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Abstract

We continue our investigation of the new project launched in [1, 2,
3, 4, 7, 8] by generalizing Quantum Electrodynamics, the theory of elec-
trons and photons, to our setting. At first, we deal with the respective
two point functions, define the correct interaction theory as a series of
connected Feynman diagrams and finally, we show that for a certain class
of spacetime metrics, each diagram is finite and a modified perturbation
series is analytic.

1 Introduction.

In this paper, we shall briefly introduce all necessary tools and ideas in order
for the reader to understand the construction. Alternatively, he or she may
first consult the aforementioned references in the following order: [1] contains
the first ideas behind the construction followed up by [4, 8] for information re-
garding the interacting theory and a generalized Heisenberg picture respectively.
Finally, [3] contains some novel physical ideas to make the construction work out
and provide one with an analytic theory, some comments regarding quantum
gravity in that respect have been dealt with in [7]. The intention of this paper is
to show the strength of our framework and apply it to Quantum Electrodynam-
ics, which remains the best tested “quantum field theory”. As is well known,
QED is not perturbatively renormalizable due to the presence of the Landau
pole in the beta function of the renormalization group; our framework will turn
out to be perturbatively finite as it was for φ4 theory. The key idea behind such
wonderful result is a more physical interpretation of the meaning of Lorentz
invariance: the latter says that the absolute value of the propagation amplitude
for a particle to travel from x to y cannot depend upon the four momentum of
the free particle. This leaves plenty of friction terms left, such as a momentum
dependent friction associated to the creation-annihilation process as well as a
momentum independent friction term coming from propagation. Traditional
quantum theory is all about frictionless propagation and cost-free creation and
annihilation processes: it are these idealizations which cause the main trouble
as has been explained in [3]. This means we leave all conserved quantities, such
as an energy momentum tensor, behind us: the coupling of gravity to quantum
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particles will have to work in a different way. The latter means we dispose also
of the cosmological constant problem as has been explained in [3].

As the reader will once again notice, our results do not really depend upon the
details of the structure of the interaction vertex, nor the number of loops in
a diagram. This shows that the distinction between renormalizable and non-
renormalizable theories is completely void and that a perturbative graviton the-
ory is most likely well defined, as has been explained in [7]. The reader who
wishes to understand more about the rationale for this construction, and in
particular the failure of a covariant operational approach, should consult [2, 6].
In the second reference, I try to build a unique relativistic operational quantum
theory, almost from the same principles - with the only exception of operational
versus realist- as the one advocated in this series of papers and this theory
turned out to be a dead end. This came in 2012 as a big disapointment to me
since I did not know what I had done wrong, the physical ideas all seemed to be
fine! I could not do anything else than sacrifying unitarity and operationalism
and more comments upon why this should be done can be found in [2]. It is
rather important to understand or at least to know that this proposal comes
from a long process of trial and error where, logically, some principles had to be
given up.

This paper is organized as follows: in section two, we perform the basic con-
struction of the two point functions for spin 1/2 and spin 1 particles. This
section will use results from [1, 3, 8] but I will try to keep the exposition fairly
self contained. In section three, we define QED, this will constitute a small
enlargement of the results in [1, 4] towards Fermions instead of Bosons. Sec-
tion four contains then the proof that QED is perturbatively finite relying upon
similar methods as in [3]. Comments will be made regarding the violation of
unitarity necessary to make the theory analytic. It is important to understand
that the conditions placed upon spacetime will be slightly more elaborate than
is the case for a spin zero particle [3]. In that reference, we obtained that if the
volume of the intersection of large Euclidean balls around a point x with the
region within the geodesic horizon defined by x scales at most in a Euclidean
way, then the theory is perturbatively renormalizable. In this paper, the asymp-
totic behavior of the parallel transporters of spin one and spin one half along
spacetime geodesics, as measured in a cosmic reference frame, will also be of
utmost importance given that they show up immediately in the interactions.
We will have more to say about this in section four when dealing with bounds
on Feynman diagrams. Finally, our conclusions hint towards similar results for
non abelian gauge theory as well as the introduction of ghost particles.

