
 
 

  

 
Ontological-Phase Topological Field Theory 

 
 

RICHARD L AMOROSO 
 

Noetic Advanced Studies Institute 
Escalante Desert, Beryl, UT USA 

amoroso@noeticadvancedstudies.us 
 
 
 

We thank Newton for inspiring strict adherence to hypotheses non-fingo1, and claim reasonable a 
posteriori surety in positing the need for an Ontological-Phase Topological Field Theory (OPTFT) as 
the final step in describing the remaining requirements for bulk UQC. Let’s surmise with little doubt 
that a radical new theory needs to be correlated with the looming 3rd regime of Unified Field Mechanics 
(UFM). If the author knows one thing for sure, it is that gravity is not quantized! The physics community 
is so invested in quantizing the gravitational force that it could still be years away from this inevitable 
conclusion. There is still a serious conundrum to be dealt with however; discovery of the complex 
Manifold of Uncertainty (MOU), the associated ‘semi-quantum limit’ and the fact of a duality between 
Newton’s and Einstein’s gravity, may allow some sort of wave-particle-like duality with a quantal-like 
virtual graviton in the semi-quantum limit. Why mention the gravitational field? Relativistic 
information processing (RIP) introduces gravitational effects in the ‘parallel transport’ aspects of 
topological switching in branes. There are A and B type topological string theories, and a related 
Topological M-Theory with mirror symmetry, that are somewhat interesting especially since they allow 
sufficient dimensionality with Calabi-Yau mirror symmetric dual 3-tori perceived as essential elements 
for developing a UFM. But a distinction between these theories and the ontology of an energyless 
topological switching of information (Shannon related) through topological charge in brane dynamics, 
perhaps defined in a manner making correspondence to a higher dimensional (HD) de-Broglie-Bohm 
super-quantum potential synonymous with a 'Force of coherence' of the unified field is of interest. Thus 
the term 'OPTFT’ has been chosen to address this issue as best as the Zeitgeist is able to conceive at the 
time of writing… 
 

It is possible to make ‘intelligent guesses and conjectures – Atiyah [2]. 
 
 
1 Abductive a Priori a Posteriori Tautology 
 

Not all who wander are lost. - J. R. R. Tolkien 
 

Reality leaves a lot to the imagination. - John Lennon 
 

And those who were seen dancing were thought to be insane by those who could not hear the music – Friedrich Nietzche. 
 

                                                            
1In B. Motte's 1729 English translation of Newton’s essay ‘General Scholium’, 2nd (1713) edition of Principia, the phrase 
appeared as "I do not frame hypotheses". This translation was objected to by Koyre in 1965, who pointed out that 'fingo' means 
'feign', not 'frame' [1]. 
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This has been among the most challenging works for the author, the conception of which wasn’t even 
in the list of topics when the recent volume on Universal Quantum Computing was first conceived in 
2014; and not knowing sufficient Group Theory limits current enfolding. I didn’t suspect there would 
be much to say about Anyon – quasi-particle – quantum Hall TQC [3] because it was perceived as an 
LD ‘Toy Model’ of the HD UFM UQC architecture proposed to take its place. My expertise at the time 
on TQFT and TQC was sparse such that quite a can of worms was opened into my world view in 
bringing myself sufficiently up to speed with study and tad of tutoring given graciously by a world-
renowned topologist. 

The necessity of r-qubits (relativistic qubits) had already been embraced since first hearing of them 
at Physcomp96 [4]; and again in the course of getting up to speed, discovered that a corner of the QC 
R&D community finally began a discussion of their utility for modeling relativistic quantum computing 
(RIP) with a version of r-qubits [5-7]. 

I felt that attempting to develop a relativistic-TQFT was not a correct nomenclatural framework for 
both mathematical and physical reasons. Most acutely that the universe is not fundamentally quantum 
(anymore) and that gravitation, unlike the other three known phenomenological fields, is not quantized. 
The hearty belief in a quantum gravity persists only because of a herd mentality confounded by the 
current belief that fundamental reality is indeed quantum. Also, as you will see, we go far beyond RIP. 

Most likely, the imminent age of discovery will be described topologically. Field theory has evolved 
from classical field theory to the current 2nd regime modes of QFT, RQFT and TQFT. It is proposed 
that the 3rd regime of reality, Unified Field Mechanics (UFM) will be described by an Ontological-
Phase Topological Field Theory (OPTFT). In terms of the nature of reality, quantum information 
processing and the measurement problem, there has been a recent introduction of relativistic parameters 
including relativistic r-qubits and not just an Amplituhedron but more saliently a dual-Amplituhedron 
replacing spacetime, all bringing into question the historically fundamental basis of and need to be 
restricted to ‘locality and unitarity’ as in the Copenhagen interpretation of QM. 

We briefly review this dilemma in terms of Bell’s inequalities, the no-cloning theorem and discuss 
correspondence to the epistemic view of the Copenhagen Interpretation versus the ontic consideration 
of objective realism and as merged by W. Zurek’s epi-ontic blend of quantum redundancy in quantum 
Darwinism [8-10]. Finally, we delve into the UFM ontological-phase topology requiring a new set of 
topological transformations beyond the Galilean, Lorentz-Poincairé.  

A radical paradigm shift is needed to incorporate the new 3rd regime of Unified Field Mechanics 
(UFM), which appears to be inherently topological, suggesting extensions of current theory are 
required. If I was M. Atiya’s clone, I would write a seminal introduction to an extended topological 
field theory as he did in 1986 [11]. UFM does not imply a 5th force, is not quantized, but entails an 
ontological mediation of information by a ‘force of coherence’ transferring information (by a form of 
topological charge) in a Shannon sense in the geometric topology of brane dynamics. This process, as 
we continue to mention, is an energyless process called ‘topological switching’ utilizing ‘topological 
charge’ [12-14].   
 
 

2. The Phasor (Phase Vector) Complex Probability Amplitude 
 
As the first step in trying to figure out how to develop a new concept of Ontological-phase we wish to 
adapt the phasor or phase vector concept as a precursor for describing ontological topological phase. In 
general, a phasor is a complex number for a sinusoidal (  rotation) function with Amplitude A, angular 
frequency    and initial phase  , which are all time invariant. The complex constant is the phasor 
[15].  

