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Abstract

We further investigate the new project initiated in [1, 2, 3, 4, 7, 8, 9]
by generalizing non-abelian gauge theory to our setting. Given the results
in [3, 9], there is not much left to do and we shall deepen our understand-
ing of some points left open in [1] regarding the nature and presence of
ghosts. Perturbative finiteness of the theory follows ad-verbatim from the
analysis in [3, 9] and we shall not bother here about writing it down ex-
plicitly. Rather, our aim is to provide for a couple of new physical and
mathematical insights regarding the genesis of the structure of quantal
non-abelian gauge theory.

1 Introduction.

The aim of this paper is to construct “non-abelian gauge theory” from scratch
using a couple of novel physical principles which constitute the substitute for
results obtained in operational quantum theory using the language of quantum
fields. Hence, we fill up some small points left in [1] and provide for a broad
physical understanding of the necessity of the construction. This means we shall
extend the “classical” vision on quantum spin [16] in Minkowski to a theory of
spin valid in any curved spacetime background: we did only perform part of
that analysis in [1] but so far this has been inconsequential. Now, we have to
fill in the remaining fine points: obviously, I shall not directly rely upon any
operational, nor unitarity arguments here since they do not fit in our theory.
This paper is not written independently of some others and the reader who
wishes to understand the triviality of our claim that the resulting theory is
perturbatively finite should consult the references [1, 3, 9]. Explaining all fine
points required for the construction would take me as much space as needed
in those references and I advise the reader to absorb their content in the order
indicated.

Therefore, I would never have written this paper but since people like to see
explicit examples of how old concepts fit into your new theory, I decided to do
so nevertheless albeit its content is totally trivial in light of previously obtained
results. To avoid duplication, I have decided to keep it very short so that only
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the crucial points regarding the physics behind the theory are touched upon and
nothing else. Entropic arguments regarding the number of Feynman diagrams
with V internal vertices and n IN and m OUT vertices needed for analycity
study of the defining interaction series are postponed to a book publication
about this project so that I have at least still the chance to say something
new there. To summarize, in section two, we study our novel rationale behind
spin and present the need for gauge invariance regarding massless spin one
particles. Hence, in section three, we explain the necessity of the spin zero
ghost particles and their coupling to the spin-one gauge particles as well as the
relevant interaction vertices. The paper is finished by some discussion in section
four.

2 Spin and gauge invariance.

The content of this section shouldn’t come as a surprise to those who have
contemplated sometimes how to divorce the definition of spin from the global
properties of Minkowski spacetime. First, let us mention that, given the super-
position principle, our appraoch can still be framed into the language of linear
spaces albeit this did not constitute our axiomatic starting point given that it is
was not clear what Hilbert space to speak about. Moreover, the latter viewpoint
is not crucial to the formulation of our theory given that we abandonned the lan-
guage of infinite dimensional, Hermitian, linear operators on it. What concerns
the internal degrees of freedom of a particle, the finite dimensional vectorspace
viewpoint is all there is to it. Therefore, we speak again about linear spaces
and linear non-unitary group operators on it and study properties of particles
by means of properties of representations of the “inner subgroup” (which can
always be chosen to be unitary) attached to a particle. Our reasoning is there-
fore not grounded into the unitary infinite dimensional representation theory of
non-compact groups, but in the finite dimensional (unitary) representations of
compact groups. Indeed, we shall elevate to a dogma that all internal degrees
of freedom of an elementary particle stem from a compact internal symmetry
group: such assumption being also mandatory in the operational approach [16]
as we shall repeat in a while.

The allowed spin j of a particle, given an irreducible SL(2,C) representation,
with representation space V , is determined by means of the induced SU(2)
sub-representation which is required to have a spin-j component. For exam-
ple, the 0 representation of SL(2,C) induces a spin-0 representation of SU(2)
and therefore only allows for particles of 0 spin. The Dirac representation of
SL(2,C) equals the direct sum of two irreducible spin- 12 SU(2) representations
and therefore incorporates the spin degrees of freedom for two spin 1

2 -particles:
the particle and its anti-particle. The first place where mass starts to play a role
is in the case of the Lorentz representation of SL(2,C); the latter equals the
direct sum of a spin-0 and spin-1 SU(2) representation and therefore determines
two theories in the massive case. That of a spin-0 vector particle dψ with one
local degree of freedom, and of divergenceless spin-one vectorfield V µ with

∇µV µ = 0
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having three local degrees of freedom. For a massless particle, the situation is
a little bit more complicated: here, the internal group is the two dimensional
Euclidean group from which only the U(1) part can be associated to internal
degrees of freedom since the translations do not form a compact group. The
U(1) sub-representation has two “spin” zero components and one component
of helicity ±1 each. Therefore, a Lorentz covariant theory for a spin-12 par-
ticle needs two particles with opposite helicities and two spin 0 particles. To
eliminate these spin-0 particles, we need two extra local “negative” degrees of
freedom which, by themselves, satisfy Lorentz covariant laws. At least this is
one viewpoint on the matter: the other being that at the level of fields we need a
one dimensional local symmetry, which eliminates two local degrees of freedom
(by means of a first class constraint and the gauge transformation associated
this constraint). As it turns out, both points of view are united in the path
integral approach towards non-abelian gauge theories.