2 Propagators for spin one half and spin one
particles.

In this section, we will gather together insights from [1, 3, 4]; the reader who
wishes to see all the details is invited to consult those references. As it turns out,
the procedure to regularize the two point function for photons is identical to the
one for spin zero particles. Therefore, it is more logical to start with the spin one
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case. The propagator for spin one half particles is not so “canonically” regulated
as the integer spin procedure leads to an appearant violation of the spin-statistics
theorem, which is a desastrous result regarding the well-definedness of the Dyson
series. There are, of course, several ways to cure this appearant deficit and we
will take the easiest procedure which keeps us the closest to the standard results
in Minkowski spacetime. Let me start again by introducing the construction for
a spin 0 particle. Here, we wish to write down the two point function W (x, y)
as the integral over an on shell four momentum which is Lorentz invariant in
the sense that the modulus squared of the amplitude φ(x, ka, y) for propagation
from x to y does not depend upon the momentum ka, at least not for a single
path. Here, propagation from x to y happens along a geodesic γ(s) and Lorentz
invariance implies, if we ignore friction terms, that

d

ds
φ(x, ka, γ(s)) = iγ̇µ(s)kµ(s)φ(x, ka, γ(s))

where
D

ds
kµ(s) = 0

and γ(0) = x, γ(1) = y, kµ(0) = kaeµa(x). The i in front is absolutely crucial to
preserve the modulus; the solution of the above equation is given by

φ(x, ka, y) = eik
awa

where wa is the tangent vector to the geodesic with norm equal to the length of
the geodesic. Now, it may be that x and y can be connected by several, possibly
infinite number of geodesics, which implies that one should sum over all of them

φ(x, ka, y) =
∑

w:expx(w)=y

eik
awa .

The latter constitutes the necessary generalization of the Fourier transform and
more comments about this as well as the connection to a generalized Heisenberg
framework have been dealt with in [8]. The two point function now reads

W (x, y) =

∫
d4k

(2π)3
δ(k2 −m2)θ(k0)φ(x, ka, y)

and as is well known, this integral does not exist in the Lebesgue sense but only
as a bi-distribution with regard to Schwartz functions. Taking the sum over
all geodesics is the correct recipe as has been shown in [4]: there, we studied
the case of a cylindrical, flat, universe where space was a circle of length L and
showed that the infinite sum over all geodesics was well defined as a distribution
which effectively discretized the integral to the standard sum over all momenta
of the form 2πn

L with n ∈ Z. So, again, on nontrivial topologies, we got the
same answer as standard quantum mechanics. As has been explained in [3],
we need to regularize this integral in two ways such that it is well defined in
the Lebesgue sense and has suitable falloff conditions towards spacetime infin-
ity. The former requires the introduction of a momentum dependent friction
associated to the creation and annihilation process of a particle while the lat-
ter requires momentum independent friction associated to the propagation of a
particle. Friction requires a medium and in [3], it has been explained that this
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medium is the nontrivial gravitational field, associated to classical degrees of
freedom in the universe, which determines a preferred unit timelike vectorfield
V µ and an associated Riemannian metric

hµν = 2VµVν − gµν .

Before we proceed, we must say something about the very important phys-
ical properties of the two point function any regularization scheme needs to
preserve. From one side, we have that W (x, y) = W (y, x) for all x, y and, more-
over, W (x, y) = W (y, x) if x and y are spacelike to one and another which we
denote from now on as x ∼ y. The latter means that x and y are only connected
by means of spacelike geodesics while in the case both points are causal with
respect to another, they might be connected by means of timelike and spacelike
geodesics as well. This famous property for spacelike separated points is well
known as the spin statistics implication: it means that propagation from x to y is
the same as propagation from y to x which implies that x and y can be swapped
without changing the amplitude. This result is known as Bose statistics, so in
our framework, spin zero particles exhibit Bose statistics: this property should
be preserved under any deformation.

