσπLc (49)

and thus affects the solutions of the GF equations. We
choose the vector fields Uσ and Dπ so that the solutions
of the field equations for the total energy–momentum
density tensor of the system satisfy the local conserva-
tion law

∂σTσπ = ∂σ(T (m)
σπ + T (g)

σπ + T (c)
σπ) = 0. (50)

We will call Uσ and Dπ correcting fields. In what follows,
by the energy–momentum density tensor of the GF we
will mean the tensor

T (g)
σπ + T (c)

σπ, (51)

and by the Lagrangian of the GF we will mean the scalar
Lg + Lc.

For a static GF, the vector of the local coordinate basis
eµ0 is a Killing vector. This fact allows us from the lo-
cal conservation law (50) to derive an integral conserved
quantity—the rest energy of the system,

E =

∫
T 0

0

√
−gd3r. (52)

The definition of the rest energy of the system yields a
definition of the inertial mass m = E/c2.

The application of the variational principle of the clas-
sical field theory allows us to obtain non-linear equation
(31), which is significantly different from Einstein’s equa-
tion. A natural consequence of the new approach is the
fact that the GF, just as all the other matter fields, is
characterized by energy–momentum density tensor (51),
which is obtained from the Lagrangian Lg+Lc of the GF.
The source of the GF is the energy–momentum density
tensor of all kinds of matter, including the GF itself. A
conserved integral characteristic of the source of the GF
is its total rest energy (52) and the corresponding mass
m of the source.
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V. LAGRANGIAN OF THE GRAVITATIONAL
FIELD

In Einstein’s GR, the GF Lagrangian is given by the
scalar curvature of space–time. The potentials of the
GF are given by the components of the metric tensor.
In the theory of gravity proposed, the gravitational po-
tential is given by a second-rank symmetric tensor Gµν .
Due to the relationship between the GF and the metric
tensor of space-time (17), all phenomena occur, just as
in GR, in curved space–time. This renders the gravita-
tional interaction universal. In the presence of matter,
the space–time has a nonzero curvature tensor; however,
unlike GR, we do not use this tensor in our theory. By
analogy with the electromagnetic field, we take the GF
Lagrangian in the form of a simple quadratic combina-
tion of the first-order derivatives of the GF tensor, which
correctly describes gravitational phenomena in the first-
and second-order approximations,

Lg =
c4

64πk
gσπ(ζαγζβδ− 1

2
ζαβζγδ)∂σGαβ∂πGγδ. (53)

Lagrangian (53) corresponds to the GF equation

∂σ

(
(ζαγζβδ − 1

2
ζαβζγδ)∂σGαβ

)
= −16πk

c4
Tγδ, (54)

where Tγδ = gγσgδπTσπ, Tσπ = T
(m)
σπ + T

(g)
σπ + T

(c)
σπ is

the total energy–momentum density tensor of the sys-
tem consisting of matter, GF, and correcting fields. The
energy–momentum density tensor of the GF is

T (g)
σπ =

c4

32πk
(ζαγζβδ − 1

2
ζαβζγδ)∂σGαβ∂πGγδ

−gσπLg .(55)

For Lagrangian (53), the density of the canonical
energy–momentum density tensor (34) is consistent with
the metric tensor

T (g)
σπ = gσγt

γ(g)
π . (56)

It is the consistency condition that is responsible for
the fact that the convolution of the tensors ∂σGαβ and
∂πGγδ over the indices α,β and γ, δ is performed with
the use of the background, rather than the metric, ten-
sor. We also assume that a similar relation holds for the
energy–momentum density of matter.

In the first-order approximation, the GF equation
turns into the equation of the linearized theory of grav-
ity [10]. As a consequence, the metric structure of space–
time in this approximation coincides with the space–time
structure of GR.

VI. SOLUTION OF GRAVITATIONAL FIELD
EQUATIONS

The GF is determined by the source. Consider the
simplest case: a spherically symmetric body of radius

Rb consisting of an ideal fluid with energy–momentum
density tensor

T (m)
µν = (ε+ P )uµuν − Pgµν , (57)

where ε is the density of rest energy, P is pressure, and
uµ is the velocity 4-vector of an element of the body.

Let us obtain a solution to the equations for a fixed
body in which there is no internal motion of matter. In
this case, the velocity 4-vector of an element of the body
is

uµ =
√
g00e

0
µ. (58)

In the system of coordinates ri = (ct, r, θ, ϕ), where
r, θ, ϕ are spherical coordinates, we have

ηαβ = e0
αe

0
β − (e1

αe
1
β + r2e2

αe
2
β + r2sin2(θ)e3

αe
3
β), (59)

ζαβ = eα0 e
β
0 − (eα1 e

β
1 +

1

r2
eα2 e

β
2 +

1

r2sin2(θ)
eα3 e

β
3 ), (60)

η = det(ηik) = −r2sin(θ). (61)

The spherical symmetry of the distribution of energy
density and the pressure of matter (57) imposes the fol-
lowing constraint on the GF tensor, the correcting fields,
and the metric tensor:

Gµν = F (r)e0
µe

0
ν +A(r)e1

µe
1
ν

+[A(r) +B(r)]r2(e2
µe

2
ν + sin2(ϑ)e3

µe
3
ν), (62)

Uσ = U(r)eσ1 ,

Dπ = D(r)e1
π, (63)

P = P (r), (64)

gµν = [1 + F (r)]e0
µe

0
ν − [1−A(r)]e1

µe
1
ν (65)

−[1−A(r)−B(r)]r2(e2
µe

2
ν + sin2(ϑ)e3

µe
3
ν),

− g = [1 + F (r)][1−A(r)][(1−A(r)−B(r)]2η, (66)

where F (r), A(r), B(r), U(r), D(r), and P (r) are func-
tions of r that are to be determined. The nonzero B(r)
leads to the anisotropy of the metric tensor.