  Euler’s formula allows sinusoids to be represented as the sum of two complex-valued functions: 
 

   
   

cos ,
2

i t i te e
A t A

   

 
  

                            (1) 

 
or as the real part of one of the functions: 
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        cos Re Re .i t i i tA t A e Ae e                        (2) 

 

The function  i tA e    is the analytic representation of  cos .A t    Multiplication of the phasor
i i tAe e   by a complex constant, iBe  , produces another phasor that changes the amplitude and phase 

of the underlying sinusoid: 
 

 
      

  

Re Re

cos .

ii i i t i tAe Be e ABe e

AB t

    

  

   

  
              (3) 

 

 
 

Fig. 1. Top sine waves - Phase transform in the complex plane. Bottom, can also be thought of as 2D rotation of the reference 
circle, and 1D sliding point on the line segment, helping us ponder the 2D nature of anyon braid topology. Thus elements of 
the figure can be considered in 1D, 2D and 3D. 
 

When function  i tA e    is depicted in the complex plane (Fig. 1), the vector formed by the 
imaginary and real parts rotates around the origin. A is the magnitude, i is the imaginary unit 2 1i   , 
one cycle is completed every 2 /   seconds, and   is the angle formed with the real axis at 

2 / ,t n     for integer values of n [16].    
 

 
 

Fig. 2 Phasor diagram of three waves in perfect destructive interference. 
 

This type of addition occurs when sinusoids interfere with each other constructively or destructively. 
Three identical sinusoids with a specific phase difference between them may perfectly cancel. To 
illustrate, we take three vectors of equal length placed head to tail so that the last head matches up with 
the first tail forming an equilateral triangle with the angle between each phasor being 120° (2π/3 
radians), or one third of a wavelength / 3 . Thus the phase difference between each wave is 120°, 
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cos( ) cos( 2 / 3) cos( 2 / 3) 0.t t t                        (4) 
 

In the Fig.2 example of three waves, the phase difference between the first and the last wave is 240o, 
In the limit of many waves, the phasors must form a circle for destructive interference, so that the first 
phasor is nearly parallel with the last. This means that for many sources, destructive interference 
happens when the first and last wave differ by 360o, a full wavelength, [16].  
 
2.1 Complex Phase Factor 
 

For any complex number written in polar form, such as ,ire   the phase factor is the complex 

exponential factor, .ie   As such, the term ‘phase factor’ is related more generally to the term phasor, 
which may have any magnitude (i.e., not necessarily part of the circle group). The phase factor is a unit 
complex number of absolute value 1 as commonly used in quantum mechanics. 

The variable   is usually referred to as the phase. Multiplying the equation for a plane 

wave  ei k r tA   by a phase factor shifts the phase of the wave by : 
 

     .i k r t i k r tie Ae Ae                                        (5) 
 

In quantum mechanics, a phase factor is a complex coefficient ie   that multiplies a ket  or bra .  

It does not, in itself, have any physical meaning in the standard formulation of QM, since the 
introduction of a phase factor does not change the expectation values of a Hermitian operator. That is, 

the values of A    and i ie Ae     are the same [17]. 

However, differences in phase factors between two interacting quantum states can be measurable 
under certain conditions such as in Berry phase, which has important consequences. The argument for 
a complex number z = x + iy, denoted arg z, is defined equivalently as: 
 
 Geometrically, in the complex plane, as the angle   from the positive real axis to the vector 

representing z. The numeric value given by the angle in radians is positive if measured 
counterclockwise. This is more precise if z(t) is defined on a covering space, not the complex plane. 

 Algebraically, the argument is defined as any real quantity   such that  cos sin iz r i re      

for some positive real r (Euler's formula). The quantity r is the modulus of z, as z : 2 2r x y  . 

 

 
 

Fig. 3. Left-Right phase argument. 
 
Use of the terms amplitude for the modulus and phase for the argument are sometimes used 

equivalently. Under both definitions, it can be seen that the argument of any (non-zero) complex number 
has many possible values: firstly, as a geometrical angle, whole circle rotations do not change the point, 
so angles differing by an integer multiple of 2 radians are the same. Similarly, from 
the periodicity of sin and cos, the second definition also has this property.  
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An N-particle system can be represented in non-relativistic quantum mechanics by a wavefunction,

 1 2, ,... nx x x , where each xi is a point in 3D-space. A classical phase space contains a real-valued 

function in 6N dimensions (each particle contributes 3-spatial coordinates and 3-momenta. Quantum 
phase space involves a complex-valued function on a 3N dimensional space. Position and momenta are 
represented by operators that do not commute, and lives in the mathematical structure of a Hilbert 

space. Aside from these differences, the analogy holds. 
In physics, this sort of addition occurs when sinusoids interfere with each other, constructively or 

destructively. The static vector concept provides useful insight into questions like: What phase 
difference would be required between three identical sinusoids for perfect cancellation? (Figure 2) In 
this case, simply imagine taking three vectors of equal length and placing them head to tail such that 
the last head matches up with the first tail. Clearly, the shape which satisfies these conditions is an 
equilateral triangle, so the angle between each phasor to the next is 120° ( 2 / 3 radians), or one third 
of a wavelength / 3 . So the phase difference between each wave must also be 120°. In other words, 

what this shows is:    cos cos 2 / 3t t      cos 2 / 3 0.t    

   
2.2 Geometric Phase - Berry Phase 
 
A Berry phase difference acquired over the course of a cycle, when a system is subjected to 
cyclic adiabatic processes resulting from the geometrical properties of the parameter space of 
the Hamiltonian [18].  
This phenomenon was first discovered in 1956, [19] and rediscovered in 1984 [20]. It can be seen in 
the Aharonov-Bohm effect and in the conical intersection. 
 

 
 
Fig. 4. Conical intersection of two potential energy surfaces.    
 

A conical intersection of two potential energy surfaces is the set of geometrical points where the two 
potential energy surfaces are degenerate (intersect) and the non-adiabatic couplings between these two 
states are non-vanishing. For the Aharonov–Bohm effect, the adiabatic parameter is the magnetic field 
enclosed by two interference paths, and is cyclic because the two paths form a loop. For a conical 
intersection, the adiabatic parameters are molecular coordinates. In addition to quantum mechanics it 
can occur whenever there are at least two parameters describing a wave in the vicinity of a singularity 
or topological hole.  

