
Analytical and Classical Mechanics of Integrable Mixed and Quadratic 

Liénard Type Oscillator Equations 

J. Akande
*
, D. K. K. Adjaï

*
, L. H. Koudahoun

*
, Y. J. F. Kpomahou

**
, M. D. Monsia*

1
   

* Department of Physics, University of Abomey-Calavi, Abomey-Calavi, 01.B.P. 526, Cotonou, BENIN. 

** Department of Industrial and Technical Sciences , ENSET-Lokossa, University of Lokossa, Lokossa, BENIN. 

Abstract 

The Lagrangian description of a dynamical system from the equation of motion consists of an inverse problem in 

mechanics. This problem is solved for a class of exactly integrable mixed and quadratic Liénard type oscillator 

equations from a given first integral of motion. The dynamics of this class of equations, which contains the 

generalized modified Emden equation, also known as the second-order Riccati equation, and the inverted 

versions of the Mathews-Lakshmanan equations, is then investigated from Hamiltonian and Lagrangian points of 

view. 

1. Consider the general class of integrable mixed Liénard-type oscillator equation 
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generated from the first integral of motion  
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where dot denotes differentiation with respect to time and prime means differentiation with 

respect to x  ,   0xg  and  xf  are arbitrary functions of x . In this context, the Lagrangian 

for the equation  1  may then be computed as [1] 
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where  ln  holds for the natural logarithm, and K  is an arbitrary constant. That being so, it is 

required to check the equivalence between the equation  1  and the Euler-Lagrange equation 

from  3 . In this perspective the Euler-Lagrange equation 
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gives, knowing 
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after a few mathematical treatment, the expected equation  1 . The preceding equation  5  

gives the conjugate momentum p as 
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such that the Hamiltonian  
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becomes 

  )()(, xfxxgxxpH                                                                                                   9  

which is, as expected, equal to  2 . Eliminating x  from  9  by using  7 , then the 

Hamiltonian  9  takes the form 
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In this perspective the Hamiltonian equations  
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read 
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So with that, some examples may be given to illustrate the application of the current theory. 

2. Application 

2.1 Let mxaxg 1)(  , and 122
1)(  mxaxf , where the exponent m  is a real number. So, the 

equation (1) reduces to 
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The equation (13) consists of a generalized mixed Liénard-type equation. Now, substitution of 

0m , into the equation (13), leads immediately to the generalized modified Emden type 

equation with a linear forcing term, also known as a second-order Riccati equation, that is. 

032
11  xaaxxxax                         (14) 

Also, 
2

1
m , gives, taking into account the equation (13) 
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This equation (15) is known as a quadratic Liénard-type differential equation. The analytical 

description of these equations is secured by the equations (3), (10) and (12). 

2.2  Case 1:   1xf  

The equation  1 becomes in this case the exactly integrable quadratic Liénard-type nonlinear 

dissipative oscillator equation 
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By choosing 21)( xxg  , where   is an arbitrary parameter, a physically important 

quadratic Liénard-type differential equation may be obtained as 
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since for 0a  , one may obtain the inverted versions of the Mathews-Lakshmanan oscillator 

equations. 

The Hamiltonian and Lagrangian description of (17) is then assured by the general 

relationships  3 ,  10  and  12 . 

2.2 Case 2:   1xg  

The equation  1  gives the general class of exactly solvable Liénard nonlinear dissipative 

oscillator equations 
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Substitution of   lxxf   , gives the generalized modified Emden-type equation with 

nonlinear forcing function, also called generalized second-order Riccati equation, viz 
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where l  is an arbitrary parameter. It is worth to note that a generalization of  1  and  3  may 

be written in the form 
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respectively, where l  and K  are arbitrary parameters, from the first integral 
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Finally, a more generalization may be computed from the first integral of motion 
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