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Abstract – The solution for the problem of Breakdown of Euler Equations, like the 

Millenium Problem for Navier-Stokes equations. 

 

§ 1 

 Motived by the 6th Millenium Problem, relative to the solution of the Navier-

Stokes equations or prove of the inexistence of solutions, obeying certain conditions, I 

wrote this paper for solve this problem substituting Navier-Stokes by Euler equations, 

since that these same questions are unsolved for Euler equations, although these last 

are not on the Clay Institute’s list of prize problems.[1] The natural sequence of this 

paper is the correspondent to Navier-Stokes equations. 

 In his famous Méchanique Analitique (1788), using the notions of total or 

complete differential and exact differential, and creating the concept of velocity-

potential, for an external force with potential (a gradient or conservative external 

force, which also can be a force equal to zero) Lagrange came to the conclusion that 

Euler´s equations could be solved only for two specific conditions: (1) for potential 

(irrotational) flows, and (2) for non-potential (rotational) but steady flows.[2],[3] In 

Lagrange[3], pp. 536-542, the pressure is represented as  , the external force 

components as      , the velocity components as      , the rectangular 

coordinates as       and time as  . The velocity-potential is   and the force-

potential is  . 

 The solution for pressure obtained by Lagrange for incompressible fluids in 

potential flow case was 

      
  

  
 

 

 
 
  

  
 
 
 

 

 
 
  

  
 
 
 

 

 
 
  

  
 
 

, 

and an arbitrary function of   could be added here because this variable is treated 

in the integration as a constant, which is nothing more nor less that the Bernouilli’s 

law, except by the signs of   and   (the use by Lagrange of   is as our  , means 

partial derivative).  

 The determination of   will depend upon equation (continuity equation, the 

incompressibility condition) 
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in which after substitution of the expressions 
  

  
 
  

  
 
  

  
 for       becomes 

  
   

   
 

   

   
 

   

   
  , 

that is the Laplace’s equation.   

 Thus, conclude Lagrange, all the remaining difficulty will now lie in the 

integration of this last equation.  

 Of course that it is possible describe a fluid movement without potential 

flow and conservative forces, simply by setting the external force as  

(1.1)       
  

  
         

given any pressure   and velocity  , both differentiable functions of class   and   , 

respectively, velocity with potential or no, obeying the incompressibility condition 

or no, but we do not need this kind of force here. 

 In the present paper we are interested only in conservative external forces, 

i.e., with potential, including zero, and the validity of incompressible flow 

condition, which require for the solution of Euler equations a potential velocity for 

non-steady flows. 

 I think that the deduction used by Lagrange in Euler’s equations can be 

implemented also in Navier-Stokes equations, and we will come to      . I am 

hopeful to prove this in next article, concluding this subject. Really, today, 08-12-

2016, my answer to the problem of breakdown of Navier-Stokes equations is as 

follow: given an initial velocity    which is potential flow and a not null and not 

conservative external force, in special both belonging to the Schwartz Space, there 

is no solution       for Navier-Stokes equations, velocities   and    obeying the 

incompressibility condition or not  i.e.  satisfying the Laplace’s equation or not, 

which is not exactly equal to Lagrange’s proof. My prototype of external force is     

(1.2)                       
 

 
            , 

where   is non gradient and decreases exponentially in the time. 

§ 2 

 When       then exist a potential function   such that     . When 

      and       then       and      , therefore the Navier-Stokes 

equations are reduced to Euler’s equations and the solutions for velocity are given 

by Laplace’s equation, they are harmonic functions, i.e.,  
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(2.1)                                     

and  

(2.2)        
  

  
 
  

  
 
  

  
         

   

   
 

   

   
 

   

      .  

 It is clear that there is no uniqueness solution in all cases, in special when 

the velocity is both irrotational and incompressible, even if the velocity vanishes at 

infinity. Defining                                       , then we have  

                           and so there are endless possibilities for 

constructing   given   , because there are endless possibilities for constructing 

     with       , even if li          li        , where   

         . Exception if the initial velocity is identically null, when for the 

previous reasoning the velocity is     unique. 