In a quantum system at the nth eigenstate, if adiabatic (adapts to gradually changing external 
conditions; but for rapidly varying conditions there is insufficient time, so the spatial probability density 
remains unchanged) evolution of the Hamiltonian evolves the system such that it remains in the nth 
eigenstate, while also obtaining a phase factor. The phase obtained has a contribution from the state's 
time evolution and another from the variation of the eigenstate with the changing Hamiltonian.  

The second term corresponds to the Berry phase which for non-cyclical variations of the 
Hamiltonian can be made to vanish by a different choice of the phase associated with the eigenstates of 
the Hamiltonian at each point in the evolution. However, if the variation is cyclical, the Berry phase 
cannot be cancelled, it is invariant and becomes an observable property of the system. From the 
Schrödinger equation the Berry phase   is: 
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    , ,RC
C i n t n t dR                                   (6) 

 
where R parametrizes the cyclic adiabatic process. It follows a closed path C in the appropriate 
parameter space. Geometric phase along the closed path C can also be calculated by integrating 
the Berry curvature over surface enclosed by C [21].  

One of the simplest examples of geometric phase is the Foucault pendulum [22]. The pendulum 
precess when it is taken around a general path C. For transport along the equator, the pendulum does 
not precess. But if C is made up of geodesic segments, precession arises from the angles where the 
segments of the geodesics meet; the total precession is equal to the net deficit angle, which equals 
the solid angle enclosed by C modulo 2 . We can approximate any loop by a sequence of geodesic 
segments, from which the most general result is that the net precession is equal to the enclosed solid 
angle. Since there are no inertial forces on the pendulum precess, precession, relative to the direction of 
motion along the path, is entirely due to the turning of the path. Thus the orientation of the pendulum 
undergoes parallel transport [22]. 
 
2.3 The Toric Code 
 
The toric code introduced by Alexei Kitaev, is named from its periodic boundary conditions giving it 
the shape of a torus allowing the model to have translational invariance useful in TQC. Putative 
experimental realization requires open boundary conditions, allowing the system to be embedded on a 
2D surface. Toric code and its generalized surface codes provides a basis for 2D anyonic computation 
by braiding defects. The unique nature of topological codes, like Kitaev’s toric code, is that stabilizer 
violations can be interpreted as quasiparticles [23]. 
 Kitaev defines the Toric Code on a periodic 2D lattice, usually the square lattice, with a spin-
1/2 degree of freedom located on each edge. Stabilizer operators are defined on the spins around each 
vertex v and plaquette p of the lattice: 
 

 , .x
v i p i

i v i p

A B  

 

                              (7) 

 
Where i v  denotes edges touching the vertex v, and i p  denotes the edges surrounding the 

plaquette p. The stabilizer space of the code is where all stabilizers act trivially,     
 

 ,  ,  ,  ,v pA v B p                       (8) 

 

for any state  . For the toric code, this is a 4D space, so it can store two qubits. The occurrence of 

errors moves the state out of the stabilizer space, resulting in vertices and plaquettes for which the above 
condition does not hold. The positions of these violations is the ‘syndrome of the code’, and is used for 
error correction. The unique nature of topological toric codes, is that stabilizer violations can be 

interpreted as quasiparticles. Specifically, if the code is in a state  such that, ,vA     a 

quasiparticle called an e anyon exists on the vertex v [23,24]. 
Another method introduces a distance truncature at the antipode of each set of points. In Fig. 5, the 

square is a flat Euclidean torus with null curvature everywhere [25]. 
From a geometrical point of view in the Figs. below, the points A,B,C,D must be identified to an 

antipode of point P on the torus. For the Euclidean square torus, straight lines are geodesics of the torus. 
The gravitational action of a mass located at the antipodal point (A,B,C,D) on the point P is zero, which 
is the same for a mass located in (H,K) or (M,N) [25]. See fig. 6 (Right). The corresponding geodesic 
path lengths are basically different (Fig. 5) as shown in (9): 
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2
PA = PB = PC = PD =  L

2

PM = PN = PH = PK = .
2

L
                                               (9) 

     
 

 
Fig. 5. a) Square Euclidean torus.  

  

                     
 

Fig. 6. The P torus point owns three antipodal points (A,B,C,D), (M,N) and (H,K).  
 

Note that on a torus there are an infinite number of geodesics joining two given points, one being 
the shortest. When computing a corresponding gravitational interaction, both lengths must be 

considered, d Rd     2R   [25]. 

 
3. Transitioning from TQFT to OPTFT 
 
Topological quantum field theories (TQFT) were originally created to avoid the infinities plaguing 
quantum field theory [11,26]. Atiyah [11] initially to an axiomatic approach to TQFT, which has been 
realized in low dimensions and the primary method for modeling anyonic QC. The motivation for 
topological field theories stems from modern physical theories being defined by invariance under 
certain group actions like gauge groups in particle physics, diffeomorphism groups in general relativity, 
or unitary operator groups in quantum mechanics. In topological field theory, the concern is topological 
invariants, which are objects computed from a topological space (smooth manifold) without any metric 
[27]. Topological invariance is invariance under the diffeomorphism group of the manifold. Important 
milestones were Thom’s theory of cobordism [28], de Rham cohomology, and knot theory. Through 
theories such as the Chern-Weil theory linking differential geometry and algebraic topology, abstract 
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formalisms found powerful geometric applications which were applied to physics beginning in the 70’s 
[29] and flourished through the work of Witten and Atiyah [30]. 

Fundamental strings map out 2D surfaces. The N = (1,1) sigma model quantum field theory is 
defined on each surface. It consists of maps from the surface to a supermanifold interpreted physically 
as spacetime and each map is interpreted as the embedding of the string in spacetime. Only certain 
spacetimes admit topological strings. Classically one must choose a spacetime that allows an additional 
pair of supersymmetries, so in fact the theory is an N = (2,2) sigma model. This is the case for a Kähler 
manifold where the H-flux is identically equal to zero [30]. 

Ordinary strings on special backgrounds are never topological. To make these strings topological, 
one needs to modify the sigma model by a procedure called a topological twist invented by Witten in 
1988 [31]. The central observation is that these theories have two U(1) symmetries known as R-
symmetries, where the Lorentz symmetry may be modified by mixing rotations and R-symmetries. One 
may use either of the two R-symmetries, leading to two different theories, called the A model and the 
B model. After this twist the action of the theory is BRST exact, and as a result the theory has no 
dynamics, instead all observables depend on the topology of a configuration [26].  

