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Smarandache Curves and Applications

According to Type-2 Bishop Frame in Euclidean 3-Space
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Abstract: In this paper, we investigate Smarandache curves according to type-2 Bishop

frame in Euclidean 3- space and we give some differential geometric properties of Smaran-

dache curves. Also, some characterizations of Smarandache breadth curves in Euclidean 3-

space are presented. Besides, we illustrate examples of our results.

Key Words: Smarandache curves, Bishop frame, curves of constant breadth.

AMS(2010): 53A05, 53B25, 53B30.

§1. Introduction

A regular curve in Euclidean 3-space, whose position vector is composed by Frenet frame

vectors on another regular curve, is called a Smarandache curve. M. Turgut and S. Yılmaz

have defined a special case of such curves and call it Smarandache TB2 curves in the space

E4
1 [10]. Moreover, special Smarandache curves have been investigated by some differential

geometric [6]. A.T.Ali has introduced some special Smarandache curves in the Euclidean space

[2]. Special Smarandache curves according to Sabban frame have been studied by [5]. Besides, It

has been determined some special Smarandache curves E3
1 by [12]. Curves of constant breadth

were introduced by L.Euler [3].

We investigate position vector of curves and some characterizations case of constant breadth

according to type-2 Bishop frame in E3.

§2. Preliminaries

The Euclidean 3-space E3 proved with the standard flat metric given by

<, >= dx2
1 + dx2

2 + dx2
3

1Received November 26, 2015, Accepted May 6, 2016.
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where (x1, x2, x3) is rectangular coordinate system of E3. Recall that, the norm of an arbitrary

vector a ∈ E3 given by ‖a‖ =
√

< a, a >. ϕ is called a unit speed curve if velocity vector υ of

ϕ satisfied ‖υ‖ = 1

The Bishop frame or parallel transport frame is alternative approach to defining a moving

frame that is well defined even when the curve has vanishing second derivative. One can

express parallel transport of orthonormal frame along a curve simply by parallel transporting

each component of the frame [8]. The type-2 Bishop frame is expressed as





ξp

1

ξp

2

Bp



 =





0 0 −ε1

0 0 −ε2

ε1 ε2 0



 .





ξ1

ξ2

B



 (2.1)

In order to investigate type-2 Bishop frame relation with Serret-Frenet frame, first we

Bp = −τN = ε1ξ1 + ε2ξ2 (2.2)

Taking the norm of both sides, we have

κ(s) =
dθ(s)

ds
, τ(s) =

√
ε2
1 + ε2

2 (2.3)

Moreover, we may express

ε1(s) = −τ cos θ(s), ε2(s) = −τ sin θ(s) (2.4)

By this way, we conclude θ(s) = Arc tan
ε2

ε1
. The frame {ξ1, ξ2, B} is properly oriented,

and τ and θ(s) =
s∫

0

κ(s)ds are polar coordinates for the curve α(s).

We write the tangent vector according to frame {ξ1, ξ2, B} as

T = sin θ(s)ξ1 − cos θ(s)ξ2

and differentiate with respect to s

T p = κN = θp(s)(cos θ(s)ξ1 + sin θ(s)ξ2)

+ sin θ(s)ξp

1 − cos θ(s)ξp

2

(2.5)

Substituting ξp

1 = −ε1B and ξp

2 = −ε2B in equation (2.5) we have

κN = θp(s)(cos θ(s)ξ1 + sin θ(s)ξ2)

In the above equation let us take θp(s) = κ(s). So we immediately arrive at

N = cos θ(s)ξ1 + sin θ(s)ξ2
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Considering the obtained equations, the relation matrix between Serret-Frenet and the type-2

Bishop frame can be expressed





T

N

B



 =





sin θ(s) − cos θ(s) 0

cos θ(s) sin θ(s) 0

0 0 1



 .





ξ1

ξ2

B



 (2.6)

§3. Smarandache Curves According to Type-2 Bishop Frame in E3

Let α = α(s) be a unit speed regular curve in E3 and denote by {ξα
1 , ξα

2 , Bα} the moving Bishop

frame along the curve α. The following Bishop formulae is given by

·
ξα
1 = −εα

1 Bα,
·

ξα
2 = −εα

2 Bα,
·

Bα = εα
1 ξα

1 + εα
2 ξα

2

3.1 ξ1ξ2-Smarandache Curves

Definition 3.1 Let α = α(s) be a unit speed regular curve in E3 and {ξα
1 , ξα

2 , Bα} be its moving

Bishop frame. ξ1ξ2-Smarandache curves can be defined by

β(s∗) =
1√
2
(ξα

1 + ξα
2 ) (3.1)

Now, we can investigate Bishop invariants of ξ1ξ2-Smarandache curves according to α =

α(s). Differentiating (3.1.1) with respect to s, we get

·
β =

dβ

ds∗
· ds∗

ds
=

−1√
2
(εα

1 + εα
2 )Bα

Tβ · ds∗

ds
=

−1√
2
(εα

1 + εα
2 )Bα

(3.2)

where
ds∗

ds
=

1√
2
(εα

1 + εα
2 ) (3.3)

The tangent vector of curve β can be written as follow;

Tβ = −Bα = −(εα
1 ξα

1 + εα
2 ξα

2 ) (3.4)

Differentiating (3.4) with respect to s, we obtain

dTβ

ds∗
· ds∗

ds
= εα

1 ξα
1 + εα

2 ξα
2 (3.5)
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Substituting (3.3) in (3.5), we get

T p

β =

√
2

εα
1 + εα

2

(εα
1 ξα

1 + εα
2 ξα

2 )

Then, the curvature and principal normal vector field of curve β are respectively,

∥∥∥T p

β

∥∥∥ = κβ =

√
2

εα
1 + εα

2

√
(εα

1 )
2
+ (εα

2 )
2

Nβ =
1√

(εα
1 )2 + (εα

2 )2
(εα

1 ξα
1 + εα

2 ξα
2 )

On the other hand, we express

Bβ =
1√

(εα
1 )

2
+ (εα

2 )
2

det





ξα
1 ξα

2 Bα

0 0 −1

εα
1 εα

2 0



 .

So, the binormal vector of curve β is

Bβ =
1√

(εα
1 )2 + (εα

2 )2
(εα

2 ξα
1 − εα

1 ξα
2 )

We differentiate (3.2)1 with respect to s in order to calculate the torsion of curve β

··
β = −1√

2
{[(εα

1 )
2
+ εα

1 εα
2 ]ξα

1

+ [εα
1 εα

2 + (εα
2 )2]ξα

2 + [
·

εα
1 +

·
εα
2 ]}Bα]

and similarly
···
β =

−1√
2
(δ1ξ

α
1 + δ2ξ

α
2 + δ3B

α)

where

δ1= 3εα
1

·
εα
1 +εα

1 εα
2 +2εα

1

·
εα
2 - (εα

1 )
3
- (εα

1 )
2
εα
2

δ2= 2
·

εα
1 εα

2 +εα
1

·
εα
2 +3εα

2

·
εα
2 -εα

1 (εα
2 )2 - (εα

2 )3

δ3=
··
εα
1 +

··
εα
2

The torsion of curve β is

τβ=
εα
1 +εα

2

4
√

2[(εα
1 )2

+(εα
2 )2

]
{[(εα

1 + εα
2 )(εα

1 εα
2 + (εα

2 )
2
]δ1 − [(εα

1 + εα
2 )((εα

1 )
2
+ εα

1 εα
2 )]δ2}

3.2 ξ1B-Smarandache Curves

Definition 3.2 Let α = α(s) be a unit speed regular curve in E3 and {ξα
1 , ξα

2 , Bα} be its moving
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Bishop frame. ξ1B-Smarandache curves can be defined by

β(s∗) =
1√
2
(ξα

1 + Bα) (3.6)

Now, we can investigate Bishop invariants of ξ1B-Smarandache curves according to α =

α(s). Differentiating (3.6) with respect to s, we get

·
β =

dβ

ds∗
· ds∗

ds
=

−1√
2
(εα

1 Bα + εα
1 ξα

1 + εα
2 ξα

2 )

Tβ · ds∗

ds
=

−1√
2
(−εα

1 Bα + εα
1 ξα

1 + εα
2 ξα

2 )

(3.7)

where

ds∗

ds
=

√
2 (εα

1 )2 + (εα
2 )2

2
(3.8)

The tangent vector of curve β can be written as follow;

Tβ =
1√

2 (εα
1 )

2
+ (εα

2 )
2
(εα

1 ξα
1 + εα

2 ξα
2 − εα

1 Bα) (3.9)

Differentiating (3.9) with respect to s, we obtain

dTβ

ds∗
ds∗

ds
=

1
[
2 (εα

1 )
2
+(εα

2 )
2
] 3

2

(µ1ξ
α
1 +µ2ξ

α
2 +µ3B

α) (3.10)

where

µ1= εα
1 εα

2

·
εα
2 +

·
εα
1 (εα

2 )
2

µ2= 2 (εα
2 )

2
εα
2 -2εα

1

·
εα
1 εα

2 +2 (εα
1 )

2
εα
2 -2 (εα

1 )
3
εα
2 -εα

1 (εα
2 )

3

µ3= εα
1 εα

2

·
εα
2 − 2 (εα

1 )
4

+ (εα
1 )

2
(εα

2 )
2 −

·
εα
1 (εα

2 )
2

Substituting (3.8) in (3.10), we have

T p

β =

√
2

[
2 (εα

1 )2 + (εα
2 )2
]2 (µ1ξ

α
1 + µ2ξ

α
2 + µ3B

α)

Then, the first curvature and principal normal vector field of curve β are respectively

∥∥∥T p

β

∥∥∥=κβ=
√

2[
2(εα

1 )
2
+(εα

2 )
2
]2
√

µ2
1 + µ2

2 + µ2
3

Nβ =
1√

µ2
1 + µ2

2 + µ2
3

(µ1ξ
α
1 + µ2ξ

α
2 + µ3B

α)
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On the other hand, we get

Bβ=
1

√
µ2

1+µ2
2+µ2

3

√
2 (εα

1 )
2
+ (εα

2 )
2
[(µ2ε

α
1 +µ3ε

α
2 )ξα

1

− (µ1ξ
α
1 +µ3ξ

α
1 ) ξα

2 +(µ2ε
α
1 -µ1ε

α
2 )Bα]

We differentiate (3.7) with respect to s in order to calculate the torsion of curve β

··
β = −1√

2
{[-2 (εα

1 )2 +
·

εα
1 ]ξα

1

+ [−εα
1 εα

2 +
·

εα
1 − (εα

2 )
2
]ξα

2 −
·

εα
1 Bα}

and similarly
···
β =

−1√
2
(Γ1ξ

α
1 + Γ2ξ

α
2 + Γ3B

α)

where

Γ1= -6εα
1

·
εα
1 +

··
εα
1 +2 (εα

1 )
3

Γ2= -2
·

εα
1 εα

2 -εα
1

·
εα
2 +

··
εα
2 -2εα

2 εα
2 +εα

1 (εα
2 )

2
-

·
εα
2 εα

2 + (εα
2 )

3

Γ3= -
··
εα
1

The torsion of curve β is

τβ= -
[2 (εα

1 )
2
+ (εα

2 )
2
]4

4
√

2(µ2
1+µ2

2+µ2
3)
{[(-εα

1 εα
2 -

·
εα
2 +(εα

2 )
2
)Γ1

-2( (εα
1 )

2 −
·

εα
1 )Γ2+(-εα

1 εα
2 -

·
εα
2 + (εα

2 )
2
)Γ3]ε

α
1

-[(
·

εα
1 − 2 (εα

1 )
2
)Γ3 +

·
εα
1 Γ1]ε

α
2 }

3.3 ξ2B-Smarandache Curves

Definition 3.3 Let α = α(s) be a unit speed regular curve in E3 and {ξα
1 , ξα

2 , Bα} be its moving

Bishop frame. ξ2B-Smarandache curves can be defined by

β(s∗) =
1√
2
(ξα

2 + Bα) (3.11)

Now, we can investigate Bishop invariants of ξ2B-Smarandache curves according to α =

α(s). Differentiating (3.11) with respect to s, we get

·
β =

dβ

ds∗
· ds∗

ds
= (−εα

2 Bα + εα
1 ξα

1 + εα
2 ξα

2 )

Tβ · ds∗

ds
= (εα

1 ξα
1 + εα

2 ξα
2 − εα

2 Bα)
(3.12)
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where

ds∗

ds
=

√
(εα

1 )2 + 2 (εα
2 )2

2
(3.13)

The tangent vector of curve β can be written as follow;

Tβ =
εα
1 ξα

1 + εα
2 ξα

2 − εα
2 Bα

√
2 (εα

1 )
2
+ (εα

2 )
2

(3.14)

Differentiating (3.14) with respect to s, we obtain

dTβ

ds∗
ds∗

ds
=

1
[
(εα

1 )
2
+2 (εα

2 )
2
] 3

2

(η1ξ
α
1 +η2ξ

α
2 +η3B

α) (3.15)

where

η1= 2(
·

εα
1 (εα

2 )
2
-εα

1 εα
2 )

η2= (εα
2 )

2
·

εα
2 + (εα

1 )
2

·
εα
1 -εα

1

·
εα
1 εα

2

η3= (εα
1 )

2
εα
2 + 2 (εα

2 )
3
- (εα

1 )
4
-2 (εα

1 )
4
-3 (εα

1 )
2
(εα

2 )
2

Substituting (3.13) in (3.15), we have

T p

β =

√
2

[
2 (εα

1 )
2
+ (εα

2 )
2
]2 (η1ξ

α
1 + η2ξ

α
2 + η3B

α)

Then, the first curvature and principal normal vector field of curve β are respectively

∥∥∥T p

β

∥∥∥=κβ=

√
2
√

η2
1 + η2

2 + η2
3[

(εα
1 )

2
+ 2 (εα

2 )
2
]2

Nβ =
1√

η2
1 + η2

2 + η2
3

(η1ξ
α
1 + η2ξ

α
2 + η3B

α)

On the other hand, we express

Bβ=
1

√
η2
1+η2

2+η2
3

√
(εα

1 )
2
+2 (εα

2 )
2
[(η2ε

α
2 +η3ε

α
2 )ξα

1

− (η1ξ
α
2 +η3ξ

α
1 ) ξα

2 +(η2ε
α
1 -η1ε

α
2 )Bα]

We differentiate (3.12)1 with respect to s in order to calculate the torsion of curve β

··
β = 1√

2
{[εα

1 ξα
1 +

·
εα
1 − (εα

1 )
2
]ξα

1

+ [
·

εα
2 − 2 (εα

2 )
2
]ξα

2 −
·

εα
2 Bα}
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and similarly
···
β =

1√
2
(η1ξ

α
1 + η2ξ

α
2 + η3B

α)

where

η1= -
·

εα
1 εα

2 − 5
·

εα
1 εα

1 +
··
εα
1 +(εα

1 )
2
εα
2 + (εα

1 )
3

η2= -4
·

εα
2 εα

2 +
··
εα
2 + 2εα

2

η3= -
··
εα
2

The torsion of curve β is

τβ= -
[(εα

1 )2 + 2 (εα
2 )2]4

4
√

2(η2
1+η2

2+η2
3)

{[
·

εα
2 η2 +

·
(εα

2 − 2 (εα
2 )

2
)η3]ε

α
1

+[2 (εα
2 )

2
η1+(εα

1 εα
2 -

·
εα
1 +(εα

1 )
2
)η2

+(-εα
1 εα

2 +
·

εα
1 )η3]ε

α
2 }

3.4 ξ1ξ2B-Smarandache Curves

Definition 3.4 Let α = α(s) be a unit speed regular curve in E3 and {ξα
1 , ξα

2 , Bα} be its moving

Bishop frame. ξα
1 ξ2B-Smarandache curves can be defined by

β(s∗) =
1√
3
(ξα

1 + ξα
2 + Bα) (3.16)

Now, we can investigate Bishop invariants of ξα
1 ξ2B-Smarandache curves according to

α = α(s). Differentiating (3.16) with respect to s, we get

·
β =

dβ

ds∗
· ds∗

ds
= 1√

3
[(εα

1 + εα
2 )Bα − εα

1 ξα
1 − εα

2 ξα
2 ]

Tβ · ds∗

ds
= 1√

3
[(εα

1 + εα
2 )Bα − εα

1 ξα
1 − εα

2 ξα
2 )]

(3.17)

where

ds∗

ds
=

√
2[(εα

1 )
2
+ εα

1 εα
2 + (εα

2 )
2
]

3
(3.18)

The tangent vector of curve β can be written as follow;

Tβ =
εα
1 ξα

1 + εα
2 ξα

2 − (εα
1 + εα

2 )Bα

√
2[(εα

1 )
2

+ εα
1 εα

2 + (εα
2 )

2
]

(3.19)
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Differentiating (3.19) with respect to s, we get

dTβ

ds∗
ds∗

ds
=

(λ1ξ
α
1 +λ2ξ

α
2 +λ3B

α)

2
√

2
[
(εα

1 )2 + εα
1 εα

2 + (εα
2 )2
] 3

2

(3.20)

where

λ1= [
·

εα
1 -2 (εα

1 )2 -εα
1 εα

2 ]u(s)-εα
1 [2εα

1

·
εα
1 +

·
εα
1 εα

2 +εα
1 εα

2 +2
·

εα
2 εα

2 ]

λ2= [
·

εα
2 -2 (εα

2 )
2
-εα

1 εα
2 ]u(s)-εα

2 [
·

εα
1 + εα

1

·
εα
2 + 2εα

2

·
εα
2 ]

λ3= [
·

-εα
1 -

·
εα
2 ]u(s)+εα

1 [2εα
1

·
εα
1 +

·
3εα

1 εα
2 +εα

1

·
εα
2 +2

·
εα
2 εα

2 ]

+
·

εα
2 [

·
εα
1 (εα

2 )
2
+ 2 (εα

2 )
2
]

Substituting (3.18) in (3.20), we have

T p

β =

√
3(λ1ξ

α
1 +λ2ξ

α
2 +λ3B

α)

4
[
(εα

1 )
2

+ εα
1 εα

2 + (εα
2 )

2
]2

Then, the first curvature and principal normal vector field of curve β are respectively

∥∥∥T p

β

∥∥∥=κβ=

√
3
√

λ2
1 + λ2

2 + λ2
3

4
[
(εα

1 )
2

+ εα
1 εα

2 + (εα
2 )

2
]2

Nβ =
1√

λ2
1 + λ2

2 + λ2
3

(λ1ξ
α
1 + λ2ξ

α
2 + λ3B

α)

(3.21)

On the other hand, we express

Bβ=
1√

2[(εα
1 )

2
+εα

1 εα
2 +(εα

2 )
2
] ·
√

λ2
1+λ2

2+λ2
3

det





ξα
1 ξα

2 Bα

εα
1 εα

2 -(εα
1 +εα

2 )

λ1 λ2 λ3





So, the binormal vector field of curve β is

Bβ =
1√

2[(εα
1 )

2
+εα

1 εα
2 + (εα

2 )
2
] ·
√

λ2
1+λ2

2+λ2
3

{[(εα
1 + εα

2 )λ1

− εα
2 λ3]ξ

α
1 +[−εα

1 λ3-(ε
α
1 + εα

2 )]ξα
2 +[εα

1 λ2-ε
α
2 λ1]B

α}

We differentiate (3.20) with respect to s in order to calculate the torsion of curve β

··
β = - 1√

3
{[2 (εα

1 )
2
+εα

1 ξα
1 -

·
εα
1 ]ξα

1

+[2 (εα
2 )

2
+εα

1 εα
2 -

·
εα
2 ]ξα

2 +
·

[εα
1 +

·
εα
2 ]Bα}
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and similarly
···
β = -

1√
3
(σ1ξ

α
1 + σ2ξ

α
2 + σ3B

α)

where

η1= 4
·

εα
1 εα

1 +3
·

εα
1 εα

2 -
··
εα
1 -2 (εα

1 )
3
- (εα

1 )
2
εα
2

η2= 5
·

εα
2 εα

2 +
·

εα
1 εα

2 +εα
1 εα

2 -
··
εα
2 -2 (εα

2 )
3
-εα

1 (εα
2 )

2

η3=
··
εα
2

··
+εα

2

The torsion of curve β is

τβ= -
16[(εα

1 )2+εα
1 εα

2 +(εα
2 )2]2

9
√

3
√

λ2
1+λ2

2+λ2
3

{[(2 (εα
2 )

2
+εα

1 εα
2 -

·
εα
2 )σ1+(-

·
εα
2 -2 (εα

1 )
2
-εα

1 εα
2 )σ2

+(2 (εα
2 )

2
+εα

1 εα
2 -

·
εα
2 )σ3]ε

α
1 +[-

·
εα
1 -2

·
εα
2 +2 (εα

2 )
2
+εα

1 εα
2 )σ1

+(-2 (εα
1 )

2
-εα

1 εα
2 +

·
εα
1 )σ2 + (2 (εα

1 )
2
+εα

1 εα
2 -

·
εα
1 )σ3]ε

α
2 }.