Let ε0, E0, and m0 be the energy density, energy, and
the mass of a stationary body defined in the absence of
GF, and ε, E, and m be the energy density, energy, and
the mass of the body in the presence of the GF. In the
general case, the GF acts on both the matter and the
spatial volume. Let us neglect the effect of the GF on
the matter of the body. The variation of the differential
volume is

d3V = κd3V0, (67)
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where d3V0 is the differential volume in the absence of
GF and

κ =
√

(1−A(r))(1−A(r)−B(r))2. (68)

In the presence of GF, the density of the rest energy is

ε = ε0κ
−1. (69)

For the total energy of the body we obtain

E =

∫
(ε+ T

0(g)
0 )

√
−gd3r =

∫
ε0
√
g00
√
ηd3r + Egf ,

(70)

where T
0(g)
0 and Egf are the energy density and the total

energy of the GF of the body.
The GF is determined by three equations: the GF

equation (54), the equation of conservation of the energy–
momentum density tensor of the system (50), and the
equation of conservation of the energy–momentum ten-
sor of matter (43). In the component representation,
we obtain five independent equations involving six in-
dependent unknown functions. One of these functions
should be chosen as a parameter. The solution of the
equations by the method of series expansion shows that
one should take B(r) as the parameter, because all the
equations of the system can be consistently resolved only
in this case. Equations (54) and (50) have a relatively
simple tensor form. In the component representation,
these equations constitute a complicated nonlinear sys-
tem of coupled second-order differential equations even
in the simplest case of spherical symmetry (see the Ap-
pendix, where we present the equations under the con-
dition B(r) = 0). To obtain these equations, we used
a computer algebra package TTC (Tools of Tensor Cal-
culus) [32] in a Mathematica system [33] developed by
A.Balfagón, P.Castellv́ı, and X.Jaén.

Next, we consider the solution of the GF equations for
a constant energy density of the matter of the body ε0.
In this case,

ε0 =
E0

4
3πR

3
b

.

In what follows, it will be convenient to introduce a di-
mensionless quantity

p =
kE0

c4Rb
=
km0

c2Rb
(71)

which is the ratio of the gravitational radius of the body
kE0/c

4 to the geometric radius Rb. We will call p the
compactness parameter of the body. The second inter-
pretation of p is the absolute value of the Newton poten-
tial on the surface of the body. Usually, p << 1, which
corresponds to the case of weak fields. In particular,
p ' 6.96 × 10−10 for the Earth and p ' 2.1 × 10−6 for
the Sun. The GF is weak at any distance from the center
of the body. The GF may be strong near neutron stars,

where p is greater than 0.1. The notations introduced
allow us to write

16πkT (m)
µν =

12p

R2
b

[
(κ−1 + Π)uµuν −Πgµν

]
, (72)

where Π = P/ε0.
Equation (43) leads to a single equation—hydrostatic

equilibrium equation

F ′(r)

1 + F (r)
+

2Π′(r)

κ−1 + Π(r)
= 0. (73)

For weak fields, the external and internal solutions of
the field equations can be obtained by a series expansion.
The solution exhibits qualitatively different dependence
on r inside the body, for r ≤ Rb, and in the external
domain, where there is no matter. On the boundary of
the body, for r = Rb, U(r) and D(r) must be continuous,
while F (r), A(r), and B(r) must be continuous together
with their first derivatives. Let us take the radius of
the body Rb as the unit of length. Expand the external
solution as

F (r) = F1
p

r
+ F2

p2

r2
+ F3

p3

r3
+O(p4), (74)

D(r) = D2
p2

r3
+D3

p3

r4
+O(p4), (75)

and the internal solution as

F (r) = f0 + f1pr
2 + f2p

2r4 + f3p
3r6 +O(p4), (76)

D(r) = d0p
2r + d2p

2r3 + d3p
3r5 +O(p4), (77)

Π(r) = Π0p+ Π1pr
2 + Π2p

2r4 + Π3p
3r6 +O(p4), (78)

where Fi, fi, Di, di,Πi are constants that depend on
p. Similarly for A(r), B(r), and U(r). Let us substi-
tute the expansions into equations (50), (54), and (73)
and set the coefficients of appropriate powers of r to
zero. We obtain a solution depending on the constants
F1, A1, f0, a0, d0, u0, and Π0. Expressing these constants
as expansions in the compactness parameter p, we deter-
mine them from the condition of continuity on the bound-
ary of the body. Performing the above-listed procedures,
we obtain the following expressions in the third-order ap-
proximation.

For the external solution:

F (r) = −2p

r

(
1− 3p

5
− 3699p2

1400

)
(79)

+
1

r2

(
p2

4
− 3p3

10

)
− 22p3

15r3
,

A(r) = −2p

r

(
1− 3p

5
− 507p2

1400

)
(80)

− 1

r2

(
15p2

4
− 9p3

2

)
− p3

r3

(
104

15
+

2

3
B3

)
,



8

B(r) = B3
p3

r3
, (81)

U(r) = − 1

r3

(
2p2 − 12p3

5

)
+

18p3

5r4
, (82)

D(r) =
1

r3

(
2p2 − 12p3

5

)
+

16p3

5r4
, (83)

√
g00 = 1− p

r

(
1− 3p

5
− 3699p2

1400

)
− 1

r2

(
3p2

8
− 9p3

20

)
− 133p3

120r3
, (84)

√
g

η
= 1 +

p

r

(
2− 6p

5
+

1089p2

700

)
+

1

r2

(
15p2

4
− 9p3

2

)
+
p3

r3

(
37

6
+B3

)
. (85)

For the internal solution:

F (r) = −3p+
39p2

20
+

(
2897

700
− 21

16
B3

)
p3

+r2

(
p− 3p2

20
− 186p3

175

)
(86)

−r4

(
7p2

20
− 81p3

200
− 63p3B3

16

)
+r6p3

(
31

840
− 21B3

8

)
,

A(r) = −3p− 129p2

20
−
(

7937

700
− 35B3

16

)
p3

+r2

(
p+

93p2

20
+

5097p3

350

)
(87)

−r4

(
3p2

4
+

231p3

40
+

153p3B3

16

)
+r6p3

(
101

120
+

161

24
B3

)
,

B(r) = p3B3

(
9

2
r4 − 7

2
r6

)
, (88)

U(r) = p2r

(
−6

5
+

3342p

175

)
−p2r3

(
4

5
+

396p

25
− 63pB3

)
(89)

