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A large number of methods have been proposed for solving nonlinear differential equations. The
Jacobi elliptic function method and the f -expansion methods are generalizations from a few of
them. These methods produce not only single-solitons but also multi-soliton solutions. In this work
we applied the f -expansion method and found novel solutions besides those known for three main
equations of the kind sine-Gordon: Triple Sine-Gordon (TSG), Double Sine-Gordon (DSG) and
Simple Sine-Gordon (SSG).
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I. INTRODUCTION

It is of great interest to find exact solutions of nonlin-
ear differential equations in nonlinear physical problems
[1]. A large number of methods have been proposed such
as the homogeneous balancement method [2–4], the hy-
perbolic tangent function expansion method [5–9], the
hyperbolic secant function expansion method [10, 11],
the test function method [12, 13], the nonlinear trans-
formation method [14, 15] and the sine-cosine method
[16]. These methods can only get the solutions of soli-
tary waves and shock waves but cannot get the periodic
solutions of nonlinear equations. Although Porubov et al.
[17–19] got exact periodic solutions for a few nonlinear
differential equations, they used Weierstrass elliptic func-
tions and involved complicated deductions. Recently, Ja-
cobi elliptic function expansion methods has been pro-
posed and applied for solving some nonlinear equations.
The periodic solutions gotten by these methods include
solitary wave and shock wave solutions [20–26].

For the f-expansion method the basic idea is the fol-
lowing. For a given nonlinear partial differential equation
with two idenpendent variables, for instance: a time vari-
able t and an other space variable x as

E(u, ut, ux, ...) = 0, (1)

we seek wave solutions in the way

u = u(ξ), ξ = k(x − ct). (2)

Replacing Eq. (2) into Eq. (1), we have a ordinary non-
linear differential equation for u(ξ). By expanding u(ξ)
on a polinom in f(ξ) like

u = u(ξ) =
n∑

j=0

ajf
j , (3)
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where aj is a constant to be determined and n is fixed
by balancing the terms of higher degree of the ordinary
equation while f satisfies the elliptic equation of first kind

f ′′ = pf + qf3 ou f ′2 = pf2 +
1
2
qf4 + r, (4)

where the apostrophe means derivative with respect to ξ.
Most detailed explanation for the Jacobi elliptic function
may be found in Refs. [27, 28].

The balancement is made by remarking that the higher
degree of the expansion in Eq. (3) is

O (u (ξ)) = n. (5)

Note the derivative property of the elliptic functions like
(snξ)′ = cnξdnξ, where snξ and cnξ are respectively the
Jacobi elliptic sine and cosine while dnξ is the Jacobi
elliptic function of third kind. Then once we derive Eq.
(3) the degree of the derivative is increased upon one
unity in such a way that

O

(
dpu

dξp

)
= n + p, p = 1, 2, 3, ... (6)

And from Eq. (5) and Eq. (6) it follows that

O

(
uq dpu

dξp

)
= (q+1)n+p, q = 1, 2, 3, ... p = 1, 2, 3, ...

(7)
Thus we may select n in Eq. (3) by equaling the degrees
of at least two terms in the ordinary equation [29].

In following section we used this method for solving
the Triple Sine-Gordon equation (TSG) while in the sec-
tion III and section IV we solve the Double Sine-Gordon
equation (DSG) and the Simple Sine-Gordon equation
(SSG) respectively.
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II. TRIPLE SINE-GORDON SOLUTIONS

A. Tangent transformation

In order for solving the TSG

Θxt = α sin Θ + β sin 2Θ + γ sin 3Θ, (8)

we should make two trasnformations

u = tan Θ
2 and ξ = k (x − ct) , (9)

where k is the wave vector and c is the wave velocity in
the travelling wave system. So Eq. (8) changes for

k2c(1 + u2)2u′′ (10)
−2k2cu(1 + u2)(u′)2 + au + 2bu3 + du5 = 0,

where a = α+2β+3γ, b = α−5γ e d = α−2β+3γ.