§4. Smarandache Breadth Curves According to Type-2 Bishop Frame in E3

A regular curve with more than 2 breadths in Euclidean 3-space is called Smarandache breadth

curve.

Let α = α(s) be a Smarandache breadth curve. Moreover, let us suppose α = α(s) simple

closed space-like curve in the space E3. These curves will be denoted by (C). The normal plane

at every point P on the curve meets the curve at a single point Q other than P .

We call the point Q the opposite point P . We consider a curve in the class Γ as in having

parallel tangents ξ1 and ξ∗1 opposite directions at opposite points α and α∗of the curves.

A simple closed curve having parallel tangents in opposite directions at opposite points

can be represented with respect to type-2 Bishop frame by the equation

α∗(s) = α(s) + λξ1 + ϕξ2 + ηB (4.1)

where λ(s), ϕ(s) and η(s) are arbitrary functions also α and α∗ are opposite points.

Differentiating both sides of (4.1) and considering type-2 Bishop equations, we have

dα∗

ds
=ξ∗1

ds∗

ds
= (

dλ

ds
+ ηε1 + 1)ξ1 + (

dϕ

ds
+ ηε2)ξ2

+ (−λε1 − ϕε2 +
dη

ds
)B

(4.2)
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Since ξ∗1 = −ξ1 rewriting (4.2) we have

dλ

ds
= −ηε1 − 1 − ds∗

ds

dϕ

ds
= −ϕε2

dη

ds
= λε1 + ϕε2

(4.3)

If we call θ as the angle between the tangent of the curve (C) at point α(s) with a given

direction and consider
dθ

ds
= κ, we have (4.3) as follow:

dλ

dθ
= −η

ε1

κ
− f(θ)

dϕ

dθ
= −ϕ

ε2

κ

dη

dθ
= λ

ε1

κ
+ ϕ

ε2

κ

(4.4)

where f(θ) = δ + δ∗ , δ =
1

κ
, δ∗ =

1

κ∗ denote the radius of curvature at α and α∗ respectively.

And using system (4.4), we have the following differential equation with respect to λ as

d3λ

dθ3
− [

κ

ε1

d

dθ
(
ε1

κ
)]

d2λ

dθ2
+[

ε2
1

κ2
-
ε1

κ
-

d

dθ
(

κ

ε1
)

d

dθ
(
ε1

κ
)

− κ

ε1

d2

dθ2
(
ε1

κ
)]

dλ

dθ
+ [

ε1

κ

d

dθ
(
ε1

κ
) − ε2

1

ε2κ
]λ+

+[-
κ

ε2
-
κ

ε1

d

dθ
(
ε1

κ
)]

d2f

dθ2
− [

κ

ε2
+2

κ

ε1

d

dθ
(
ε1

κ
)]

df

dθ

−[
ε2
2

ε1κ
+

ε1

ε2
+2

d

dθ
(

κ

ε1
)

d

dθ
(
ε1

κ
)+

κ

ε1

d2

dθ2
(
ε1

κ
)]f(θ) = 0

(4.5)

Equation (4.5) is characterization for α∗. If the distance between opposite points of (C)

and (C∗) is constant, then we can write that

‖α∗ − α‖ = λ2 + ϕ2 + η2 = l2 = constant (4.6)

Hence, we write

λ
dλ

dθ
+ ϕ

dϕ

dθ
+ η

dη

dθ
= 0 (4.7)

Considering system (4.4) we obtain

λ · f(θ) = 0 (4.8)
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We write λ = 0 or f(θ) = 0. Thus, we shall study in the following subcases.

Case 1. λ = 0. Then we obtain

η = −
θ∫

0

κ

ε1
f(θ)dθ, ϕ =

θ∫

0

(
θ∫

0

η
ε2

κ
dθ)

ε2

κ
dθ (4.9)

and
d2f

dθ2
− df

dθ
− [(

τ

κ
)2

sin3 θ

cos θ
− τ

κ
cos θ]f = 0 (4.10)

General solution of (4.10) depends on character of
τ

κ
. Due to this, we distinguish following

subcases.

Subcase 1.1 f(θ) = 0. then we obtain

λ =
θ∫

0

η
ε1

κ
dθ

ϕ = −
θ∫

0

η
ε2

κ
dθ

η =
θ∫

0

λ
ε1

κ
dθ +

θ∫

0

ϕ
ε2

κ
dθ

(4.11)

Case 2. Let us suppose that λ 6= 0, ϕ 6= 0 ,η 6= 0 and λ, ϕ, η constant. Thus the equation

(4.4) we obtain
ε1

κ
= 0 and

ε2

κ
= 0.

Moreover, the equation (4.5) has the form
d3λ

dθ3
= 0 The solution (4.12) is λ = L1

θ2

2 +

L2θ + L3 where L1, L2 and L3 real numbers. And therefore we write the position vector ant

the curvature

α∗ = α + A1ξ1 + A2ξ2 + A3B

where A1 = λ, A2 = ϕ and A3 = η real numbers. And the distance between the opposite points

of (C) and (C∗) is

‖α∗ − α‖ = A2
1 + A2

2 + A2
3 = constant

§5. Examples

In this section, we show two examples of Smarandache curves according to Bishop frame in E3.

Example 5.1 First, let us consider a unit speed curve of E3 by

β(s)= (
25

306
sin(9s) − 9

850
sin(25s),

− 25

306
cos(9s)+

9

850
cos(25s),

15

136
sin(8s))
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Fig.1 The curve β = β(s)

See the curve β(s) in Fig.1. One can calculate its Serret-Frenet apparatus as the following

T = (25
34 cos 9s + 9

34 cos 25s, 25
34 sin 9s − 9

34 sin 25s, 15
17 cos 8s)

N = (15
34 csc 8s(sin 9s − sin 25s),− 15

34 csc 8s(cos 9s − cos 25s), 8
17 )

B = ( 1
34 (25 sin 9s− 9 sin 25s),− 1

34 (25 cos 9s + 9 cos 25s),− 15
17 sin 8s)

κ = −15 sin8s and τ = 15 cos 8s

In order to compare our main results with Smarandache curves according to Serret-Frenet

frame, we first plot classical Smarandache curve of β Fig.1.

Now we focus on the type-2 Bishop trihedral. In order to form the transformation matrix

(2.6), let us express

θ(s) = −
s∫

0

15 sin(8s)ds =
15

8
cos(8s)

Since, we can write the transformation matrix





T

N

B



 =





sin(15
8 cos 8s) − cos(15

8 cos 8s) 0

cos(15
8 cos 8s) sin(15

8 cos 8s) 0

0 0 1




.





ξ1

ξ2

B




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Fig.2 ξ1ξ1 Smarandache curve

By the method of Cramer, one can obtain type-2 Bishop frame of β as follows

ξ1= (sin θ(25
34 cos 9s − 9

34 cos 25s) + 15
34 cos θ csc 8s(sin 9s − sin 25s),

sin θ(25
34 sin 9s − 9

34 sin 25s)− 15
34 cos θ csc 8s(cos 9s− cos 25s),

15
17 sin θ cos 8s + 8

17 cos θ)

ξ2= (− cos θ(25
34 cos 9s − 9

34 cos 25s) + 15
34 sin θ csc 8s(sin 9s − sin 25s),

- cos θ(25
34 sin 9s − 9

34 sin 25s)− 15
34 sin θ csc 8s(cos 9s − cos 25s),

− 15
17 cos θ cos 8s + 8

17 sin θ)

B = ( 1
34 (25 sin 9s − 9 sin 25s),− 1

34 (25 cos 9s + 9 cos 25s),− 15
17 sin 8s)

where θ = 15
8 cos(8s). So, we have Smarandache curves according to type-2 Bishop frame of the

unit speed curve β = α(s), see Fig.2-4 and Fig.5.

Fig.3 ξ1B Smarandache curve



Smarandache Curves and Applications According to Type-2 Bishop Frame in Euclidean 3-Space 15

Fig.4 ξ2B Smarandache curve Fig.5 ξ1ξ2B Smarandache curve
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§1. Introduction and Preliminary Notes

The concepts of the natural lift curve and geodesic sprays have first been given by Thorpe in

[17]. Thorpe proved the natural lift α of the curve α is an integral curve of the geodesic spray iff

α is an geodesic on M . Çalışkan at al. studied the natural lift curves of the spherical indicatries

of tangent, principal normal, binormal vectors and fixed centrode of a curve in [16]. They gave

some interesting results about the original curve, depending on the assumption that the natural

lift curve should be the integral curve of the geodesic spray on the tangent bundle T
(
S2
)
. Some

properties of M -vector field Z defined on a hypersurface M of M were studied by Agashe in

[1]. M -integral curve of Z and M -geodesic spray are defined by Çalışkan and Sivridağ. They

gave the main theorem: The natural lift α of the curve α (in M) is an M -integral curve of the

geodesic spray Z iff α is an M -geodesic in [8]. Bilici et al. have proposed the natural lift curves

and the geodesic sprays for the spherical indicatrices of the the involute evolute curve couple in

Euclidean 3-space. They gave some interesting results about the evolute curve, depending on

the assumption that the natural lift curve of the spherical indicatrices of the involute should

be the integral curve on the tangent bundle T
(
S2
)

in [6]. Then Bilici applied this problem

to involutes of a timelike curve in Minkowski 3-space (see [7]). Ergün and Çalışkan defined

the concepts of the natural lift curve and geodesic spray in Minkowski 3-space in [10]. The

analogue of the theorem of Thorpe was given in Minkowski 3-space by Ergün and Çalışkan in

1Received June 6, 2015, Accepted May 8, 2016.
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[10]. Çalışkan and Ergün defined M -vector field Z, M -geodesic spray, M -integral curve of Z, M -

geodesic in [9]. The analogue of the theorem of Sivridağ and Çalışkan was given in Minkowski

3-space by Ergün and Çalışkan in [10]. Walrave characterized the curve with constant curvature

in Minkowski 3-space in [16]. In differential geometry, especially the theory of space curve, the

Darboux vector is the areal velocity vector of the Frenet frame of a spacere curve. It is named

after Gaston Darboux who discovered it. In term of the Frenet-Serret apparatus, the darboux

vector W can be expressed as W = τT + κB, details are given in Lambert et al. in [13].

Let Minkowski 3-space R3
1 be the vector space R3 equipped with the Lorentzian inner

product g given by

g (X, X) = −x2
1 + x2

2 + x2
3

where X = (x1, x2, x3) ∈ R3 . A vector X = (x1, x2, x3) ∈ R3 is said to be timelike if

g (X, X) < 0, spacelike if g (X, X) > 0 and lightlike (or null) if g (X, X) = 0. Similarly, an

arbitrary curve α = α (t) in R3
1 where t is a pseudo-arclength parameter, can locally be

timelike, spacelike or null (lightlike), if all of its velocity vectors
·
α (t) are respectively timelike,

spacelike or null (lightlike), for every t ∈ I ⊂ R. A lightlike vector X is said to be positive (resp.

negative) if and only if x1 > 0 (resp.x1 < 0) and a timelike vector X is said to be positive

(resp. negative) if and only if x1 > 0 (resp. x1 < 0).The norm of a vector X is defined by [14]

‖X‖IL =
√
|g (X, X)|.

We denote by {T (t) , N (t) , B (t)} the moving Frenet frame along the curve α. Then T, N and

B are the tangent, the principal normal and the binormal vector of the curve α, respectively.

Let α be a unit speed timelike space curve with curvature κ and torsion τ . Let Frenet

vector fields of α be {T, N, B}. In this trihedron, T is timelike vector field, N and B are

spacelike vector fields.For this vectors, we can write

T × N = B, N × B = −T, B × T = N ,

where × is the Lorentzian cross product, [4]. in space R3
1 . Then, Frenet formulas are given by

T
′

= κN, N
′

= κT + τB, B
′

= −τN , [16].

The Frenet instantaneous rotation vector for the timelike curve is given by W = τT + κB.

Let α be a unit speed spacelike space curve with a spacelike binormal. In this trihedron,

we assume that T and B are spacelike vector fields and N is a timelike vector field. In this

situation,

T × N = B, N × B = T, B × T = −N ,

Then, Frenet formulas are given by

T
′

= κN, N
′

= κT + τB, B
′

= τN , [16].

The Frenet instantaneous rotation vector for the spacelike space curve with a spacelike

binormal is given by W = τT − κB.
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Let α be a unit speed spacelike space curve with a timelike binormal. In this trihedron, we

assume that T and N are spacelike vector fields and B is a timelike vector field.In this situation,

T × N = −B, N × B = T, B × T = N ,

Then, Frenet formulas are given by,

T
′

= κN, N
′

= −κT + τB, B
′

= τN , [16].

The Frenet instantaneous rotation vector for the spacelike space curve with a timelike

binormal is given by W = −τT + κB.

Lemma 1.1([15]) Let Xand Y be nonzero Lorentz orthogonal vectors in R3
1. If X is timelike,

then Y is spacelike.

Lemma 1.2([15]) Let X and Y be pozitive (negative ) timelike vectors in R3
1. Then

g (X, Y ) ≤ ‖X‖ ‖Y ‖

whit equality if and only if X and Y are linearly dependent.

Lemma 1.3([15]) (1) Let X and Y be pozitive (negative) timelike vectors in R3
1. By the Lemma

2, there is unique nonnegative real number ϕ (X, Y ) such that

g (X, Y ) = ‖X‖ ‖Y ‖ coshϕ (X, Y ) ,

the Lorentzian timelike angle between X and Y is defined to be ϕ (X, Y ).

(2) Let X and Y be spacelike vektors in R3
1 that span a spacelike vector subspace. Then

we have

|g (X, Y )| ≤ ‖X‖ ‖Y ‖ .

Hence, there is a unique real number ϕ (X, Y ) between 0 and π such that

g (X, Y ) = ‖X‖ ‖Y ‖ cosϕ (X, Y ) ,

the Lorentzian spacelike angle between X and Y is defined to be ϕ (X, Y ).

(3) Let X and Y be spacelike vectors in R3
1 that span a timelike vector subspace. Then we

have

g (X, Y ) > ‖X‖ ‖Y ‖ .

Hence, there is a unique pozitive real number ϕ (X, Y ) between 0 and π such that

|g (X, Y )| = ‖X‖ ‖Y ‖ coshϕ (X, Y ) ,

the Lorentzian timelike angle between X and Y is defined to be ϕ (X, Y ).

(4) Let X be a spacelike vector and Y be a pozitive timelike vector in R3
1. Then there is
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a unique nonnegative reel number ϕ (X, Y ) such that

|g (X, Y )| = ‖X‖ ‖Y ‖ sinhϕ (X, Y ) ,

the Lorentzian timelike angle between X and Y is defined to be ϕ (X, Y ).

For the curve α with a timelike tanget, let θ be a Lorentzian timelike angle between the

spacelike binormal unit −B and the Frenet instantaneous rotation vector W .

a) If |κ| > |τ |, then W is a spacelike vector. In this situation, from Lemma 3 (3) we can

write

κ = ‖W‖ cosh θ, τ = ‖W‖ sinh θ

‖W‖2
= g (W, W ) = κ2 − τ2 and C = W

‖W‖ = sinh θT + cosh θB, where C is unit vector of

direction W .

b) If |κ| < |τ |, then W is a timelike vector. In this situation, from Lemma 3 (4) we can

write

κ = ‖W‖ sinh θ, τ = ‖W‖ cosh θ

‖W‖2
= −g (W, W ) = −

(
κ2 − τ2

)
and C = cosh θT + sinh θB.

For the curve α with a timelike principal normal, let θ be an angle between the B and the

W , if B and W spacelike vectors that span a spacelike vektor subspace then by the Lemma 3

(2) we can write

κ = ‖W‖ cos θ, τ = ‖W‖ sin θ

‖W‖2
= g (W, W ) = κ2 + τ2 and C = sin θT − cos θB.

For the curve α with a timelike binormal, let θ be a Lorentzian timelike angle between the

−B and the W .

a) If |κ| < |τ |, then W is a spacelike vector. In this situation, from Lemma 3 (4) we can

write

κ = ‖W‖ sinh θ, τ = ‖W‖ cosh θ

‖W‖2
= g (W, W ) = τ2 − κ2 and C = − cosh θT + sinh θB.

(b) If |κ| > |τ |, then W is a timelike vector. In this situation, from Lemma 3 (1) we have

κ = ‖W‖ cosh θ, τ = ‖W‖ sinh θ

‖W‖2
= −g (W, W ) = −

(
τ2 − κ2

)
and C = − sinh θT + cosh θB.

From [10], we know that if α be a unit speed timelike space curve, then the natural lift

α of α is a spacelike space curve; if α be a unit speed spacelike space curve with a spacelike

binormal, then the natural lift α of α is a timelike space curve; if α be a unit speed spacelike

space curve with a timelike binormal, then the natural lift α of α is a spacelike space curve. If

α be a unit speed timelike space curve and α be the natural lift of α, then from [12] we know



20 Evren ERGÜN and Mustafa ÇALIŞKAN

that

T (s) = N (s) , N (s) = −κ (s)

‖W‖T (s) − τ (s)

‖W‖B (s) , B (s) = − τ (s)

‖W‖T (s) − κ (s)

‖W‖B (s) ,

and if α be a unit speed spacelike space curve with a spacelike binormal and α be the natural

lift of α, then

T (s) = N (s) , N (s) =
κ (s)

‖W‖T (s) +
τ (s)

‖W‖B (s) , B (s) =
τ (s)

‖W‖T (s) − κ (s)

‖W‖B (s) ,

and if α be a unit speed spacelike space curve with a timelike binormal and α be the natural

lift of α, then

T (s) = N (s) , N (s) = −κ (s)

‖W‖T (s) − τ (s)

‖W‖B (s) , B (s) =
τ (s)

‖W‖T (s) +
κ (s)

‖W‖B (s) .

Definition 1.1([4]) Let M be a hypersurface in R3
1 and let α : I −→ M be a parametrized

curve. α is called an integral curve of X if

d

ds
(α (s)) = X (α (s)) (for all s ∈ I) ,

where X is a smooth tangent vector field on M . We have

TM =
⋃

P∈M

TP M = χ (M) ,

where TP M is the tangent space of M at P and χ (M) is the space of vector fields on M .

Definition 1.2([5]) A parameterized curve α : I −→ M , α : I −→ TM given by

α (s) =
(
α (s) , α

′

(s)
)

= α
′

(s) |α(s)

is called the natural lift of α on TM . Thus, we can write

dα

ds
=

d

ds

(
α

′

(s) |α(s)

)
= Dα′(s)α

′

(s)

where D is the Levi-Civita connection on R3
1 .

A ruled surface is generated by a one-parameter family of straight lines and it possesses a

parametric representation

X (s, v) = α (s) + ve (s) ,

where α (s) represents a space curve which is called the base curve and e is a unit vector

representing the direction of a straight line.

The striction point on a ruled surface X is the foot of the common normal between two

consecutive generators (or ruling ). The set of striction points defines the striction curve given
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as

β (s) = α (s) −
g
(
α

′

, e
′
)

g (e′ , e′)
e (s) [2].

The distribution parameter of the ruled surface X is defined by ([2])

Pe =
det
(
α

′

, e, e
′
)

‖e′‖2

and the ruled surface is developable if and only if Pe = 0.

§2. Ruled Surface Pair Generated by Darboux Vectors of a Curve and

Its Natural Lift in R3
1

In this section the darboux vector W of the natural lift α of a curve α are calculated in terms

of those of α in R3
1 . We obtained striction lines and distribution parameters of ruled surface

pair generated by Darboux vectors of the curve α and its natural lift α. Let α be a unit speed

timelike space curve. Then the natural lift α of α is a spacelike space curve.

Proposition 2.1 Let α be a unit speed timelike space curve and the natural lift α of the curve

α be a space curve with curvature κ and torsion τ . Then

κ (s) =
‖W‖
κ (s)

, τ (s) = −κ
′

(s) τ (s) + κ (s) τ
′

(s)

κ (s) ‖W‖2 .

Proposition 2.2 Let α be a unit speed timelike space curve and the natural lift α of the curve

α be a space curve.

(i) If the natural lift α is a unit speed spacelike space curve with a spacelike binormal, then

W̄ =
τ (s)

κ (s)
T −

(
κ

′

(s) τ (s) + κ (s) τ
′

(s)

κ (s) ‖W‖2

)
N + B

(ii) If the natural lift α is a unit speed spacelike space curve with a timelike binormal, then

W̄ =
τ (s)

κ (s)
T +

(
κ

′

(s) τ (s) + κ (s) τ
′

(s)

κ (s) ‖W‖2

)
N + B

Let X and X be two ruled surfaces which is given by

X (s, v) = α (s) + vC (s) , X (s, v) = α (s) + vC (s)

The striction curves of X and X are given byβ (s) = α (s) − λC (s) and β (s) = α (s) −
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µC (s),respectively. The distribution parameters of the ruled surfaces X and X are defined by

PC =
det
(
α

′

, C, C
′
)

‖C ′‖2 and PC =
det
(
α

′

, C, C
′)

∥∥∥C
′
∥∥∥

2 .