+p3r5

(
96

35
− 63B3

)
,

D(r) = p2r

(
6 +

54p

5

)
−p2r3

(
4 +

84p

5
+ 63pB3

)
(90)

+p3r5

(
34

5
+ 63B3

)
,

Π(r) =
p

2
− 3p2

4
+

1111p3

4200
+

21B3p
3

32

−r2

(
p

2
− 23p2

40
+

411p3

1400

)
(91)

+r4

(
7p2

40
+

13p3

50
− 63B3p

3

32

)
+r6p3

(
21

16
B3 −

97

420

)
,

√
g00 = 1− 3p

2
− 3p2

20
+ p3

(
1291

700
− 21B3

32

)
+r2

(
p

2
+

27p2

40
+

1557p3

2800

)
(92)

−r4

(
3p2

10
+

117p3

200
− 63p3B3

32

)
+r6p3

(
283

1680
− 21B3

16

)
,

√
g

η
= 1 + 3p+

123p2

20
+ p3

(
7999

700
− 63B3

16

)
−r2

(
p+

81p2

20
+

7893p3

700

)
(93)

+r4

(
9p2

20
+

693p3

200
+

261p3B3

16

)
−p3r6

(
331

840
+

91

8
B3)

)
.

The solution obtained is expressed in terms of the com-
pactness parameter p, which, in turn, is expressed in
terms of the mass m0 of the original matter of the body
in the absence of GF. Introduce one more mass,

mg = m0(1− 3

5
p− 3699

1400
p2 +O(p3)), (94)

the gravitational mass. It is this value which is the ratio
of the mass in r−1 in the component of the gravitational
potential F (r) (79). The corresponding compactness pa-

rameter pg =
kmg

c2Rb
is related to p by the condition:

pg = p− 3

5
p2 − 3699

1400
p3 +O(p4), (95)

or

p = pg +
3

5
p2
g +

4707

1400
p3
g +O(p4

g). (96)
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When expressed in terms of pg, the external solution has
the following form in the third-order approximation:

F (r) = −2pg
r

+
p2
g

4r2
−

22p3
g

15r3
, (97)

A(r) = −2pg
r

(
1 +

57

25
p2
g

)
−

15p2
g

4r2
(98)

−
(

104

15
+

2

3
B3

)
p3
g

r3
,

B(r) = B3

p3
g

r3
, (99)

U(r) = −
2p2
g

r3
+

18p3
g

5r4
, (100)

D(r) =
2p2
g

r3
+

16p3
g

5r4
, (101)

√
g00 = 1− pg

r
−

3p2
g

8r2
−

133p3
g

120r3
, (102)

√
g

η
= 1 +

pg
r

(
2 +

171

25
p2
g

)
+

15p2
g

4r2
+

(
37

6
+B3

)
p3
g

r3
.

(103)
In the third-order approximation, the solution is deter-

mined by two parameters: the compactness parameter p
and an arbitrary constant B3. The indefinite quantity
B(r) arises because the number of unknown functions is
greater than the number of equations that define these
functions. This fact manifests itself only in the third and
higher order expansions in the compactness parameter
p. In the second-order approximation, B(r) = 0. The
GF and the metric tensor are defined uniquely. Take
B(r) = 0 in all orders. This condition establishes a cor-
respondence between the number of unknown functions
and the number of equations and allows us to write the
GF tensor

Gµν = F (r)e0
µe

0
ν +A(r)(e0

µe
0
ν − ηµν) (104)

in an isotropic form, where there is no chosen spatial
direction. If necessary, we can obtain higher order ex-
pansion terms.

In the second-order approximation, for the external so-
lution we have

gµν =

(
1− 2kmg

c2r
+

(kmg)
2

4c4r2

)
e0
µe

0
ν (105)

−
(

1 +
2kmg

c2r
+

15(kmg)
2

4c4r2

)
(e0

µe
0
ν − ηµν).

For comparison, in GR, the Schwarzschild solution in
isotropic coordinates is as follows:

gµν =

(
1− 2kmg

c2r
+

2(kmg)
2

c4r2

)
e0
µe

0
ν (106)

−
(

1 +
2kmg

c2r
+

3(kmg)
2

2c4r2

)
(e0

µe
0
ν − ηµν).

In the parameterized post-Newtonian (PPN) formalism
[21], the following parameters correspond to the metric
tensor (105):

γ = 1, β =
1

8
, ξ = 0, αi = 0, ςk = 0. (107)

The parameter γ = 1 is due to the coincidence of the GF
Lagrangian with the Lagrangian of the linearized theory
of gravity in the first-order approximation. The value
of the parameter β = 1

8 differs from the value β = 1
in GR. In the second-order approximation, the theories
differ substantially.

In Newton’s theory of gravity, the GF of a body is
described by the potential

ϕ(r) = −kmg

r
. (108)

It is convenient to represent the external solution in terms
of the Newton potential. In the second-order approxima-
tion, solution (79)–(85) is rewritten as

F (r) =
2

c2
ϕ(r) +

1

4c4
ϕ2(r), (109)

A(r) =
2

c2
ϕ(r)− 15

4c4
ϕ2(r), (110)

U(r) = −D(r) = − 2

c4
ϕ2Rb

r
. (111)

√
g00 = 1 +

1

c2
ϕ(r)− 3

8c4
ϕ2(r), (112)

√
g

η
= 1− 2

c2
ϕ(r) +

15

4c4
ϕ2(r), (113)

Solution (104) corresponds to a fixed source. For
practical applications, we should also take into ac-
count the effect of motion of the source on its GF.
To this end, we pass from the spherical spatial system
of coordinates (r, θ, ϕ) to a Cartesian system with co-
ordinates (x1, x2, x3). We use the following notation:
(x1

0, x
2
0, x

3
0) are the coordinates of the center of the source

of GF, r = (x1 − x1
0, x

2 − x2
0, x

3 − x3
0), r =

√
(rr) =√

(r1)2 + (r2)2 + (r3)2, v = (
dx1

0

dt ,
dx2

0

dt ,
dx3

0

dt ), is the ve-

locity vector of the source, dr
dt = −v, (vr) = v1r1 +

v2r2 + v3r3, (vn) = (vr)
r , ∂n = ∂

∂n
, ∇ = (∂1, ∂2, ∂3) and
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∆ = ∂2
1 + ∂2