All this means that the friction terms for spacelike geodesics are going to be dif-
ferent than those for causal ones. Denote by Λ(x,wa)α

′

β , where the primed index
refers to expx(w) = y, the parallel propagator along the geodesic defined by w

and connecting x with y. Also, introduce the shorthand kµ
′

?w = Λ(x,wa)µ
′

ν k
ν ,

then the friction associated to a creation-annihilation process for events related
by means of a causal geodesic is proposed to be [3]

e−µ(V
αkα)

2−µ(Vβ′k
β′
?w)2 .

As shown in the same reference, in order to preserve the statistics property, for
spacelike related events x ∼ y, of the Wightman function, we need to symmetrize
the exponent of this expression by adding the reflection Rαβ (w)kβ of kβ as well
as in x as in y. Under these assumptions, one still has that Wµ(x, y) = Wµ(y, x)

for x ∼ y and Wµ(x, y) = Wµ(y, x) where

Wµ(x, y) =

∫
d4k

(2π)3
δ(k2−m2)θ(k0)

∑
w:expx(w)=y

eik
awae−µ(V

αkα)
2−µ(Vβ′k

β′
?w)2+R(w) symmetric ifw is spacelike..

As it turns out, this makes the integral well defined but the resulting function
does not go sufficiently rapid to zero for y to infinity in order for loop integrals to
be well defined. In case one has infinite winding of geodesics, the sum within the
integral is still defined as a distribution and the integral exists in this generalized
sense. To cure for the falloff problem and to make the integral well defined in the
Lebesgue sense in case one disposes of an infinite number of geodesics connecting
x and y, we replace the original differential equation for the exponential function
by one with momentum independent friction. That is,

d

ds
φκ(x, ka, γ(s)) =

(
iγ̇µ(s)kµ(s)− κ

√
h(γ̇(s), γ̇(s))

)
φκ(x, ka, γ(s))

where all symbols have been defined previously. The solution is obviously given
by

φκ(x, ka, wb) = eik
awae−κ

∫ 1
0

√
h(w(s),w(s))ds
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where the last term has been called the exponentiated energy of the geodesic
connecting x with y. This gives rise to

Wµκ(x, y) =

∫
d4k

(2π)3
δ(k2 −m2)θ(k0)

∑
w:expx(w)=y

eik
awae−κ

∫ 1
0

√
h(w(s),w(s))ds

e−µ(V
αkα)

2−µ(Vβ′k
β′
?w)2+R(w) symmetric ifw is spacelike.

which has all the desired properties. The only important proproperty we need
is that

|Wµκ(x, y)| < Ce−κd(x,y)

where C is a constant depending upon the geometry and d denotes the Rie-
mannian distance defined by h. In [3], we worked with a universal C which was
possible because we did not consider geometries with multiple geodesics joining
two points. This finishes our discussion for the spin-0 two point function; we
now return to the photon two point function, the latter has been shown [1] to
be equal to

Wµκ
αβ′(x, y) =

∫
d4k

(2π)3
δ(k2 −m2)θ(k0)

∑
w:expx(w)=y

gαβ′(x,w)eik
awae−κ

∫ 1
0

√
h(w(s),w(s))ds

e−µ(V
αkα)

2−µ(Vβ′k
β′
?w)2+R(w) symmetric ifw is spacelike.

where
gαβ′(x,w) = (Λ−1(x,w))γβ′gαγ(x)

is the parallel transport of the bi-tensor along the geodesic determined by w.
To get a bound on this expression is not really desirable since it is coordinate
dependent; later on we will consider invariants which can be properly bounded;
for now, it is sufficient to know that

Wµκ
αβ′(x, y) = e−κd(x,y)

