
International J.Math. Combin. Vol.2(2016), 43-50

Entire Equitable Dominating Graph

B.Basavanagoud1, V.R.Kulli2 and Vijay V. Teli∗3

1Department of Mathematics, Karnatak University, Dharwad - 580 003, India

2Department of Mathematics, Gulbarga University, Gulbarga - 585 106, India

3Department of Mathematics, KLS’s, Vishwanathrao Deshpande Rural, Institute of Technology,

Haliyal - 581 329, India

E-mail: b.basavanagoud@gmail.com, vrkulli@gmail.com, vijayteli22@gmail.com

Abstract: The entire equitable dominating graph EEqD(G) of a graph G with vertex

set V ∪ S, where S is the collection of all minimal equitable dominating sets of G and two

vertices u, v ∈ V ∪ S are adjacent if u, v are not disjoint minimal equitable dominating sets

in S or u, v ∈ D, where D is the minimal equitable dominating set in S or u ∈ V and v is

a minimal equitable dominating set in S containing u. In this paper, we initiate a study of

this new graph valued function and also established necessary and sufficient conditions for

EEqD(G) to be connected and complete. Other properties of EEqD(G) are also obtained.
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§1. Introduction

All graphs considered here are finite, undirected with no loops and multiple edges. We denote

by p the order(i.e number of vertices) and by q the size (i.e number of edges) of such a graph

G. Any undefined term and notation in this paper may be found in Harary [5].

A set of vertices which covers all the edges of a graph G is called vertex cover for G.

The smallest number of vertices in any vertex cover for G is called its vertex covering number

and is denoted by α0(G) or α0. A set of vertices in G is independent if no two of them are

adjacent. The largest number of vertices in such a set is called the vertex independence number

of G and is denoted by β0(G) or β0. The connectivity κ = κ(G) of a graph G is the minimum

number of vertices whose removal results a disconnected or trivial graph. Analogously the edge-

connectivity λ = λ(G) is the minimum number of edges whose removal results a disconnected

or trivial graph. The diameter of a connected graph is the maximum distance between two

vertices in G and is denoted by diam(G). If G and H are graphs with the property that the

identification of any vertex of G with an arbitrary vertex of H results in a unique graph (up to
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isomorphism), then we write as G • H for this graph.

A subset D of V is called a dominating set of G if every vertex in V − D is adjacent to

at least one vertex in D. The domination number γ(G) of G is the minimum cardinality taken

over all minimal dominating sets of G. (See Ore [12]).

A subset D of V is called an equitable dominating set if for every v ∈ V − D, there exists a

vertex u ∈ D such that uv ∈ E(G) and |deg(u)−deg(v)| ≤ 1. The minimum cardinality of such

a dominating set is called the equitable domination number of G and is denoted by γe(G). For

more details about graph valued functions, domination number and their related parameters we

refer [1-4, 6 - 10, 12]. The opposite of equitable dominating set is the Smarandachely dominating

set with |deg(u) − deg(v)| ≤ 1 for ∀uv ∈ E(G).

The purpose of this paper is to introduce a new graph valued function in the field of

domination theory in graphs.

§2. Entire Equitable Dominating Graph

Definition 2.1 The entire equitable dominating graph EEqD(G) of a graph G with vertex set

V ∪ S, where S is the collection of all minimal equitable dominating sets of G and two vertices

u, v ∈ V ∪S adjacent if u, v are not disjoint minimal equitable dominating sets in S or u, v ∈ D,

where D is the minimal equitable dominating set in S or u ∈ V and v is a minimal equitable

dominating set in S containing u.

In Fig.1, a graph G and its entire equitable dominating graph EEqD(G) are shown. Here

D1 = {1, 3}, D2 = {1, 4}, D3 = {2, 3} and D4 = {2, 4} are minimal equitable dominating sets

of G.
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§3. Preliminary Results

The following will be useful in the proof of our results.

Theorem 3.1([5]) For any nontrivial graph G, α0 + β0 = p = α1 + β1.

Theorem 3.2([5]) A connected graph G is Eulerian if and only if every vertex of G has even

degree.
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§4. Results

First we obtain a necessary and sufficient condition on a graph G such that the entire equitable

dominating graph EEqD(G) is connected.

Theorem 4.1 For any graph G with at least three vertices, the entire equitable dominating

graph EEqD(G) is connected if and only if ∆(G) < p − 1.