Twisting is not possible for anomalies. In the Kähler case where H = 0 the twist leading to the A-
model is always possible, but that leading to the B-model is only possible when the first Chern class of 
the spacetime vanishes, implying that the spacetime is Calabi-Yau. More generally N = (2,2) theories 
have two complex structures and the B model exists when the first Chern classes of associated 
bundles sum to zero, whereas the A model exists when the difference of the Chern classes is zero. In 
the Kähler case the two complex structures are the same and so the difference is always zero, which is 
why the A model always exists [31]. 
 
3.1 The A and B-Models of Topological Field Theory 
 
The topological A-model comes with a target space which is a real-6D generalized Kähler spacetime 
describing two objects. There are fundamental strings, which wrap two real-dimensional holomorphic 
curves. Amplitudes for the scattering of these strings depend only on the Kähler form of the spacetime, 
and not on the complex structure [30].  

The B-model also contains fundamental strings, but their scattering amplitudes depend entirely upon 
the complex structure and are independent of the Kähler structure. In particular, they are insensitive to 
worldsheet instanton effects and so can often be calculated exactly. Mirror symmetry then relates them 
to A-model amplitudes, allowing one to compute Gromov–Witten invariants. The B-model also comes 
with D(-1), D1, D3 and D5-branes, which wrap holomorphic 0, 2, 4 and 6-submanifolds respectively. 
The 6-submanifold is a connected component of the spacetime. The theory on a D5-brane is known 
as holomorphic Chern-Simons theory [29].  

 
3.2. Dualities Between Topological String Theories (TSTs) 
 
A number of dualities relate the above theories. The A-model and B-model on two mirror manifolds are 
related by mirror symmetry, which has been described as a T-duality on a 3-torus. The A-model and B-
model on the same manifold are thought to be related by S-duality, implying the existence of several 
new branes, called NS branes by analogy with the NS5-brane, which wrap the same cycles as the 
original branes but in the opposite theory. Also a combination of the A-model and a sum of the B-model 
and its conjugate are related to topological M-theory by a kind of dimensional reduction. Here the 
degrees of freedom of the A-model and the B-models appear to not be simultaneously observable, but 
have a relation similar to that between position and momentum in quantum mechanics [26,30]. 
 
3.3. The Holomorphic Anomaly 
 
The sum of the B-model and its conjugate appears in the above duality because it is the theory whose 
low energy effective action is expected to be described by Hitchin's formalism. This is because the B-
model suffers from a holomorphic anomaly, which states that the dependence on complex quantities, 
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while classically holomorphic, receives non-holomorphic quantum corrections. In Quantum 
Background Independent String Theory, Witten argued that this structure is analogous to a structure 
that one finds geometrically quantizing the space of complex structures. Once this space has been 
quantized, only half of the dimensions simultaneously commute and so the number of degrees of 
freedom has been halved. This halving depends on an arbitrary choice, called a polarization. The 
conjugate model contains the missing degrees of freedom, and so by tensoring the B-model and its 
conjugate one reobtains all of the missing degrees of freedom and also eliminates the dependence on 
the arbitrary choice of polarization [23,24,26,30]. 
 
 
4 Topological Vacuum Bubbles by Anyon Braiding 
 
According to a basic rule of fermionic and bosonic many-body physics, known as the linked cluster 
theorem, physical observables are not affected by vacuum bubbles, which represent virtual particles 
created from vacuum and self-annihilating without interacting with real particles. Here we show that 
this conventional knowledge must be revised for anyons, quasiparticles that obey fractional exchange 
statistics intermediate between fermions and bosons. We find that a certain class of vacuum bubbles of 
Abelian anyons does affect physical observables. They represent virtually excited anyons that wind 
around real anyonic excitations. These topological bubbles result in a temperature-dependent phase shift 
of Fabry-Perot interference patterns in the fractional quantum Hall regime accessible in current 
experiments, thus providing a tool for direct and unambiguous observation of elusive fractional statistics 
[32]. 

When two identical particles adiabatically exchange positions ri = 1,2, their final state  , to dynamical 

phase, relates to the initial state through an exchange statistics phase   , 
 

    2 1 1 2r , r r , r ,ie                                   (10) 

with 0( )   [33].  

In many-body quantum theory [33], Feynman diagrams are used to compute the expectation value 
of observables. This approach invokes vacuum bubble diagrams, which describe virtual particles 
excited from vacuum and self-annihilating without interacting with real particles. According to the 
linked cluster theorem [33], each diagram having vacuum bubbles comes with a partner diagram of the 
same magnitude but of opposite sign that it is exactly cancelled by. Consequently, vacuum bubbles do 
not contribute to physical observables. 
 This common wisdom must be revised for anyons because a certain class of vacuum bubbles of 
Abelian anyons does affect observables. These virtual particles, called topological vacuum bubbles, 
wind around a real anyonic excitation, gaining the braiding phase 2 v  [32]. 

Han’s team proposes an experimental procedure for detecting them and v   , where v  is the 
anyon phase and   the interference phase shift [32]. For an interference a1a2 between processes a1 and 
a2 for propagation of a real particle, in a1, a virtual particle-hole pair is excited then self-annihilates 
after the virtual particle winds around the real particle, forming a vacuum bubble, which is not excited 

in a2. The winding results in a braiding phase 2 v  and an Aharonov–Bohm phase  02 /   from 

the magnetic flux   enclosed by the winding path, contributing to the interference signal as  

  0exp 2 / 2e i v    ; 
0 /h e    as the anyon flux quantum [32]. 

The limiting cases of bosons (v = 0) and fermions (v = 1) imply that this bubble diagram appears 
together with, and is cancelled by, a partner diagram. The partner diagram has a bubble not encircling 

the real particle and involves only  02 / .    The two diagrams (and complex conjugates) yield 
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    

    

0 02 / 2 2 /

0

Interference signal  Re

                              = sin sin 2 / .

i v i
e e

v v

  

  

     



    

   
         (11) 

 

For bosons and fermions, the two diagrams fully cancel each other with  sin 0v   in agreement with 

the linked cluster theorem; thus, the signal disappears. By contrast, for anyons they cancel only partially, 
producing non-vanishing interference in an observable, and are topological as the braiding phase is 
involved [32]. 