2 + ∂2
3 . Solution (104) in a Cartesian spatial

system of coordinates is expressed as

ηαβ = i0αi
0
β − (i1αi

1
β + i2αi

2
β + i3αi

3
β),

Gµν = [F (r) +A(r)]i0µi
0
ν −A(r)ηµν , (114)

and

gµν = [F (r) +A(r)]i0µi
0
ν + [1−A(r)]ηµν , (115)

where ikµ are vectors dual to the vectors of the local co-

ordinate basis iµk of the Cartesian system of coordinates.
In the second-order approximation under the assumption
that the velocities are small compared with the velocity of
light, the motion of the source can be taken into account
by an appropriate Lorentz transformation of the part of
the solution corresponding to the first-order approxima-
tion. The sum of the transformed part of the solution
and a part of second-order solution gives the solution of
the problem posed. The above-mentioned Lorentz trans-
formation is equivalent to the transition from solution
(114), (115) to the solution in the form

Gµν = [F (r) +A(r)]vµvν −A(r)ηµν , (116)

gµν = [F (r) +A(r)]vµvν + [1−A(r)]ηµν ,

where vµ = 1√
1−v2 (i0µ + v1i1µ + v2i2µ + v3i3µ). The tensor

ηµν is invariant under Lorentz transformations.

In the case of a moving body, ∂0r = − (vr)
r 6= 0, and

one should take into account the retardation in the New-
tonian potential [27] by replacing (108) with

ϕ(r) = −
(
kmg

r
+
kmg

2
∂2

0r

)
= −kmg

r

(
1 +

1

2c2
[
(vv)− (vn)2

])
. (117)

Consider also the GF of two bodies. In the second-
order approximation,

Gµν = G(1)
µν +G(2)

µν + Φµν , (118)

where G
(1)
µν and G

(2)
µν are the GFs of bodies 1 and 2 in

accordance with (116) and Φµν is a second-order quantity
that depends on the distances to body 1 and body 2.
From the GF equation, we obtain

Φ00 = 0,Φ0n = 0; (119)

the components Φnm with n,m = 1, 2, 3 are defined as a
solution to the equations

∆Φnm = −8(2∇ϕ1∇ϕ2 − ∂nϕ1∂mϕ2), n = m,

∆Φnm = 4(∂nϕ1∂mϕ2 + ∂mϕ1∂nϕ2), n 6= m, (120)

where ϕ1 and ϕ2 are the Newtonian potentials of the
bodies.

VII. GRAVITATIONAL FIELD OF A
ROTATING BODY

Consider a variation in the GF due to the rotation of
the body with angular velocity Nϕ about the axis θ =
0. The volume elements move at velocity vϕ along the
coordinate ϕ with the basis vector eµ3 . Let us restrict
ourselves to the approximation of vϕ << 1, rg << Rb and
to a spherically symmetric body. Then vϕ = Nϕr sin θ.
In the energy–momentum density tensor of matter, the
following term appears due to rotation:

T (m)
µν = T

(m)
µν(0) − εNϕr

2 sin2(θ)(e3
µe

0
ν + e0

µe
3
ν), (121)

where T
(m)
µν(0) is the energy–momentum density tensor

without rotation. In the approximation linear with re-
spect to Nϕ, the source corresponds to the field

Gµν = G(0)
µν −Qcr2 sin2 θ(e3

µe
0
ν + e0

µe
3
ν), (122)

where G
(0)
µν is the GF (62) of the source without rotation.

From the field equations we obtain

Q =

(
5− 3r2

R2
b

)
kLϕ
c3R3

b

(123)

for the internal solution and

Q =
2kLϕ
c3r3

(124)

for the external solution, where Lϕ = 4
5MNϕR

2 is the
angular momentum of a uniform sphere. The GF corre-
sponds to the following metric tensor:

gµν = g(0)
µν −Qcr2 sin2 θ(e3

µe
0
ν + e0

µe
3
ν). (125)

Here g
(0)
µν is the metric tensor corresponding to a source

without rotation.

VIII. RADIATION OF GRAVITATIONAL
WAVES

Consider the gravitational radiation field produced by
a compact system of bodies that move with velocities
small compared with the velocity of light. At a suffi-
ciently large distance from the bodies, the GF can be
assumed weak and the space, flat. To describe the GF,
it suffices to apply the first nonvanishing approximation
that leads to the equation of the linearized theory of grav-
ity

∂σ∂
σ

(
Gµν − 1

2
ζµνGσ

σ

)
= −16πkTµν , (126)

which is the wave equation and has the following solution:

Gµν − 1

2
ζµνGσ

σ = −4k

∫
Tµν(r

′
, t− |r − r′ |)
|r − r′ |

d3r
′
.

(127)
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At large distances from the source, from this solution we
can single out a part that represents a divergent wave,
which can be expressed (in the T − T gauge) as [10]

hµν = −2k

r

(
Pµ
αP

ν
β −

1

2
PµνPαβ

)
..

D
αβ
, (128)

where Pµα is the operator of projection onto a plane or-
thogonal to the radiation propagation direction, which
possesses the properties PµαP

α
ν = Pµν , PµαP

µα = 2,
nµ is a four-vector in the direction of propagation,

nµn
µ = −1, and Dαβ = eαa e

β
bD

ab is the reduced

quadrupole moment tensor; the two dots over Dαβ de-
note the second-order time derivative; and

Dab =

∫
ε

c2

(
rarb − 1

3
r2δab

)
d3r, (129)

where a, b = 1, 2, 3. Substituting solution (128) into the
energy–momentum density tensor of the GF (55), we ob-
tain the following expression for the energy flux density
in the direction of propagation nµ:

Tµνe
µ
0 n

ν = (130)

k

8πr2

(
...

Dαβ

...

D
αβ
− 2

...

Dσα

...

D
σ

βn
αnβ +

1

2
(
...

Dαβn
αnβ)2

)
.

