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Abstract

In this article, we will discuss a new operator dc on W (g) ® Q*(M) and to construct
a new Cartan model for equivariant cohomology. We use the new Cartan model to
construct the corresponding BRST model and Weil model, and discuss the relations
between them.

1 Introduction

The standard Cartan model for equivariant cohomology is construct on the algebra W (g)®
Q* (M) with operator . .
dc¢l - 0’¢l € S(g*>72 = 17 2

d(ﬂ?: (1®d_z¢b®bb)77,77€ Q*(M>7
b=1

where ¢, is ¢, (see [4],[5],]7],[8]). We can also introduce a new operator on W(g) ® Q*(M) by

dcgbi:O’Qﬁi € S(g*>7Z: 17 , 5

den=(1®d~Y ¢"® (+V-1fi))nn € (M) &C,
b=1

where ¢ is t¢,. In this article we construct the new model for equivariant cohomology which
also called Cartan model. The idea comes form the article [3]. We also use the new Cartan
model to construct the corresponding BRST model and Weil model.

2 Cartan model

Let G ba a compact Lie group with Lie algebra g, g* be the dual of g. We known the
Weil algebra is

Wig) = A(g") ® S(g").

The contraction ix and the exterior derivative dy, on W(g) defined as follow:

Choose a basis e, -+ ,e, for g and let e},--- e’ be the dual basis of g*. Let ', --. 0"
be the dual basis of g* generating the exterior algebra A(g*) and let ¢!, --- , ¢™ be the dual
basis of g* generating the symmetric algebra S(g*). Let c;'-k be the structure constants of
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g(see [6]), that is [e;, ex] = X7, clre;. We kown that S(g*) is identified with the polynomial
ring C[¢17 e 7¢n]'
Define the contraction ix on W(g) for any X € g by
ie, (0°) = 07, ic,(¢°) =0

for all r,s =1, -+ ,n and extending by linearity and as a derivation.
Define dy, by

i 1 i pi oA gk i
Ayt = _52%9] AR
g,k
and . o
dwe' ==Y it ¢"
jik
and extending dy to W(g) as a derivation.
The Lie derivative on W (g) is defined by
Lemma 1. L0/ = =3, ¢ 0F and L.,¢" = =3, c).¢".

Proof. Because

Lot = (dw i, + e, - dw )0’ = i€i<_% deel NO" + ¢') =~ chfk‘gk’
i,k k

Lo/ = (dy - i, + e - dy)d = ie,(— Zcike’qﬁ’“ > o

O
Lemma 2. The operators ix,dw,Lx on W(g) satisfy the following identities:
(1) dfy =0;
(2) Lx -dw —dw - Lx =0, for any X € g;
(3) ixiy +iyix =0, for any X, Y € g;
(4) Lxiy —iyLx =ixy], for any X,Y € g;
(5) LxLy — LyLx = Lixy), for any X,Y € g;
(6) dwix +ixdw = Lx, for any X € g.
Proof. see [4]. O

So, there is a complex (W (g), dw), the cohomology of (W(g),dw) is trivial (see [5]), i.e.
H*(W(g)) = R.

Let M be a smooth closed manifold with G acting smoothly on the left. Let X* be the
vector field generated by the Lie algebra element X € g given by

(X)) = 5 Fep(~) ) i

Set d, txwm, Lxum be the exterior derivative, contraction and Lie derivative on Q*(M). Denote
tx = txm and Lx = Lywm acting on Q*(M).



Definition 1. The Cartan model is defined by the algebra
S(g") @ Q* (M)
and the differential ‘ ‘
dC¢Z - 07¢Z € S(g*>72 = 17 y 15

den=(1®d=Y ¢ ® (1 +V=1fl1;))n,n € (M) &C,
i=1

where v; s L., and fij € R. The operator d¢ is called the equivariant exterior derivative.
Its action on forms o € S(g*) ® Q*(M) is
(ché)(X) = (d —lxM —V —1byAI)<Oé(X))

where XM = ¢/ XM is the vector field on M generated by the Lie algebra element X = c'e; €
g, Y M = f;chiM(see [2]). In the artile [3] we use the operator d+ txa ++/—1iyam to construct

an complex (Q*(M) ® C,d + txm + /—1liyn) and cohomology group H;k@rﬁY(M)’ we can

do it in the same way by the operator d — txm — /—1liynm.