The astute reader will begin to notice, that the anyon braid topology begins to overlap with the UFM 
OPTFT. The question will be whether the cryogenic TQC will be built as a ‘proof of concept’ or a ‘leap-
frog’ will occur to the table top room temperature UFM model. If the utility of the Aharonov-Bohm 
effect remains a key element of ‘Topological vacuum bubbles by anyon braiding’ interferometry; it is 
easy to add Aharonov-Bohm effect parameters to the OPTF dynamics. 
 
 
5 Topological Switching – Key to Ontological-Phase 
 
The 2-state formalism currently forms the basis of QC. Qubits, are 2-state systems. Any QC operation 
is a unitary operation that rotates the state vector on the Bloch sphere. To move from Hilbert space to 
ontological-phase space we must begin to define what we mean by topological switching [12-14. We 
begin with a number of ways of looking at the ambiguous Necker cube [34]. 
 

 
 

Fig. 7. Ambiguous Necker cube, left, mirror image, center and perceived shift between the two states in 4D. 
 
 The oscillation or inversion of the central vertices of the ambiguous or Necker cube, is key to 
conceptually understanding the process of ‘energyless’ or ontological transfer of information between 
branes.  
 

             
   

Fig. 8. Two states of the Necker cube. A physically real description is needed. 
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Fig. 9. A first step towards physicality might be distinguishing the vertices. 
 

 Quaternions have the ability to represent rotations of 3D space. If we represent 3-space, 3  as the 
set of pure quaternions of the form ai bj ck    with a, b, c real numbers, then g is a unit quaternion 

mapping 3 3:   defined by the equation 1( ) g g    that describes a 3-space rotation by 

angle   around axis   when 
 

 cos( / 2) sin( / 2) .g                           (12) 

 
In this manner,   is a unit length quaternion giving a direction to a vector in 3-space, a rotation is 

specified by an angle   about an axis U, which in the case below is in the positive direction [35]. 
 

 
 

Fig. 10. Denoting two 90o rotations R1 and R2, we write R3 = R2R1 for the rotation obtained by 1st performing R1 and then R2. 
R3 fixes the corners B and H; Thus R3 is a 120o rotation about the diagonal axis.  
 

Thus, following Kauffman [35], 
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 These quaternion rotations can be considered phase changes under certain conditions; but they do 
not correspond to the ontological phase we are looking for because Euclidean geometry has no natural 
inherent perspective. It appears we need a duo-morphic projection perhaps involving Berry phase 
because the ambiguous vertices of the Necker cube are not distinguished in Kauffman’s quaternion 
rotation system [35]. 
 To clarify how projective a transformation loses orientable information, rotating a triangle in a plane 
is used as an illustration [36].   
 

 
 

Fig. 11. Removing ambiguity from a projected rotation, with > denoting order of sequence occurrence – to the left on the 
projective line. Bold letters are the front range of projective mapping. Fig. redrawn from [36]. 
 
 The rotation sequences in Fig. 11 are I, II, III for clockwise and I, III, II for counter-clockwise. 
According to Shaw the direction of rotation reverses if the back and front ranges are interchanged. This 
is denoted by the connecting lines in the boxes below the rotation triangles. Bold letters mark the front 
range; this system is able to preserve orientation information under projected rotation.  
 The 3D wire-frame Necker cube can be projected onto a 2D surface, collapsing the cubes six faces 
into a complex of one to seven coplanar polygons depending on orientation of the cube.  
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Fig. 12 Contrasting nonoriented - oriented projective geometries. Redrawn from [37].  
 

Figure 12 illustrates three different forms of projection.  
 

 I II-Top  III-Top:    no occlusion information 

 I II-Middle  III-Middle and III-Bottom:   occlusion information is specified ambiguously 
 I II-Bottom  III-Bottom:   occlusion information is specified unambiguously. 

 
The Necker cube, like the Möbius strip is an ambiguous figure because of the problem of projective 
mapping. In ordinary projective space, the Möbius strip and Necker cube, are one-sided (Fig. 12). The 
spherical model of this geometry represents the fact that the projections of a point on the back of the 
sphere and of a point on its front both have the same image in the Euclidean (projective) plane. All of 
the projected points, regardless of the hemisphere to which they belong, cover the projective plane in 
the usual way without any designation of where they originated. The loss of orientation is due to this 
failure of the projective mapping to preserve the distinction between the front and back range, collapsing 
both into positive values of the dimension of depth w. This loss of orientation is represented by the fact 
that relationships (e.g., the arrows) invert when the projective angle passes through the points at infinity 
[36]. 
 To keep the front and back ranges distinguished, traditional computational geometries use the line 
at infinity as a reference; but this move is not a real solution to the orientation problem in projective 
geometry because it is tantamount to a return to Euclidean geometry which has no inherent natural 
perspective. 
 

 
 
Fig. 13 Duo-morphic oriented projections (+W, -W) yield a double covering of the projective plane, P.  
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 To distinguish front and back ambiguous vertices of the Necker cube is a problem of orientation. 
Oriented projective geometry introduces a methodology for distinguishing the ambiguous vertices of 
the Necker cube [36]. Shaw [37] assigns a dual range, +W and -W to represent front and rear ranges of 
a sphere.  
 

 
 

Fig. 14. Ambiguity needs a method of labeling for clarity. 
 

 
 
Fig. 15. Visual test of stereoscopic construction of a Necker cube. Focus on the ‘X’ between the L-R Necker perspectives. 

 
Figure 15 separates the ambiguous Necker cube into its component perspectives. Although what we 

are about to illustrate is usually considered a mental construct, we use it here to illustrate what we mean 
by ontological phase and an ontological phase transformation. Focus on the ‘X’ halfway between the 
2D L-R Necker perspectives; relax one’s eyes and allow them to lose focus and cross. Soon, a 3rd image 
appears between the two printed L-R images fusing the original perspective into one apparent 3D image, 
confirmed by noticing the labels ‘a’ and ‘b’ are now superposed. This stereoscopic condition is the 
scenario we want to utilize to define ontological-phase.  
 

 
 

Fig.16. Topological Invariance must be included in any phase labeling. Figure redrawn from [25]. 
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Masahide & Satoh generalize the class of roll-spun knots for 2-knot theory and show how to 
calculate the quandle cocycle invariant for any roll-spun knot [38]. For the case

 1 2
4 , 2, 1X S t t t t      , the element   111 0 1w t t

      satisfies 4id ;w S  such that  

 
1 1

0 110 1 1 0
1 1 0 0 1

0 1 1
1 1 1.

t tt t

t t t
t t t t t

    
    


  

   
   
   

                    (13) 

 

Since  ind 0,w   it holds that  0 4 .w G S  Figure 17 shows that w2 = 1 in G0(S4), and that w is the             

generator of  0 4 2.G S     

 

 
 
Fig. 17. Deform-spun knot tangle diagram. Redrawn from [38]. 
 