Integrating this expression over a sphere of radius r,
we obtain Einstein’s well-known formula for the gravi-
tational energy radiated by a system of bodies in unit
time:

I =
k

5

...

Dαβ

...

D
αβ
. (131)

IX. ENERGY OF THE GRAVITATIONAL FIELD

For solution (62)–(66), (79)–(93) obtained in the third-
order approximation, the energy density of the GF is

(
T

0(g)
0 + T

0(c)
0

)√g

η
=

E0

16πr4

(
p− 6p2

5
− 3447p3

700

)
(132)

+
E0

16πr4

(
Rb
r

(
21p2

5
− 189p3

25
) +

26p3R2
b

5r2

)
outside the body and (

T
0(g)
0 + T

0(c)
0

)√g

η

=
E0

16πR4
b

(
27p

5
− 1233p2

700
− 50207p3

2100

)
(133)

+
E0

16πR4
b

(
r2

R2
b

(−p+
87p2

20
+

17919p3

350
)

)
+

E0

16πR4
b

(
r4

R4
b

(
9p2

20
− 5961p3

200
) +

599r6p3

175R6
b

)

inside the body. The energy density of the GF is positive
both outside and inside the body. The GF energy outside
the body is

Egfout = E0

(
p

4
+

9p2

40
− 14639p3

8400

)
(134)

and the GF energy inside the body is

Egfin = E0

(
7p

20
+

243p2

1400
− 33757p3

42000

)
. (135)

The total energy of the GF of the body is

Egf = E0

(
3p

5
+

279p2

700
− 13369p3

5250

)
. (136)

The energy density of the matter of the body is

T
0(m)
0

√
g

η
= ε

√
g

η
= ε0
√
g00 (137)

= ε0

(
1− 3p

2
− 3p2

20
+

1291p3

700

)
+ε0

r2

R2
b

(
p

2
+

27p2

40
+

1557p3

2800

)
+ε0

(
− r

4

R4
b

(
3p2

10
+

117p3

200
) +

283p3r6

1680R6
b

)
.

The energy of the matter of the body is

Em = E0

(
1− 6p

5
+

177p2

1400
+

15619p3

7875

)
. (138)

The total energy of the body is

E = Em + Egf = E0

(
1− 3p

5
+

21p2

40
− 1267p3

2250

)
.

(139)
The energy E of the body with regard to the GF is less
than the original energy E0 of the matter of the body
by the value of the gravitational energy defect, which is
given by

∆k = (E0−E)/E0 =
3p

5
− 21p2

40
+

1267p3

2250
+O(p4). (140)

For comparison, in Newton’s theory of gravity, the po-
tential gravitational energy of a homogeneous sphere is
given by [27]

1

2

∫
ε0ϕ
√
−ηd3r = −3

5
pE0. (141)

The mass of the body, m = E/c2, is different from its
gravitational mass (94)

mg =

(
1− 2217

700
p2

)
m+O(p3). (142)

However, this difference is of the second order of small-
ness, and the equivalence principle is satisfied to a suffi-
ciently high accuracy.
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X. LIGHT RAYS, PARTICLES, AND BODIES IN
GRAVITATIONAL FIELDS

In the first-order approximation, the metric structure
of space–time in the theory of gravity proposed coincides
with the metric structure of space–time in GR. Hence,
in this approximation, both theories identically describe
the phenomena related to the null geodesic lines in space–
time, in particular, the gravitational red shift of a light
wave and the effect of the GF on the direction and time
of propagation of light. Experimental investigations of
these phenomena [21] lead to the following value of the
post-Newtonian parameter: γ = 1.

In the second-order approximation, the metric struc-
ture of space-time in the theory of gravity proposed dif-
fers from the metric structure of space-time in GR. This
difference manifests itself in the values of the observed ef-
fects. In particular, in GR the deflection angle of a light
beam passing close to a body of mass m (in the isotropic
coordinates) is

α = 4h+ h2(
15π

4
− 8), (143)

where h = km
c2r0

, r0 is the minimum distance between the
beam path and the body. In the theory proposed,

α = 4h+ h2(
23π

4
− 8). (144)

The delay time of the electromagnetic pulse during prop-
agation from a point located at a distance r from the
centre of the body to the point of closest approach r0 is

ct(r, r0) =
√
r2 − r2

0 + 2rg

√
r − r0

r + r0

+2rg ln
r +

√
r2 − r2

0

r0
(145)

+
2rg(3r

2
0 − 2r2 − rr0)

r0(r + r0)
√
r2 − r2

0

+
κ2r

2
g

r0
(π − 2 arctan

r0√
r2 − r2

0

),

where rg = km
c2 , κ2 = 15

4 in GR, and κ2 = 23
4 in the

theory proposed.
For a neutron star with a radius of 12-15 km and a mass

of 2 solar masses, the greatest gravitational deflection
angle in GR is 70−54◦, whereas, in the theory proposed,
it is 93− 69◦.

The energy–momentum density tensor Tµ
ν (ri) de-

scribes matter distributed over the entire space. Part
of matter manifests itself as ”clusters” that form com-
pact objects such as elementary particles, atomic nuclei,
atoms, molecules, planets, and stars. From the gravi-
tational viewpoint, we can classify material objects into
two groups: particles and bodies. A particle is the sim-
plest object whose size and the internal structure can be
neglected. In the limit case, this is an elementary parti-
cle. Particles can be combined into larger objects. By a

body we mean an object, consisting of a set of particles,
that is situated at a certain distance from other objects
and moves as a unit whole. The position of a particle
in space is described by coordinates Ri. The position
of a body is described by the coordinates of its center
of inertia. The coordinate basis eµi is associated with
the coordinate system. When considering the motion of
bodies, we will neglect their size.