Proof Let ∆(G) < p − 1 and u, v be any two vertices in G. We consider the following

cases:

Case 1. If u and v are adjacent vertices in G, then there exist two not disjoint minimal equitable

dominating sets D1 and D2 containing u and v respectively. Therefore by the definition 2.1, u

and v are adjacent in EEqD(G).

Case 2. Suppose there exist two vertices u ∈ D1 and v ∈ D2 such that u and v are not

adjacent in G. Then there exists a minimal equitable dominating set D3 containing both u and

v and by definition 2.1, D1 and D2 are connected in EEqD(G).

Conversely, suppose EEqD(G) is connected. Suppose ∆(G) = p − 1 and u is a vertex of

degree p − 1. Then the degree of u in EEqD(G) is minimum. If every vertex of G has degree

p − 1, then every vertex of G forms a minimal equitable dominating set. Therefore EEqD(G)

has at least two components, a contradiction. Thus ∆(G) < p − 1. 2
Proposition 4.1 EEqD(G) = pk2 if and only if G = Kp; p ≥ 2.

Proof Suppose G = Kp; p ≥ 2. Then clearly each vertex of G will form a minimal equitable

dominating set. Hence by definition 2.1, EEqD(G) = pK2.

Conversely, suppose EEqD(G) = pK2 and G 6= Kp. Then there exists at least one minimal

equitable dominating set D containing two vertices of G. Then D will form C3 in EEqD(G), a

contradiction. Hence G = Kp; p ≥ 2. 2
Theorem 4.2 For any graph G, EEqD(G) is either connected or it has at least one component

which is K2.

Proof If ∆(G) < p − 1, then by Theorem 4.1, EEqD(G) is connected. If G is complete

graph Kp; p ≤ 2 and by Proposition 4.1, then each component of EEqD(G) is K2.

Next, we must prove that δ(G) < ∆(G) = p− 1. Let v1, v2,· · · , vn be the set of vertices in

G such that deg(vi) = p−1, then it is clear that {vi} forms a minimal equitable dominating set

and which forms a component isomorphic to K2. Hence EEqD(G) has at least one component

which is K2. 2
In the next theorem, we characterize the graphs G for which EEqD(G) is complete.

Theorem 4.3 EEqD(G) = Kp+2 if and only if G is K1,p; p ≥ 3.

Proof Suppose G = K1,p; p ≥ 3. Then there exists a minimal equitable dominating set D
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contains all the vertices of G i.e |D| = |{u, v1, v2, v3, · · · , vp}| = p+1. Hence EEqD(G) = Kp+2.

Conversely, EEqD(G) = Kp+2, then we prove that G is K1,p; p ≥ 3. Let us suppose that,

G 6= K1,p; p ≥ 3. Then there exists a minimal equitable dominating set D of cardinality is

maximum p i.e |D| = |{v1, v2, v3, · · · , vp}| = p, a contradiction. Therefore G must be K1,p; p ≥
3. 2
Theorem 4.4 Let G be a nontrivial connected graph of order p and size q. The entire equitable

dominating graph is a graph with order 2p and size p if and only if G = Kp; p ≥ 2.

Proof Let G be a complete graph with p ≥ 2, then by Proposition 4.1, G = Kp; p ≥ 2.

Conversely, suppose EEqD(G) be a (2p, p) graph. Then pK2 is the only graph with order

2p and size q. 2
In the next results, we obtain the bounds on the order and size of EEqD(G).

Theorem 4.5 For any graph G, 2p ≤ p′ ≤ p(p−1)
2 + 1, where p′ denotes the number of vertices

in EEqD(G). Further, the lower bound is attained if and only if G is either P4 or Kp; p ≥ 2

and upper bound is attained if and only if G is K3 ∪ K2, K3 • K2 or C4 ∪ K1.

Proof The lower bound follows from the fact that the twice the number of vertices in G

and the upper bound follows that the maximum number of edges in G.

Suppose the lower bound is attained. Then every vertex of G forms a minimal equitable

dominating set or every vertex of G is in exactly two minimal equitable dominating sets. This

implies that the necessary condition.

Conversely, suppose G is P4 or Kp; p ≥ 2. Then by definition of entire equitable dominating

graph, V (EEqD(G)) = 2p. If the upper bound is attained. Then G must be one of the following

graphs are K3 ∪ K2, K3 • K2 or C4 ∪ K1.