 The spun knot is explored as a possible component topological move for ontological-phase 
transitions. When parallel transport creates a deficit angle in brane raising and lowering dynamics, in 
addition to Reidemeister moves, rotations, reflections and any other topological moves, spun knot 
components may add another type of phase transition with lattice charge.  
 

 
 
Fig. 18. Rolling spun knots. The infusion of topological charge as a UFM ‘force of coherence’ driving evolution throughout 
the multidimensional brane hierarchy can allow multiple types of moves to occur at multiple levels simultaneously. 
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An important feature of TQFTs is that they do not presume a fixed topology for space or spacetime. 
In other words, when dealing with an n-dimensional TQFT, one is free to choose any (n - 1)-dimensional 
manifold to represent space at a given time. Moreover, given two such manifolds, say S and S  , one is 
free to choose any nD manifold M to represent the portion of spacetime between S  and S  . 
Mathematicians call M a `cobordism' from S  to S  . We write :M S S  , because we may think of 
M as the process of time passing from the moment S to the moment .S   

 

 
 
Fig. 18. A basic cobordism.  
 

For example, in Fig. 18 we depict a 2D manifold M going from a 1D manifold S (a pair of circles) 
to a 1D manifold S  (single circle). Crudely speaking, M represents a process in which two separate 
spaces collide to form a single one! This may seem outré, but currently physicists are quite willing to 
speculate about processes in which the topology of space changes with the passage of time [39].  

 

 
 

Fig. 19. Identity cobordism.  
  

There are various important operations one can perform on cobordisms, but we only describe two. 
First, we may `compose' two cobordisms :M S S   and :M S S  , obtaining a cobordism 

:M M S S  , as illustrated in Fig. 20. The idea here is that the passage of time corresponding 
to M followed by the passage of time corresponding to M   equals the passage of time corresponding 
to M M . This is analogous to the familiar idea that waiting t seconds followed by waiting t   seconds 
is the same as waiting t t  seconds. The big difference is that in topological quantum field theory we 
cannot measure time in seconds, because there is no background metric available to let us count the 
passage of time! We can only keep track of topology change. Just as ordinary addition is associative, 
composition of cobordisms satisfies the associative law:  
 

   .M M M M M M                                                   (16) 

 
However, composition of cobordisms is not commutative. As we shall see, this is related to the famous 
noncommutativity of observables in quantum theory [39]. 
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Second, for any (n–1)D manifold S representing space, there is a cobordism1 :S S S  called the 

`identity' cobordism, which represents a passage of time without topological change. For example, when 
S is a circle, the identity cobordism 1S is a cylinder, as shown in Fig. 19 In general, the identity 
cobordism 1S has the property that for any cobordism :M S S   we have 1S M = M, while for any 
cobordism :M S S   we have M1S = M [39]. 

 

 
 

Fig. 20. The Golem, composition of cobordisms designed to handle ontological-phase. 
 
These properties say that an identity cobordism is analogous to waiting 0 seconds: if you wait 0 seconds 
and then wait t more seconds, or wait t seconds and then wait 0 more seconds, this is the same as 
waiting t seconds. 

These operations just formalize of the notion of `the passage of time' in a context where the topology 
of spacetime is arbitrary and there is no background metric. Atiyah's axioms relate this notion to 
quantum theory as follows. First, a TQFT must assign a Hilbert space Z(S) to each (n – 1)D manifold S. 
Vectors in this Hilbert space represent possible states of the universe given that space is the manifold S. 
Second, the TQFT must assign a linear operator ( ) : ( ) ( )Z M Z S Z S  to each nD cobordism

:M S S  . This operator describes how states change given that the portion of spacetime between 
S  and S   is the manifold M. In other words, if space is initially the manifold S  and the state of the 
universe is , after the passage of time corresponding to M the state of the universe will be ( )Z M   

[39]. 
In addition, the TQFT must satisfy a list of properties. Let me just mention two. First, the TQFT 

must preserve composition. That is, given cobordisms :M S S   and :M S S   , we must 
have ( )Z M M   ( ) ( ),Z M Z M  where the right-hand side denotes the composite of the operators 

( )Z M  and ( )Z M  . Second, it must preserve identities. That is, given any manifold S  representing 

space, we must have ( )(1 ) 1 .S Z SZ    

where the right-hand side denotes the identity operator on the Hilbert space Z(S) [39]. 
Both these axioms are eminently reasonable if one ponders them a bit. The first says that the passage 

of time corresponding to the cobordism M followed by the passage of time corresponding to M   has 
the same effect on a state as the combined passage of time corresponding to M M . The second says 
that a passage of time in which no topology change occurs has no effect at all on the state of the universe. 
This seems paradoxical at first, since it seems we regularly observe things happening even in the 
absence of topology change. However, this paradox is easily resolved: a TQFT describes a world quite 
unlike ours, one without local degrees of freedom. In such a world, nothing local happens, so the state 
of the universe can only change when the topology of space itself changes [39]. 
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The most interesting thing about the TQFT axioms is their common formal character. Loosely 
speaking, they all say that a TQFT maps structures in differential topology (the study of manifolds) to 
corresponding structures in quantum theory. In coming up with these axioms, Atiyah took advantage of 
a powerful analogy between differential topology and quantum theory, summarized in Table 1 [39].  

This analogy between differential topology and quantum theory the sort of clue we should pursue 
for a deeper understanding of quantum gravity. At first glance, general relativity and quantum theory 
look very different mathematically: one deals with space and spacetime, the other with Hilbert spaces 
and operators. Combining them has always seemed a bit like mixing oil and water. But topological 
quantum field theory suggests that perhaps they are not so different after all! Even better, it suggests a 
concrete program of synthesizing the two, which many mathematical physicists are currently pursuing. 
Sometimes this goes by the name of `quantum topology' [2,11]. 

 

 
 
Table 1: Analogy between differential topology and quantum theory. 
 