 A more long way to see this is for example as follow. If       and 

      then      . For              and             , defining 

                       we will have             and      .  

 If      solves the Navier-Stokes equations then, from 

(2.3.1)     
  

  
                  

(2.3.2)       
  

  
          

 

 
       

                          

(2.3.3)       
  

  
    

 

 
        

(2.3.4)      
  

  
 

 

 
       , 

we obtain  

(2.4)    
  

  
 

 

 
           

which is the Bernouilli’s law without external force. 

 With a gradient external force      we will have 

(2.5)    
  

  
 

 

 
           . 

 For   defined as above, substituting     in the Navier-Stokes equations 

(2.3.1) comes  
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(2.6)    
  

  
 

 

 
             

where                             , and   is the new pressure for the 

velocity                          . 

 If        and                then   and   obey the same initial 

condition and both solve the Navier-Stokes (and Euler) equations and they are 

incompressible and potential flows. Thus, in this case, there is no uniqueness 

solution, for        or       , i.e.,    . 

 Imposing the boundary condition at infinity                      

the velocity         obey the same boundary condition, for               

finite for all    , i.e.                           and            obey the same 

initial and boundary conditions, so there is no uniqueness solutions for Navier-

Stokes (and Euler) equations in this case of incompressible and potential flows 

with velocity zero at infinity, if    .  

§ 3 

 Sobolev[4] (pp. 12, 13, 18, 19) is very assured to affirm that the problem of 

the motion of an incompressible fluid is equivalent to that of finding an unknown 

function   (the velocity-potential) such that 

          ,    
  

  
       

  

  
       

  

  
. 

Continuing his citation, substituting these expressions for the velocity components 

in the continuity equation, we get 

    
   

   
 

   

   
 

   

       

or  

       .        (1.17) 

 …  

 Later we shall write down the complete set of equations of motion for a 

fluid and we shall show that any function    which satisfies (1.17) does indeed 

describe a possible motion of the fluid. Thus to solve a problem of fluid motion it 

suffices to know to find the requisite solutions of equation (1.17). 

 In some circumstances, the velocity   and so also the function    do not 

depend on the time  ; the motion is then one of steady flow.     

  …  
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 We can now verify what was said earlier about the potential flow of an 

incompressible fluid: namely, that 

          ,  

       , 

do actually satisfy the complete set of equations (Euler equations with mass 

density coefficient   and external force        , note mine), if the function   is 

defined correspondingly, and if further 

    
  

  
   

  

  
   

  

  
  

i.e., if the external force have a potential.     

 It suffices to show that if we take 

     
  

  
       

  

  
       

  

  
  

then the equations (1.22) (the Euler equations) allow the function   to be 

constructed. When the expressions for           are substituted, these equations 

yield explicit expressions for  

  
  

  
 

  

  
 

  

  
. 

And it is known from the theory of partial differential equations of the first order 

that the equations will be compatible provided that the mixed second-order 

derivatives 

  
   

    
 

   

    
 

   

    
 

determined from the different equations have the same values.  …  

 Then, following Sobolev, if the external force is gradient, if it have a 

potential, the solutions for velocity in the Euler’s equations in case of 

incompressible flows are given by Laplace’s equation  the velocity is a har onic 

function in the three orthogonal directions, not only one possibility among others, 

but in fact they are the unique possible cases of solution, only harmonic functions, 

when the external force is gradient (for example also without external force, 

       ) and the fluid is incompressible. 

 The sa e argu ent used by Sobolev for solve Euler’s equations can be used 

for solve the Navier-Stokes equations: Thus to solve a problem of fluid motion it 

suffices to know to find the requisite solutions of equation (1.17),      . This is 
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like the conclusion of Lagrange, viewed in section § 1  for Euler’s equations in 

potential flow case. 