Proposition 2.3 If the natural lift α is a unit speed spacelike space curve with a timelike

binormal, then

λ =
τ

′

(s)

[κ′ (s)]
2 − [τ ′ (s)]

2 ‖W‖ ,

µ = −
∥∥W̄

∥∥κ (s)σ
′

(s)

−
[
−κ′(s)τ(s)+κ(s)τ ′(s)

κ(s)2
+ κ (s)σ (s)

]2
+ [σ′ (s)]

2
+ [σ (s) τ (s)]

2
,

PC = 0, PC =

σ (s) τ (s)
2 − κ (s)

(
−κ

′
(s)τ(s)+κ(s)τ

′
(s)

κ(s)2
+ κ (s)σ (s)

)

∣∣∣∣−
[
−κ′(s)τ(s)+κ(s)τ ′(s)

κ(s)2
+ κ (s)σ (s)

]2
+ [σ′ (s)]

2
+ [σ (s) τ (s)]

2

∣∣∣∣

where σ (s) = κ
′
(s)τ(s)+κ(s)τ

′
(s)

κ(s)‖W‖2 .

Proposition 2.4 If the natural lift α is a unit speed spacelike space curve with a spacelike

binormal, then

λ =
τ

′

(s)

[κ′ (s)]
2 − [τ ′ (s)]

2 ‖W‖ ,

µ =

∥∥W̄
∥∥κ (s)σ

′

(s)

−
[
−κ′(s)τ(s)+κ(s)τ ′(s)

κ(s)2
− κ (s)σ (s)

]2
+ [−σ′ (s)]

2
+ [−σ (s) τ (s)]

2
,

PC = 0, PC =

−σ (s) τ (s)
2 − κ (s)

(
−κ

′
(s)τ(s)+κ(s)τ

′
(s)

κ(s)2
− κ (s)σ (s)

)

∣∣∣∣−
[
−κ′ (s)τ(s)+κ(s)τ ′(s)

κ(s)2
− κ (s)σ (s)

]2
+ [−σ′ (s)]

2
+ [−σ (s) τ (s)]

2

∣∣∣∣

where σ (s) = κ
′
(s)τ(s)+κ(s)τ

′
(s)

κ(s)‖W‖2 .

Let α be a unit speed spacelike space curve with a spacelike binormal. Then the natural

lift α of α is a timelike space curve.

Proposition 2.5 Let α be a unit speed spacelike space curve with a spacelike binormal and the

natural lift α of the curve α be a space curve with curvature κ and torsion τ . Then

κ (s) =
‖W‖
κ (s)

, τ (s) =
−κ

′

(s) τ (s) + κ (s) τ
′

(s)

κ (s) ‖W‖2 .

.
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Proposition 2.6 Let α be a unit speed spacelike space curve with a spacelike binormal and the

natural lift α of the curve α be a space curve, then

W̄ =
τ (s)

κ (s)
T +

(
−κ

′

(s) τ (s) + κ (s) τ
′

(s)

κ (s) ‖W‖2

)
N + B.

.

Let X and X be two ruled surfaces which is given by

X (s, v) = α (s) + vC (s) , X (s, v) = α (s) + vC (s)

Proposition 2.7 The striction curves of X and X are given by β (s) = α (s) − λC (s) and

β (s) = α (s)− µC (s),respectively. The distribution parameters of the ruled surfaces X and X

are defined by PC =
det

(
α

′
,C,C

′
)

‖C′‖2 and PC =
det

(
α

′
,C,C

′
)

∥∥∥C
′
∥∥∥
2 . Then we have

λ = − τ
′

(s)

[κ′ (s)]
2

+ [τ ′ (s)]
2 ‖W‖ ,

µ = −

(
2τ (s) + σ

′

(s)
)

κ (s)
∥∥W̄

∥∥
[
−κ′(s)τ(s)+κ(s)τ ′(s)

κ(s)2

]2
− [2τ (s) + σ′ (s)]

2
+ [σ (s) τ (s)]

2
,

PC = 0, PC =

−κ (s)

(
κ(s)τ

′
(s)−κ

′
(s)τ(s)

κ(s)2
+ κ (s)σ (s)

)
+ σ (s) τ (s)2

∣∣∣∣
[
−κ′ (s)τ(s)+κ(s)τ ′(s)

κ(s)2
+ κ (s)σ (s)

]2
− [2τ (s) + σ′ (s)]

2
+ [σ (s) τ (s)]

2

∣∣∣∣

where σ (s) = κ
′
(s)τ(s)+κ(s)τ

′
(s)

κ(s)‖W‖2 .

Let α be a unit speed spacelike space curve with a timelike binormal. Then the natural

lift α of α is a spacelike space curve.

Proposition 2.8 Let α be a unit speed spacelike space curve with a timelike binormal and the

natural lift α of the curve α be a space curve with curvature κ and torsion τ .Then

κ (s) =
‖W‖
κ (s)

, τ (s) =
−κ

′

(s) τ (s) − κ (s) τ
′

(s)

κ (s) ‖W‖2 .

Proposition 2.9 Let α be a unit speed spacelike space curve with a timelike binormal and the

natural lift α of the curve α be a space curve.

(i) If the natural lift α is a unit speed spacelike space curve with a spacelike binormal, then

W̄ = − τ (s)

κ (s)
T +

(
−κ

′

(s) τ (s) − κ (s) τ
′

(s)

κ (s) ‖W‖2

)
N − B.
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(ii) If the natural lift α is a unit speed spacelike space curve with a timelike binormal, then

W̄ =
τ (s)

κ (s)
T +

(
κ

′

(s) τ (s) + κ (s) τ
′

(s)

κ (s) ‖W‖2

)
N + B.

Let X and X be two ruled surfaces which is given by

X (s, v) = α (s) + vC (s) , X (s, v) = α (s) + vC (s)

The striction curves of X and X are given by β (s) = α (s) − λC (s) and β (s) = α (s) −
µC (s),respectively. The distribution parameters of the ruled surfaces X and X are defined by

PC =
det
(
α

′

, C, C
′
)

‖C ′‖2 and PC =
det
(
α

′

, C, C
′)

∥∥∥C
′
∥∥∥

2 .

Proposition 2.10 If the natural lift α is a unit speed spacelike space curve with a timelike

binormal, then

λ = − τ
′

(s)

[τ ′ (s)]
2 − [κ′ (s)]

2 ‖W‖ ,

µ = −

(
2τ (s) + σ

′

(s)
)

κ (s)
∥∥W̄

∥∥
[
−κ′(s)τ(s)+κ(s)τ ′(s)

κ(s)2

]2
+ [2τ (s) + σ′ (s)]

2 − [σ (s) τ (s)]
2
,

PC = 0, PC =

κ (s)

(
κ(s)τ

′
(s)−κ

′
(s)τ(s)

κ(s)2
− κ (s)σ (s)

)
+ σ (s) τ (s)

2

∣∣∣∣
[
−κ′ (s)τ(s)+κ(s)τ ′(s)

κ(s)2
− κ (s)σ (s)

]2
+ [2τ (s) + σ′ (s)]

2 − [σ (s) τ (s)]
2

∣∣∣∣

where σ (s) = κ
′
(s)τ(s)+κ(s)τ

′
(s)

κ(s)‖W‖2 .

Proposition 2.11 If the natural lift α is a unit speed spacelike space curve with a spacelike

binormal, then

λ = − τ
′

(s)

[τ ′ (s)]
2 − [κ′ (s)]

2 ‖W‖ ,

µ = −

(
−2τ (s) + σ

′

(s)
)

κ (s)
∥∥W̄

∥∥
[
−−κ′(s)τ(s)+κ(s)τ ′(s)

κ(s)2

]2
+ [−2τ (s) + σ′ (s)]

2 − [σ (s) τ (s)]
2
,

PC = 0, PC =

κ (s)

(
−κ(s)τ

′
(s)−κ

′
(s)τ(s)

κ(s)2
+ κ (s)σ (s)

)
− σ (s) τ (s)

2

∣∣∣∣
[
−−κ′(s)τ(s)+κ(s)τ ′(s)

κ(s)2
+ κ (s)σ (s)

]2
+ [−2τ (s) − σ′ (s)]

2 − [−σ (s) τ (s)]
2

∣∣∣∣

where σ (s) = κ
′
(s)τ(s)+κ(s)τ

′
(s)

κ(s)‖W‖2 .
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Example 2.1 Let α (s) =
(

2
√

3
3 s, 1

3 cos
(√

3s
)
, 1

3 sin
(√

3s
))

be a unit speed (timelike curve)

timelike circular helix with

T (s) =

(
2
√

3

3
,−

√
3

3
sin
(√

3s
)

,

√
3

3
cos
(√

3s
))

,

N (s) =
(
0,− cos

(√
3s
)

,− sin
(√

3s
))

,

B (s) =

(
−
√

3

3
,
2
√

3

3
sin
(√

3s
)

,−2
√

3

3
cos
(√

3s
))

and κ = 1, τ = 2,

C (s) = (1, 0, 0) .

X (s, t) =

(
2
√

3

3
s + t,

1

3
cos
(√

3s
)

,
1

3
sin
(√

3s
))

and

X̄ (s, t) =

(
2
√

3

3
+

2t√
3
,−

√
3

3
sin
(√

3s
)

,

√
3

3
cos
(√

3s
)

+
t√
3

)
.

1.eps

Figure 1

Example 2.2 Let α (s) =
(
cosh

(
s√
2

)
, s√

2
, sinh

(
s√
2

))
be a unit speed spacelike hyperbolic

helix with

T (s) =

(
1√
2

sinh

(
s√
2

)
,

1√
2
,

1√
2

cosh

(
s√
2

))

N (s) =

(
cosh

(
s√
2

)
, 0, sinh

(
s√
2

))
,
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B (s) =

(
− 1√

2
sinh

(
s√
2

)
,

1√
2
,− 1√

2
cosh

(
s√
2

))
, and κ =

1

2
, τ =

1

2

C (s) =

(
sinh

(
s√
2

)
, 0, cosh

(
s√
2

))
,

X (s, t) =

(
cosh

(
s√
2

)
+ t sinh

(
s√
2

)
,

s√
2
, sinh

(
s√
2

)
+ t cosh

(
s√
2

))

and

X̄ (s, t) =

(
1√
2

sinh

(
s√
2

)
,

1√
2

+
2√
2
t,

1√
2

cosh

(
s√
2

))

2.eps

Figure 2

Example 2.3 Let α (s) =
(√

3
3 s, 2

3 cos
(√

3s
)
, 2

3 sin
(√

3s
))

be a unit speed (spacelike curve

with timelike binormal) spacelike circular helix with

T (s) =

(√
3

3
,−2

√
3

3
sin
(√

3s
)

,
2
√

3

3
cos
(√

3s
))

,

N (s) =
(
0,− cos

(√
3s
)

,− sin
(√

3s
))

,

B (s) =

(
2
√

3

3
,−

√
3

3
sin
(√

3s
)

,

√
3

3
cos
(√

3s
))

and κ = 2, τ = 1

C (s) = (1, 0, 0)

X (s, t) =

(√
3

3
s + t,−2

3
cos
(√

3s
)

,
2

3
sin
(√

3s
))

and

X̄ (s, t) =

(√
3

3
s − 1√

3
t,−2

√
3

3
sin
(√

3s
)

,
2
√

3

3
cos
(√

3s
)
− 2√

3
t

)
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3.eps

Figure 3
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Abstract: The book graph denoted by Bn,2 is the Cartesian Product Sn+1 × P2 where

Sn+1 is a star graph with n vertices of degree 1 and one vertex of degree n and P2 is the path

graph of 2 vertices. Let Xn,p denote the generalized form of Book graph where a family of

p cycles which are n in number, is merged at a common edge. The generalized flower graph

is obtained by merging t copies of Xn,p with a base cycle Ct of length t at the common

edges. The resultant structure looks like flower with petals. In this paper we discuss some

properties satisfied by Tutte polynomial of this special graph and the related graphs.

Key Words: Tutte polynomial, recurrence relation, flower graph.

AMS(2010): 05C30, 05C99, 68R05.

§1. Introduction and Preliminaries

Tutte polynomial is a polynomial in two variables x, y with remarkable properties and it can

be defined for a graph, matrix and more generally for matroids. Tutte polynomial is closely

associated with many graphical invariants and in fact the following are the special cases of

Tutte polynomial along particular curves of (x, y) plane.

(1) The chromatic and flow polynomial of a graph;

(2) The partition function of a Q-state Pott’s model;

(3) The Jone’s polynomial of an alternating knot;

(4) The weight enumerator of a linear code over GF (q);

(5) The all terminal reliability probability of a network;

(6) The number of spanning trees,number of forests, number of connected spanning sub-

graphs, the dimension of bicycle space and so on.

Tutte polynomial is widely studied for the reason that it provides structural information

about the graph.

Definition 1.1 (i) Let G = (V, E) be an undirected connected multi-graph. The Tutte polyno-

1Received November 3, 2015, Accepted May 12, 2016.



30 Nithya Sai Narayana

mial of the graph G is given by

T (G, x, y) = 1 if E(G) = φ;

= xT (G.e, x, y) if e ∈ E and e is a cut edge;

= yT (G − e, x, y) if e ∈ E and e is a loop;

= T (G − e, x, y) + T (G.e, x, y) if e ∈ E and e is neither a loop nor a cut edge.

(ii) If G is a disconnected graph with connected components G1, G2, · · · , Gt with t ≥ 2,

then the Tutte Polynomial of G denoted by T (G, x, y) is defined as T (G, x, y) =
t∏

i=1

T (Gi, x, y).

Tutte polynomial of some of standard graphs are given below.

Theorem 1.2 Let Tn be a tree on n vertices and let Cn be a cycle on n vertices then

(1) T (Tn, x, y) = xn−1;

(2) T (Cn, x, y) = y +
n−1∑
i=1

xi.

Theorem 1.3 Let G be a bi connected graph. Let u, v be two vertices in G such that u, v are

joined by a path P s of length s where degree of each vertex in P s is two except possibly for u, v

then

T (G) = (1 + x + x2 + · · ·xs−1)T (G − P s) + T (G.P s).

Proof Let e1, e2, · · · es be the s edges in the path P s, then

T (G) = T (G − e1) + T (G.e1)

= xs−1T (G − P s) + xs−2T (G − P s) + · · ·xs−sT (G − P s) + T (G.P s)

(G is bi − connected, et is not a bridge in G − G1 − G2 · · · − Gt−1)

= (1 + x + x2 + · · ·xs−1)T (G − P s) + T (G.P s). 2
We study the Tutte polynomial of generalized Book graph. Cartesian product of two graphs

G1, G2 denoted by G1 × G2 is a graph with V (G1 × G2) = V (G1) × V (G2) and two vertices

(u1, v1), (u2, v2) of G1 × G2 are adjacent if and only if either u1 = u2 and (v1, v2) is an edge in

G2 or v1 = v2 and (u1, u2) is an edge of G1. The book graph denoted by Bn,2 or simplyBn is

the Cartesian Product Sn+1 × P2 where Sn+1 is a star graph with n vertices of degree 1 and

one vertex of degree n and P2 is the path graph of 2 vertices. It can be observed that book

graphs are planar. Some book graphs and their planar representation are given below.

Figure 1 Book graph B4 , B5 and their Planar representation
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We make a generalization of this graph. Through out this section T (G, x, y) = T (G)

denotes the Tutte polynomial for the graph G. We make use of the following notation. Xn,p

denote a graph with n number of p-cycles with a common edge e = xy and let Yn,p = Xn,p − e

and Zn,p = Xn,p.e. Note that Zn,p is actually a graph with n number of p − 1 cycles with a

common vertex.

Figure 2 X3,5 , X5,3 ,X2,6

Thus Bn = Xn,4 is a particular case of the graph we have defined which we call as gener-

alized book graph. We first arrive at some recurrence relation satisfied by these graphs. Before

we prove the relations satisfied by these graphs we will prove some preliminary results.

Notations and Conventions 1.4

(1) Let G1 and G2 be two disjoint graphs each of them having a unique identified vertex.

The graph obtained by merging an identified vertex of G1 to an identified vertex of G2 is

denoted by G1 × G2.

(2) Let G1, G2 be two disjoint graphs each of them having two designated vertices namely

x, y and x′, y′. The graph obtained by merging the identified vertex x with x′ and the vertex y

with y′ is denoted by G1 ∗ G2.

(3) Let G be a graph with an identified vertex v. The graph obtained by taking n copies

of G and joining all the copies at the identified vertex v is denoted by G(n).

(4) Let G1, G2 be two disjoint graphs each with two identified vertices x, y and x′, y′

respectively. Let xy ∈ E(G) and x′y′ ∈ E(G′). The graph obtained by merging the two

vertices x, x′ and y, y′ and the edges xy and x′y′ to a single edge is denoted by G1 ⊙ G2.

Proposition 1.5 G be a graph which can be expressed as G = H × Pl where Pl is a tree of

order l + 1, then T (G) = xlT (H).

Proposition 1.6 T (C
(n)
p ) = T (Cp)

n =

[
y +

p−1∑
k=1

xk

]n

.

Proof Induction on n. For n = 1, T (Cp) = y+
p−1∑
k=1

xk by Theorem 1.2. Let v be the identified

vertex. Assume that the result is true for n− 1. Let G = C
(n)
p . Note that C

(n)
p = C

(n−1)
p ×Cp.
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Let e be any edge adjacent to v. By recurrence relation

T (G) = T (G − e) + T (G.e)

= T (C(n−1)
p × Pp−1) + T (C(n−1)

p × Cp−1)

= xp−1T (C(n−1)
p ) + T (C(n−1)

p × Cp−1)

= xp−1T (C(n−1)
p ) + T (C(n−1)

p × Pp−2) + T (C(n−1)
p × Cp−2)

= xp−1T (C(n−1)
p ) + xp−2T (C(n−1)

p ) + T (C(n−1)
p × Cp−2)

by using Proposition 1.5

· · · · · · · · · · · · · · · · · · · · · · · ·
= (xp−1 + xp−2 + · · · + x)T (C(n−1)

p ) + T (C(n−1)
p × C1)

= (xp−1 + xp−2 + · · · + x)T (C(n−1)
p ) + yT (C(n−1)

p ) as C1 is a loop

= (xp−1 + xp−2 + · · · + x + y)T (C(n−1)
p )

= {y +

p−1∑

k=1

xk}
[
y +

p−1∑

k=1

xk

]n−1

=

[
y +

p−1∑

k=1

xk

]n

. 2
§2. Tutte Polynomial of Generalized Book Graph

Theorem 2.1 Let Xn,p denote a graph with n number of p-cycles with a common edge e = xy

and let Yn,p = Xn,p − e then,

Xn,p and Yn,p satisfy the following recurrence relations

(i) T (Xn,p) = T (Yn,p) + T (Cp−1)
n;

(ii) T (Yn,p) =

[
p−2∑
k=1

xk

]
T (Yn−1,p) + T (Xn−1,p) for n ≥ 2 with T (Y1,p) = xp−1.

Proof (i) e is neither a loop nor a cut edge and hence using recurrence relation of Tutte

polynomial

T (Xn,p) = T (Xn,p − e) + T (Xn,p.e)

= T (Yn,p) + T (C
(n)
p−1) = T (Yn,p) + T (Cp−1)

n

using Proposition 1.6. This proves (1).

(ii) Clearly, Y1,p = a path of length p − 1 and hence T (Y1,p) = xp−1. We prove this result

by induction on n.

For n = 2, T (Y2,p) = T (Y2,p − e′) + T (Y2,p.e
′) where e′ is any edge of Y2,p adjacent to x
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other than e.

T (Y2,p) = xp−2T (Y1,p) + T(Y1,p ∗ Pp−2)

= xp−2T (Y1,p) + xp−3T (Y1,p) + T(Y1,p ∗ Pp−3)

= xp−2T (Y1,p) + xp−3T (Y1,p) + · · · + xT (Y1,p) + T(Y1,p ∗ P1)

=

[
p−2∑

k=1

xk

]
T (Y1,p) + T (X1,p),

which proves the result for n = 2.

Assume that the result is true for a graph Yn−1,p. Consider Yn,p and let e′ is any edge of

Yn−1,p adjacent to x other than e. Then,

T (Yn,p) = T (Yn−1,p − e′) + T (Yn−1,p.e
′)

= xp−2T (Yn−1,p) + T(Yn−1,p ∗Pp−2)

= xp−2T (Yn−1,p) + xp−3T (Yn−1,p) + T(Yn−1,p ∗Pp−3)

= xp−2T (Yn−1,p) + xp−3T (Yn−1,p) + · · · + xT (Yn−1,p) + T(Yn−1,p ∗ P1)

=

[
p−2∑

k=1

xk

]
T (Yn−1,p) + T (Xn−1,p),

which proves the result for n ≥ 2. 2
Theorem 2.2 (i) T (Yn,p) = bn−1xp−1 +

[
n−2∑
k=0

bk(b + y − 1)n−1−k

]
for n ≥ 2;

(ii) T (Xn,p) = bn−1xp−1 +

[
n−2∑
k=0

bk(b + y − 1)n−1−k

]
+ (b + y − 1)n, where b =

p−2∑
k=0

xk for

n ≥ 2.