∑
w:expx(w)=y

gαβ′(x,w)Cµκ(x,w)

and there exists a labelling of w, denoted by wj , such that, in case of an infinite
number of geodesics connecting x with y, there exists an L > 0, independent of
x and y such that

∞∑
j=0

ejk
L

d(x,y)+1 |Cµκ(x,wj)|k < C(µ, κ, L, k, g, V )(1 + d(x, y))

where k ≥ 1 and C depends, amongst others, upon the geometry and the friction
parameters. At least, we will assume this to be the case and I think it is certainly
true for manifolds with a finite (over Z) first homotopy group. Indeed, it is clear
that an infinite number of geodesics between two points requires a nontrivial
first homotopy group and arbitrary winding numbers. Under rather generic
conditions, we may associate to each homotopy generator a minimal length
squared M(h) > 0 (Gromov) such that the energy of a curve with winding

number n between x and y is greater than d(x, y)+n M(h)
d(x,y)+1 which leads to the
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desired result1. These conditions are not always true on non-compact spacetimes
in case singularities are present (giving rise to topology change and M(h) = 0).
The reader should notice that spin-one particles are bosons from the symmetry
properties of Wµκ.

Let us now introduce the two point function for spin- 12 particles: in [1], it was
shown that the correct frictionless two point function for particles and anti-
particles of spin- 12 was given by

Wp(x, y)j
′

i =

∫
T?Mx

d4k

(2π)3
δ(k2−m2)θ(k0)

∑
w:expx(w)=y

(Λ
1
2 (x,w))j

′

r (−ika(γa)ri+mδ
r
i )eik

awa

and

Wa(x, y)ij′ =

∫
T?Mx

d4k

(2π)3
δ(k2−m2)θ(k0)

∑
w:expx(w)=y

(−ika(γa)ir−mδir)((Λ
1
2 (x,w))−1)rj′e

ikawa

where Λ
1
2 (x,w) is the spin transformation associated to parallel transport of a

spinor along a geodesic between x and y determined by w. It has been shown
that

Wp(x, y)j
′

i +Wa(x, y)j
′

i = 0

for x ∼ y so that spin- 12 particles exhibit Fermi statistics. To obtain the correct
propagator, it is sufficient to dress the usual Fourier waves with the aforemen-
tioned friction terms and to take

W̃µκ
p,a(x, y) =

1

2

(
Wµκ
p,a(x, y)−Wµκ

a,p(y, x)
)

if x ∼ y and
W̃µκ
p,a(x, y) = Wµκ

p,a(x, y)

otherwise. Note that it is necessary to take the antisymmetric difference in order
to preserve the spin-statistics result as Wµκ

p,a(x, y) does not obey it in general as
the reader may verify. Again, the reader may infer that on a general class of
backgrounds

W̃µκ
p (x, y) = e−κd(x,y)

∑
w:expx(w)=y

Λ
1
2 (x,w)

(
Cµκp;b(x,w)γb + Cµκp (x,w)1

)
and

W̃µκ
a (x, y) = e−κd(x,y)

∑
w:expx(w)=y

(
Cµκa;b(x,w)γb + Cµκa (x,w)1

)
(Λ

1
2 (x,w))−1

1Indeed, one can bound the sum over all w as the sum over winding numbers n of

Cµκe
−κ nM(h)

d(x,y)+1

which has the above mentioned properties since

Ckµκ
∑
n

e
−κk nM(h)

d(x,y)+1 = Ckµκ
1

1 − e
−κk M(h)

d(x,y)+1

≤ C(µ, κ, h, k)(d(x, y) + 1).

The division through d(x, y) + 1 stems from infinitely large homotopy classes and can be
ignored when all nontrivial topology resides in a compact region of spacetime.
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where every coefficient function has the dimension of mass and satisfies, more-
over, an identical property as the coefficient function for the spin-one two point
function with bounds holding in any reference frame2 with e0 = V . Indeed,
the latter class of reference frames will become important in the sequel since
they constitute also a vierbein for the Riemannian metric h; the transporters
Λ

1
2 (x,w) are all expected to be expressed in such basis with a rotation invariant

operator norm √
Tr(A†A).

