
Sidharth	Ghoshal	
August	4,	2016	
In	principle	there	should	be	a	mistake	somewhere	in	here,	for	this	problem	cannot	be	that	easy.	
Still	working	on	finding	that	error,	in	the	meanwhile	here	it	is	for	documentation.	Please	try	to	
find	the	error	that	I	cannot,	and	email	sid[dot]Ghoshal[at]yahoo.com	if	you	do.		
	
This	algorithm	was	actually	invented	last	year	but	was	not	given	a	very	serious	analysis	until	
now:	
	
	
On	a	New	Breed	of	0-1	Integer	Programming	Algorithms,	and	a	mysterious	proof	that	𝑃 = 𝑁𝑃	
	
Conjecture:		Given	two	𝑛 − 1	dimensional	polyhedral	𝑃', 𝑃)	in	ℝ+	whereas	𝑃', 𝑃)	are	embedded	
in	parallel	hyperplanes	then	the	convex	hull	of	𝑃', 𝑃)	is	the	cobordism	of	lowest	number	of	(𝑛 −
1)	facets	of	all	piecewise	linear	cobordisms	between	the	two.	Additionally,	this	convex	hull	can	
be	computed	in	polynomial	time	with	respect	to	the	number	of	(n-2)	facets	in	𝑃', 𝑃)	
	
A	simple	statement	of	the	problem:	
	
Given	𝐴𝑥 ≤ 𝑏, 0 ≤ 𝑥3 ≤ 1,	determine	if	there	are	any	feasible	integer	points.		
	
Solution:	Algorithm	Y	
	
Current	System	𝐴𝑥 ≤ 𝑏, 0 ≤ 𝑥3 ≤ 1	
for	each	𝑥3 	DO:	

branch	into	two	systems	based	on	𝑥3 = 1, 𝑥3 = 0	(Called	System	1	and	System	0)	
Remove	redundant	constraints	
If	a	system	is	found	to	be	inconsistent,	skip	formation	of	Hull,	and	continue	algorithm	on	
next	variable.	
Compute	the	convex	hull	of	these	by:	

Taking	each	inequality	𝐴+𝑥 ≤ 𝑏+	in	System	j,	maximize	𝐴+𝑥	in	System	1 − 𝑗,	to	
yield	a	point	𝑝+	

	 Observe	that	a	unique	hyperplane	can	be	formed	that	intersects		
	 	 𝐴+𝑥 = 𝑏 ∧	𝑥3 = 𝑗 , 𝑝+	
	 Of	the	form	𝐻+𝑥 = 𝜏+	
	 Then	𝐻+𝑥 ≤ 𝜏+	
	 	 Is	a	constraint	in	the	convex	hull	
	 Replace	𝐴𝑥 ≤ 𝑏	𝑤𝑖𝑡ℎ	𝐻𝑥 ≤ 𝜏	
	 Remove	redundant	constraints	

End	Solution	
	
Claim:	branching	for	a	SINGLE	variable	takes	polynomial	time	in	the	number	of	variables	and	
inequalities	(trivial)	
	



Claim:	maximizing	edges	takes	time	polynomial	in	the	number	of	variables	and	edges,	in	the	
worst	case	say	we	have	𝑛	variables	and	𝑚	inequalities.	Then	at	the	branch	step	each	half	of	the	
branch	has	𝑚	inequalities,	so	that	means	2𝑚	maximizations	occurred	which	using	a	polynomial	
time	LP	algorithm	would	take	𝑂 𝑚A.C𝑛D.C 	time.		
	
Now	if	the	conjecture	is	true,	then	the	resultant	hull	after	removing	redundant	constraints	will	
have	less	than	or	equal	to	𝑚	inequalities	(and	variables	haven’t	changed).		
	
As	a	result	we	can	conclude	that	this	runs	in	time	𝑂 𝑚𝑛 A.C 	(since	it	runs	once	for	each	
variable	and	there	are	𝑛)	
	
Claim:	if	a	0-1	IP	has	no	integer	solutions,	then	algorithm	Y	must	necessarily	conclude	there	are	
no	solutions	to	the	system.		
	