In special relativity theory, the motion of a particle is
described by the principle of stationary action [27, 28]

Sp = −
∫ b

a

mpcdsp, (146)

where a and b are the initial and final points of the trajec-
tory, m is the mass of the particle, and ds =

√
gijdRidRj

is an invariant interval. Here gij are metric coefficients
of flat space–time. The particle has the velocity 4-vector

uµ = dRi

ds e
µ
i and the energy–momentum 4-vector

pµ = mpcgµνu
ν . (147)

This description is also used in GR [27, 28]. The effect
of gravity on a particle manifests itself in that the metric
coefficients of the flat space are replaced by the metric
coefficients of a space curved due to the entire external
(with respect to the particle) matter. In addition, it is
assumed that the mass mp of a particle is independent
of the external GFs. The energy of the particle is

cp0 = mpc
2u0 =

mpc
2(g00 + g0a

va

c )√
g00 + 2g0a

va

c + gab
vavb

c2

, (148)

where va are the velocity components of the particle. The
energy of the particle at rest is

cp0 = mpc
2√g00. (149)

The variation of the energy of a particle in external GFs
is attributed solely to the variation of the metric coeffi-
cient g00. According to (146), the particle moves along a
geodesic. In GR, it is assumed that the action (146) can
also be used to describe the motion of bodies [6, 10, 27].
In this case, mp is replaced by the mass mb of the body.
The mass of the body is independent of external GFs.
The body moves in the GF of the entire external (with
respect to the body) matter. Hence, just as in the de-
scription of the motion of a particle, when describing the
motion of a body, one should pass from the real metric
structure of space to a space such that the proper GF of
the body is eliminated from its metric coefficients. For
example, in free space, the body moves at constant veloc-
ity in the space with the background metric coefficients,
whereas the space in the vicinity of the body is curved
due to its GF.

When solving the GF equations (54), as a model of
matter and, hence, as the source of the GF, the authors
used the energy–momentum density tensor of an ideal
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fluid (57). There is no Lagrangian density for this ten-
sor, whereby the Lagrange–Euler equations for the mat-
ter fields are replaced by their corollary—the conserva-
tion equation (43). In the second-order approximation,
this approach correctly describes the emergence of GFs
in space, depending on matter distributed in it. How-
ever, it does not fully describe the effect of the GF on
matter. To establish the effect of the GF on matter, one
needs a model of matter in the form of fields distributed
in space and the joint solution of the system of equa-
tions (30, 31) for the fields of matter and the GF. To
this end, one should represent matter as a collection of
particles and each particle, as a particle-like solution of
the corresponding field equation in curved space.

Consider this problem in greater detail by an example
of a particle described by a nonlinear scalar field with the
Lagrangian density

Lφ = −1

2
∂σφ∂

σφ+ U(φ). (150)

The Lagrangian corresponds to the field equation

∂σ∂
σφ+

∂

∂φ
U(φ) = 0 (151)

and the energy–momentum density tensor

Tπ
σ = −∂σφ∂πφ− Lφδπσ . (152)

Suppose that there is a localized static particle-like so-
lution φ(r) for the field equations. For this solution,
∂0φ(r) = 0, and

Ep = −
∫
Lφ
√
−gd3r. (153)

For a scalar particle with the mass of a proton localized
on the scale of its Compton wavelength, the gravitational
potential is on the order of 6× 10−39. The gravitational
potential on the Earth’s surface is 6.96 × 10−10. We
can see that, for scalar particles, just as, seemingly, for
fermions, in most cases one can neglect the proper GF of
a particle because of the weak gravitational interaction.
We neglect the proper GF. In this case,

√
−g =

√
−η in

empty space, and

Ep = mpc
2 = −

∫
Lφ
√
−ηd3r. (154)

If a particle is in an external GF, then the GF can
be assumed homogeneous within the distribution of the
main mass of the particle: F (r) = F0, A(r) = A0, g00 =
1+F0,

√
−g = (1+F0)1/2(1−A0)3/2√−η. For the energy

and the mass of the particle, we obtain

Ep = mpc
2√−g00, (155)

mp = −
∫
Lφ(1−A0)3/2√−ηd3r. (156)

According to (151), a static particle-like solution φ(r)
that takes place in the space without external GF turns
into φ(r

√
1−A0) in the case of external GF. The value of

the integral (156) for such a solution is independent of the
value of A0, and, hence, the mass m of a scalar particle is
independent of the potential of the external GF. The rest
energy of a particle, in contrast to its mass, is changed in
external GFs. In the case of a moving particle, its energy
is

Ep = mpc
2u0 = mpc

2g
(0)
0k u

k, (157)

where u0 and uk are the components of the velocity 4-
vector of the particle. The relation obtained between the
energy and mass of a particle justifies the relation (148)
used in GR [27], but only under the assumption that the
proper GF of the particle is negligible.

Having determined the energy and the mass of a par-
ticle, we generalize them to bodies made up of parti-
cles that interact only through the GF. For a body, in
contrast to particles, one cannot neglect the proper GF.
First, consider a stationary body in empty space. The
rest energy of a body representing a system of particles
and their joint GF should be equal to the sum of the
energies of the particles and the GF energy:

E = c2
∑
p

mpg0ku
k
(p) + Egf , (158)

where Egf is the gravitational energy of the body (136).
For a stationary body composed of motionless particles,
we have

E = c2
∑
p

mp
√
g00 + Egf . (159)

Comparing (159) and (70), we can see that these relations
are consistent only when the variation of the spatial vol-
ume in the energy density of the ideal fluid (69) is taken
into account.

Now, consider the effect of the external GF on the

body. Let g
(0)
00 = 1 + F0 for the field of external bodies

and g00 = 1 + Fin + F0 for the total field, where Fin is
the internal F (r) field of the body. The total field can
be represented as

1 + Fin + F0 = (1 + Fin −
FinF0

1 + F0
)(1 + F0). (160)

Hence we obtain

mmb =
∑
p

mp

√
1 + Fin −

FinF0

1 + F0
, (161)

Emb = mmbc
2

√
g

(0)
00 . (162)

From the relation, (161), we can see that a part of the
mass of the body associated with the mass of its con-
stituent particles depends on the external GF. However,
it varies only by a value of the second order of smallness.
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XI. TWO-BODY PROBLEM

It is convenient to represent the action for a body as

Sb =

∫ b

a

Λbdt, (163)

where Λb = −mbc
dsb
dt is the Lagrangian of the body.