Proof By Theorem 2.1,

T (Yn,p) =

[
p−2∑

k=1

xk

]
T (Yn−1,p) + T (Xn−1,p)

=

[
p−2∑

k=1

xk

]
T (Yn−1,p) + T (Yn−1,p) + T (Cp−1)

n−1

=

[
p−2∑

k=0

xk

]
T (Yn−1,p) + T (Cp−1)

n−1

= bT (Yn−1,p) + T (Cp−1)
n−1.

Note that T (Cp−1) = xp−2 + xp−3 + · · · + x + y = b + y − 1. We solve the recurrence
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relation,

T (Y1,p) = xp−1,

T (Y2,p) = bT (Y1,p) + T (Cp−1)

= bxp−1 + (y + b − 1) = b1xp−1 +

[
2−2∑

k=0

bk(b + y − 1)2−1−k

]
,

T (Y3,p) = bT (Y2,p) + T (Cp−1)
2

= b2xp−1 + bT (Cp−1) + (y + b − 1)2

= b2xp−1 + b(y + b − 1) + (y + b − 1)2

= b3−1xp−1 +

[
3−2∑

k=0

bk(b + y − 1)3−1−k

]
,

T (Y4,p) = bT (Y3,p) + T (Cp−1)
3

= b3xp−1 + b2T (Cp−1) + bT (Cp−1)
2 + T (Cp−1)

3

= b3xp−1 + b2(b + y − 1) + b(b + y − 1)2 + (b + y − 1)3

= b4−1xp−1 +

[
4−2∑

k=0

bk(b + y − 1)4−1−k

]
.

Assume that by induction

T (Yn−1,p) = bn−2xp−1 +

[
n−3∑

k=0

bk(b + y − 1)n−2−k

]
,

T (Yn,p) = bT (Yn−1,p) + T (Cp−1)
n−1

= b

{
bn−2xp−1 +

[
n−3∑

k=0

bk(b + y − 1)n−2−k

]}
+ (b + y − 1)n−1

= bn−1xp−1 + b[(b + y − 1)n−2 + b(b + y − 1)n−3 + · · · + bn−3] + (b + y − 1)n−1

= bn−1xp−1 + (b + y − 1)n−1 + b(b + y − 1)n−2 + · · · + bn−2(b + y − 1)

= bn−1xp−1 +

[
n−2∑

k=0

bk(b + y − 1)n−1−k

]
.

This completes the proof of (i).

T (Xn,p) = T (Yn,p) + (b + y − 1)n

= bn−1xp−1 +

[
n−2∑

k=0

bk(b + y − 1)n−1−k

]
+ (b + y − 1)n,

which completes proof of (ii). 2
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Remark 2.3 For n = 1,

T (Xn,p) = T (Cp)

= xp−1 + xp−2 + · · · + x + yxp−1 + (b + y − 1),

which matches with the Theorem 2.2

An equivalent representation of Tutte polynomial for generalized book graph is the follow-

ing.

Theorem 2.4 T (Xn,p) = xbn +

[
n−1∑
k=0

bk(y + b − 1)n−1−k

]
y

Proof By Theorem 2.2,

T (Xn,p) = bn−1xp−1 +

[
n−2∑

k=0

bk(b + y − 1)n−1−k

]
+ (b + y − 1)n <

b = xp−2 + xp−3 + · · · + x + 1 =
xp−1 − 1

x − 1

⇒ xp−1 = b(x − 1) + 1 = bx − b + 1

⇒ xp−1bn−1 = (bx − b + 1)bn−1 = xbn − bn + bn−1.

Hence,

T (Xn,p) = xbn − bn + bn−1 +

[
n−2∑

k=0

bk(b + y − 1)n−1−k

]
+ (b + y − 1)n

= xbn − bn + bn−1 + (b + y − 1)n−1 + b(b + y − 1)n−2 + · · ·
+bn−2(b + y − 1) + (b + y − 1)n. (∗)

Now consider

xbn +

[
n−1∑

k=0

bk(y + b − 1)n−1−k

]
y

= xbn + y
[
(y + b − 1)n−1 + b(y + b − 1)n−2 + · · · + bn−1

]

= xbn + (y + b − 1 − (b − 1))
[
(y + b − 1)n−1 + b(y + b − 1)n−2 + · · · + bn−1

]

= xbn + (y + b − 1)
[
(y + b − 1)n−1 + b(y + b − 1)n−2 + · · · + bn−1

]

−(b − 1)
[
(y + b − 1)n−1 + b(y + b − 1)n−2 + · · · + bn−1

]

= xbn +
[
(y − b − 1)n + b(y − b + 1)n−1 + · · · + bn−1(y + b − 1)

]

−b(
[
(y + b − 1)n−1 + b(y + b − 1)n−2 + · · · + bn−1

]

+
[
(y + b − 1)n−1 + b(y + b − 1)n−2 + · · · + bn−1

]
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= xbn + (y + b − 1)n + b(y + b − 1)n−1 + · · · + (y + b − 1)bn−1

−b(y + b − 1)n−1 − b2(y + b − 1)n−2 − · · · − bn−1(b + y − 1) − bn

+(y + b − 1)n−1 + b(y + b − 1)n−2 + · · · + bn−2(y + b − 1) + bn−1

= xbn + (y + b − 1)n − bn + (y + b − 1)n−1 + b(y + b − 1)n−2 + · · ·
+bn−2(y + b − 1) + bn−1. (∗∗)

From (*) and (**) we get

T (Xn,p) = xbn +

[
n−1∑

k=0

bk(y + b − 1)n−1−k

]
y. 2

§3. The Generalized Flower Graph

The generalized flower graph is obtained by merging Xn,p at each of the edge of a basic cycle of

length t. We define the generalized complete flower graph and generalized Flower graph with

k petals.

Definition 3.1 (i) A graph in which i copies of Xn,p is taken and is merged with any of the i

out of t edges of the base cycle Ct of length t where, 1 ≤ i ≤ t− 1 is called a generalized flower

graph with i petals and is denoted by G
(i)
n,p,t.

(ii) A graph obtained by taking a base cycle Ct of length t and t copies of Xn,p and merging

the two graphs at the common edge of Xn,p with each of the edge of the basic cycle Ct is referred

to as Generalized Flower Graph or Generalized Complete Flower graph and is denoted by Gn,p,t.

In fact Gn,p,t = G
(t)
n,p,t.

(iii) The graph obtained by taking i copies of Xn,p with each of the cycle containing a

designated edge and joining the i copies at the end vertices of the designated edges is denoted

by H
(i)
n,p.

Figure 3 Generalized complete flower graph G2,4,5 and flower graph G
(3)
2,4,6

with 3 petals and generalized flower graph with one petal

Theorem 3.2 Let Xn,p has the common edge e. Let G
(1)
n,p,t be the generalized flower graph with
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one petal. Then,

T (G
(1)
n,p,t) = (1 + x + x2 + · · · + xt−2)T (Xn,p) + y(y + b − 1)n.

Proof Let e1 be any edge on Ct other than e. By deletion contraction formula we get

T (Gn,p,t) = xt−2T (Xn,p) + T (Gn,p,t−1)

= xt−2T (Xn,p) + xt−3T (Xn,p) + · · · + xT (Xn,p) + T (Gn,p,2)

= (x + x2 + · · · + xt−2)T (Xn,p) + T (Xn,p) + yT (Cn
p−1)

= (1 + x + x2 + · · · + xt−2)T (Xn,p) + y(y + b − 1)n,

which completes the proof. 2
Corollary 3.3 T (Gn,p,p) = bnxn−1 +

n∑
k=1

bk(b + y − 1)n−k + (y + b − 1)n+1

Proof By Theorem 2.5 taking p = t we get

T (Gn,p,p) = (1 + x + x2 + · · · + xp−2)T (Xn,p) + y(y + b − 1)n

= b

{
bn−1xp−1 +

[
n−2∑

k=0

bk(b + y − 1)n−1−k

]
+ (b + y − 1)n

}
+ y(y + b − 1)n

= bnxp−1 +

[
n−2∑

k=0

bk+1(b + y − 1)n−1−k

]
+ b(b + y − 1)n + y(y + b − 1)n

= bnxp−1 +

[
n−2∑

k=0

bk+1(b + y − 1)n−1−k

]
+ (b + y)(b + y − 1)n

= bnxp−1 +

[
n−2∑

k=0

bk+1(b + y − 1)n−1−k

]
+ (b + y − 1 + 1)(y + b − 1)n

= bnxp−1 +

[
n−2∑

k=0

bk+1(b + y − 1)n−1−k

]
+ (b + y − 1)n + (y + b − 1)n+1

= bnxp−1 + b(b + y − 1)n−1 + b2(b + y − 1)n−2 + · · · + bn−1(b + y − 1)

+(b + y − 1)n + (b + y − 1)n+1

= bnxp−1 +

[
n∑

k=0

bk+1(b + y − 1)n−k

]
+ (y + b − 1)n+1.

Lemma 3.4 Let u, v be two vertices of a graph G which are joined by n disjoint paths of length

p− 1, namely P1, P2, · · ·Pn such that degree of each of vertices in P1, P2, · · ·Pn other than u, v

is 2 in G and removal of these n paths does not disconnect u and v, then

T (G) = bnT (G′′) +

[
n−1∑

k=0

bk(y + b − 1)n−1−k

]
T (G′),
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where G′ is obtained from G by removing the n disjoint paths of length p − 1 between u, v and

identifying u, v and G′′ is the graph is obtained by removing the n disjoint paths of length p− 1

from G.

Proof Using Theorem 1.3, T (G) = bT (G − P1) + T (G.P1). But

T (G.P1) = T (Cn−1
p−1 × G′) = (y + b − 1)n−1T (G′).

Hence

T (G) = bT (G − P1) + (y + b − 1)n−1T (G′)

= b
[
bT (G − P1 − P2) + (y + b − 1)n−2T (G′)

]
+ (y + b − 1)n−1T (G′)

= b2T (G − P1 − P2) +
[
b(y + b − 1)n−2 + (y + b − 1)n−1

]
T (G′)

= b2T (G − P1 − P2 − P3) +
[
b2(y + b − 1)n−3 + b(y + b − 1)n−2

+(y + b − 1)n−1
]
T (G′)

· · · · · · · · · · · · · · · · · · · · · · · ·
= bnT (G − P1 − P2 · · ·Pn) +

[
bn−1(y + b − 1)0 + bn−2(y + b − 1)1 + · · ·

+b(y + b − 1)n−2 + (y + b − 1)n−1
]
T (G′)

= bnT (G′′) +

[
n−1∑

k=0

bk(y + b − 1)n−1−k

]
T (G′),

which completes the proof. 2
From the above theorem we get another method of proving Theorem 2.4.

Corollary 3.5 T (Xn,p) = xbn +

[
n−1∑
k=0

bk(y + b − 1)n−1−k

]
y.

Proof Applying Lemma 3.5 to Xn,pwe get G′′ = K2 and G′ = a single loop so that

T (G′′) = x , T (G′) = y and we obtain the result. 2
Theorem 3.6 Let H

(i)
n,p denote a graph obtained by taking i copies of Xn,p and joining it at a

common vertex in succession. Then, H
(i)
n,p = [T (Xn,p)]

i.

Proof Let e = uv be the common edge of the ith copy of Xn,p. If G′′ is the graph obtained

by removing the n distinct paths of length p−1, then the resultant graph is a graph obtained by

joining the i−1 copies of Xn,p with edge e = uv at the vertex u and hence T (G′′) = xT (H
(i−1)
n,p ).

If G′ is obtained by removing n disjoint paths of length p − 1 between u, v and identifying u

and v then, T (G′) = yT (H
(i−1)
n,p ). Thus using Lemma 3.4
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u v

u v

u

Figure 4 H
(i)
n,p graph G′′ and G′ segregation

T (H(i)
n,p) = xbnT (H(i−1)

n,p ) + y

[
n−1∑

k=0

bk(y + b − 1)n−1−k

]
T (H(i−1)

n,p )

=

{
xbn + y

[
n−1∑

k=0

bk(y + b − 1)n−1−k

]}
T (H(i−1)

n,p )

= [T (Xn,p)] T (H(i−1)
n,p )

= [T (Xn,p)]
2
T (H(i−2)

n,p ),

· · · · · · · · · · · · · · · · · · · · · · · ·

[T (Xn,p)]
i−1

T (H(1)
n,p) = [T (Xn,p)]

i−1
T (Xn,p) =

[
T (Xn,p)

i
]
. 2

Corollary 3.7 Let G denote a graph obtained by taking i copies of Xn,p and t copies of K2

and joining it in succession in any order then,

T (G) = xtT (H(i)
n,p) = xt [T (Xn,p)]

i
.

Theorem 3.8 Let Gn,p,t denote a graph obtained by taking t copies of Xn,p and taking ⊙
product with Ct in succession, then

T (Gn,p,t) = bn
t−2∑

k=0

(bn + αy)k(bnx + αy)t−1−k

+(bn + αy)t−2αy(b + y − 1)n + (bn + αy)t−2y(b + y − 1)2n,

where α =

[
n−1∑
k=0

bk(y + b − 1)n−1−k

]
.
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Proof Let G′′ be the graph obtained by removing n distinct paths of length p− 1 between

the two vertices which are end points of common edge e of any copy of Xn,p on the cycle Ct

and let G′ be the graph obtained by removing n distinct paths of length p− 1 as described for

G′′ and identifying the two end vertices of e in Ct. Then by Lemma 3.4.

Figure 5 Gn,p,t graph G′′ and G′ segregation

T (Gn,p,t) = bnT (G′′) + αT (G′),

where α =

[
n−1∑
k=0

bk(y + b − 1)n−1−k

]
. Also using deletion contraction formula of Tutte polyno-

mial T (G′) = yT (Gn,p,t−1) and

T (G′′) = T (H(t−1)
n,p ) + T (Gn,p,t−1) = T (Xn,p)

t−1 + T (Gn,p,t−1)

from Theorem 3.6. But by Corollary 3.5,

T (Xn,p) = xbn +

[
n−1∑

k=0

bk(y + b − 1)n−1−k

]
y = bnx + αy

Thus, T (G′′) = (bnx + αy)t−1 + T (Gn,p,t−1) and

T (Gn,p,t) = bn(bnx + αy)t−1 + bnT (Gn,p,t−1) + αyT (Gn,p,t−1)

= bn(bnx + αy)t−1 + (bn + αy)T (Gn,p,t−1)

= bn(bnx + αy)t−1 + (bn + αy)
[
bn(bnx + αy)t−2 + (bn + αy)T (Gn,p,t−2)

]

= bn(bnx + αy)t−1 + bn(bnx + αy)t−2(bn + αy) + (bn + αy)2T (Gn,p,t−2)

= bn(bnx + αy)t−1 + bn(bnx + αy)t−2(bn + αy)

+(bn + αy)2
[
bn(bnx + αy)t−3 + (bn + αy)T (Gn,p,t−3)

]

= bn(bnx + αy)t−1 + bn(bnx + αy)t−2(bn + αy)

+bn(bnx + αy)t−3(bn + αy)2 + (bn + αy)3T (Gn,p,t−3)

· · · · · · · · · · · · · · · · · · · · · · · ·
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= bn(bnx + αy)t−1 + bn(bnx + αy)t−2(bn + αy)

+bn(bnx + αy)t−3(bn + αy)2 + · · · + (bn + αy)t−2T (Gn,p,t−(t−2))

= bn(bnx + αy)t−1 + bn(bnx + αy)t−2(bn + αy) + bn(bnx + αy)t−3(bn + αy)2

+ · · · + (bn + αy)t−2T (Gn,p,2)).

But

T (Gn,p,2) = bnT (Xn,p) + αy(b + y − 1)n + y(b + y − 1)2n

= bn(bnx + αy) + αy(b + y − 1)n + y(b + y − 1)2n.

Thus

T (Gn,p,t) = bn(bnx + αy)t−1 + bn(bnx + αy)t−2(bn + αy)

+bn(bnx + αy)t−3(bn + αy)2 + · · · + bn(bnx + αy)2(bn + αy)t−3

+(bn + αy)t−2
[
bn(bnx + αy) + αy(b + y − 1)n + y(b + y − 1)2n

]

= bn(bnx + αy)t−1 + bn(bnx + αy)t−2(bn + αy)

+bn(bnx + αy)t−3(bn + αy)2 + · · ·
+bn(bnx + αy)2(bn + αy)t−3 + bn(bnx + αy)(bn + αy)t−2

+(bn + αy)t−2αy(b + y − 1)n + (bn + αy)t−2y(b + y − 1)2n

= bn
t−2∑

k=0

(bn + αy)k(bnx + αy)t−1−k

+(bn + αy)t−2αy(b + y − 1)n + (bn + αy)t−2y(b + y − 1)2n,

which completes the proof. 2
Theorem 3.9 T (G

(i)
n,p,t) = (1+x+ · · ·+xt−i−1)(bnx+αy)i+bn

i−2∑
k=0

(bn+αy)k(bnx+αy)i−1−k +

(bn + αy)i−2αy(b + y − 1)n + (bn + αy)i−2y(b + y − 1)2n.

Proof In G
(i)
n,p,t there are t−i sides of Ct without petals. Let e be any side of G

(i)
n,p,t without

petal. Clearly e is neither a loop nor a bridge. Applying deletion and contraction formula

G
(i)
n,p,t = xt−i−1T (H(i)

n,p) + T (G
(i)
n,p,t−1)

= xt−i−1T (H(i)
n,p) + xt−i−2T (H(i)

n,p) + T (G
(i)
n,p,t−2)

= (xt−i−1 + xt−i−2 + · · · + xt−i−(t−i))T (H(i)
n,p) + T (G

(i)
n,p,t−(t−i))

= (1 + x + · · · + xt−i−1)T (H(i)
n,p + T (G

(i)
n,p,i)

= (1 + x + · · · + xt−i−1)T (X i
n,p) + T (Gn,p,i)

= (1 + x + · · · + xt−i−1)(bnx + αy)i + bn
i−2∑

k=0

(bn + αy)k(bnx + αy)i−1−k

+(bn + αy)i−2αy(b + y − 1)n + (bn + αy)i−2y(b + y − 1)2n.
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§4. Conclusion

Tutte Polynomial has been an open topic for research for mathematicians for the last 30 years.

It is a two variable polynomial which reduces to many graph polynomials associated with the

graph. It gives various information about the graph like the number of spanning trees, number

of cyclic orientations not resulting in oriented cycles and colorability of graphs.

In this research paper, Tutte polynomial of many specialized graphs have been studied in

detail. The properties and Tutte polynomials of , generalized Book graph, Generalized Book

graph with petals, Complete Generalized Book graph have been arrived at which in turn reveal

various other related information by substituting appropriate values for the two variables.
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Abstract: The entire equitable dominating graph EEqD(G) of a graph G with vertex

set V ∪ S, where S is the collection of all minimal equitable dominating sets of G and two

vertices u, v ∈ V ∪ S are adjacent if u, v are not disjoint minimal equitable dominating sets

in S or u, v ∈ D, where D is the minimal equitable dominating set in S or u ∈ V and v is

a minimal equitable dominating set in S containing u. In this paper, we initiate a study of

this new graph valued function and also established necessary and sufficient conditions for

EEqD(G) to be connected and complete. Other properties of EEqD(G) are also obtained.

Key Words: Dominating set, equitable dominating set, entire equitable dominating graph,

Smarandachely dominating set.
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§1. Introduction

All graphs considered here are finite, undirected with no loops and multiple edges. We denote

by p the order(i.e number of vertices) and by q the size (i.e number of edges) of such a graph

G. Any undefined term and notation in this paper may be found in Harary [5].

A set of vertices which covers all the edges of a graph G is called vertex cover for G.

The smallest number of vertices in any vertex cover for G is called its vertex covering number

and is denoted by α0(G) or α0. A set of vertices in G is independent if no two of them are

adjacent. The largest number of vertices in such a set is called the vertex independence number

of G and is denoted by β0(G) or β0. The connectivity κ = κ(G) of a graph G is the minimum

number of vertices whose removal results a disconnected or trivial graph. Analogously the edge-

connectivity λ = λ(G) is the minimum number of edges whose removal results a disconnected

or trivial graph. The diameter of a connected graph is the maximum distance between two

vertices in G and is denoted by diam(G). If G and H are graphs with the property that the

identification of any vertex of G with an arbitrary vertex of H results in a unique graph (up to
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New Delhi, India. No.F.4-1/2006(BSR)/7-101/2007(BSR) dated: 20th June, 2012.
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isomorphism), then we write as G • H for this graph.

A subset D of V is called a dominating set of G if every vertex in V − D is adjacent to

at least one vertex in D. The domination number γ(G) of G is the minimum cardinality taken

over all minimal dominating sets of G. (See Ore [12]).