If G = K3 ∪ K2, then every vertex of G is in exactly two minimal equitable dominating

sets hence

V (EEqD(G)) =
p(p − 1)

2
+ 1 =

pq

2
+ 1.

Suppose G = K3 • K2. Then the pendant vertex of G is in all the minimal equitable

dominating sets and forms (p − 1) minimal equitable dominating sets. Therefore the upper

bound holds.

Now if G is C4∪K1. Then every equitable dominating sets contains an isolated vertex and

they are not disjoint sets and by definition 2.1. Therefore upper bound holds.

Conversely, suppose G is one of the following graphs K3 ∪ K2, K3 • K2 or C4 ∪ K1. Then

it is obvious that V (EEqD(G)) = p(p−1)
2 + 1. 2

Theorem 4.6 For any graph G, p ≤ q′ ≤ p(p+1)
2 + 1, where q′ denotes the number of edges in

EEqD(G). Further, the lower bound is attained if and only G = Kp ≥ 2 and the upper bound

is attained if and only if G is K3 ∪ K1.

Proof The proof follows from Theorem 4.5. 2
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In the next result, we find the diameter of EEqD(G).

Theorem 4.7 Let G be any graph with ∆(G) < p − 1, then diam(EEqD(G)) ≤ 2, where

diam(G) is the diameter of G.

Proof Let G be any graph with ∆(G) < p−1, then by Theorem 4.1, EEqD(G) is connected.

Let u, v be any arbitrary vertices in EEqD(G). We consider the following cases.

Case 1. Suppose u, v ∈ V , u and v are nonadjacent in G. Then there exists a minimal

equitable dominating set containing u and v and by definition 2.1, dEEqD(G)(u, v) = 1. If u and

v are adjacent in G and there is no minimal equitable dominating set containing u and v, then

there exists another vertex w ∈ V which is not adjacent to both u and v. Let D1 and D2 be

two minimal equitable dominating sets containing (u, w) and (w, v) respectively. This implies

that dEEqD(G)(u, v) = 2.

Case 2. Suppose u ∈ V and v ∈ S. Then v = D is a minimal equitable dominating set of

G. If u ∈ S, then u and v are adjacent in EEqD(G). Otherwise, there exists another vertex

w ∈ D. This implies that

dEEqD(G)(u, v) ≤ dEEqD(G)(u, w) + dEEqD(G)(w, v) = 2.

Case 3. Suppose u, v ∈ S. Then u ∈ D1 and v ∈ D2 are two minimal equitable dominating

sets of G and by Definition 2.1, dEEqD(G)(u, v) = 1. 2
We now characterize graphs G for which SEqD(G) = EEqDG. A semientire equitable

dominating graph SEqD(G) of a graph G is the graph with vertex set V ∪ S and two vertices

u, v ∈ V ∪ S adjacent if u, v ∈ D, where D is a minimal equitable dominating set or u ∈ V and

v = D is a minimal equitable dominating set containing u ([1]).

Proposition 4.2([3]) The semientire equitable dominating graph SEqD(G) is pK2 if and only

if G = Kp ; p ≥ 2.

Remark 4.1([3]) For any graph G, SEqD(G) is a subgraph of EEqD(G).

Theorem 4.8 For any graph G, SEqD(G) ⊆ EEqD(G). Further, equality G, SEqD(G) =

EEqD(G) if and only if G has exactly one minimal equitable dominating set containing all

vertices of G.

Proof By Remark 4.1, SEqD(G) ⊆ EEqD(G). Suppose SEqD(G) = EEqD(G). Then by

Theorem 4.3, D is the only minimal equitable dominating set contains all the vertices of G.

Therefore G must be K1,n; n ≥ 3.

The converse is obvious. 2
In the next results, we discuss about α0 and β0 of EEqD(G).

Theorem 4.9 For any graph G with no isolated vertices,

(1) α0(EEqD(G)) = |S|+ 1, where S is the collection of all minimal equitable dominating
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sets of G;

(2) β0(EEqD(G)) = γ(G).

Proof (i) Let G be graph of order p. Let S = {s1, s2, · · · si} be the set of all minimal

equitable dominating sets. Then by definition 2.1 and Theorem ??. Therefore the minimum

number of vertices in EEqD(G) which covers all the edges. Hence α0(EEqD(G)) = |S| + 1.