Quantum topology is very technical, as anything involving mathematical physicists inevitably becomes. 
But if we stand back a moment, it should be perfectly obvious that differential topology and quantum 
theory must merge if we are to understand background-free quantum field theories. In physics that 
ignores general relativity, we treat space as a background on which states of the world are displayed. 
Similarly, we treat spacetime as a background on which the process of change occurs. But these are 
idealizations which we must overcome in a background-free theory. In fact, the concepts of `space' and 
`state' are two aspects of a unified whole, and likewise for the concepts of `spacetime' and `process'. It 
is a challenge, not just for mathematical physicists, but also for philosophers, to understand this more 
deeply [39]. 
 We begin to explore various types of crossover inks and moves to start cataloguing the variety of 
moves that maybe applicable to HD M-Theoretic ontological-phase transitions. 
 

 
 

Fig. 21. Simple crossover links.   
 
 To operate an ontological-phase transition, more and more complex links are required. 
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Fig. 22. Crossings for octonion trefoil knots. 
 

 
 

Fig. 23. Reduction schemes for the left- and right-handed trefoil knots. (a) Top: left-handed trefoil knot; bottom: writhe _  

and a Hopf link H , with crossing −1. (b) Top: right-handed trefoil knot; bottom: writhe    and a Hopf link H , with 

crossing +1. The two knots are mirror images of one another. Figure adapted from [40]. 
 

 
 

Fig. 24. Reduction schemes for Whitehead links W and W . (a) Top: Whitehead link W with crossing +1; bottom: Hopf 

link H  and the left-handed trefoil knot 
LT . (b) Whitehead link W  with crossing −1; bottom: Hopf link H , and a figure-

of-eight knot 
8F . Figure adapted from [40].    

 
Thus a true octonion contains three trefoil knots, whereas a split octonion may be specified by 

mixing a pair of quaternion trefoil lines. To define a tripled Fano plane requires three copies of Furey's 
particle zoo. It describes a set of 21 = 3 x 7 (left cyclic) modules over a noncommutative ring on eight 
elements. The ring is given by the upper triangular 2 x 2 matrices over the field with two elements. 
Similarly, for right cyclic modules [41,42]. 

The quaternions, H are a 4D algebra with basis 1, , ,i j k . To describe the product, it is easy to note: 
 
 1 is the multiplicative identity, 
 , ,i j k  are square roots of -1, 

 we have ,ij k ji k    and all identities obtained from these by cyclic permutations of  , , .i j k  
 
We can summarize the last rule as a diagram 
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Fig. 25. Clockwise and counterclockwise rule for Quaternion cyclicality.  
 

In multiplying two elements going clockwise around the circle we get the next one: for 
example, ij k . But when we multiply two going around counterclockwise, we get minus the next one: 

for example, ji k  . We can use the same sort of picture to remember how to multiply octonions: 
 

  
 

Fig. 26. The Fano plane and its mirror image.  
 

The Fano plane is the finite projective plane of order 2, having the smallest possible number of 
points and lines, 7 each, with 3 points on every line and 3 lines through every point. The Fano plane has 
7 points and 7 lines. The 'lines' are the sides of the triangle, its altitudes, and the circle containing all 
the midpoints of the sides. Each pair of distinct points lies on a unique line. Each line contains three 
points, and each of these triples has a cyclic ordering shown by the arrows. If ei, ej, ek are cyclically 
ordered in this way then , .i j k j i ke e e e e e    

Together with these rules: 
 
 1 is the multiplicative identity, 

 1 7,...,e e are square roots of -1, 
 
the Fano plane completely describes the algebra structure of the octonions. Index-doubling corresponds 
to rotating the picture a third of a turn. Interestingly, The Fano plane is the projective plane over the 2-

element field 2.  In other words, it consists of lines through the origin in the vector space 3
2 . Since 

every such line contains a single nonzero element, we can also think of the Fano plane as consisting of 

the seven nonzero elements of 3
2 . If we think of the origin in 3

2 as corresponding to1 O , we get the 

following picture of the octonions: 
 

 
Fig. 27. The octonions for 1 O . 
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Note that planes through the origin of this 3D vector space (Fig. 26) give subalgebras of O 
isomorphic to the quaternions, lines through the origin give subalgebras isomorphic to the complex 
numbers, and the origin itself gives a subalgebra isomorphic to the real numbers [39]. 
 Now we finally arrive at the fundamental geometric topology for describing ontological-phase 
topological field theory. When the formalism is next written it will be created by utilizing both topology 
and complex quaternion/octonions Clifford algebra which is especially suited to handle the manifold 
embedding [43]. 
 

 
 

       
 
Fig. 28. The ‘antennas’ (snowflakes) on a Fano plane (top) represent vertices on the circumference of a hexagon or cube 
(bottom). The center rotates unconnected so position 1 or 2 can create the front/rear vertices of a Necker cube. b) Antennas 1-
6 combine to form the outer vertices of a cube/hexagon depending on what dimensional phase the state is in. 
 
 The Fano snowflake configuration in Fig, 28 involutes to form a 2D hexagon or vertices of a 
Euclidean Necker 3-cube. We expect to require a dual set of twin Fano-Snowflakes as would be derived 
from Fig. 26 to account for all the parameters necessary for ‘the mirror image of the mirror image to be 
causally free of the Euclidean 3-space QED quantum state. 



22                                                                            Richard L. Amoroso 
 

 
 
Fig. 29. Construction to improve Khovanov's seminal work on the categorification of the Jones polynomial. Figure adapted 
form [46]. 
 

Some of the complexity for categorizing the Jones polynomial is shown in Fig. 29 as it might apply 
to modeling ontological-phase. 
 
 
6. Dual Amplituhedron Geometry and ‘Epiontic’ Realism 
 
The amplituhedron geometric jewel simplifies particle interaction calculations and challenges the 
notion that space and time are fundamental components of reality, advancing a long effort to reformulate 
quantum field theory, the body of laws describing elementary particles and their interactions by 
calculations with formulas thousands of terms long that can now be described by computing the volume 
of its amplituhedron, yielding an equivalent one-term expression. The new geometric version of 
quantum field theory could also facilitate the search for a theory of quantum gravity. Attempts thus far 
to incorporate gravity into the laws of physics at the quantum scale have run up against nonsensical 
infinities and deep paradoxes. An amplituhedron type geometry could help by removing two deeply 
rooted principles of physics: locality and unitarity [47]. 