It are these estimates, and in particular the linear dependency of the bound
upon d(x, y), which are of crucial importance to adress finiteness of Feynman
diagrams, see [3] to obtain an understanding for this claim.

In [3], we introduced important concepts such as the one of spacelike and timelike
geodesic horizon or geodesic horizon of a point x. The latter is defined as
the boundary of the space of all events y which can be reached by a geodesic
emanating from x. As is well known, some events require acceleration to be
reached and we have previously studied such cosmology.

3 Defining Quantum Electrodynamics.

From now on, we will drop the µ, κ and tilde references in the notation of the
two point function and we will just refer to Wαβ′(x, y) as the physical photon
two point function with the necessary friction terms such that all bounds above
hold. I have never explicitely stated this, but the definition of the Feynman
propagator can also be extended to a spacetime with closed timelike curves; for
photons for example, one could state that

∆Fαβ′(x, y) =
1

2
(Wαβ′(x, y) +Wβ′α(y, x))

if y ∈ J+(x) ∩ J−(x) and frame the definition as usual otherwise. It may,
however, be that on such spacetime no spacelike region to an event exists and
therefore one does not have a global result regarding particle statistics. This
would suggest an ambiguity in the theory which can only be resolved by speaking
about the same theory on different spacetimes, Fewster and Verch [9] have
interesting things to say about that. Taking, however, the statistics result for
granted, we obtain for Fermions that the particle Feynman propagator looks
like

∆F ;p(x, y)j
′

i = Wp(x, y)j
′

i

if y /∈ J−(x) and

−Wa(y, x)j
′

i

if y ∈ J−(x) \ J+(x) and finally, in case of closed timelike curves

1

2

(
Wp(x, y)j

′

i −Wa(y, x)j
′

i

)
2If one allows for arbitrary large boosts of such special reference frame, then no bound

needs to hold.
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while the anti-particle propagator satisfies

∆F ;p(x, y)j
′

i = −∆F ;a(y, x)j
′

i

as usual. One should notice that we did not define the coincidence limit ∆F,p(x, x)ij
which, unlike for integer spin particles, has no natural value given that

Wp(x, x)ij 6= −Wa(x, x)ij

as the reader may wish to verify, see [1]. Therefore, the natural thing to do
is to forbid diagrams requiring such expression, or to pick an arbitary value
which gives effectively one extra parameter in the theory. As in [3, 4] we define
the interacting theory as a sum over connected Feynman diagrams between in
IN and OUT states |IN (x1, a1), . . . , (xn, an)〉 and |OUT (y1, b1), . . . , (ym, bm)〉
respectively where ai, bj is either a covariant spacetime index or a covariant,
corresponding to a particle in the IN state and an anti-particle in the OUT state,
or contravariant spinor index with the opposite interpretational conventions.
Here, it is understood that all xi (yj) belong to non-intersecting spacelike, but
not necessarily achronal, hypersurfaces SI (SF ) such that SF is in the future
of SI in a well defined sense, see [3] for the exact definition. The diagrams we
consider are such that any internal vertex is connected to an IN or OUT vertex,
no IN (OUT) vertices are connected by a single propagator to an IN (OUT)
vertex since otherwise there would exist an IN (OUT) vertex where a particle
would arrive (leave) in contrast to the meaning of IN and OUT. One should
be aware that the definition of the Feynman propagator does not imply that
all processes are travelling forwards in time: all the definition of the Feynman
propagator says is that the amplitude for a process “going backwards in time”
equals plusminus the amplitude for the opposite process “going forwards in
time”. Therefore, we can state that an IN electron is leaving towards its past
instead of a positron arriving from the past at the specified IN position: indeed,
the relationship between the particle and anti-particle Feynman propagator does
not immediately reveal the correct interpretation. What we state is that the
correct interpretation is given by putting the IN vertices as first argument in
the Feynman propagator and the OUT vertices as last argument; we don’t care
about a unique interpretation for the internal vertices.