Lemma 3.

dp == ¢ @ (Li+V-1fL))
i=1
Proof. By the lemma 2. we have

de=(10d=) ¢+ V-1fy)1ed->Y ¢ L+ V-1f1))
=1

=1

= =20 ©Ldls +V=1fl) + (6 +V=1f1y))d]

== ¢ (Li+V-1fL;)

Let (S(g*) ® Q*(M))é be the subalgebra of S(g*) ® Q*(M) which satisfied

(D¢ @ (Li+V=LfL5)a =0,Ya € (S(g7) @ ' (M))°

i=1
So we get the complex ((S(g*) ® Q" (M ))é,dc). The equivariantly closed form is Va €
(S(g*) ® Q*(M))¢ with dea = 0, the equivariantly exact form is Vo € (S(g") ® QO (M))“

there is 8 € (S(g*) ® Q*(M))% with o = d¢f3.
As in [8] we can define the equivariant connection

Ve=10V =Y ¢'® 1+ V-1f1)
i=1
and the equivariant curvature of the connection
Fy= (Vo) + > ¢' @ (Li+V-1f/L))
i=1
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3 BRST model

This section is inspired by [5]. First, we will to construct the BRST differential algebra.
The algebra is

B=W(g) ® Q" (M).
The BRST operator is
L , - 1 o ,
§ = dw@1+1Rd+ Y 0'@(Li+V=1fL;) =) ¢ @(tatV~1 ff;u,)+5 D 0@ (V=11 1)
a=1

i=1 3.k

= 00" @ (L + V=1f1Lh) (tn + V=Lf1g) = (1 + V=1fun)(Li + V=1{ L))
i<k
where £; is L., and ¢, iS te,.
Lemma 4. On the algebra W(g) @ Q*(M), we have 6* = 0.
Proof. By computation, we have
0 =exp(D> 0" ® (1 +V=1fl1;))(dw @ 1+ 1@ d)exp(— Y 0" ® (1 + V=1f1;))
=1 =1
where ¢, is t.,. So we have

5 = exp(z 0" ® (1; + \/—_1fijaj))(dw ®1+1®d)exp(— Z 0" ® (1; + \/—_1ffbj))
i=1

=1

exp(> 0" ® (1 + V=1f11)))(dw @ 1+ 1@ d)exp(— > 0" @ (1 + V=1f1;))
=1 =1

= exp()_ 0" @ (i + V=1fl1)))(dw @ T+ 1@ d)*exp(— Y 0" ® (1 + V=1f1;))

=1

=0

So we get the BRST differential algebra (W (g) @ Q*(M), §).
Lemma 5. Fizing the index i and

(0" ® (i + V=1 1;))(0" ® (s +V=1ftu)) = (0" @ (x + V=1fiu)) (0 @ (; + V=1f]1;))
Proof. T i = k, we have
(0" ® (1 +V=1F1,))(0" @ (s + V=1fiu)) = 0 = (0" @ (s + V=1F)) (0" ® (i + V=1f]1,))
If 7 # k, then because

(0' @) (0" @) = =0 NO" @ 11, = =0 N O @ g1 = (0" @ 12) (0" @ 1)

(O'@(V=1f]1) (0 @) = =N D(V=1f] 1) = =0 NI @u (V=1[]1;) = (0 @u)(0'@(V=1[]1))

So we get the result. O]



Let ¢ : W(g) @ Q*(M) — W(g) ® Q*(M) be the map

)= H(l — 0@ (1 + V=1f1;)).

By computation
(1=6"@ (+ V1)1 =0 @ (12 +V=1f31)) - (1 = 0" @ (1o + V=1[i15))
we have

Y =exp(—> 0@ i+ V=1fl)).
=1

In the section 5. we will discuss the map .

4 Weil model

The exterior derivative operator on W (g) ® Q*(M) is defined by
D=dy®l+1®d,
the contraction operator is defined by
ix Zix@1+1®ux
and Lie derivative be defined by
Ly=Ly®1+1®Ly
Lemma 6. The operators ix, D, Ly on W(g) ® Q*(M) satisfy the following identities:
(1) D*=0;
(2) Ly-D—D-Ly=0, for any X € g;
(3) ixiy +iyiy = 0, for any X,Y € g;
(4) ZXZY —ZYZX :/’Z[XJ/], for any X,Y € g;
(5) LyLy — LyLx = E[Xy}, for any X,Y € g;
(6) Ly =D ix+ix-D, forany X € g.
Proof. see [4].