By balancing the Eq. (10) we note that n is arbitrary
and so can make n = 1 into the expansion of Eq. (3). By
making use of the elliptic equation of Eq. (4) we get the
solutions:

1. Trivial case, a1 = 0:

Θ±
1T±(x, t) = 2 arctan

±
√

−α + 5γ ±
√

(α − 5γ)2 − (α + 2β + 3γ)(α − 2β + 3γ)
α − 2β + 3γ

 . (11)

2. Non trivial case, a0 = 0:

Θ±
2T (x, t) = (12a)

2 arctan

{
±

√
k2cp + α + 2β + 3γ

2k2cr
f [k(x − ct)]

}
,

with the dispersion relations

(2qr − p2)(k2c)2 − 2(a − b)pk2c + (2ab − a2) = 0 (12b)

e

(2qr − p2)(k2c)2 − (a − d)pk2c + ad = 0. (12c)

The sine and cosine transformations cannot be
made in TSG to get solutions. It is necessary seeks
other transformations.

III. DOUBLE SINE-GORDON SOLUTIONS

A. Tangent transformation

The DSG has the form

Θxt = α sinΘ + β sin 2Θ. (13)

Hence it is the limit of the TSG whenever γ = 0. Its
solutions should also fulfill this requirement.

1. Trivial case, a1 = 0:

By making γ = 0 in solution (11) we get

Θ1D±(x, t) = 2 arctan

[
±

√
2β + α

2β − α

]
. (14)

By solving (13) we may get non trivial solutions by
two way:

2. Case 1, a0 = 0 and r ̸= 0:

Θ2D±(x, t) = (15a)

2 arctan

{
±

√
pk2c + (α + 2β)

2rk2c
f [k(x − ct)]

}
,

with the following dispersion relation

(2qr − p2)(k2c)4 + 4βp(k2c)2 + (α2 − 4β2) = 0. (15b)

3. Case 2, a0 = 0 and r = 0:

Θ3D±(x, t) = 2 arctan

{
±

√
q(α + 2β)

2pα
f [k(x − ct)]

}
,

(16a)
with the next dispersion relation
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k2c =
α + 2β

p
. (16b)

We see that the solution (15a) is a particular case
of the solution (12a). But we also found other so-
lutions (16a).

B. Tangent transformation up to second order

Once n is arbitrary in Eq. (10) even for γ = 0 we may
set n = 2 to seek other solutions for the DSG . So we get
more solutions in the way

Θ±
4D± = (17a)

2 arctan
{
±

√
α

2β − α
± 2p

r

√
α

2β − α
f2 [k(x − ct)]

}
,

k2c =
2β − α

4p
. (17b)

C. Cosine transformation

Now with the next transformations in (13)

u = cos Θ and ξ = k (x − ct) , (18)

we have

k2c(1 − u2)u′′ (19)
+k2cu(u′)2 − α(1 − u2)2 − 2βu(1 − u2)2 = 0.

By making balancement we note that the one possibility
is n = 1.

So we have more solutions for Eq. (13) in the form

1. Trivial case, a1 = 0:

Θ±l
5D(x, t) = ±lπ, (20)

Θ6D(x, t) = arccos
(
− α

2β

)
, (21)

where l = 0, 1, 2, 3, ...

2. Non trivial case, a0 = 0:

Θ7D±(x, t) = (22a)

arccos

{
− α

4β
±

√
−q

p

(
α2 + 16β2

16β2

)
f [k(x − ct)]

}
,

with the dispersion relation

k2c = −α2 + 16β2

4βp
(22b)

and the constraint relation

2qr

p2
=

(
16β2 − α2

16β2 + α2

)2

. (22c)

The sine transformation cannot be made in DSG to
get solutions.

IV. SIMPLE SINE-GORDON SOLUTIONS

A. Sine transformation

The SSG has the form

Θxt = α sin Θ. (23)

We can see that SSG is the limit of DSG and TSG when-
ever β = 0 and γ = 0. Then a lot of solutions may
be obtained by making these limits in solutions of DSG
and TSG. We seek by solutions that cannot be obtained
from DSG and TSG through two transformations: the
sine transformation and cosine transformation in second
order.

With the following transformations in Eq. (23)

u = sin Θ
2 and ξ = k(x − ct), (24)

we obtain

k2c(1 − u2)u′′ + k2cu(u′)2 + αu(1 − u2)2 = 0. (25)

By balancing we note that n = 1 only. So we have

1. Trivial case, a1 = 0:

Θ±l
1S = ±lπ, (26)

where l = 0, 1, 2, . . .