A subset D of V is called an equitable dominating set if for every v ∈ V − D, there exists a

vertex u ∈ D such that uv ∈ E(G) and |deg(u)−deg(v)| ≤ 1. The minimum cardinality of such

a dominating set is called the equitable domination number of G and is denoted by γe(G). For

more details about graph valued functions, domination number and their related parameters we

refer [1-4, 6 - 10, 12]. The opposite of equitable dominating set is the Smarandachely dominating

set with |deg(u) − deg(v)| ≤ 1 for ∀uv ∈ E(G).

The purpose of this paper is to introduce a new graph valued function in the field of

domination theory in graphs.

§2. Entire Equitable Dominating Graph

Definition 2.1 The entire equitable dominating graph EEqD(G) of a graph G with vertex set

V ∪ S, where S is the collection of all minimal equitable dominating sets of G and two vertices

u, v ∈ V ∪S adjacent if u, v are not disjoint minimal equitable dominating sets in S or u, v ∈ D,

where D is the minimal equitable dominating set in S or u ∈ V and v is a minimal equitable

dominating set in S containing u.

In Fig.1, a graph G and its entire equitable dominating graph EEqD(G) are shown. Here

D1 = {1, 3}, D2 = {1, 4}, D3 = {2, 3} and D4 = {2, 4} are minimal equitable dominating sets

of G.

b b b b
G:

1 2 3 4

b b

bb

b

b

b

b

D1

D2 D3

D4

EEqD(G):
1 3

24

Fig.1

§3. Preliminary Results

The following will be useful in the proof of our results.

Theorem 3.1([5]) For any nontrivial graph G, α0 + β0 = p = α1 + β1.

Theorem 3.2([5]) A connected graph G is Eulerian if and only if every vertex of G has even

degree.
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§4. Results

First we obtain a necessary and sufficient condition on a graph G such that the entire equitable

dominating graph EEqD(G) is connected.

Theorem 4.1 For any graph G with at least three vertices, the entire equitable dominating

graph EEqD(G) is connected if and only if ∆(G) < p − 1.

Proof Let ∆(G) < p − 1 and u, v be any two vertices in G. We consider the following

cases:

Case 1. If u and v are adjacent vertices in G, then there exist two not disjoint minimal equitable

dominating sets D1 and D2 containing u and v respectively. Therefore by the definition 2.1, u

and v are adjacent in EEqD(G).

Case 2. Suppose there exist two vertices u ∈ D1 and v ∈ D2 such that u and v are not

adjacent in G. Then there exists a minimal equitable dominating set D3 containing both u and

v and by definition 2.1, D1 and D2 are connected in EEqD(G).

Conversely, suppose EEqD(G) is connected. Suppose ∆(G) = p − 1 and u is a vertex of

degree p − 1. Then the degree of u in EEqD(G) is minimum. If every vertex of G has degree

p − 1, then every vertex of G forms a minimal equitable dominating set. Therefore EEqD(G)

has at least two components, a contradiction. Thus ∆(G) < p − 1. 2
Proposition 4.1 EEqD(G) = pk2 if and only if G = Kp; p ≥ 2.

Proof Suppose G = Kp; p ≥ 2. Then clearly each vertex of G will form a minimal equitable

dominating set. Hence by definition 2.1, EEqD(G) = pK2.

Conversely, suppose EEqD(G) = pK2 and G 6= Kp. Then there exists at least one minimal

equitable dominating set D containing two vertices of G. Then D will form C3 in EEqD(G), a

contradiction. Hence G = Kp; p ≥ 2. 2
Theorem 4.2 For any graph G, EEqD(G) is either connected or it has at least one component

which is K2.

Proof If ∆(G) < p − 1, then by Theorem 4.1, EEqD(G) is connected. If G is complete

graph Kp; p ≤ 2 and by Proposition 4.1, then each component of EEqD(G) is K2.

Next, we must prove that δ(G) < ∆(G) = p− 1. Let v1, v2,· · · , vn be the set of vertices in

G such that deg(vi) = p−1, then it is clear that {vi} forms a minimal equitable dominating set

and which forms a component isomorphic to K2. Hence EEqD(G) has at least one component

which is K2. 2
In the next theorem, we characterize the graphs G for which EEqD(G) is complete.

Theorem 4.3 EEqD(G) = Kp+2 if and only if G is K1,p; p ≥ 3.

Proof Suppose G = K1,p; p ≥ 3. Then there exists a minimal equitable dominating set D
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contains all the vertices of G i.e |D| = |{u, v1, v2, v3, · · · , vp}| = p+1. Hence EEqD(G) = Kp+2.

Conversely, EEqD(G) = Kp+2, then we prove that G is K1,p; p ≥ 3. Let us suppose that,

G 6= K1,p; p ≥ 3. Then there exists a minimal equitable dominating set D of cardinality is

maximum p i.e |D| = |{v1, v2, v3, · · · , vp}| = p, a contradiction. Therefore G must be K1,p; p ≥
3. 2
Theorem 4.4 Let G be a nontrivial connected graph of order p and size q. The entire equitable

dominating graph is a graph with order 2p and size p if and only if G = Kp; p ≥ 2.

Proof Let G be a complete graph with p ≥ 2, then by Proposition 4.1, G = Kp; p ≥ 2.

Conversely, suppose EEqD(G) be a (2p, p) graph. Then pK2 is the only graph with order

2p and size q. 2
In the next results, we obtain the bounds on the order and size of EEqD(G).

Theorem 4.5 For any graph G, 2p ≤ p′ ≤ p(p−1)
2 + 1, where p′ denotes the number of vertices

in EEqD(G). Further, the lower bound is attained if and only if G is either P4 or Kp; p ≥ 2

and upper bound is attained if and only if G is K3 ∪ K2, K3 • K2 or C4 ∪ K1.

Proof The lower bound follows from the fact that the twice the number of vertices in G

and the upper bound follows that the maximum number of edges in G.

Suppose the lower bound is attained. Then every vertex of G forms a minimal equitable

dominating set or every vertex of G is in exactly two minimal equitable dominating sets. This

implies that the necessary condition.

Conversely, suppose G is P4 or Kp; p ≥ 2. Then by definition of entire equitable dominating

graph, V (EEqD(G)) = 2p. If the upper bound is attained. Then G must be one of the following

graphs are K3 ∪ K2, K3 • K2 or C4 ∪ K1.

If G = K3 ∪ K2, then every vertex of G is in exactly two minimal equitable dominating

sets hence

V (EEqD(G)) =
p(p − 1)

2
+ 1 =

pq

2
+ 1.

Suppose G = K3 • K2. Then the pendant vertex of G is in all the minimal equitable

dominating sets and forms (p − 1) minimal equitable dominating sets. Therefore the upper

bound holds.

Now if G is C4∪K1. Then every equitable dominating sets contains an isolated vertex and

they are not disjoint sets and by definition 2.1. Therefore upper bound holds.

Conversely, suppose G is one of the following graphs K3 ∪ K2, K3 • K2 or C4 ∪ K1. Then

it is obvious that V (EEqD(G)) = p(p−1)
2 + 1. 2

Theorem 4.6 For any graph G, p ≤ q′ ≤ p(p+1)
2 + 1, where q′ denotes the number of edges in

EEqD(G). Further, the lower bound is attained if and only G = Kp ≥ 2 and the upper bound

is attained if and only if G is K3 ∪ K1.

Proof The proof follows from Theorem 4.5. 2
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In the next result, we find the diameter of EEqD(G).

Theorem 4.7 Let G be any graph with ∆(G) < p − 1, then diam(EEqD(G)) ≤ 2, where

diam(G) is the diameter of G.

Proof Let G be any graph with ∆(G) < p−1, then by Theorem 4.1, EEqD(G) is connected.

Let u, v be any arbitrary vertices in EEqD(G). We consider the following cases.

Case 1. Suppose u, v ∈ V , u and v are nonadjacent in G. Then there exists a minimal

equitable dominating set containing u and v and by definition 2.1, dEEqD(G)(u, v) = 1. If u and

v are adjacent in G and there is no minimal equitable dominating set containing u and v, then

there exists another vertex w ∈ V which is not adjacent to both u and v. Let D1 and D2 be

two minimal equitable dominating sets containing (u, w) and (w, v) respectively. This implies

that dEEqD(G)(u, v) = 2.

Case 2. Suppose u ∈ V and v ∈ S. Then v = D is a minimal equitable dominating set of

G. If u ∈ S, then u and v are adjacent in EEqD(G). Otherwise, there exists another vertex

w ∈ D. This implies that

dEEqD(G)(u, v) ≤ dEEqD(G)(u, w) + dEEqD(G)(w, v) = 2.

Case 3. Suppose u, v ∈ S. Then u ∈ D1 and v ∈ D2 are two minimal equitable dominating

sets of G and by Definition 2.1, dEEqD(G)(u, v) = 1. 2
We now characterize graphs G for which SEqD(G) = EEqDG. A semientire equitable

dominating graph SEqD(G) of a graph G is the graph with vertex set V ∪ S and two vertices

u, v ∈ V ∪ S adjacent if u, v ∈ D, where D is a minimal equitable dominating set or u ∈ V and

v = D is a minimal equitable dominating set containing u ([1]).

Proposition 4.2([3]) The semientire equitable dominating graph SEqD(G) is pK2 if and only

if G = Kp ; p ≥ 2.

Remark 4.1([3]) For any graph G, SEqD(G) is a subgraph of EEqD(G).

Theorem 4.8 For any graph G, SEqD(G) ⊆ EEqD(G). Further, equality G, SEqD(G) =

EEqD(G) if and only if G has exactly one minimal equitable dominating set containing all

vertices of G.

Proof By Remark 4.1, SEqD(G) ⊆ EEqD(G). Suppose SEqD(G) = EEqD(G). Then by

Theorem 4.3, D is the only minimal equitable dominating set contains all the vertices of G.

Therefore G must be K1,n; n ≥ 3.

The converse is obvious. 2
In the next results, we discuss about α0 and β0 of EEqD(G).

Theorem 4.9 For any graph G with no isolated vertices,

(1) α0(EEqD(G)) = |S|+ 1, where S is the collection of all minimal equitable dominating
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sets of G;

(2) β0(EEqD(G)) = γ(G).

Proof (i) Let G be graph of order p. Let S = {s1, s2, · · · si} be the set of all minimal

equitable dominating sets. Then by definition 2.1 and Theorem ??. Therefore the minimum

number of vertices in EEqD(G) which covers all the edges. Hence α0(EEqD(G)) = |S| + 1.

(ii) By definition of EEqD(G), for any vertex vi ; 1 ≤ i ≤ p of EEqD(G) are not adjacent.

Hence these vertices forms a maximum independent set of EEqD(G). Hence (ii) follows. 2
In the next two results, we prove the vertex connectivity and edge- connectivity of EEqD(G).

Theorem 4.10 For any graph G, κ(EEqD(G)) = min{min(degEEqD(G)1≤i≤p
vi), min1≤j≤n|Sj |},

where Sj’s is the collection of all minimal equitable dominating sets of G.

Proof Let G be any graph with order p and size q. We consider the following cases.

Case 1. Let u ∈ v′i(EEqD(G)) for some i, having the minimum degree among all v′i in

EEqD(G). If the degree of u is less than any other vertex in EEqD(G), then by deleting the

vertices which are adjacent to u, results a disconnected graph.

Case 2. Let v ∈ Sj for some j, having the minimum degree among all Sj ’s in EEqD(G). If

degree of v is less than any other vertex in EEqD(G), then by deleting all the vertices which

are adjacent to v. This results the graph is disconnected. Hence the result follows. 2
Theorem 4.11 For any graph G, λ(EEqD(G)) = min{min(degEEqD(G)1≤i≤p

vi), min1≤j≤n|Sj |},
where Sj’s is the collection of all minimal equitable dominating sets of G.

Proof Let G be any (p, q) graph. We consider two cases.

Case 1. Let u ∈ v′i(EEqD(G)), having minimum degree among all v′i in EEqD(G). If the

degree of u is less than any other vertex in EEqD(G), then by deleting those edges of EEqD(G)

which are incident with u, results a disconnected graph.

Case 2. Let v ∈ Sj , having the minimum degree among all vertices of Sj . If degree of v is

less than any other vertex in EEqD(G), then by deleting those edges which are adjacent to v,

results in a disconnected. Hence the result follows. 2
Next, we prove the necessary and sufficient condition for EEqD(G) to be Eulerian.

Theorem 4.12 For any graph G, EEqD(G) is Eulerian if and only if one of the following

conditions are satisfied:

(1) There exists a vertex u ∈ V is in all minimal equitable dominating sets and cardinality

of every minimal equitable dominating set D of G is even;

(2) If v ∈ V is a vertex of odd degree, then it is in odd number of minimal equitable

dominating sets, otherwise it is in even number of minimal equitable dominating sets of G.

Proof Suppose ∆ < p−1 and by Theorem 4.1, EEqD(G) is connected. Suppose EEqD(G)
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is Eulerian. on the contrary if condition (i) is not satisfied, then there exists a minimal equitable

dominating set contains odd number of vertices and does not contains a vertex of odd degree,

a contradiction. Therefore by Theorem 3.2, EEqD(G) is Eulerian. Hence condition (1) holds.

Suppose (2) does not hold. Then there exists v ∈ V of even degree which is in odd number

of minimal equitable dominating sets, a contradiction. Hence (ii) hold.

Conversely, suppose the conditions (1) and (2) are satisfied. Then every vertex of EEqD(G)

has even degree and hence EEqD(G) is Eulerian. 2
§5. Domination in EEqD(G)

We calculate the domination number of EEqD(G) of some standard class of graphs.

Theorem 5.1 For any graph G with no isolated vertices.

(1) If G = Kp; p ≥ 2, then γ(EEqD(Kp) = p;

(2) If G = K1,p; p ≥ 3, then γ(EEqD(K1,p) = 1;

(3) If G = Cp, p ≥ 3, then γ(EEqD(Cp) = 2.

Theorem 5.2 For any graph G, γ(EEqD(G)) = 1, if and only if G is K1,p; p ≥ 3.

Proof If G is K1,p; p ≥ 3, then there exists a minimal equitable dominating set D con-

tains all the vertices of G and by Theorem ??, it is clear that, EEqD(G) is complete. Hence

γ(EEqD(G)) = 1.

Conversely, suppose γ(EEqD(G)) = 1 and G 6= K1,p; p ≥ 3. Then there exists a mini-

mal dominating set D in EEqD(G) of cardinality greater than or equal to 2, a contradiction.

Therefore G must be K1,p; p ≥ 3. 2
We conclude this paper by exploring one open problem on EEqD(G).

Problem 1. Give necessary and sufficient condition for a given graph G is entire equitable

dominating graph of some graph.
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Abstract: A radio mean labeling of a connected graph G is a one to one map f from the

vertex set V (G) to the set of natural numbers N such that for each distinct vertices u and

v of G, d (u, v) +
⌈

f(u)+f(v)
2

⌉
≥ 1 + diam (G). The radio mean number of f , rmn (f), is the

maximum number assigned to any vertex of G. The radio mean number of G, rmn (G) is

the minimum value of rmn (f) taken over all radio mean labeling f of G. In this paper we

find the radio mean number of Jelly fish, subdivision of jelly fish, book with n pentagonal

pages and 〈K1,n : m〉.

Key Words: Radio mean number, subdivision of a graph, complete bipartite graph.

AMS(2010): 05C78.

§1. Introduction

For standard terminology and notion we follow Harary [6] and Gallian [4]. Unless or otherwise

mentioned, G = (V (G), E(G)) is a simple, finite, connected and undirected graph. A graph

labeling is an assignment of integers to the vertices, or edges, or both, subject to certain

conditios. Graph labeling used for several areas of science and few of them are communication

network, coding theory, database management ete. In particular, radio labeling applied for

channel assignment problem. The concept of radio labeling was introduced by Chatrand et al.

[1] in 2001. Also in [2, 3], radio number of several graphs were found. Motivated by the above

labeling, Ponraj et al. [7] introduced the notion of radio mean labeling of G. A radio mean

labeling is a one to one mapping f from V (G) to N satisfying the condition

d (u, v) +

⌈
f (u) + f (v)

2

⌉
≥ 1 + diam (G) (1.1)

for every u, v ∈ V (G). The span of a labeling f is the maximum integer that f maps to a

vertex of Graph G. The radio mean number of G, rmn (G) is the lowest span taken over all

radio mean labelings of the graph G. The condition 1.1 is called radio mean condition. In

[7, 8, 9], they have found the radio mean number of some graphs like three diameter graphs,

lotus inside a circle, gear graph, Helms, Sunflower graphs, subdivision of complete bipartite,

corona of complete graph with path, one point union of cycle C6 and wheel related graphs. In

1Received October 26, 2015, Accepted May 15, 2016.
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this article we find the radio mean number of Jelly fish, subdivision of jelly fish, book with n

pentogonal pages and 〈K1,n : m〉. We write d(u, v) for the distance between the vertices u and

v in G. The maximum distance between any pair of vertices is called the diameter of G and

denoted by diam(G). Let x be any real number. Then ⌈x⌉ stands for smallest integer greater

than or equal to x.

§2. Main Results

First we look into the Jelly fish graphs. Jelly fish graphs J (m, n) obtained from a cycle C4 :

uvxyu by joining x and y with an edge and appending m pendent edges to u and n pendent

edges to v.

Theorem 2.1 The radio mean number of a jelly fish graph J(m, n) is m + n + 4.

Proof Let V (J(m, n)) = {u, v, x, y} ∪ {ui, vj : 1 ≤ i ≤ m; 1 ≤ j ≤ n} and E(J(m, n)) =

{uy, yv, vx, xu, xy} ∪ {uui, vvj : 1 ≤ i ≤ m; 1 ≤ j ≤ n}. It is clear that diam(J(m, n)) = 4.

The vertex labeling of J(1, 1), J(1, 2) given in Figure 1 shows that their radio mean numbers

are 6, 7 respectively.

b

b

b

b

b

b b

bb

b

b

bb

2 3
5

4
6 1

2

3
5

4

6

7 1

Figure 1

Assume m ≥ 2 and n ≥ 3. We define a vertex labeling f as follows. Assign the label 1 to

u1. Then put the label 2 to v1, 3 to v2 and so on. In this sequence vn received the label n + 1.

Then assign the label n + 2 to u2, n + 3 to u3 and so on. Clearly label of um is m + n. Then

assign the labels m + n + 3, m + n + 1, m + n + 2, m + n + 4 respectively to the vertices u, v,

x, y. Now we check the radio mean condition

d (u, v) +

⌈
f (u) + f (v)

2

⌉
≥ 1 + diam (J(m, n))

for all u, v ∈ V (J(m, n)). It is easy to verify that the vertices u, v, x, y are mutually satisfies

the radio mean condition.

Case 1. Check the pair (u, ui).

d (u, ui) +

⌈
f (u) + f (ui)

2

⌉
≥ 1 +

⌈
m + n + 3 + 1

2

⌉
≥ 6.
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Case 2. Consider the pair (u, ui).

d (u, vj) +

⌈
f (u) + f (vj)

2

⌉
≥ 3 +

⌈
m + n + 3 + 2

2

⌉
≥ 8.

Case 3. Check the pair (x, ui).

d (x, ui) +

⌈
f (x) + f (ui)

2

⌉
≥ 2 +

⌈
m + n + 2 + 1

2

⌉
≥ 6.

Case 4. Verify the pair (x, vj).

d (x, vj) +

⌈
f (x) + f (vj)

2

⌉
≥ 2 +

⌈
m + n + 2 + 2

2

⌉
≥ 7.

Case 5. Consider the pair (y, ui).

d (y, ui) +

⌈
f (y) + f (ui)

2

⌉
≥ 2 +

⌈
m + n + 4 + 1

2

⌉
≥ 7.

Case 6. Check the pair (y, vj).

d (y, vj) +

⌈
f (y) + f (vj)

2

⌉
≥ 2 +

⌈
m + n + 4 + 2

2

⌉
≥ 8.

Case 7. Check the pair (v, vj).

d (v, vj) +

⌈
f (v) + f (vj)

2

⌉
≥ 1 +

⌈
m + n + 1 + 2

2

⌉
≥ 5.

Case 8. Verify the pair (v, ui).

d (v, ui) +

⌈
f (v) + f (ui)

2

⌉
≥ 3 +

⌈
m + n + 1 + 1

2

⌉
≥ 7.

Case 9. Consider the pair (ui, vj).

d (ui, vj) +

⌈
f (ui) + f (vj)

2

⌉
≥ 4 +

⌈
1 + 2

2

⌉
≥ 6.

Hence rmn(J(m, n)) = m + n + 4. 2
Now, we find the radio mean number of subdivision of jelly fish graph. If x = uv is an edge

of G and w is not a vertex of of G, then x is subdivided when it is replaced by the lines uw and

wv. If every edges of G is subdivided, the resulting graph is the subdivision graph S(G).