Proof:		

Definition:		
for	a	variable	𝑥E,	let	two	integer	points	𝑢', 𝑢)	be	“adjacent”	if	they	differ	only	on	
their	𝑗GH	coordinate.		

	
One	can	consider	the	edge	between	𝑢', 𝑢).		
	
Lemma:		

if	at	least	one	of	two	j-adjacent	points	𝑢', 𝑢)	is	not	feasible	then	after	𝑥E 	is	
processed,	no	point	on	the	edge	(as	an	open	interval)	will	be	present	in	the	
system	after	Algorithm	Y	iterates	through	𝑥E 	

	
Proof:		

the	branching	of	this	edge	by	𝑥E 	is	𝑢'	and	𝑢),	so	in	order	for	it	to	enter	the	
convex	hull	BOTH	must	be	feasible	points	

	
Generalization:		
	
for	a	variable	𝑥E 	two	convex	sets	of	points	𝑈', 𝑈)are	considered	“adjacent”	if	there	exists	
a	bijection	𝜙:𝑈' → 𝑈)	such	that	each	pair	𝜏 ∈ 𝑈', 𝜙 𝜏 ∈ 𝑈)	differ	only	in	their	𝑗GH	
coordinate.	
	
Lemma:	

If	at	least	one	of	two	j-adjacent	sets		𝑈', 𝑈)	is	entirely	not	feasible,	then	the	
convex	hull	of	𝑈', 𝑈)	excluding	its	boundary	will	not	be	feasible	in	the	system	
after	Algorithm	Y	iterates	through	𝑥E 	

	
	 Proof:	



Branching	the	convex	hull	of	both	sets	yields	the	convex	hull	of	𝑈'	and	convex	
hull	of	𝑈).	Of	course	these	were	convex	to	begin	with,	so	they	are	their	own	
convex	hull,	and	it	follows	if	one	of	them	was	never	feasible	then	only	part	of	the	
hull	that	may	be	feasible	must	be	in	the	boundary	(ie	contained	in	𝑈', 𝑈)).		
	

So	having	established	this	suppose	we	have	a	0-1	IP	of	n	variables	and	m	equations	that	
does	not	contain	any	integer	solutions	called	Q.		
	
Lemma:		

Then	at	the	start	of	stage	𝑖	of	Algorithm	Y	on	Q	there	will	be	2+N3 	convex	hulls	of	
	 23 	integer	points,	that	are	definitely	infeasible	and	adjacent	by	𝑥3.	
	

This	can	be	proven	by	induction,		
	
Base	Case:	stage	0,	2+	individual	integer	points	are	infeasible	
	
Inductive	Step:	Suppose	this	is	true	for	stage	𝑖-1,	We	note	exactly	half	of	all	these	
hulls	lie	on	𝑥3 = 0	and	the	other	half	lie	on	𝑥3 = 1,	and	there	is	a	natural	bijection	
𝜙	between	the	two	branches.	From	here	since	both	hulls	are	infeasible	we	use	our	
earlier	Lemma	to	conclude	that	after	the	algorithm	passes,	the	hull	of	each	pair	of	
hulls	must	be	infeasible,	which	of	course	has	twice	as	many	points	and	so	it	follows	
that	there	are	now	2+N3 	convex	hulls	of	23 	integer	points.	

	
Of	course	that	also	implies	that	at	the	final	round	we	will	have	1	hull	of	all	the	points	
that	is	infeasible.	
	

So	we	have	a	polynomial	time	algorithm	for	checking	feasibility,	there	exists	then	a	trivial	
approach	using	binary	search	on	the	objective	function	to	conclude	that	general	0-1	Integer	
Programming	can	now	be	done	in	polynomial	time,	implying	P=NP,	and	the	world	collapses.	
	
Of	course	that	is	ridiculous,	what	could	happen	in	theory	is	that	as	the	hulls	are	being	formed	
the	number	of	inequalities	is	spiking	up.	The	cobordism	conjecture	essentially	decides	whether	
this	is	polynomial	time	or	not.	In	the	meanwhile	we	can	test	this	experimentally	and	see	what	
happens.		

	
	 	

	 	


