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Abstract

The Lagrangian description of a dynamical system from the equation of motion consists of an inverse problem in
mechanics. This problem is solved for a class of exactly integrable mixed and quadratic Liénard type oscillator
equations from a given first integral of motion. The dynamics of this class of equations, which contains the
generalized modified Emden equation, also known as the second-order Riccati equation, and the inverted
versions of the Mathews-Lakshmanan equations, is then investigated from Hamiltonian and Lagrangian points of
view.

1. Consider the general class of integrable mixed Liénard-type oscillator equation
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generated from the first integral of motion
a(x,x)=%g(x) +xf (x) (2)

where dot denotes differentiation with respect to time and prime means differentiation with
respect to x , g(x)=0 and f(x) are arbitrary functions of x. In this context, the Lagrangian

for the equation (1) may then be computed as [1]
L(t, x, %)= xg(x)In(X) — x f (x) + KX (3)

where In holds for the natural logarithm, and K is an arbitrary constant. That being so, it is
required to check the equivalence between the equation (1) and the Euler-Lagrange equation

from (3) In this perspective the Euler-Lagrange equation
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gives, knowing
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%: xg' ()IN(X) = f(x) = x f'(x) (6)
X
after a few mathematical treatment, the expected equation (1). The preceding equation (5)

gives the conjugate momentum p as

p=g(x)IN(X) +g(x) + K (7)

such that the Hamiltonian

H(p.x)= px—L(x,%) ®)
becomes
H(p, x)=xg(x) + x f (x) )

which is, as expected, equal to (2). Eliminating x from (9) by using (7), then the
Hamiltonian (9) takes the form
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In this perspective the Hamiltonian equations

. oH
X = %
oH (11)
T ox
read
K
lee(z(x))
e
S 2
p= 90 o {L—l}—[f(x)+xf'(x)]
e g(x)

So with that, some examples may be given to illustrate the application of the current theory.
2. Application

2.1 Let g(x)=ax™, and f(x)=a2x*™*", where the exponent m is a real number. So, the
equation (1) reduces to

)
%+ m— 1 (2m+Dax™ %+ ax —a2x?™3 =0 (13)
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The equation (13) consists of a generalized mixed Liénard-type equation. Now, substitution of
m=0, into the equation (13), leads immediately to the generalized modified Emden type
equation with a linear forcing term, also known as a second-order Riccati equation, that is.

X +axX+ax—-asx> =0 (14)

Also, m= -%, gives, taking into account the equation (13)
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This equation (15) is known as a quadratic Liénard-type differential equation. The analytical

description of these equations is secured by the equations (3), (10) and (12).

2.2 Case 1: f(x)=1

The equation (1) becomes in this case the exactly integrable quadratic Liénard-type nonlinear
dissipative oscillator equation
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By choosing g(x) = y1+ ux* , where 4 is an arbitrary parameter, a physically important
quadratic Liénard-type differential equation may be obtained as

X+ “X2x2+(a_X2=o (17)
1+ ux 1+ ux

since fora =0 , one may obtain the inverted versions of the Mathews-Lakshmanan oscillator
equations.

The Hamiltonian and Lagrangian description of (17) is then assured by the general
relationships (3), (10) and (12).

2.2 Case 2:¢(x)=1

The equation (1) gives the general class of exactly solvable Liénard nonlinear dissipative
oscillator equations

K+ xxf'(x)+af(x)-x(f(x))? =0 (18)
Substitution of f(x) =x' , gives the generalized modified Emden-type equation with

nonlinear forcing function, also called generalized second-order Riccati equation, viz
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where | is an arbitrary parameter. It is worth to note that a generalization of (1) and (3) may
be written in the form
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and
L (x,%)=xg(x) In(x) = x" f (x) + KX (21)
respectively, where | and K are arbitrary parameters, from the first integral
a(x,x)=xg(x) +x'f(x) (22)
Finally, a more generalization may be computed from the first integral of motion
ay(x, X)= xg(x) + ax’ I f (x)dx (23)
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