Theorem 2.2 For a subdivision of graph Jm,n,

rmn (S (Jm,n)) =





16 if m = n = 1

2m + 2n + 11 otherwise
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Proof Let V (S(Jm,n)) = {zi : 1 ≤ i ≤ 9} ∪ {ui, u
′
i : 1 ≤ i ≤ m} ∪ {vj , v

′
j : 1 ≤ j ≤ n} and

E(S(Jm,n)) = {zizi+1 : 1 ≤ i ≤ 7} ∪ {z8z1, z7z9, z9z3} ∪ {z1ui, uiu
′
i, z5vj , vjv

′
j : 1 ≤ i ≤ m, 1 ≤

j ≤ n}. Clearly diam(S(Jm,n)) = 8.

Case 1. m = n = 1.

In this case 1 should be a label of the vertex u1 or u′
1 or v1 or v′1. If not, 1 is a label of any

one of the remaining vertices , say x, and suppose 2 is a label of any other vertex, say x′. Then

d(x, x′) +

⌈
f(x) + f(x′)

2

⌉
≤ 6 +

⌈
1 + 2

2

⌉
≤ 8,

a contradiction.

Subcase 1. u1 receives the label 1.

Then 2 should be a label of v′1 otherwise we get a contradiction as previously. For satisfying

the radio mean condition, 3 should be a label of a vertex which is at least at a distance 6 from the

vertex v′1 and 7 from u1, such a vertex doesn’t exists. Therefore, in this case, rmn(S(J1,1)) ≥ 14.

Subcase 2. u′
1 receives the label 1.

Then 2 should be a label of either v1 or v′1. Otherwise as in subcase a, the radio mean

condition is not satisfied. If v1 or v′1 receives the label 2 then 3 can not be a label of any of the

remaining vertices. Suppose 3 is a label of any other vertices , say x, then

d(u′
1, x) +

⌈
f(u′

1) + f(x)

2

⌉
≤ 8.

or

d(v′1, x) +

⌈
f(v′1) + f(x)

2

⌉
≤ 8.

or

d(v1, x) +

⌈
f(v1) + f(x)

2

⌉
≤ 8,

a contradiction. Thus, here also rmn(S(J1,1)) ≥ 14. By symmetry, the same case arises when

v1 or v′1 receives the label 1. Therefore in all the cases rmn(S(J1,1)) ≥ 14. Now we will try to

label the vertices of S(J1,1) with the property that the sum of the distance between the any pair

of vertices and the mean value of labels of that pair of vertices exceeds the integer 9. We drop

the label 1 from the set of integers {1, 2, · · · , 13} and add a new label 14 . Thus the labels are

{2, 3, · · · , 14}. Suppose l, m, n are any three vertices of S(J1,1) with their respective labels are

2, 3, 4. Then d(l, m) ≥ 6, d(l, n) ≥ 6 and d(m, n) ≥ 5. It is clear that, such type of vertices l,

m, n doesn’t exists. So rmn(S(J1,1)) ≥ 15. Now consider the labels from the set {3, 4, · · · , 15}.
Since the vertices with labels 3 and 4 are at least at a distance 5, any one of the vertices with

these label should be a pendent vertex and the other is either z6 or z9 or z4. Now suppose

either 3 or 4 is a label of z6 or z4 then 5 can not be a label of any of the rest vertices. So 3 or
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4 should be a label of z9. Suppose 3, 4 are the labels of u′
1, z9 then 5 should be the label of v′1.

Then 6 can not be a label of any of the remaining vertices. The same problem arises when 4, 3

are the labels of u′
1, z9. By symmetry, if we assign the label 3 or 4 to the vertex v′1 , then 6 can

not be a label of any other vertices as discussed above. Hence rmn(S(J1,1)) ≥ 16. Consider

the labeling given in Figure 2.
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Figure 2

From Figure 2, it is clear that rmn(S(J1,1)) ≤ 16. Hence rmn(S(J1,1)) = 16.

Case 2. m 6= 1, n 6= 1.

Subcase 1. m + n ≤ 4.

As discussed in case 1, clearly it is not possible to label the vertices of S(Jm,n) from the

sets {1, 2, · · · , 2m+2n+9} and {1, 2, · · · , 2m+2n+10}. That is rmn(S(Jm,n)) ≥ 2m+2n+11.

The following Figure 3 shows that rmn(S(Jm,n)) ≤ 2m + 2n + 11 where m + n ≤ 4.
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Hence rmn(S(Jm,n)) = 2m + 2n + 11 for m + n ≤ 4 and m 6= 1, n 6= 1.

Subcase 2. m + n > 4.

Define an injective map f : V (S(Jm,n)) → {1, 2, · · · , 2m + 2n + 11} by f(v′1) = 3, f(v1) =
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2m + 2n + 2,

f(u′
i) = i + 3, 1 ≤ i ≤ m

f(v′i) = m + 2 + i, 2 ≤ i ≤ n

f(vn−i+1) = m + n + 2 + i, 1 ≤ i ≤ n − 1

f(um−i+1) = m + 2n + 1 + i, 1 ≤ i ≤ m

f(z3) = 2m + 2n + 3, f(z2) = 2m + 2n + 4, f(z1) = 2m + 2n + 5, f(z8) = 2m + 2n + 6,

f(z7) = 2m + 2n + 7, f(z6) = 2m + 2n + 8, f(z5) = 2m + 2n + 9, f(z4) = 2m + 2n + 10 and

f(z9) = 2m + 2n + 11. Now we check the radio mean condition that

d(u, v) +

⌈
f(u) + f(v)

2

⌉
≥ 9.

for every pair of vertices u, v ∈ V (S(Jm,n)).

Case 1. Consider the pair (zi, zj).

d(zi, zj) +

⌈
f(zi) + f(zj)

2

⌉
≥ 1 +

⌈
2m + 2n + 3 + 2m + 2n + 4

2

⌉
≥ 15.

Case 2. Check the pair (ui, u
′
i).

d(ui, u
′
i) +

⌈
f(ui) + f(u′

i)

2

⌉
≥ 1 +

⌈
2m + 2n + 5

2

⌉
≥ 9.

Case 3. Check the pair (u′
i, uj), i 6= j.

d(u′
i, uj) +

⌈
f(u′

i) + f(uj)

2

⌉
≥ 3 +

⌈
4 + m + 2n + 2

2

⌉
≥ 9.

Case 4. Examine the pair (ui, uj).

d(ui, uj) +

⌈
f(ui) + f(uj)

2

⌉
≥ 2 +

⌈
m + 2n + 2 + m + 2n + 3

2

⌉
≥ 11.

Case 5. Verify the pair (u′
i, u

′
j).

d(u′
i, u

′
j) +

⌈
f(u′

i) + f(u′
j)

2

⌉
≥ 4 +

⌈
4 + 5

2

⌉
≥ 9.

Case 6. Check the pair (u′
i, zj).

d(u′
i, zj) +

⌈
f(u′

i) + f(zj)

2

⌉
≥ 2 +

⌈
2m + 2n + 3 + 4

2

⌉
≥ 11.

Case 7. Examine the pair (ui, zj).

d(ui, zj) +

⌈
f(ui) + f(zj)

2

⌉
≥ 1 +

⌈
2m + 2n + 3 + +m + 2n + 2

2

⌉
≥ 12.
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Case 8. Verify the pair (ui, vj).

d(ui, vj) +

⌈
f(ui) + f(vj)

2

⌉
≥ 6 +

⌈
m + 2n + 2 + m + n + 3

2

⌉
≥ 14.

Case 9. Consider the pair (ui, v
′
j).

d(ui, v
′
j) +

⌈
f(ui) + f(v′j)

2

⌉
≥ 7 +

⌈
m + 2n + 3 + 3

2

⌉
≥ 13.

Case 10. Examine the pair (u′
i, v

′
j).

d(v′i, v
′
j) +

⌈
f(u′

i) + f(v′j)

2

⌉
≥ 8 +

⌈
4 + 3

2

⌉
≥ 12.

Case 11. Verify the pair (u′
i, vj), i 6= j.

d(u′
i, vj) +

⌈
f(u′

i) + f(vj)

2

⌉
≥ 7 +

⌈
4 + m + n + 3

2

⌉
≥ 13.

Case 12. Check the pair (vi, vj), i 6= j.

d(vi, vj) +

⌈
f(vi) + f(vj)

2

⌉
≥ 2 +

⌈
m + n + 3 + m + n + 4

2

⌉
≥ 11.

Case 13. Verify the pair (v′i, v
′
j), i 6= j. In this case, obviously m ≥ 2.

d(v′i, v
′
j) +

⌈
f(v′i) + f(v′j)

2

⌉
≥ 4 +

⌈
3 + m + 4

2

⌉
≥ 9.

Case 14. Consider the pair (vi, v
′
i).

d(vi, v
′
i) +

⌈
f(vi) + f(v′i)

2

⌉
≥ 1 +

⌈
2m + 2n + 5

2

⌉
≥ 9.

Case 15. Check the pair (vi, v
′
j).

d(vi, v
′
j) +

⌈
f(vi) + f(v′j)

2

⌉
≥ 3 +

⌈
3 + m + n + 3

2

⌉
≥ 9.

Case 16. Verify the pair (vi, zj), i 6= j.

d(vi, zj) +

⌈
f(vi) + f(zj)

2

⌉
≥ 1 +

⌈
m + n + 3 + 2m + 2n + 3

2

⌉
≥ 12.

Case 17. Check the pair (v′i, zj), i 6= j.

d(v′i, zj) +

⌈
f(v′i) + f(zj)

2

⌉
≥ 2 +

⌈
3 + m + 2n + 3

2

⌉
≥ 10.
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Hence rmn(S(Jm,n)) ≤ 2m + 2n + 11 where m + n > 4. As in argument in case 1,

rmn(S(Jm,n)) ≥ 2m + 2n + 11 for this case also. Hence rmn(S(Jm,n)) = 2m + 2n + 11 when

m + n > 4. 2
Next investigation is about book with n pentogonal pages. n copies of the cylce C5 with

one edge common is called book with n pentogonal pages.

Theorem 2.3 The radio mean number of a book with n pentogonal pages, BPn, is 3n + 2.

Proof Let V (BPn) = {u, v}∪{ui, vi, wi : 1 ≤ i ≤ n} and E(BPn)∪{u, v}∪{uui, uiwi, wivi, viv :

1 ≤ i ≤ n}. Note that

diam(BPn) =





2 if n = 1

4 otherwise

For n = 1,2, the labeling given in Figure 4 satisfies the radio mean condition.
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For n ≥ 3, define an injective map f : V (BPn) → {1, 2, · · · , 3n + 2} by

f(wi) = i, 1 ≤ i ≤ n

f(vn−i+1) = n + i, 1 ≤ i ≤ n

f(un−i+1) = 2n + i 1 ≤ i ≤ n

f(u) = 3n + 1, and f(v) = 3n + 2

Now we check the condition

d(u, v) +

⌈
f(u) + f(v)

2

⌉
≥ 5

for every pair of vertices u, v ∈ V (BPn).

Case 1. Check the pair (ui, wi).

d(ui, wi) +

⌈
f(ui) + f(wi)

2

⌉
≥ 1 +

⌈
3n + 1

2

⌉
≥ 6.

Case 2. Verify the pair (vi, wi).

d(vi, wi) +

⌈
f(vi) + f(wi)

2

⌉
≥ 1 +

⌈
2n + 1

2

⌉
≥ 5.
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Case 3. Examine the pair (ui, vi).

d(ui, vi) +

⌈
f(ui) + f(vi)

2

⌉
≥ 2 +

⌈
n + 1 + 2n + 1

2

⌉
≥ 8.

Case 4. Consider the pair (wi, uj).

d(wi, uj) +

⌈
f(wi) + f(uj)

2

⌉
≥ 3 +

⌈
1 + 2n + 1

2

⌉
≥ 7.

Case 5. Consider the pair (vi, wj).

d(vi, wj) +

⌈
f(vi) + f(wj)

2

⌉
≥ 3 +

⌈
n + 1 + 1

2

⌉
≥ 6.

Case 6. Verify the pair (ui, vj).

d(ui, vj) +

⌈
f(ui) + f(vj)

2

⌉
≥ 3 +

⌈
2n + 1 + n + 2

2

⌉
≥ 9.

Case 7. Check the pair (wi, wj).

d(wi, wj) +

⌈
f(wi) + f(wj)

2

⌉
≥ 4 +

⌈
1 + 2

2

⌉
≥ 6.

Case 8. Examine the pair (ui, uj).

d(ui, uj) +

⌈
f(ui) + f(uj)

2

⌉
≥ 2 +

⌈
2n + 1 + 2n + 2

2

⌉
≥ 10.

Case 9. Consider the pair (vi, vj).

d(vi, vj) +

⌈
f(vi) + f(vj)

2

⌉
≥ 2 +

⌈
n + 1 + n + 2

2

⌉
≥ 7.

Since
⌈

f(u)+f(x)
2

⌉
=
⌈

3n+1+f(x)
2

⌉
≥ 6, the pair (u, x) for every x ∈ V (BPn) satisfy the

radio mean condition. Similarly the pair (v, y) for every y ∈ V (BPn) also satisfy the condition.

Hence rmn(BPn) ≤ 3n + 2. Since f is injective, rmn(BPn) = 3n + 2. 2
The following result is used for the next theorem.

Theorem 2.4([7]) Let G be a (p, q)-connected graph with diameter = 2. Then rmn(G) = p.

Let 〈K1,n : m〉 denotes the graph obtained by taking m disjoint copies of K1,n and joining

a new vertex to the centers of the m copies of K1,n. Let V (〈K1,n : m〉) = {v} ∪ {vi : 1 ≤ i ≤
m} ∪ {ui

j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and E(〈K1,n : m〉) = {vvi : 1 ≤ i ≤ m} ∪ {viu
i
j : 1 ≤ i ≤

m, 1 ≤ j ≤ n}.
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Theorem 2.5 For integers m, n ≥ 1,

rmn(〈K1,n : m〉) =





6 if m = 2, n = 1

mn + m + 1 otherwise

Proof First we observe that

diam(〈K1,n : m〉) =





2 if m = 1

4 otherwise

Case 1. m = 1.

In this case 〈K1,n : 1〉 ∼= K1,n+1, which is a 2-diameter graph and hence by Theorem 2.4,

rmn(〈K1,n : 1〉) = n + 2.

Case 2. m = 2.

Subcase 1. n = 1.

Since 1 and 2 are labels of the vertices which are at least at a distance 3, either 1 or 2 is a

label of a pendent vertex. Assume that the label of u1
1 is 1. Then 2 is a label of either v2 or u2

1.

Then 3 can not be a label of the remaining vertices. Similarly we can show that if 2 is a label

of u1
1, 1 is a label of either v2 or u2

1 and then 3 can not be a label of the remaining vertices.

Hence rmn(〈K1,1 : 2〉) ≥ 6. Obviously, Figure 5 shows that rmn(〈K1,1 : 2〉) ≤ 6.

b b b b b

2 6 3 4 5

Figure 5

Hence rmn(〈K1,1 : 2〉) = 6.

Subcase 2. n ≥ 2.

Define an injective function f : V (〈K1,n : 2〉) → {1, 2, · · · , 2n + 3} by f(u1
1) = 1, f(v) =

2n + 1, f(v1) = 2n + 3, f(v2) = 2n + 2,

f(u2
i ) = i + 1, 1 ≤ i ≤ n

f(u1
i ) = n + i, 1 ≤ 2 ≤ n.

We now check whether the labeling f is a required labeling. It is easy to check that the

pairs (v1, v2), (v1, v) and (v2, v) satisfy the radio mean condition.

Subcase 1. Check the pair (u2
i , u

2
j), i 6= j.

d(u2
i , u

2
j) +

⌈
f(u2

i ) + f(u2
j)

2

⌉
≥ 2 +

⌈
2 + 3

2

⌉
≥ 5.
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Subcase 2. Verify the pair (u2
i , u

1
j).

d(u2
i , u

1
j) +

⌈
f(u2

i ) + f(u1
j)

2

⌉
≥ 4 +

⌈
2 + 1

2

⌉
≥ 6.

Subcase 3. Consider the pair (u1
i , u

1
j), i 6= j.

d(u1
i , u

1
j) +

⌈
f(u1

i ) + f(u1
j)

2

⌉
≥ 2 +

⌈
1 + n + 2

2

⌉
≥ 5.

Subcase 4. Examine the pair (u1
i , v1).

d(u1
i , v1) +

⌈
f(u1

i ) + f(v1)

2

⌉
≥ 1 +

⌈
1 + 2n + 3

2

⌉
≥ 5.

Subcase 5. Check the pair (u1
i , v).

d(u1
i , v) +

⌈
f(u1

i ) + f(v)

2

⌉
≥ 2 +

⌈
1 + 2n + 1

2

⌉
≥ 5.

Subcase 6. Consider the pair (u1
i , v2).

d(u1
i , v2) +

⌈
f(u1

i ) + f(v2)

2

⌉
≥ 3 +

⌈
1 + 2n + 2

2

⌉
≥ 7.

Subcase 7. Verify the pair (u2
i , v2).

d(u2
i , v2) +

⌈
f(u2

i ) + f(v2)

2

⌉
≥ 1 +

⌈
2 + 2n + 2

2

⌉
≥ 5.

Subcase 8. Check the pair (u2
i , v).

d(u2
i , v) +

⌈
f(u2

i ) + f(v)

2

⌉
≥ 2 +

⌈
2 + 2n + 1

2

⌉
≥ 6.

Subcase 9. Examine the pair (u2
i , v1).

d(u2
i , v1) +

⌈
f(u2

i ) + f(v1)

2

⌉
≥ 3 +

⌈
2 + 2n + 3

2

⌉
≥ 8.

Therefore, rmn(〈K1,n : 2〉) ≤ 2n + 3. But rmn(〈K1,n : 2〉) ≥ 2n + 3 and hence

rmn(〈K1,n : 2〉) = 2n + 3.

Case 3. m ≥ 3.

For n = 1, m = 3, Figure 6 shows that rmn(〈K1,1 : 3〉) = 7. Now we consider the cases

n ≥ 2, m = 3 and n ≥ 1, m ≥ 4. Define a function f : V (〈K1,n : m〉) → {1, 2, · · · , mn + m + 1}
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by f(v) = mn + 1,

f(ui
j) = (j − 1)m + i, 1 ≤ i ≤ m, 1 ≤ j ≤ n

f(vi) = mn + 1 + i, 1 ≤ i ≤ m.

b b

b

b

b b b

1 7 4 6 3

5

2

Figure 6

We show that f is a valid radio mean labeling.

Subcase 1. Check the pair (uj
i , u

j
k).

d(uj
i , u

j
k) +

⌈
f(uj

i ) + f(uj
k)

2

⌉
≥ 2 +

⌈
1 + m + 1

2

⌉
≥ 5.

Subcase 2. Consider the pair (uj
i , u

r
k), j 6= r.

d(uj
i , u

r
k) +

⌈
f(uj

i ) + f(ur
k)

2

⌉
≥ 4 +

⌈
1 + 2

2

⌉
≥ 6.

Subcase 3. Verify the pair (vi, vj).

d(vi, vj) +

⌈
f(vi) + f(vj)

2

⌉
≥ 2 +

⌈
mn + 2 + mn + 3

2

⌉
≥ 8.

Subcase 4. Examine the pair (v, uj
i ).

d(v, uj
i ) +

⌈
f(v) + f(uj

i )

2

⌉
≥ 2 +

⌈
mn + 1 + 1

2

⌉
≥ 5.

Subcase 5. Verify the pair (v, vi).

d(v, vi) +

⌈
f(v) + f(vi)

2

⌉
≥ 1 +

⌈
mn + 1 + mn + 2

2

⌉
≥ 6.

Subcase 6. Check the pair (vi, u
i
j).

For n ≥ 2 and m = 3,

d(vi, u
i
j) +

⌈
f(vi) + f(ui

j)

2

⌉
≥ 1 +

⌈
mn + 2 + 1

2

⌉
≥ 6.



Radio Mean Number of Certain Graphs 63

If n ≥ 1 and m ≥ 4 then,

d(vi, u
i
j) +

⌈
f(vi) + f(ui

j)

2

⌉
≥ 1 +

⌈
mn + 2 + 1

2

⌉
≥ 5.

Subcase 7. Consider the pair (vi, u
k
j ), i 6= k.

d(vi, u
k
j ) +

⌈
f(vi) + f(uk

j )

2

⌉
≥ 3 +

⌈
mn + 2 + 2

2

⌉
≥ 7.

Hence rmn(〈K1,n : m〉) = mn + m + 1. 2
Example 2.6 A radio mean labeling of 〈K1,5 : 4〉 is given in Figure 7.

b

b

b

b

b

b b

b

b

b

b

b

b

b b b b b

b
b

b
b b
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Figure 7
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Abstract: Let G1 and G2 be two simple connected graphs with disjoint vertex sets V (G1)

and V (G2), respectively. For given vertices a1 ∈ V (G1) and a2 ∈ V (G2), a splice of G1 and

G2 by vertices a1 and a2 is defined by identifying the vertices a1 and a2 in the union of G1

and G2 and a link of G1 and G2 by vertices a1 and a2 is obtained by joining a1 and a2 by an

edge in the union of these graphs. The modified Schultz index of a simple connected graph

G is defined as the sum of the terms d(u|G)d(v|G)d(u, v|G) over all unordered pairs {u, v}

of vertices in G, where d(u|G) and d(u, v|G) denote the degree of the vertex u of G and the

distance between the vertices u and v of G, respectively. In this paper, explicit formulas

for computing the vertex and edge-modified Schultz indices of splice and link of graphs are

presented.