Eliminating the constant component, we obtain

Λb = mbc
2(1− dsb

cdt
). (164)

Consider the motion of two bodies with regard to their
gravitational interaction. The bodies have masses m1

and m2, which determine their inertial properties, and
gravitational masses mg1 and mg2, which characterize
the bodies as sources of the GF. We obtain equations of
motion in the second-order approximation with respect
to the gravitation constant, assuming that the interac-
tion is weak and the bodies move with velocities small
compared with the velocity of light. The motion in the
system of two bodies and the GF is described by the
Lagrangian

Λ = Λ1 + Λ2 + Λint, (165)

where Λ1 and Λ2 are the Lagrangians of the individual
bodies, including their proper GFs. Λint describes the
interaction of bodies by means of their GFs. As the La-
grangian of bodies, we take (164), replacing the index b
in it by on n, the number of a body. For body 1, we have

(
ds1

dt

)2

= g
(2)
αβv

α
1 v

β
1 , (166)

where g
(2)
αβ is the metric tensor corresponding to the GF of

body 2, vα1 = eα0 +va1e
α
a , v

i
1 = (v1

1 , v
2
1 , v

3
1) are the velocity

components of body 1, and similarly for body 2. Denote
by v2

n = (vnvn) = (v1
n)2 + (v2

n)2 + (v3
n)2 the squared

velocity of body n. In the second-order approximation,

we obtain the following Lagrangians of bodies 1 and 2:

Λ1 = m1

(
v2

1

2
+

v4
1

8

)
+
km1mg2

R
− (

15

2
+ β)

k2m1m
2
g2

R2

+
km1mg2

2R

(
3v2

1 + 5v2
2 − 8(v1v2)− (v2n)2

)
, (167)

Λ2 = m2

(
v2

2

2
+

v4
2

8

)
+
km2mg1

R
− (

15

2
+ β)

k2m2m
2
g1

R2

+
km2mg1

2R

(
5v2

1 + 3v2
2 − 8(v1v2)− (v1n)2

)
, (168)

where β is a post-Newtonian parameter and R =| r2−r1 |
is the coordinate distance between the bodies, n = r2−r1

R .
To obtain Λint, we substitute the GF of two bodies (118)
into the Lagrangian density of the GF (53). A part of

the Lagrangian Lg depends only on the field G
(1)
µν of body

1, and another part, only on the field G
(2)
µν of body 2.

These quantities should be included in the action of the
bodies. Let Lg12 be a part of Lg that depends on the

field Φµν or the fields G
(1)
µν and G

(2)
µν simultaneously. As

the Lagrangian Λint, we take

Λint =

∫
Lg12

√
−gd3r. (169)

Integrating over the volume, we obtain

Λint = −kmg1mg2

R
+ (7 + β)

k2mg1mg2

R2
(mg1 +mg2)

−kmg1mg2

2R

(
5v2

1 + 5v2
2 − 9(v1v2)

)
(170)

+
kmg1mg2

2R

(
v1n)2 + (v2n)2 − (v1n)(v2n)

)
.

To obtain (170), we used formulas (A183)-(A185) listed
in the Appendix. The contribution of the field Φµν ,
which depends on the distance to both bodies, to Λint
can be represented as

1

4

∫
ΦµνT

µν
(m)

√
−ηd3r. (171)

In the second-order approximation, this contribution
vanishes, because Φ00 = 0 (119). Summing up (167),
(168), and (170), we obtain the following Lagrangian,
which describes the motion of two gravitationally inter-
acting bodies in the second-order approximation:

Λ = m1

(
v2
1

2 +
v4
1

8

)
+m2

(
v2
2

2 +
v4
2

8

)
+ k

R (m1mg2 +m2mg1 −mg1mg2)−
− k2

R2

[
( 15

2 + β)(m1m
2
g2 +m2m

2
g1)− (7 + β)mg1mg2(mg1 +mg2)

]
+ k

2R

[
m1mg2(3v2

1 + 5v2
2 − 8(v1v2)− (v2n)2) +m2mg1(5v2

1 + 3v2
2 − 8(v1v2)− (v1n)2)

]
− kmg1mg2

2R

[
5v2

1 + 5v2
2 − 9(v1v2)− (v1n)2 − (v2n)2 + (v1n)(v2n)

]
.

(172)
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It follows from (172) that there is a force of mutual at-
traction between two bodies. This force depends both
on the masses of the bodies m1 and m2 and their grav-
itational masses mg1 and mg2. A part of the force that
is linear in the gravitation constant and independent of
velocities,

F12 =
k

R2
(m1mg2 +m2mg1 −mg1mg2) , (173)

underlies Newton’s law of universal gravitation. The

substitution of ordinary masses for gravitational masses
leads to the standard expression for the law of universal
gravitation:

F12 =
k

R2
m1m2. (174)

Replacing gravitational masses by ordinary masses in
(172), we obtain the Lagrangian, which was first pro-
posed by Fichtenholz [5] (see also [6, 10, 27])

Λ = m1

(
v2
1

2 +
v4
1

8

)
+m2

(
v2
2

2 +
v4
2

8

)
+ km1m2

R − k2m1m2

2R2 (m1 +m2) + km1m2

2R

[
3v2

1 + 3v2
2 − 7(v1v2)− (v1n)(v2n)

]
.

(175)

The Lagrangian (175) differs from (172) by a quantity
of the fourth-order of smallness. We can also see that
this Lagrangian, in contrast to GR, is independent of
the post-Newtonian parameter β. The Lagrangian (175)
corresponds to the equations of motion obtained by Ein-
stein, Infeld, and Hoffman [2] and Eddington and Clarke
[3]; the solution of these equations yields the following
secular displacement of the periastron of two bodies of
comparable masses: [4]

δϕ =
6πk2(m2

1 +m2
2)

c2J2
=

6πk(m1 +m2)

c2a(1− e2)
, (176)

where J is the angular momentum, a is the length of the
major semiaxis, and e is the eccentricity of the elliptic
orbit. In GR,

δϕ =
4− β

3
· 6πk(m1 +m2)

c2a(1− e2)
, (177)

and β = 1.