As explained in [1], the only interaction vertex or intertwiner is given by

eµa(x)(γa)ij

which has no internal symmetries, so the symmetry factor of a diagram equals
always one. An internal vertex with label k is therefore represented by a triple
(µk, ik, jk) where the index jk is covariant and the remaining two contravariant.
Take then the series (bm, . . . , b1, (µ1, i1, j1), . . . , (µV , iV , jV ), a1, . . . , an) where
V represents the number of internal vertices and define the rule that the trans-
position of a spacetime index with any other index corresponds to plus one,
while the transposition of a spinor index with another spinor index corresponds
to minus one. Moreover, only covariant and contravariant spinor indices of dif-
ferent vertices can couple to one and another; then, the reader verifies that the
overall sign of a diagram is well defined, taken into account the properties of
the Fermi Feynman propagator, and independent of the labelling of the internal
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vertices. With all this in mind, we write formally

〈OUT (y1, b1), . . . , (ym, bm)|IN (x1, a1), . . . , (xn, an)〉 =
∑
D

(−iλ)V ε(D)

∫
dz1
√
h(z1) . . .

∫
dzV

√
h(zV )

∏
∆F ; alap(l)(αl, αp(l))

∏
∆F,p(αk, αr(k))

jr(k)
ik

∏
(γam)imjm

where ε(D) = ±1 the sign of the diagram which has been fixed by the con-
sistent choice for the particle Feynman propagator in the Fermi sector and
α ∈ {zk, xi, yj}. I say formally, since experience [3] has shown that the series
does not converge albeit every diagram gives a finite contribution which we will
show explicitely in the next section where we shall estimate the magnitude of a
diagram. Corrections to unitarity should therefore occur and we will comment
upon that later on.

In [3, 4] did we make a distinction between a Type I, II, III quantum theory and
we explained why some spacetimes excluded one type but not another. There-
fore, by “spacetime” in the sequel, we mean that portion of spacetime to which
our analysis is applicable. The reader might want to read upon those fine details
prior to proceeding.

4 Perturbative Finiteness of QED.

We repeat the assumptions which went into the argument in [3] and later on
specify some additional constraints the geometry has to satisfy in order for our
proof to hold. I do not think those assumptions may be significantly changed
without affecting the “basic” structure of the theory and we will keep possible
generalizations of the structure as well as the analysis for future work. In
particular, we assumed that our Riemannian geometry is exponentially finite
meaning that ∫

dy
√
h(y)P (d(x, y))e−κd(x,y) < R(P, κ)

for every polynomial P and κ > 0. Moreover, the balls of radius r around x
have the following volume bound

Vol(B(x, r)) ≤ Kr4

meaning that the Riemannian geometry is “dominated” by an asymptotically
Euclidean space in some sense and that hyperbolic behaviour should not occur
on large scales. One can already guess that we will also need norm bounds on
the geodesic transporters Λ(x,w)a

′

b and Λ
1
2 (x,w)i

′

j with respect to any cosmic
reference frame e0 = V . Those issues were of course completely irrelevant in the
spin-0 theory given that there are no internal degrees of freedom to “feel” those
transporters and these matters are not important in Minkowski either but they
might be of importance in a more general cosmology.

The contribution of a diagram is given by∫
dz1
√
h(z1) . . .