Key Words: Distance, vertex-degree, modified Schultz index, edge-modified Schultz index,

splice, link.

AMS(2010): 05C07, 05C12, 05C76.

§1. Introduction

In this paper, we consider connected finite graphs without any loops or multiple edges. A

topological index Top(G) of a graph G is a real number with the property that for every

graph H isomorphic to G, Top(H) = Top(G). There are numerous topological indices that

have been found to be useful in chemical documentation, isomer discrimination, quantitative

structure-property relationships (QSPR), quantitative structure-activity relationships (QSAR),

and pharmaceutical drug design [7, 10]. The Wiener index is the first reported distance-based

topological index which was introduced in 1947 by Wiener [19, 20] who used it for modeling

the shape of organic molecules and for calculating several of their physico-chemical properties.

The Wiener index of a graph G is defined as the sum of distances between all pairs of vertices

of G,

W (G) =
∑

{u,v}⊆V (G)

d(u, v |G ),

where d(u, v |G ) denotes the distance between the vertices u and v of G which is defined as the

1Received May 24, 2015, Accepted May 6, 2016.
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length of any shortest path in G connecting them.

The molecular topological index or Schultz index [17] was introduced by Harry Schultz in

1989. The Schultz index of a graph G is defined as

S(G) =
∑

{u,v}⊆V (G)

[
d(u |G ) + d(v |G )

]
d(u, v |G ),

where d(u |G ) denotes the degree of the vertex u of G.

The vertex version of the modified Schultz index [9]of a graph G was introduced by Ivan

Gutman in 1994 as

S∗(G) =
∑

{u,v}⊆V (G)

d(u |G )d(v |G )d(u, v |G ).

The modified Schultz index is also known as Gutman index.

The edge versions of the modified Schultz index [15] were introduced by Khormali et al.

in 2010. Two possible distances between the edges e = uv and f = zt of a graph G can be

considered. The first distance is denoted by d0(e, f |G ) and defined as

d0(e, f |G ) =





d1(e, f |G ) + 1 e 6= f,

0 e = f,

where d1(e, f |G ) = min{d(u, z |G ), d(u, t |G ), d(v, z |G ), d(v, t |G )}. It is easy to see that,

d0(e, f |G ) = d(e, f |L(G) ), where L(G) is the line graph of G.

The second distance is denoted by d4(e, f |G ) and defined as

d4(e, f |G ) =





d2(e, f |G ) e 6= f,

0 e = f,

where d2(e, f |G ) = max{d(u, z |G ), d(u, t |G ), d(v, z |G ), d(v, t |G )}.
Related to the distances d0 and d4, two edge versions of the modified Schultz index can be

defined. The first and second edge-modified Schultz indices of G are denoted by (W∗)e0
(G) and

(W∗)e4
(G), respectively and defined as

(W∗)ei
(G) =

∑

{e,f}⊆E(G)

d(e |G )d(f |G )di(e, f |G ), i ∈ {0, 4},

where d(e |G ) denotes the degree of the edge e in G which is the degree of the vertex e in the

line graph L(G). For more information on the edge-modified Schultz indices, see [14].

In this paper, we compute the vertex version and edge versions of the modified-Schultz

index for splice and link of graphs. Readers interested in more information on computing

topological indices of splice and link of graphs can be referred to [1 C 6, 8, 12, 13, 16, 18].

§2. Definitions and Preliminaries

Let G be a graph with vertex set V (G) and edge set E(G). We denote by V (e) the set of two
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end-vertices of the edge e of G. For u ∈ V (G) and e = ab ∈ E(G), we define

D1(u, e |G ) = min{d(u, a |G ), d(u, b |G )}, D2(u, e |G ) = max{d(u, a |G ), d(u, b |G )}.

Note that, D1(u, e |G ) is a nonnegative integer and D1(u, e |G ) = 0 if and only if u ∈ V (e).

Also, D2(u, e |G ) is a positive integer and D2(u, e |G ) = 1 if and only if u ∈ V (e) or u and the

end vertices of e form a 3-cycle in G.

For u ∈ V (G), let N(u |G ) denote the set of all first neighbors of u in G. We denote by

δ(u |G ), the sum of degrees of all neighbors of u in G, i.e.,

δ(u |G ) =
∑

v∈N(u|G )

d(v |G ).

We denote by M1(G), the first Zagreb index [11] of G which is defined as

M1(G) =
∑

u∈V (G)

d(u |G )2.

The first Zagreb index can also be expressed as a sum over edges of G,

M1(G) =
∑

uv∈E(G)

[
d(u |G ) + d(v |G )

]
.

Let e be an edge of G with V (e) = {a, b}. It is easy to see that, d(e |G ) = d(a |G ) +

d(b |G ) − 2. Therefore, ∑

e∈E(G)

d(e |G ) = M1(G) − 2 |E(G)| .

Also for u ∈ V (G), we have

∑

e∈E(G);u∈V (e)

d(e |G ) = d(u |G )
(
d(u |G ) − 2

)
+ δ(u |G ),

∑

{e,f}⊆E(G);u∈V (e)∩V (f)

[
d(e |G ) + d(f |G )

]
=
(
d(u |G ) − 1

)[
d(u |G )(d(u |G ) − 2

)
+ δ(u |G )

]
.

§3. Results and Discussion

In this section, we compute the vertex version and edge versions of the modified Schultz index

for splice and link of graphs.

3.1 Splice

Let G1 and G2 be two graphs with disjoint vertex sets V (G1) and V (G2) and edge sets E(G1)

and E(G2), respectively. For given vertices a1 ∈ V (G1) and a2 ∈ V (G2), a splice [8] of G1 and

G2 by vertices a1 and a2 is denoted by (G1.G2)(a1, a2) and defined by identifying the vertices
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a1 and a2 in the union of G1 and G2. We denote by ni, mi and αi, the order and size of

the graph Gi and the degree of ai in Gi, respectively, where i ∈ {1, 2}. It is easy to see that,∣∣V
(
(G1.G2)(a1, a2)

)∣∣ = n1 + n2 − 1 and
∣∣E
(
(G1.G2)(a1, a2)

)∣∣ = m1 + m2.

In the following lemmas, the degree of an arbitrary vertex of (G1.G2)(a1, a2) and the

distance between two arbitrary vertices of this graph are computed. The results follow easily

from the definition of the splice of graphs, so their proofs are omitted.

Lemma 3.1 Let u ∈ V
(
(G1.G2)(a1, a2)

)
. Then

d
(
u |(G1.G2 )(a1, a2)

)
=






d(u |G1 ) u ∈ V (G1) \ {a1},
d(u |G2 ) u ∈ V (G2) \ {a2},
α1 + α2 u = a1 or u = a2.

Lemma 3.2 Let u, v ∈ V
(
(G1.G2)(a1, a2)

)
. Then

d
(
u, v |(G1.G2 )(a1, a2)

)
=






d(u, v |G1 ) u, v ∈ V (G1),

d(u, v |G2 ) u, v ∈ V (G2),

d(u, a1 |G1 ) + d(a2, v |G2 ) u ∈ V (G1), v ∈ V (G2).

In the following theorem, the modified Schultz index of (G1.G2)(a1, a2) is computed.

Theorem 3.3 The modified Schultz index of G = (G1.G2)(a1, a2) is given by

S∗(G) =S∗(G1) + S∗(G2) + 2m2

∑

u∈V (G1)\{a1}
d(u |G1 )d(u, a1 |G1 )

+ 2m1

∑

u∈V (G2)\{a2}
d(u |G2 )d(u, a2 |G2 ).

Proof We partition the sum in the formula of S∗(G) into three sums as follows.

The first sum S1 consists of contributions to S∗(G) of pairs of vertices from G1. Using

Lemmas 3.1 and 3.2, we obtain

S1 =
∑

{u,v}⊆V (G1)\{a1}
d(u |G1 )d(v |G1 )d(u, v |G1 )

+
(
α1 + α2

) ∑

u∈V (G1)\{a1}
d(u |G1 )d(u, a1 |G1 )

=S∗(G1) + α2

∑

u∈V (G1)\{a1}
d(u |G1 )d(u, a1 |G1 ).

The second sum S2 consists of contributions to S∗(G) of pairs of vertices from G2. Similar
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to the previous case, we obtain

S2 = S∗(G2) + α1

∑

u∈V (G2)\{a2}
d(u |G2 )d(u, a2 |G2 ).

The third sum S3 is taken over all pairs {u, v} of vertices in G such that u ∈ V (G1) \ {a1}
and v ∈ V (G2) \ {a2}. Using Lemmas 3.1 and 3.2, we obtain

S3 =
∑

u∈V (G1)\{a1}

∑

v∈V (G2)\{a2}
d(u |G1 )d(v |G2 )

[
d(u, a1 |G1 ) + d(a2, v |G2 )

]

=
(
2m2 − α2

) ∑

u∈V (G1)\{a1}
d(u |G1 )d(u, a1 |G1 )

+
(
2m1 − α1

) ∑

u∈V (G2)\{a2}
d(u |G2 )d(u, a2 |G2 ).

The formula of S∗(G) is obtained by adding S1, S2 and S3 and simplifying the resulting

expression. 2
In the following lemmas, the degree of an arbitrary edge of (G1.G2)(a1, a2) and the distances

d0 and d4 between two arbitrary edges of this graph are computed. The results are direct

consequences of Lemmas 3.1 and 3.2, respectively, so their proofs are omitted.

Lemma 3.4 Let e ∈ E
(
(G1.G2)(a1, a2)

)
. Then

d
(
e |(G1.G2 )(a1, a2)

)
=






d(e |G1 ) e ∈ E(G1), a1 /∈ V (e),

d(e |G1 ) + α2 e ∈ E(G1), a1 ∈ V (e),

d(e |G2 ) e ∈ E(G2), a2 /∈ V (e),

d(e |G2 ) + α1 e ∈ E(G2), a2 ∈ V (e).

Lemma 3.5 Let G = (G1.G2)(a1, a2) and e, f ∈ E
(
G). Then

(i) d0(e, f |G) =






d0(e, f |G1 ) e, f ∈ E(G1),

d0(e, f |G2 ) e, f ∈ E(G2),

D1(a1, e |G1 ) + D1(a2, f |G2 ) + 1 e ∈ E(G1), f ∈ E(G2),

(ii) d4(e, f |G) =






d4(e, f |G1 ) e, f ∈ E(G1),

d4(e, f |G2 ) e, f ∈ E(G2),

D2(a1, e |G1 ) + D2(a2, f |G2 ) e ∈ E(G1), f ∈ E(G2).

In the following theorem, the first and second edge-modified Schultz indices of (G1 .G2)(a1, a2)

are computed.

Theorem 3.6 The first and second edge-modified Schultz indices of G = (G1.G2)(a1, a2) are
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given by

(i) (W∗)e0
(G) = (W∗)e0

(G1) + (W∗)e0
(G2)

+ α2

∑

e,f∈E(G1);a1∈V (e)\V (f)

d(f |G1 )d0(e, f |G1 )

+ α1

∑

e,f∈E(G2);a2∈V (e)\V (f)

d(f |G2 )d0(e, f |G2 )

+
(
M1(G2) − 2m2 + α1α2

) ∑

e∈E(G1)

d(e |G1 )D1(a1, e |G1 )

+
(
M1(G1) − 2m1 + α1α2

) ∑

f∈E(G2)

d(f |G2 )D1(a2, f |G2 )

+
(
M1(G1) − 2m1

)(
M1(G2) − 2m2

)
+ α2(α1 − 1)δ(a1 |G1 ) + α1(α2 − 1)δ(a2 |G2 )

+ α1α2

[
M1(G1) + M1(G2) +

(
α1 + α2

)2 − 7

2

(
α1 + α2

)
− 2(m1 + m2 − 2)

]
.

(ii) (W∗)e4
(G) = (W∗)e4

(G1) + (W∗)e4
(G2)

+ α2

∑

e,f∈E(G1);a1∈V (e)\V (f)

d(f |G1 )d4(e, f |G1 )

+ α1

∑

e,f∈E(G2);a2∈V (e)\V (f)

d(f |G2 )d4(e, f |G2 )

+
(
M1(G2) − 2m2 + α1α2

) ∑

e∈E(G1)

d(e |G1 )D2(a1, e |G1 )

+
(
M1(G1) − 2m1 + α1α2

) ∑

f∈E(G2)

d(f |G2 )D2(a2, f |G2 )

+ α2

∑

{u,v}⊆N(a1|G1 )

[
d(u |G1 ) + d(v |G1 )

]
d(u, v |G1 )

+ α1

∑

{u,v}⊆N(a2|G2 )

[
d(u |G2 ) + d(v |G2 )

]
d(u, v |G2 )

+ α2

(
α2 + 2α1 − 4

) ∑

{u,v}⊆N(a1|G1 )

d(u, v |G1 )

+ α1

(
α1 + 2α2 − 4

) ∑

{u,v}⊆N(a2|G2 )

d(u, v |G2 )

+ α1α2

[
M1(G1) + M1(G2) − 2(m1 + m2 − α1α2)

]
.

Proof We prove the first part of the theorem. The second part can be proved by a similar

method. At first, we partition the sum in the formula of (W∗)e0
(G) into three sums as follows.

The first sum S1 consists of contributions to (W∗)e0
(G) of pairs of edges from G1. In order

to compute S1, we partition it into three sums S11, S12 and S13 as follows.

The sum S11 is equal to

S11 =
∑

{e,f}⊆E(G1);a1 /∈V (e)∪V (f)

d(e |G )d(f |G )d0(e, f |G ).
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Using Lemmas 3.4 and 3.5, we obtain

S11 =
∑

{e,f}⊆E(G1);a1 /∈V (e)∪V (f)

d(e |G1 )d(f |G1 )d0(e, f |G1 ).

The sum S12 is equal to

S12 =
∑

{e,f}⊆E(G1);a1∈V (e)∩V (f)

d(e |G )d(f |G )d0(e, f |G ).

Note that, for every pairs {e, f} of edges in G1 such that a1 ∈ V (e)∩V (f), d0(e, f |G1 ) = 1.

Now, using Lemmas 3.4 and 3.5, we obtain

S12 =
∑

{e,f}⊆E(G1);a1∈V (e)∩V (f)

(
d(e |G1 ) + α2

)(
d(f |G1 ) + α2

)

=
∑

{e,f}⊆E(G1);a1∈V (e)∩V (f)

d(e |G1 )d(f |G1 )

+ α2(α1 − 1)
[
α1(α1 − 2) + δ(a1 |G1 )

]
+ α2

2

(
α1

2

)
.

The sum S13 is equal to

S13 =
∑

e,f∈E(G1);a1∈V (e)\V (f)

d(e |G )d(f |G )d0(e, f |G ).

Using Lemmas 3.4 and 3.5, we obtain

S13 =
∑

e,f∈E(G1);a1∈V (e)\V (f)

(
d(e |G1 ) + α2

)
d(f |G1 )d0(e, f |G1 )

=
∑

e,f∈E(G1);a1∈V (e)\V (f)

d(e |G1 )d(f |G1 )d0(e, f |G1 )

+ α2

∑

e,f∈E(G1);a1∈V (e)\V (f)

d(f |G1 )d0(e, f |G1 ).

By adding S11, S12 and S13, we obtain

S1 =(W∗)e0
(G1) + α2

2

(
α1

2

)
+ α2(α1 − 1)

[
α1(α1 − 2) + δ(a1 |G1 )

]

+ α2

∑

e,f∈E(G1);a1∈V (e)\V (f)

d(f |G1 )d0(e, f |G1 ).

The second sum S2 consists of contributions to (W∗)e0
(G) of pairs of edges from G2.
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Using the same argument as in the computation of S1, we obtain

S2 =(W∗)e0
(G2) + α1

2

(
α2

2

)
+ α1(α2 − 1)

[
α2(α2 − 2) + δ(a2 |G2 )

]

+ α1

∑

e,f∈E(G2);a2∈V (e)\V (f)

d(f |G2 )d0(e, f |G2 ).

The third sum S3 is taken over all pairs {e, f} of edges in G such that e ∈ E(G1) and

f ∈ E(G2). In order to compute S3, we partition it into four sums S31, S32, S33 and S34 as

follows.

The sum S31 is equal to

S31 =
∑

e∈E(G1);a1 /∈V (e)

∑

f∈E(G2);a2 /∈V (f)

d(e |G )d(f |G )d0(e, f |G ).

Using Lemmas 3.4 and 3.5, we obtain

S31 =
∑

e∈E(G1);a1 /∈V (e)

∑

f∈E(G2);a2 /∈V (f)

d(e |G1 )d(f |G2 )
[
D1(a1, e |G1 ) + D1(a2, f |G2 ) + 1

]

=
[
M1(G2) − 2m2 − α2(α2 − 2) − δ(a2 |G2 )

] ∑

e∈E(G1)

d(e |G1 )D1(a1, e |G1 )

+
[
M1(G1) − 2m1 − α1(α1 − 2) − δ(a1 |G1 )

] ∑

f∈E(G2)

d(f |G2 )D1(a2, f |G2 )

+
[
M1(G1) − 2m1 − α1(α1 − 2) − δ(a1 |G1 )

]

×
[
M1(G2) − 2m2 − α2(α2 − 2) − δ(a2 |G2 )

]
.

The sum S32 is equal to

S32 =
∑

e∈E(G1);a1 /∈V (e)

∑

f∈E(G2);a2∈V (f)

d(e |G )d(f |G )d0(e, f |G ).

Using Lemmas 3.4 and 3.5, we obtain

S32 =
∑

e∈E(G1);a1 /∈V (e)

∑

f∈E(G2);a2∈V (f)

d(e |G1 )
(
d(f |G2 ) + α1

)[
D1(a1, e |G1 ) + 1

]

=
[
α2(α2 − 2) + δ(a2 |G2 ) + α1α2

][ ∑

e∈E(G1)

d(e |G1 )D1(a1, e |G1 )

+ M1(G1) − 2m1 − α1(α1 − 2) − δ(a1 |G1 )
]
.

The sum S33 is equal to

S33 =
∑

e∈E(G1);a1∈V (e)

∑

f∈E(G2);a2 /∈V (f)

d(e |G )d(f |G )d0(e, f |G ).
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Using the same argument as in the computation of S32, we obtain

S33 =
[
α1(α1 − 2) + δ(a1 |G1 ) + α1α2

][ ∑

f∈E(G2)

d(f |G2 )D1(a2, f |G2 )

+ M1(G2) − 2m2 − α2(α2 − 2) − δ(a2 |G2 )
]
.

The sum S34 is equal to

S34 =
∑

e∈E(G1);a1∈V (e)

∑

f∈E(G2);a2∈V (f)

d(e |G )d(f |G )d0(e, f |G ).

Using Lemmas 3.4 and 3.5, we obtain

S34 =
∑

e∈E(G1);a1∈V (e)

∑

f∈E(G2);a2∈V (f)

(
d(e |G1 ) + α2

)(
d(f |G2 ) + α1

)

=
[
α1(α1 − 2) + δ(a1 |G1 ) + α1α2

][
α2(α2 − 2) + δ(a2 |G2 ) + α1α2

]
.

By adding S31, S32, S33 and S34, we obtain

S3 =
(
M1(G2) − 2m2 + α1α2

) ∑

e∈E(G1)

d(e |G1 )D1(a1, e |G1 )

+
(
M1(G1) − 2m1 + α1α2

) ∑

f∈E(G2)

d(f |G2 )D1(a2, f |G2 )

+
(
M1(G1) − 2m1

)(
M1(G2) − 2m2

)

+ α1α2

[
M1(G1) − 2m1 + M1(G2) − 2m2 + α1α2

]
.

The formula of (W∗)e0
(G) is obtained by adding S1, S2 and S3 and simplifying the resulting

expression. 2
3.2 Link

Let G1 and G2 be two graphs with disjoint vertex sets V (G1) and V (G2) and edge sets E(G1)

and E(G2), respectively. For vertices a1 ∈ V (G1) and a2 ∈ V (G2), a link [8] of G1 and G2

by vertices a1 and a2 is denoted by (G1 ∼ G2)(a1, a2) and obtained by joining a1 and a2 by

an edge in the union of these graphs. We denote by ni, mi and αi, the order and size of the

graph Gi and the degree of ai in Gi, respectively, where i ∈ {1, 2}. It is easy to see that,∣∣V
(
(G1 ∼ G2)(a1, a2)

)∣∣ = n1 + n2 and
∣∣E
(
(G1 ∼ G2)(a1, a2)

)∣∣ = m1 + m2 + 1.