 All solution of Euler equations is solution of Navier-Stokes equations for 

potential and incompressible flows, when      . If      then      , 

because 

(3.1)       

   
            

  

  

  

  

  

  

     

being  
   

      
 

   

      
         . 

 If       (potential flow) and       (incompressible flow) then 

(3.2)                      , 

i.e. the derivatives of second order in Navier-Stokes equations vanishes in case of 

potential and incompressible flows and the Navier-Stokes equations reduced to the 

Euler equations, whose respective solutions are harmonic functions. In this case,  

solve Euler equations implies solve Navier-Stokes equations, supposing the same 

initial and boundary conditions, and if the Navier-Stokes equations has unique 

solution at least in a small and not null time interval      , with the boundary 

condition li                     , then this first solution in time is also 

the solution of Euler equations and the velocity satisfies the Laplace’s equation.        

§ 4 

 How the condition 

(4.1)  
   

   
 

   

   
           

equivalent to      , solve the Euler equations with a null or gradient external 

force     , so with this external force the condition of irrotational or potential 

flow is a necessary condition for solution of these equations, at least for non-steady 

flows. This has been rigorously proven by Lagrange[3], for incompressible fluids. 

Including the inco pressibility condition  we have the Laplace’s equation in vector 

form,       and       , where    is the initial velocity, even without 

uniqueness solution, as viewed in section § 2.     

 Lagrange also proved, as well as Laplace (Mécanique Céleste), Poisson 

(Traité de Méchanique), Cauchy (Mémoire sur la Théorie des Ondes) and Stokes 

(On the Friction of Fluids in Motion and the Equilibrium and Motion of Elastic 

Solids), that if the differential of the fluid’s velocity                is a 
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differential exact in some instant of time (for example, in    ) then it is also for 

all time (   ) of this movement on the same conditions. This means that a 

potential flow is always potential flow, since    . Then, from § 1, if the initial 

velocity have not an exact differential (i.e., if the initial velocity is not a gradient 

function, irrotational, with potential) and the external force have potential then the 

Euler’s equations have no solution in this case of incompressible and potential 

flows, for non-steady flows.  

 For steady flows, where 
  

  
   and      for all    , the condition for 

existence of solution is that 

(4.2)  
   

   
 

   

   
  

for all pair      ,        , defining  

(4.3)           
    

 

   

 
   ,  

where      is the stationary external force. This is a common condition for 

existence of solution for a system     , representing the stationary Euler’s 

equations, that is      .    

 Then now is possible go to the solution related to the breakdown of the 

Euler equations, corresponding to the cases (C) and (D) of [1]: without external 

force or with an external force which have a potential,                   , 

  representing the Schwartz space, if the initial velocity       with        is 

not a potential flow and (considering also the steady flows) 
   

   
 

   

   
 for some pair 

      such that          with  

(4.4)       
     

    
 

   

 
      

                               there is no solution       for the Euler 

equations, belonging to    or not, periodic solution or not. In special, when 

                and    is not a gradient function, with 
   

   
 

   

   
 for some 

     , there is no solution for Euler equations, in the mentioned conditions for  . 

Besides that the unique initial velocity         , harmonic and gradient function 

is     , which provide only the trivial solution     for velocity in Schwartz 

space and infinite solutions for pressure,                         .  

§ 5 

 I finish this work with a qualitative discussion of the conclusion which we 

have obtained in the previous section. Any student of physics, Gravitation or 
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Electromagnetism, knows that the most well-known non trivial solution of the 

Laplace’s equation is of the form    , which diverges in origin and goes to zero at 

infinity. According Liouville’s Theore [4], a harmonic function which is limited is 

constant, and equal to zero if it tends to zero at infinity. How the Millennium 

Problem requires a limited solution in all space for velocity and a limited initial 

velocity which goes to zero at infinity (in cases (A) and (C)), then we are forced to 

choose     . 