Locality is the notion that particles can interact only from adjoining positions in space and time. And 
unitarity holds that the probabilities of all possible outcomes of a quantum mechanical interaction must 
add up to one. The concepts are the central pillars of quantum field theory in its original form, but in 
certain situations involving gravity, both break down, suggesting neither is a fundamental aspect of 
nature. In keeping with this idea, the new geometric approach to particle interactions removes locality 
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and unitarity from its starting assumptions. The amplituhedron is not built out of space-time and 
probabilities; these properties merely arise as consequences of the jewel’s geometry. The usual picture 
of space and time, and particles moving around in them, is only a useful construct [47]. 

Because “we know that ultimately, we need to find a theory that doesn’t have” unitarity and locality, 
Bourjaily said, “it’s a starting point to ultimately describing a quantum theory of gravity.” The 1st part 
of Bourjaily’s statement is correct; however, the 2nd part is not. Most physicists still consider the 
quantum regime the basement of reality and thus automatically think to progress in unification gravity 
must be quantized. This is not the regime of integration and therefore obviously why there is no quantum 
gravity. But transition to the 3rd regime of UFM is confounded ‘epiontics’. Reality acquires a semi-
quantum (epi) limit on the way to the ontological (ontic) regime of UFM [47,48]. 

The amplituhedron in HD encodes in its volume “scattering amplitudes,” which represent the 
likelihood that a certain set of particles will turn into certain other particles upon colliding. The twistor 
theory at the root of it does this kind of simplification. It folds the speed of light into the geometry by 
mapping point particles to their light cones. The point becomes an intersection of the sphere of light 
rays that could radiate from it. Then you can do extra stuff like cancelling out the asymmetry of 
universal expansion by mapping the larger future light cone on to the smaller past light cone [49]. 

Perhaps often, mathematics corresponds perfectly well to physical reality. But maybe now as we 
move away from a Hilbert space representation of qubit processing to a truly physical basis, we might 
surmise ‘No wonder it has been difficult to implement bulk QC’. For classical digital computing math 
itself was sufficient; but as we move to relativistic qubits and topological quantum field theory 
apparently this is not the case [50].  
Jaynes had this to say: 
 
“… our present formalism is not purely epistemological; it is a … mixture describing in part realities of Nature, 
in part incomplete human information about Nature … if we cannot separate the subjective and objective aspects 
of the formalism we cannot know what we are talking about … .” [50,51]. 
  

The term epistemic is used to represent – not real, mind of observer, in contrast to ontic – real; Zurek 
coined the term epiontic to merge the two philosophies into what he called Quantum Darwinism. 
Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected 
states of a quantum system. It explains how the fragility of a state of a single quantum system can lead 
to the classical robustness of states of their correlated multitude; shows how effective ‘wavepacket 
collapse’ arises as a result of proliferation throughout the environment of imprints of the states of 
quantum system; and provides a framework for the derivation of Born’s rule, which relates probability 
of detecting states to their amplitude. Taken together, these three advances mark considerable progress 
towards settling the quantum measurement problem [48]. 

From copying to quantum jumps Quantum Darwinism leads to appearance, in the environment, of 
multiple copies of the state of the system. However, the no-cloning theorem [52,53] prohibits copying 
of unknown quantum states. If cloning is outlawed, how can redundancy be possible? Quick answer is 
that cloning refers to (unknown) quantum states. So, copying of observables evades the theorem. 
Nevertheless, the tension between the prohibition on cloning and the need for copying is revealing: It 
leads to breaking of unitary symmetry implied by the superposition principle, accounts for quantum 
jumps, and suggests origin of the “wavepacket collapse”, setting stage for the study of quantum origins 
of probability [50]. 

Alexander's horned sphere is a convoluted, intertwined surface with a difficult to define inside and 
outside that is homeomorphic to a ball, meaning that it can be stretched into a ball without being 
punctured or broken or vice versa. Embedded in Euclidean 3-space, it can be constructed from a torus 
(Fig. 30) in the following manner: 

 
1. Remove a radial slice of the torus. 
2. Connect a standard punctured torus to each side of the cut, interlinked with the torus on the other side. 
3. Repeat steps 1 & 2 on the two tori added in step two ad infinitum. 
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Fig. 30 Torus showing minor and major radii.   
 
 

 
 

Fig. 31. Alexander’s horned sphere with infinite fractal-like embeddings. With a finite number of links, we use it to illustrate 
the ‘chains’ of the manifold of uncertainty, that can be opened only by certain topological moves. Figure adapted form [54]. 
 

Time to peek out of the Schrödinger box with the eyes of Alexander’s horned cat… 
 

            
 

Fig. 30. a) Alexander’s horned sphere in the eyes of Schrödinger’s Cat. Is reality ‘created’ by the mind of the observer? 
Redrawn from [55]. b) Wheeler’s Self-Referential Universe, Does the act of observing the universe create it? 
 

States with different topological orders or different patterns of long range entanglements cannot 
change into each other without a phase transition. In the case of Alexander’s horned sphere, we believe 
this requires an ontological-phase topological transition. 

The horned sphere, together with its inside, is a topological 3-ball, the Alexander horned ball, and 
so is simply connected; i.e., every loop can be shrunk to a point while staying inside. The exterior 
is not simply connected, unlike the exterior of the usual round sphere; a loop linking a torus in the above 
construction cannot be shrunk to a point without touching the horned sphere. This shows that the Jordan-
Schönflies theorem does not hold in three dimensions as Alexander had originally thought. Alexander 
also proved that the theorem does hold in three dimensions for piecewise linear/smooth embeddings. 
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This is one of the earliest examples where distinction between the topological category of manifolds, 
and the categories of differentiable manifolds, and piecewise linear manifolds was noticed. 

Now consider Alexander's horned sphere as an embedding into the 3-sphere, considered as the one-
point compactification of the 3D Euclidean space R3. The closure of the non-simply connected domain 
is called the solid Alexander horned sphere. Although the solid horned sphere is not 
a manifold, Bing showed that its double (which is the 3-manifold obtained by gluing two copies of the 
horned sphere together along the corresponding points of their boundaries) is in fact the 3-sphere. One 
can consider other gluings of the solid horned sphere to a copy of itself, arising from different 
homeomorphisms of the boundary sphere to itself. This has also been shown to be the 3-sphere. The 
solid Alexander horned sphere is an example of a crumpled cube; i.e., a closed complementary domain 
of the embedding of a 2-sphere into the 3-sphere [56]. 
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