XII. CONCLUSIONS

The theory of gravity proposed here, just as GR, im-
plements Einstein’s idea about the effect of matter on the
metric structure of space–time. However, in spite of the
generality of the original idea, the implementations are
fundamentally different. In GR, the energy–momentum
density tensor of matter is related to the tensor of curva-
ture of space–time through Einstein’s equation. Gravi-
tational phenomena are the manifestation of variation in
the geometry of space–time due to the presence of mat-
ter. There is no gravity field in the classical sense.

In the theory proposed, the GF Gµν is a classical ten-
sor field, in complete analogy with the vector potential
field in electromagnetic theory. The energy–momentum
density tensor also has a positive energy density. A
source of the GF is the energy–momentum density ten-
sor of all kinds of matter, including the GF itself. For

an appropriate source, the GF can be emitted in the
form of gravitational waves and take away energy from
the radiating system. A positive energy density should
lead to repulsion. However, there is no repulsion, be-
cause the GF has one more property: it is related to
the metric tensor. Therefore, all phenomena occur in
curved pseudo-Riemannian space–time. A variation in
the metric structure of space–time leads to additional in-
teraction between bodies—attraction. In the first-order
approximation (expansion of the solution in the gravita-
tion constant), which corresponds to the linearized the-
ory of gravity, the metric structure of space–time is the
same in both theories. Accordingly, both theories identi-
cally describe the propagation of light along null geodesic
lines. In the second-order approximation, the metric
structure of space–time is different in these theories (see
(105), (106)), which, in particular, is characterized by the
post-Newtonian parameter β = 1 in GR and β = 1

8 in
the theory proposed. The only observable second-order
effect—the periastron advance of the mutual orbit of two
bodies—depends on β in GR and correctly describes the
periastron advance for β = 1. In our theory of gravity, a
motion of two bodies, just as the periastron advance, are
independent of β; hence, the established value of β = 1

8 is
admissible. Experiments are needed that would give es-
timates for β and other post-Newtonian parameters from
the viewpoints of the theory of gravity proposed here and
from the viewpoint of GR.

The possibility of manipulating the energy of the GF
has allowed us to obtain estimates that are of fundamen-
tal importance—the gravitational energy defect of bod-
ies, the difference between the inertial and gravitational
masses of bodies, and the effect of the external GF on
the mass of a body.

The results obtained demonstrate the possibility of a
new, sufficiently classical, approach to the construction
of a theory of gravity in curved space–time. The devel-
opment of the theory offers hope of further progress in
understanding the structure of space–time and the struc-
ture and evolution of stars, galaxies, and the Universe.
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APPENDIX

Here we present the GF equations in component repre-
sentation for a spherically symmetric source in a spher-
ical system of coordinates. To shorten expressions, we

use the condition B(r) = 0 and the following notations:
F = 1 + F (r), A = −1 + A(r), D = D(r), U = U(r),Π =
Π(r).

F ′

F
+

2Π′

κ−1 + Π
= 0, (A178)

3(A′)
3

A4 +
3U(A′)

2

A2 +
2D(A′)

2

A3 − 3F ′(A′)
2

A3F − 12(A′)
2

A3r − 2(F ′)
2
A′

A3F − (F ′)
2
A′

A2F 2 − 8DA′

A2r −
24F ′A′

A2Fr −
6A′′A′

A3

− 6F ′′A′

A2F −
DA′

A2 − 3U ′A′

A − 3(F ′)
3

AF 3 −
2(F ′)

3

F 4 +
U(F ′)

2

F 2 +
4(F ′)

2

AF 2r + 4U
r2 −

4D
Ar2 −

3UA′′

A − 3DA′′

A2

− 6F ′A′′

A2F −
UF ′′

F − DF ′′

AF + 2F ′F ′′

A2F + 6F ′F ′′

AF 2 + 2F ′F ′′

F 3 − 2U ′′ + F ′D′

AF + 4D′

Ar −
F ′U ′

F − 4U ′

r + 2D′′

A = 0,

(A179)

3(A′)
2

8A3F +
3(A′)

2

4A3 − 3UA′

8AF −
2F ′A′

A2F + 3F ′A′

4A2F 2 − DA′

8A2F −
3A′

A2r −
(F ′)

2

4AF 2 −
(F ′)

2

8A2F 2 −
3(F ′)

2

8AF 3 −
(F ′)

2

2F 3

− (F ′)
2

8F 4 − U
2Fr −

UF ′

8F 2 + F ′

AFr + DF ′

8AF 2 − U ′

4F −
3A′′

2A2 + F ′′

2AF −
D′

4AF −
D

2AFr + 12p
Fκ = 0,

(A180)

(A′)
2

4A3 −
3(A′)

2

8A4 − 3DA′

8A3 − 3UA′

8A2 + F ′A′

A2F −
3F ′A′

4A3F + A′

A2r +
(F ′)

2

2A2F +
(F ′)

2

8A3F +
(F ′)

2

4AF 2 +
3(F ′)

2

8A2F 2

+
(F ′)

2

8AF 3 − U
2Ar −

UF ′

8AF −
DF ′

8A2F + F ′

AFr + A′′

2A2 + F ′′

2AF + D′

4A2 − U ′

4A −
D

2A2r −
12pΠ
A = 0,

(A181)

− 3 (A′)
2

2A3
− DA′

A2
− 3F ′A′

A2F
+

(F ′)
2

AF
+

(F ′)
2

2AF 2
+

(F ′)
2

F 2
+
D′

A
− D

Ar
= 0. (A182)

The values of the integrals needed to obtain the Lagrangian of interaction of two bodies:∫
(∇ϕ1∇ϕ2)

√
−ηd3r =

4π

R
k2mg1mg2

(
1 +

1

2
(v2

1 + v2
2 − (v1n1)2 − (v2n2)2)

)
; (A183)

∫
(∂tϕ1∂tϕ2)

√
−ηd3r =

2π

R
k2mg1mg2 ((v1v2)− (v1n)(v2n)) ; (A184)

∫
(ϕ1 + ϕ2)(∇ϕ1∇ϕ2)

√
−ηd3r = −2πk3mg1mg2(mg1 +mg2)

R2
; (A185)

where ∇ is the gradient operator.
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