∫
dzV

√
h(zV )

∏
e−κd(αl,αp(l))

∑
wl:expαl

(wl)=αp(l)

(Λ−1(αl, wl))
bl
ap(l)

ηblalCµκ(αl, wl)
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∏
e−κd(αk,αr(k))

∑
wk:expαk

(wk)=αr(k)

(Λ
1
2 (αk, wk))

jr(k)
sk

(
Cµκp;b(αk, wk)γb + Cµκp 1

)sk
ik

∏
(γam)imjm

where index notation has been used just as before. The very structure of this
formula reveals that loops are not going to be of importance, just as it was the
case for φ4 theory [3]. As a general matter, one has that

V − I = C − L

where V is the number of internal vertices, I the number of internal edges, C
the number of components and finally L the number of loops. For QED, one
has moreover that

2I + (n′ +m′) = 3V

where 0 ≤ n′ ≤ n, 0 ≤ m′ ≤ m is the number of IN and OUT vertices connected
to an internal vertex. Hence,

3

2
V − n′ +m′

2
≥ L = C +

V

2
− n′ +m′

2
≥ 0

which implies that V ≥ n′+m′

3 . To simplify the analysis and to eliminate the
distinction between internal and external photon or Fermion lines we consider
that ∣∣∣∣∣∣

∑
wk:expαk

(wk)=αr(k)

(Λ
1
2 (αk, wk))

jr(k)
sk

(
Cµκp;b(αk, wk)γb + Cµκp 1

)sk
ik

∣∣∣∣∣∣ ≤
2

∑
wk:expαk

(wk)=αr(k)

√
Tr
(

(Λ
1
2 (αk, wk))†(Λ

1
2 (αk, wk))

)√∑
b

∣∣∣Cµκp;b(αk, wk)
∣∣∣2 + |Cµκp |2

which can be further bounded to

2

(
sup

wk:expαk
(wk)=αr(k)

√
Tr
(

(Λ
1
2 (αk, wk))†(Λ

1
2 (αk, wk))

)) ∑
wk:expαk

(wk)=αr(k)

(∑
b

∣∣∣Cµκp;b(αk, wk)
∣∣∣+
∣∣Cµκp ∣∣

) .

Finally, this is majorated by

D(µ, κ, g, V )

(
sup

wk:expαk
(wk)=αr(k)

√
Tr
(

(Λ
1
2 (αk, wk))†(Λ

1
2 (αk, wk))

))
(1+d(αk, αr(k)))

which is the bound we need. Given that
∣∣(γa)ij

∣∣ equals one 16 times and zero
48 times gives then that the contribution of a diagram is bounded by

(16)V
∫
dz1
√
h(z1) . . .

∫
dzV

√
h(zV )

∏
e−κd(αl,αp(l))

(
sup

wl:expαl
(wl)=αp(l)

√
Tr(Λ−1(αl, wl)†Λ−1(αl, wl))

)
C(µ, κ, g, V )(1+d(αl, αp(l)))

∏
e−κd(αk,αr(k))D(µ, κ, g, V )

(
sup

wk:expαk
(wk)=αr(k)

√
Tr
(

(Λ
1
2 (αk, wk))†(Λ

1
2 (αk, wk))

))
(1+d(αk, αr(k))).

10



Now, it is easy to see that an appropriate requirement for the parallel propaga-
tors to satisfy is that

sup
wl:expαl

(wl)=αp(l)

√
Tr(Λ(αl, wl)†Λ(αl, wl)) ≤ F (g, V )eδd(αl,αp(l))

with δ < κ and likewise for

sup
wk:expαk

(wk)=αr(k)

√
Tr
(

(Λ
1
2 (αk, wk))†(Λ

1
2 (αk, wk))

)
.

Denoting with E(µ, κ, g, V ) = max{C(µ, κ, g, V ), D(µ, κ, g, V )}, we have that
the bound on the diagram simplifies to

(16)V (F (g, V )E(µ, κ, g, V ))
3
2V+n+m

2

∫
dz1
√
h(z1) . . .

∫
dzV

√
h(zV )

∏
all lines

e−(κ−δ)d(α,β)(1+d(α, β)).