3 Why is non-abelian gauge theory the way it
is in our formalism?

Standard non-abelian gauge theory is constructed in a way where the transfor-
mation laws of the gauge potential, or particle polarization, Aαµ(x) are induced
from the transformation laws of the multiplets on representation space. This
means, in particular, that all interactions are constructed from the basic object

Aµ = Aαµ(tα)mn

by means of Lie-algebra operations as well as the trace operation between two
Lie-algebra elements, where the tα constitute the generators of the Lie-algebra

[tα, tβ ] = ifγαβtγ

and Tr(tαtβ) = gαβ . Here,
fγαβ = gγδf

δ
αβ

is totally anti-symmetric in its three covariant indices and gαβ is positive definite.
Moreover, we do not take into account interactions requiring a length scale
which implies all our interaction vertices are of mass dimension four. Moreover,
by the very definition of interaction, the respective vertices need to be tri- or
four-valent since gauge fields contribute a mass dimension of 1, while spinorial
particles a mass dimension of 3

2 . All these considerations leave us with the
following intertwiners

fαβγ
(
∇κAαµ

)
AβνA

γ
λg
κνgνλ = −iTr (∇κAµ [Aν ,Aλ]) gκνgµλ

fαβγf
α
β′γ′AβµA

γ
νA

β′

µ′A
γ′

ν′g
µνgµ

′ν′
= −Tr ([Aµ,Aν ] [Aµ′ ,Aν′ ]) gµµ

′
gνν

′

concerning the self interaction of the gauge particles1. There remain the follow-
ing two vertices

(Aν)mn (γa)ije
ν
a(x)ΨimΨ

jn
, fαβγv

βvγ∇µAαµ
1The only other two remaining options Tr (∇κAµ [Aν ,Aλ]) g

κµgνλ and
Tr

([
Bµνλ,Aκ

])
Zµνλκ vanish by means of symmetry. Types such as

Tr ([[Aµ,Aν ] ,Aλ]Aκ)Zµνλκ can be expressed in terms of the previous cases.
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where the last vertex is constructed from

v = vαtα

as
−iTr ([v,v]∇µAµ) .

Therefore, just out of completeness, we should supplement our theory with a
spin zero particle and anti-particle transforming in the adjoint representation
of the symmetry group with Fermionic statistics due to the anti-symmetry of
the commutator. In [1] we argued that the relevant two point functions for such
particle had to be given by

Wαβ
a (x, y) = θ(x)θ(y)W (x, y)gαβ , Wαβ

p (x, y) = θ(x)θ(y)W (x, y)gαβ

and in calculating Feynman diagrams, integration over the Grassmann coordi-
nates should occur. There is however a deeper reason to introduce these ghosts
than mere completeness which is that precisely as many “negative” local degrees
of freedom are needed to kill the spin zero modes in the propagator

Wαβ
µν′(x, y) = gαβgµν′(x, y)W (x, y).

The associated multiplication terms ∇µAαµ are then seen as a “gauge condition”
eliminating those degrees of freedom.

Hence, we are left with precisely the same four interaction vertices as in standard
non-abelian gauge theory. Moreover, by rescaling the Lie algebra generators
tα → λtα, suitably defining the interaction constant g̃ of the theory and by
redefining the Grasmann numbers θ → λ′θ we obtain that they are of standard
textbook form.

4 Some final remarks.

Given that we have clarified the remaining fine points left open in [1], we can
now place some further comments. First of all, by literally the same methods as
in [3, 9] the theory is perturbatively finite. It remains of course to investigate
the analycity of the series and for this entropic arguments regarding the number
of Feynman diagrams with V internal vertices and n-IN and m-OUT vertices
are required. In case one would import a length scale in the interaction vertices,
many more vertices could be written down (including ghost-Fermi interactions)
leading to gravitational deviations from the standard model. We postpone these
avenues for future work. Defining the graviton theory rigorously is a bit harder
to do given that it concerns an infinite series of interaction vertices but we shall
adress this issue in a forthcoming publication. I cannot emphasize enough the
fact that our work shows that relativistic particle theory is alive and well and
that no strings are needed to obtain finite results. The implementation of the
idea of friction and the subsequent violation of unitarity being sufficient for our
purposes.
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