Set,
’ix+\/jlyi’ix®1—|—1®(b)(+\/—1by)

be the contraction operator on W(g) ® Q*(M) induced by the contraction of X + /—1Y".
Set
Ly 1y =Lx®1+1® (Lx +V—1Ly)

be the Lie derivative on W (g) ® Q*(M) about X + /—1Y.



Lemma 7. B N B

Lyxiy=ty =D ixy =1y +ixpy=y - D
forany X,Y € g.
Proof.

D iy, yy tixeyty D= (dw@1+1®d) - ix, 1y +ixsyTy  (dw@1+1®d)
=dwix @1+ixdy @1 +10dtx +vV—1iy) +1® (tx + vV —1iy)d
=Lx®1+1® (Lx +V—-1Ly)

= LX+\/jlY
0
Definition 2. An element n € W(g) ® Q*(M) is basic if it satisfies ZXJrﬁyn = 0,
Ly, /=1yn =0 for any X,Y € g. Set (W(g) ® Q*(M))sas be the set of basic elements.
Lemma 8. The operator D preserves (W (g) @ Q*(M))pas-
Proof. Set n € (W(g) ® Q*(M))pas, then XXJFEYU =0 and ZXJMHYU =0 forany XY € g.
So by Lemma 7., we have
(ZX+¢T1Y - D)n :ZX—i-\/?lY(Dn) = Lxyy=1vn— D(7X+HY77) =0
for any X,Y € g.
And B _ N
Ly, =1y(Dn) = D(ix,—1y - D)n+ iX+HY(D2)77 =0
for any X,Y € g.
Then we get
D e (W(g) @ 0 (M))pas-
O

Now we can construct the cohomology group as following:
By the complex ((W(g) ® Q*(M))pas, D), we can define the cohomology group as follow,

. KerD|(w(g)eor ).

HA(M) = .
o(M) ImD | (w(g) 00 (M) pas

Definition 3. The cohomology group H{ (M) is called the equivariant cohomology groups of
M. The equivariant cohomology construct by this way is called Weil model.

5 The main results

In this section we explain the precise relation between the Weil model and the Cartan
model for equivariant cohomology defined earlier.

Theorem 1. ) is an isomorphism of differential algebra, i.e., the diagram

W(g) ® Q' (M) —— W(g) ® (M)

i |»

Wig) ® " (M) —— W(g) ® 2" (M)

commutes.



Proof. By computation in lemma 4., we have

b=y Dy

Theorem 2. We have the following commutative diagram:

(W(g) ® Q*(M),8) — (W(g) ® Q*(M), D)

] T

(S(e7) @ (M) —— (W(g) @ 2 (M))uas

Proof. For Va € (S(g*) ® Q*(M))% by
[[O-0"@(atV=1f0))-(i(x®1) = (@1 +10 (+V=1f1;)- ] [(1=0"@ (ta+V=1f71))

a a

we have

(ik ®1+1® (4, +V=1fl1;))(W(a)) = 0.

Because .

0,ir @1 =Ly @1+ 1@ (Ly + V-1fL;)
and A

[ =6"® (ta+ V=1fo0)) - (L ® 1+ 1@ (L + V=1FL;))
= (L@ 1+1® (Lp + V=1fL))) - T](1 = 0" @ (ta + V=1fl1))

so we have .

(Ly®1+1® (Ly + V-1£L;))(W(a)) =0
Then we get ¥(a) € (W(g) ® Q*(M))pas. So we get the commutative diagram. O

The theorem 2. tell us the relation about BRST model and Cartan model.

Theorem 3. B
(S(g") @ Q*(M))® —— (W(g) @ Q" (M))sas
1S a 1somorphism.
Proof. For Vi € (W(g) ® 2 (M))yas, 5 = [[,(1 + 6 ® (10 + V=1f20))n. By

1 +6° @ (ta+ V=110 w@eor (e, = [ [(1 = %0 @ Dl wige0r ().

and
Im(1—60%,®1)=Ker(i, ® 1)
So
i € (S(g7) @ Q° (M) )pas-
Then

(Z & @ (Li+ V=L L)W =0

ie. 1y € (S(g")®@Q*(M))C. And by the proof in theorem 2.we get that 1) is a isomorphism.
O]

The theorem 3. tell us the relation about Cartan model and Weil model.
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