 Without these requisites we can obtain other solutions for velocity, for 

example,       , as well as potential flows in general (say, harmonic functions 

for incompressible flows), including spatially periodic functions of unitary period 

without singularities in the cube       , which refers to case (B). Initial velocities 

spatially periodic but non potential flows lead to case (D) if the external force is 

null or gradient and 
   

   
 

   

   
 in     for any      ,    defined by (4.4), such as 

occurs in the case (C).  

 Specifically, without preoccupations with unbounded velocity in some 

region, a solution of Euler’s  and Navier-Stokes) equations for incompressible, 

non-steady and potential flows with gradient external force is 

(5.1)               , 

where                                 and    is the initial 

velocity, without uniqueness solution due to possibility of        or       , 

and the pressure is given by Bernouilli’s law  

(5.2)    
  

  
 

 

 
           , 

            also without uniqueness solution due to      and  . We can 

consider      and      belonging to    in their respective domains.    

 Other class of solutions for velocity is built through of the transformations 

                                                 in the 

parameters of the initial velocity, i.e., 

(5.3)                                           ,   

because if 

(5.4.1)                                       

(5.4.2)                                       

(5.4.3)                                       
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then also  

(5.5.1)                                       

(5.5.2)                                       

(5.5.3)                                       

  a function of time, that is, the velocity (5.3) with                      

        is a solution for Euler (and Navier-Stokes) equations with initial velocity 

         , a general solution for incompressible and irrotational (potential) flows, 

in the case of conservative external forces. The respective pressure is again given 

by (5.2), obviously both velocity and pressure without uniqueness solution. 

 As pointed by Lagrange and Sobolev  the solution of Laplace’s equation is 

essential in the solution of Euler’s equations. How is not difficult to see, the 

Laplace´s equation is especially important for obtain the initial velocity of a motion 

of incompressible, irrotational and non-steady fluid,                  , as 

well as     . Will be possible obtain others velocities for     and the pressure 

using (5.3) and (5.2), respectively. For a system where is prescribed a specific 

velocity    in a boundary   , except when       the application of (5.3) may not 

be adequate and will be needed in general the use of other methods of solution. If  

     and         then       . 

 According Courant[5] (p.241), for     the “general solution” of the 

potential equation  or Laplace’s equation  is the real part of any analytic function 

of the complex variable     . For     one can also easily obtain solutions 

which depend on arbitrary functions. For example, let        be analytic in the 

complex variable   for fixed real  . Then, for arbitrary values of  , both the real and 

imaginary parts of the function 

          cos     sin      

of the real variables       are solutions of the equation      . Further solutions 

may be obtained by superposition: 

           cos     sin       
 

 
.    

 For example, if we set 

               , 

where   and   are integers, and integrate from –   to   , we get homogeneous 

polynomials 

          cos     sin     
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in      , following example given by Courant. Introducing polar coordinates 

   cos      sin  cos     sin  sin   we obtain 

             cos    sin  cos    cos      
 

 
  

                             cos      

where      cos   are the associated Legendre functions.   

 Possibly when or if it is analyzed that the incompressibility condition is not 

so important, with little relation with the physical reality, the solutions of the Euler 

(and Navier-Stokes) equations will no longer comply with the solutions of the 

Laplace's equation in irrotational movements, and you can find regular solutions in 

the whole space as well as more compatible with experiences. 

  

A musician must make music,  

an artist must paint,  
a poet must write,  

if he is to be ultimately happy.  

What a man can be, he must be. 

This need we may call self-actualization. 
It refers to the desire for self-fulfillment,  

namely, to the tendency for him  
to become actualized in what he is potentially. 

Abraham H. Maslow 

(in “A Theory of Human Motivation”) 

 

Um músico deve compor, 

um artista deve pintar, 

um poeta deve escrever, 

caso pretendam ser felizes. 

O que um homem pode ser, ele deve ser. 

 

A essa necessidade podemos 

dar o nome de autorrealização. 

Refere-se ao desejo de autopreenchimento,  

isto é, à tendência que ele apresenta 

de se tornar, em realidade, 

o que já é em potencial. 

Abraham H. Maslow 

 e  “U a Teoria da Motivação Hu ana”  
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