For sake of simplicity, we can ignore the linear term (1 + d(α, β)) by adding a
small 0 < ε < κ − δ in the exponential and muliplying with another constant.
Hence, we are left with

(G(µ, κ, g, V ))
3
2V+n+m

2

∫
dz1
√
h(z1) . . .

∫
dzV

√
h(zV )

∏
all lines

e−(κ−δ−ε)d(α,β)

and these are precisely the same integrals as for φ4 theory [3] except that we
have now trivalent vertices instead of vertices with four legs, the distinction
between Fermi and photon lines being gone. To evaluate such integrals, we use
as before [3] that

d(x, y) + d(y, z) ≥ d(x, z) +
1

2
d(y,

x+ z

2
)

for d(y, x+z2 ) ≥ 3
2d(x, z) where x+z

2 is a formal notation for some midpoint of x, z.
Note that this general bound is somewhat weaker than it is in the Euclidean case
where we could drop the factor 1

2 ; also it is now possible for a component of the
diagram to be connected to an odd number of external vertices. In particular,
it might be connected to a single external vertex so that the dependency of the
bound on the associated spacetime point is integrated out. This is the major
qualitative difference with φ4 theory; we shall now estimate the integral: it is
bounded by

(max{1, R(1, κ− δ − ε)})V

which we derived before [3]. We proved this by induction on the number of inter-
nal vertices: if V = 0, then we simply have a product of numbers e−(κ−δ−ε)d(α,β)

which is smaller or equal to one. Suppose it is true for V ≥ 0, then we prove it
for V +1: take any internal vertex connected by an edge to an exterior vertex α
and remove it. The effect is that we obtain a new diagram with three new ex-
ternal vertices from which we remove the edge with α; the remainer is bounded
by

(max{1, R(1, κ− δ − ε)})V−1 .

Now, we identify the three vertices again and perform the remaining integration
over this vertex which gives a factor of R(1, κ − δ − ε) (due to the leg with α)
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which proves the result.

In order to obtain nonperturbative results, we need an estimate on the number
of diagrams with n IN and m OUT vertices; we leave such investigations for
the future. It might be that unitarity has to be sacrified at the level of the
interaction series to make the latter analytic.

5 Conclusions.

The kind of gauge invariance introduced in [1] does not coincide with its stan-
dard form in quantum field theory but agrees effectively with this notion in
the unregularized Minkowski theory. This is logical given that our regularized
scheme does not contain any conserved quantities and therefore gauge invari-
ance must have a different meaning since the standard notion crucially depends
upon the conservation law for the Fermi current. Hence, we might expect small,
but nonvanishing amplitudes associated to processes involving photons with
a “longitudonal” polarization in a background sufficiently close to Minkowski
spacetime. As a general comment, our theory will not satisfy any Ward identity
due to the absence of (local) symmetries. Photons with a longitudonal polar-
ization seem not to have been observed with sufficient degree of certainty but
it is not excluded that they might exist as several theorists still contemplate
theories with a small photon mass.

As explained in [3, 7], the proof of our result did not depend upon the details
of the interaction series as our bound came from a very general argument. This
shows that also the perturbative graviton theory is going to be well defined and
we postpone such adventures for future investigations. The reader may notice
that our argument for the

(max{1, R(1, κ− δ − ε)})V

behavior of the amplitudes did not really depend upon the Euclidean volume
bound on large balls. Indeed, one might weaken the definition of an exponen-
tially finite geometry to the extend that integrals of the kind∫

dy
√
h(y)P (d(x, y))e−γd(x,y) < R(P, γ)

are finite for γ > ζ > 0. In that way, we could make a Type III theory for
hyperbolic universes, see [3] but the bounds taking into account the relative
distances between exterior vertices cannot be reproduced anymore for diagrams
with many internal vertices. This was my main reason to ignore a Type III
theory for the Λ > 0 cosmology in [3], but it does not need to be so.
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