2. Non trivial case, a0 = 0:

Θ2S± = arcsin

{
±

√
k2cq

2α
f [k(x − ct)]

}
, (27a)

qr(k2c)2 + 2αp(k2c) + 2α = 0, (27b)
(k2c)2pq = 0. (27c)
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B. Cosine transformation up to second order

Make the transformation given by Eq. (18). Then we
go up to Eq. (19) in the same a way. By making β = 0
in this equation, we obtain the corresponding equation
to SSG in the form

kc2(1 − u2)u′′ + kc2u(u′)2 − α(1 − u2)2 = 0. (28)

We note that it may be made n = 2 in the expansion
given by Eq. (3).

Some solutions are:

1. Case 1, r = 0:

Θ3S±(x, t) = arccos
{
±

[
1 +

q

p
f2 [k(x − ct)]

]}
, (29a)

p2(k2c)2 − α2 = 0. (29b)

2. Case 2, r ̸= 0:

There are two solutions in the form

Θ±
4S±(x, t) = (30a)

arccos

{
±

(
1 +

p

r

)
±

√
p2 − 2qr

r
f2 [k(x − ct)]

}
,

(qr)2(k2c)2 − α2(p2 − 2qr) = 0 (30b)

e

Θ±
5S±(x, t) = (31a)

arccos

{
± p√

p2 − 2qr
± q√

p2 − 2qr
f2 [k(x − ct)]

}
,

(p2 − 2qr)(k2c)2 − α2 = 0. (31b)

It is worth noting from the solutions of Eq. (31a)
that by making r = 0 we obtain the solutions for
the Caso 1.

V. DISCUSSION

In this letter we have derived a few solutions for sine-
Gordon equations. As an equation may be obtained from
other equation vanishing one or two parameters, then by
vanishing these parameters in the solutions or into any

TABLE I: Explicit values for p, q and r of hyperbolic, circu-
lar, elliptic functions which satisfy the elliptic equation.

functions p q r
sn −(1 + m2) 2m2 1
sin −1 0 1

tanh −2 2 1
cn 2m2 − 1 −2m2 1 − m2

cos −1 0 1
sech 1 −2 0
dn 2 − m2 −2 −(1 − m2)
1 2 −2 −1

sech 1 −2 0
ns = 1/sn −(1 + m2) 2 m2

cossec −1 2 0
cotanh −2 2 1

nc = 1/cn 2m2 − 1 2(1 − m2) −m2

sec −1 2 0
cosh 0 0 −1

nd = 1/dn 2 − m2 −2(1 − m2) −1
1 2 −2 −1

cosh 1 0 −1
sc = sn/cn 2 − m2 2(1 − m2) 1

tan 2 2 1
sinh 1 0 1

cs = cn/sn 2 − m2 2 1 − m2

cotan 2 2 1
cossech 1 2 0

sd = sn/dn 2m2 − 1 −2m2(1 − m2) 1
sin −1 0 1
sinh 1 0 1

ds = dn/sn 2m2 − 1 2 −m2(1 − m2)
cossec −1 2 0
cossech 1 2 0

cd = cn/dn −(1 + m2) 2m2 1
cos −1 0 1
1 −2 2 1

dc = dn/cn −(1 + m2) 2 m2

sec −1 2 0
1 −2 2 1

exp 1 0 0

step to get these solutions, we also obtain further solu-
tions for these equations. It is sufficient to explore the
cases which cannot be obtained with this procedure. For
example, it is not necessary to make the tangent trans-
formation for DSG and SSG since the solutions with this
transformation can be obtained from TSG. It is sufficient
to make γ = 0 and/or β = 0 into solutions. However we
cannot make the cosine transformation in TSG, so we
make in DSG to obtain solutions. In the same a way it is
necessary to make the sine and cosine transformations up
to second order in SSG since these transformations can-
not be made into the other equations. Although we had
focused our attention in this procedure, which is obtain
solutions of equation each other, we made the transfor-
mation of tangent for DSG in order to furnish a exam-
ple, even by making so for TSG previously. It may be
noted that the equations sine-Gordon with less terms al-
low more transformations with facility.
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Finally, some solutions which were derived in this pa-
per were not found in literature. The set of the solutions
of these three equations SSG, DSG and TSG, gotten with
the f-expansion method contain further solutions than
the works from Refs. 23 and 25. Even so we do not ex-
plore all possibilities of solutions of the algebric systems.

In Table I the main functions that satisfy the elliptic
equation are found. To become explicit a solution we
must select a function with its values of p, q and r and
replace them into solutions found.
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