(ii) By definition of EEqD(G), for any vertex vi ; 1 ≤ i ≤ p of EEqD(G) are not adjacent.

Hence these vertices forms a maximum independent set of EEqD(G). Hence (ii) follows. 2
In the next two results, we prove the vertex connectivity and edge- connectivity of EEqD(G).

Theorem 4.10 For any graph G, κ(EEqD(G)) = min{min(degEEqD(G)1≤i≤p
vi), min1≤j≤n|Sj |},

where Sj’s is the collection of all minimal equitable dominating sets of G.

Proof Let G be any graph with order p and size q. We consider the following cases.

Case 1. Let u ∈ v′i(EEqD(G)) for some i, having the minimum degree among all v′i in

EEqD(G). If the degree of u is less than any other vertex in EEqD(G), then by deleting the

vertices which are adjacent to u, results a disconnected graph.

Case 2. Let v ∈ Sj for some j, having the minimum degree among all Sj ’s in EEqD(G). If

degree of v is less than any other vertex in EEqD(G), then by deleting all the vertices which

are adjacent to v. This results the graph is disconnected. Hence the result follows. 2
Theorem 4.11 For any graph G, λ(EEqD(G)) = min{min(degEEqD(G)1≤i≤p

vi), min1≤j≤n|Sj |},
where Sj’s is the collection of all minimal equitable dominating sets of G.

Proof Let G be any (p, q) graph. We consider two cases.

Case 1. Let u ∈ v′i(EEqD(G)), having minimum degree among all v′i in EEqD(G). If the

degree of u is less than any other vertex in EEqD(G), then by deleting those edges of EEqD(G)

which are incident with u, results a disconnected graph.

Case 2. Let v ∈ Sj , having the minimum degree among all vertices of Sj . If degree of v is

less than any other vertex in EEqD(G), then by deleting those edges which are adjacent to v,

results in a disconnected. Hence the result follows. 2
Next, we prove the necessary and sufficient condition for EEqD(G) to be Eulerian.

Theorem 4.12 For any graph G, EEqD(G) is Eulerian if and only if one of the following

conditions are satisfied:

(1) There exists a vertex u ∈ V is in all minimal equitable dominating sets and cardinality

of every minimal equitable dominating set D of G is even;

(2) If v ∈ V is a vertex of odd degree, then it is in odd number of minimal equitable

dominating sets, otherwise it is in even number of minimal equitable dominating sets of G.

Proof Suppose ∆ < p−1 and by Theorem 4.1, EEqD(G) is connected. Suppose EEqD(G)
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is Eulerian. on the contrary if condition (i) is not satisfied, then there exists a minimal equitable

dominating set contains odd number of vertices and does not contains a vertex of odd degree,

a contradiction. Therefore by Theorem 3.2, EEqD(G) is Eulerian. Hence condition (1) holds.

Suppose (2) does not hold. Then there exists v ∈ V of even degree which is in odd number

of minimal equitable dominating sets, a contradiction. Hence (ii) hold.

Conversely, suppose the conditions (1) and (2) are satisfied. Then every vertex of EEqD(G)

has even degree and hence EEqD(G) is Eulerian. 2
§5. Domination in EEqD(G)

We calculate the domination number of EEqD(G) of some standard class of graphs.

Theorem 5.1 For any graph G with no isolated vertices.

(1) If G = Kp; p ≥ 2, then γ(EEqD(Kp) = p;

(2) If G = K1,p; p ≥ 3, then γ(EEqD(K1,p) = 1;

(3) If G = Cp, p ≥ 3, then γ(EEqD(Cp) = 2.

Theorem 5.2 For any graph G, γ(EEqD(G)) = 1, if and only if G is K1,p; p ≥ 3.

Proof If G is K1,p; p ≥ 3, then there exists a minimal equitable dominating set D con-

tains all the vertices of G and by Theorem ??, it is clear that, EEqD(G) is complete. Hence

γ(EEqD(G)) = 1.

Conversely, suppose γ(EEqD(G)) = 1 and G 6= K1,p; p ≥ 3. Then there exists a mini-

mal dominating set D in EEqD(G) of cardinality greater than or equal to 2, a contradiction.

Therefore G must be K1,p; p ≥ 3. 2
We conclude this paper by exploring one open problem on EEqD(G).

Problem 1. Give necessary and sufficient condition for a given graph G is entire equitable

dominating graph of some graph.
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