In the following lemmas, the degree of an arbitrary vertex of (G1 ∼ G2)(a1, a2) and the

distance between two arbitrary vertices of this graph are computed. The results follow easily

from the definition of the link of graphs, so their proofs are omitted.
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Lemma 3.7 Let u ∈ V
(
(G1 ∼ G2)(a1, a2)

)
. Then

d
(
u |(G1 ∼ G2 )(a1, a2)

)
=






d(u |G1 ) u ∈ V (G1) \ {a1},
d(u |G2 ) u ∈ V (G2) \ {a2},
α1 + 1 u = a1,

α2 + 1 u = a2.

Lemma 3.8 Let u, v ∈ V
(
(G1 ∼ G2)(a1, a2)

)
. Then

d
(
u, v |(G1 ∼ G2 )(a1, a2)

)
=






d(u, v |G1 ) u, v ∈ V (G1),

d(u, v |G2 ) u, v ∈ V (G2),

d(u, a1 |G1 ) + d(a2, v |G2 ) + 1 u ∈ V (G1), v ∈ V (G2).

In the following theorem, the modified Schultz index of (G1 ∼ G2)(a1, a2) is computed.

Theorem 3.9 The modified Schultz index of G = (G1 ∼ G2)(a1, a2) is given by

S∗(G) =S∗(G1) + S∗(G2) + 2(m2 + 1)
∑

u∈V (G1)\{a1}
d(u |G1 )d(u, a1 |G1 )

+ 2(m1 + 1)
∑

u∈V (G2)\{a2}
d(u |G2 )d(u, a2 |G2 ) + 2(m1 + m2 + 2m1m2) + 1.

Proof We partition the sum in the formula of S∗(G) into three sums as follows.

The first sum S1 consists of contributions to S∗(G) of pairs of vertices from G1. By Lemmas

3.7 and 3.8, we obtain

S1 =
∑

{u,v}⊆V (G1)\{a1}
d(u |G1 )d(v |G1 )d(u, v |G1 )

+
(
α1 + 1

) ∑

u∈V (G1)\{a1}
d(u |G1 )d(u, a1 |G1 )

=S∗(G1) +
∑

u∈V (G1)\{a1}
d(u |G1 )d(u, a1 |G1 ).

The second sum S2 consists of contributions to S∗(G) of pairs of vertices from G2. Similar

to the previous case, we obtain

S2 = S∗(G2) +
∑

u∈V (G2)\{a2}
d(u |G2 )d(u, a2 |G2 ).

The third sum S3 is taken over all pairs {u, v} of vertices in G such that u ∈ V (G1) and

v ∈ V (G2). In order to compute S3, we partition it into four sums S31, S32, S33 and S34 as
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follows.

The sum S31 is taken over all pairs {u, v} of vertices in G such that u ∈ V (G1) \ {a1} and

v = a2. Using Lemmas 3.7 and 3.8, we obtain

S31 =
(
α2 + 1

) ∑

u∈V (G1)\{a1}
d(u |G1 )

[
d(u, a1 |G1 ) + 1

]

=
(
α2 + 1

)[ ∑

u∈V (G1)\{a1}
d(u |G1 )d(u, a1 |G1 ) + 2m1 − α1

]
.

The sum S32 is taken over all pairs {u, v} of vertices in G such that u ∈ V (G2) \ {a2} and

v = a1. Similar to the previous case, we obtain

S32 =
(
α1 + 1

)[ ∑

u∈V (G2)\{a2}
d(u |G2 )d(u, a2 |G2 ) + 2m2 − α2

]
.

The sum S33 is taken over all pairs {u, v} of vertices in G such that u ∈ V (G1) \ {a1} and

v ∈ V (G2) \ {a2}. By Lemmas 3.7 and 3.8, we obtain

S33 =
∑

u∈V (G1)\{a1}

∑

v∈V (G2)\{a2}
d(u |G1 )d(v |G2 )

[
d(u, a1 |G1 ) + d(a2, v |G2 ) + 1

]

=
(
2m2 − α2

) ∑

u∈V (G1)\{a1}
d(u |G1 )d(u, a1 |G1 )

+
(
2m1 − α1

) ∑

v∈V (G2)\{a2}
d(v |G2 )d(a2, v |G2 ) +

(
2m1 − α1

)(
2m2 − α2

)
.

The sum S34 is equal to

S34 = d(a1 |G )d(a2 |G )d(a1, a2 |G ) =
(
α1 + 1

)(
α2 + 1

)
.

By adding S31, S32, S33 and S34, we obtain

S3 =
(
2m2 + 1)

∑

u∈V (G1)\{a1}
d(u |G1 )d(u, a1 |G1 )

+
(
2m1 + 1

) ∑

v∈V (G2)\{a2}
d(v |G2 )d(a2, v |G2 )

+ 2(m1 + m2 + 2m1m2) + 1.

Now, the formula of S∗(G) is obtained by adding S1, S2 and S3 and simplifying the resulting

expression. 2
In the following lemmas, the degree of an arbitrary edge of (G1 ∼ G2)(a1, a2) and the

distances d0 and d4 between two arbitrary edges of this graph are computed. The results are

direct consequences of Lemmas 3.7 and 3.8, respectively, so their proofs are omitted.
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Lemma 3.10 Let e ∈ E
(
(G1 ∼ G2)(a1, a2)

)
. Then

d
(
e |(G1 ∼ G2 )(a1, a2)

)
=






d(e |G1 ) e ∈ E(G1), a1 /∈ V (e),

d(e |G1 ) + 1 e ∈ E(G1), a1 ∈ V (e),

d(e |G2 ) e ∈ E(G2), a2 /∈ V (e),

d(e |G2 ) + 1 e ∈ E(G2), a2 ∈ V (e),

α1 + α2 e = a1a2.

Lemma 3.11 Let G = (G1 ∼ G2)(a1, a2) and e, f ∈ E(G). Then

(i) d0

(
e, f |G) =






d0(e, f |G1 ) e, f ∈ E(G1),

d0(e, f |G2 ) e, f ∈ E(G2),

D1(a1, e |G1 ) + 1 e ∈ E(G1), f = a1a2,

D1(a2, e |G2 ) + 1 e ∈ E(G2), f = a1a2,

D1(a1, e |G1 ) + D1(a2, f |G2 ) + 2 e ∈ E(G1), f ∈ E(G2),

(ii) d4

(
e, f |G) =






d4(e, f |G1 ) e, f ∈ E(G1),

d4(e, f |G2 ) e, f ∈ E(G2),

D2(a1, e |G1 ) + 1 e ∈ E(G1), f = a1a2,

D2(a2, e |G2 ) + 1 e ∈ E(G2), f = a1a2,

D2(a1, e |G1 ) + D2(a2, f |G2 ) + 1 e ∈ E(G1), f ∈ E(G2).

In the following theorem, the first and second edge-modified Schultz indices of (G1 ∼
G2)(a1, a2) are computed.

Theorem 3.12 The first and second edge-modified Schultz indices of G = (G1 ∼ G2)(a1, a2)

are given by

(i) (W∗)e0
(G) = (W∗)e0

(G1) + (W∗)e0
(G2) +

∑

e,f∈E(G1);a1∈V (e)\V (f)

d(f |G1 )d0(e, f |G1 )

+
∑

e,f∈E(G2);a2∈V (e)\V (f)

d(f |G2 )d0(e, f |G2 )

+
(
M1(G2) − 2m2 + 2α2 + α1

) ∑

e∈E(G1)

d(e |G1 )D1(a1, e |G1 )

+
(
M1(G1) − 2m1 + 2α1 + α2

) ∑

f∈E(G2)

d(f |G2 )D1(a2, f |G2 )

+ 2
(
M1(G1) − 2m1

)(
M1(G2) − 2m2

)
+ (α1 − 1)δ(a1 |G1 ) + (α2 − 1)δ(a2 |G2 )

+ (3α2 + α1)
(
M1(G1) − 2m1

)
+ (3α1 + α2)

(
M1(G2) − 2m2

)

+ α1
3 + α2

3 + 4α1α2 − 3

(
α1

2

)
− 3

(
α2

2

)
.
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(ii) (W∗)e4
(G) = (W∗)e4

(G1) + (W∗)e4
(G2) +

∑

e,f∈E(G1);a1∈V (e)\V (f)

d(f |G1 )d4(e, f |G1 )

+
∑

e,f∈E(G2);a2∈V (e)\V (f)

d(f |G2 )d4(e, f |G2 )

+
(
M1(G2) − 2m2 + 2α2 + α1

) ∑

e∈E(G1)

d(e |G1 )D2(a1, e |G1 )

+
(
M1(G1) − 2m1 + 2α1 + α2

) ∑

f∈E(G2)

d(f |G2 )D2(a2, f |G2 )

+
∑

{u,v}⊆N(a1|G1 )

[
d(u |G1 ) + d(v |G1 )

]
d(u, v |G1 )

+
∑

{u,v}⊆N(a2|G2 )

[
d(u |G2 ) + d(v |G2 )

]
d(u, v |G2 )

+ (2α1 − 3)
∑

{u,v}⊆N(a1|G1 )

d(u, v |G1 ) + (2α2 − 3)
∑

{u,v}⊆N(a2|G2 )

d(u, v |G2 )

+
(
M1(G1) − 2m1

)(
M1(G2) − 2m2

)
+ (3α2 + α1)

(
M1(G1) − 2m1

)

+ (3α1 + α2)
(
M1(G2) − 2m2

)
+ (α1 + α2)

2 + 3α1α2.

Proof We prove the second part of the theorem. The first part can be proved by a similar

method. At first, we partition the sum in the formula of (W∗)e4
(G) into three sums as follows.

The first sum S1 consists of contributions to (W∗)e4
(G) of pairs of edges from G1. In order

to compute S1, we partition it into three sums S11, S12 and S13 as follows.

The sum S11 is equal to

S11 =
∑

{e,f}⊆E(G1);a1 /∈V (e)∪V (f)

d(e |G )d(f |G )d4(e, f |G ).

Using Lemmas 3.10 and 3.11, we obtain

S11 =
∑

{e,f}⊆E(G1);a1 /∈V (e)∪V (f)

d(e |G1 )d(f |G1 )d4(e, f |G1 ).

The sum S12 is equal to

S12 =
∑

{e,f}⊆E(G1);a1∈V (e)∩V (f)

d(e |G )d(f |G )d4(e, f |G ).

Using Lemmas 3.10 and 3.11, we obtain
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S12 =
∑

{e,f}⊆E(G1);a1∈V (e)∩V (f)

(
d(e |G1 ) + 1

)(
d(f |G1 ) + 1

)
d4(e, f |G1 )

=
∑

{e,f}⊆E(G1);a1∈V (e)∩V (f)

d(e |G1 )d(f |G1 )d4(e, f |G1 )

+
∑

{u,v}⊆N(a1|G1 )

[
d(u |G1 ) + d(v |G1 )

]
d(u, v |G1 )

+ (2α1 − 3)
∑

{u,v}⊆N(a1|G1 )

d(u, v |G1 ).

The sum S13 is equal to

S13 =
∑

e,f∈E(G1);a1∈V (e)\V (f)

d(e |G )d(f |G )d4(e, f |G ).

Using Lemmas 3.10 and 3.11, we obtain

S13 =
∑

e,f∈E(G1);a1∈V (e)\V (f)

(
d(e |G1 ) + 1

)
d(f |G1 )d4(e, f |G1 )

=
∑

e,f∈E(G1);a1∈V (e)\V (f)

d(e |G1 )d(f |G1 )d4(e, f |G1 )

+
∑

e,f∈E(G1);a1∈V (e)\V (f)

d(f |G1 )d4(e, f |G1 ).

By adding S11, S12 and S13, we obtain

S1 =(W∗)e4
(G1) +

∑

{u,v}⊆N(a1|G1 )

[
d(u |G1 ) + d(v |G1 )

]
d(u, v |G1 )

+ (2α1 − 3)
∑

{u,v}⊆N(a1|G1 )

d(u, v |G1 ) +
∑

e,f∈E(G1);a1∈V (e)\V (f)

d(f |G1 )d4(e, f |G1 ).

The second sum S2 consists of contributions to (W∗)e4
(G) of pairs of edges from G2. Using

the same argument as in the computation of S1, we obtain

S2 =(W∗)e4
(G2) +

∑

{u,v}⊆N(a2|G2 )

[
d(u |G2 ) + d(v |G2 )

]
d(u, v |G2 )

+ (2α2 − 3)
∑

{u,v}⊆N(a2|G2 )

d(u, v |G2 ) +
∑

e,f∈E(G2);a2∈V (e)\V (f)

d(f |G2 )d4(e, f |G2 ).

The third sum S3 is taken over all pairs {e, f} of edges in G such that e ∈ E(G1) and

f = a1a2. In order to compute S3, we partition it into two sums S31 and S32 as follows.

The sum S31 is equal to

S31 =
∑

e∈E(G1);a1 /∈V (e),f=a1a2

d(e |G )d(f |G )d4(e, f |G ).



Some Results on Vertex Version and Edge Versions of Modified Schultz Index 79

Using Lemmas 3.10 and 3.11, we obtain

S31 =
∑

e∈E(G1);a1 /∈V (e)

d(e |G1 )(α1 + α2)
[
D2(a1, e |G1 ) + 1

]

=(α1 + α2)
[ ∑

e∈E(G1)

d(e |G1 )D2(a1, e |G1 ) + M1(G1) − 2m1 − 2α1(α1 − 2) − 2δ(a1 |G1 )
]
.

The sum S32 is equal to

S32 =
∑

e∈E(G1);a1∈V (e),f=a1a2

d(e |G )d(f |G )d4(e, f |G ).

Using Lemmas 3.10 and 3.11, we obtain

S32 =2
∑

e∈E(G1);a1∈V (e)

(
d(e |G1 ) + 1

)
(α1 + α2) = 2(α1 + α2)

[
α1(α1 − 2) + δ(a1 |G1 ) + α1

]
.

By adding S31 and S32, we obtain

S3 = (α1 + α2)
[ ∑

e∈E(G1)

d(e |G1 )D2(a1, e |G1 ) + M1(G1) − 2m1 + 2α1

]
.

The fourth sum S4 is taken over all pairs {e, f} of edges in G such that e ∈ E(G2) and

f = a1a2. Using the same argument as in the computation of S3, we obtain

S4 = (α1 + α2)
[ ∑

e∈E(G2)

d(e |G2 )D2(a2, e |G2 ) + M1(G2) − 2m2 + 2α2

]
.

The fifth sum S5 is taken over all pairs {e, f} of edges in G such that e ∈ E(G1) and

f ∈ E(G2). In order to compute S5, we partition it into four sums S51, S52, S53 and S54 as

follows.

The sum S51 is equal to

S51 =
∑

e∈E(G1);a1 /∈V (e)

∑

f∈E(G2);a2 /∈V (f)

d(e |G )d(f |G )d4(e, f |G ).

Using Lemmas 3.10 and 3.11, we obtain

S51 =
∑

e∈E(G1);a1 /∈V (e)

∑

f∈E(G2);a2 /∈V (f)

d(e |G1 )d(f |G2 )
[
D2(a1, e |G1 ) + D2(a2, f |G2 ) + 1

]

=
[
M1(G2) − 2m2 − α2(α2 − 2) − δ(a2 |G2 )

]

[ ∑

e∈E(G1)

d(e |G1 )D2(a1, e |G1 ) − α1(α1 − 2) − δ(a1 |G1 )
]

+
[
M1(G1) − 2m1 − α1(α1 − 2) − δ(a1 |G1 )

]
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×
[ ∑

f∈E(G2)

d(f |G2 )D2(a2, f |G2 ) − α2(α2 − 2) − δ(a2 |G2 )
]

+
[
M1(G1) − 2m1 − α1(α1 − 2) − δ(a1 |G1 )

]
×
[
M1(G2) − 2m2 − α2(α2 − 2) − δ(a2 |G2 )

]
.

The sum S52 is equal to

S52 =
∑

e∈E(G1);a1 /∈V (e)

∑

f∈E(G2);a2∈V (f)

d(e |G )d(f |G )d4(e, f |G ).

Using Lemmas 3.10 and 3.11, we obtain

S52 =
∑

e∈E(G1);a1 /∈V (e)

∑

f∈E(G2);a2∈V (f)

d(e |G1 )
(
d(f |G2 ) + 1

)[
D2(a1, e |G1 ) + 2

]

=
[
α2(α2 − 1) + δ(a2 |G2 )

][ ∑

e∈E(G1)

d(e |G1 )D2(a1, e |G1 ) − α1(α1 − 2) − δ(a1 |G1 )

+ 2
(
M1(G1) − 2m1 − α1(α1 − 2) − δ(a1 |G1 )

)]
.

The sum S53 is equal to

S53 =
∑

e∈E(G1);a1∈V (e)

∑

f∈E(G2);a2 /∈V (f)

d(e |G )d(f |G )d4(e, f |G ).

Using the same argument as in the computation of S52, we obtain

S53 =
[
α1(α1 − 1) + δ(a1 |G1 )

][ ∑

f∈E(G2)

d(f |G2 )D1(a2, f |G2 ) − α2(α2 − 2) − δ(a2 |G2 )

+ 2
(
M1(G2) − 2m2 − α2(α2 − 2) − δ(a2 |G2 )

)]
.

The sum S54 is equal to

S54 =
∑

e∈E(G1);a1∈V (e)

∑

f∈E(G2);a2∈V (f)

d(e |G )d(f |G )d4(e, f |G ).

Using Lemmas 3.10 and 3.11, we obtain

S54 =3
∑

e∈E(G1);a1∈V (e)

∑

f∈E(G2);a2∈V (f)

(
d(e |G1 ) + 1)(d(f |G2 ) + 1

)

=3
[
α1(α1 − 1) + δ(a1 |G1 )

][
α2(α2 − 1) + δ(a2 |G2 )

]
.

By adding S51, S52, S53 and S54, we obtain

S5 =
(
M1(G2) − 2m2 + α2

) ∑

e∈E(G1)

d(e |G1 )D2(a1, e |G1 )

+
(
M1(G1) − 2m1 + α1

) ∑

f∈E(G2)

d(f |G2 )D2(a2, f |G2 )
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+
(
M1(G1) − 2m1

)(
M1(G2) − 2m2

)
+ 2α2

(
M1(G1) − 2m1

)

+ 2α1

(
M1(G2) − 2m2

)
+ 3α1α2.

The formula of (W∗)e4
(G) is obtained by adding S1, S2, S3, S4 and S5 and simplifying the

resulting expression. 2
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Abstract: The aim of this paper is to discuss the folding of Cayley graphs of finite group.We

prove that, for any finite group G, |G | = n and H is a subgroup of G. Then Cayley graph

Γ = Cay(G, S) of G with respect to S = H \{1G} can be folded into a complete graph Kr

where r = |H |. Hence every Cayley graph Γ = Cay(G, S) of valency n−1 can not be folded.

Also every Cayley graph Γ = Cay(G, S) of valency one can be folded and Γ = Cay(G, S) ,

where S is generating set, every elements in it is self inverse and |S| = 1
2
|G| , can be folded

to an edge. Theorems governing these types of foldings are achieved.

Key Words: Cayley graph, folding, graph folding.

AMS(2010): 54C05, 54A05.

§1. Introduction

It was Robertson, S.A. [7] who in 1977 introduced the idea of folding on manifolds. Following

this first paper there has been huge progress in the folding theory. All are focusing on topology

and manifolds .Many other studies on the folding of different types of manifolds introduced

by many others [5], [6], [8]. Also a graph folding has been introduced by E. El-Kholy [4].

But EL-Ghoul in [3], turns this idea to algebras branch by giving a definition of the folding

of abstract rings and studying its properties. Zeen El-Deen in [9] introduced the folding of

groups and studying its properties. Some applications on the folding of a manifold into itself

was introduced by P. Di.Francesco [2].

Graph Theory began with Leonhard Euler in his study of the Bridges of Königsburg prob-

lem. Since Euler solved this very first problem in Graph Theory, the field has exploded, be-

coming one of the most important areas of applied mathematics we currently study. Generally

speaking, Graph Theory is a branch of Combinatorics but it is closely connected to Applied

Mathematics, Topology and Computer Science.

There are frequent occasions for which graphs with a lot of symmetry are required. One

such family of graphs is constructed using groups. The study of graphs of groups is innovative

because through this description one can immediately look at the graph and deduce many

properties of this group. Cayley graphs are an example where graphs theory can be applied

to groups. These graphs are useful for studying the structure of groups and the relationships

1Received September 14, 2015, Accepted May 18, 2016.
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between elements with respect to subsets of these groups (for example, generating sets, inverse

closed sets,· · · , etc.).

Cayley (1878) used graphs to draw picture of groups as we will see in the following defini-

tions.

§2. Definitions and Notations.

We will start putting down some definitions which are needed in this paper. We begin with a

short review of some basic definitions and properties of graphs. A graph Γ consists of a set of

elements called vertices V (Γ), and a set of unordered pairs of these elements, called edges E(Γ).

We will write (x, y) for directed edge, and xy or {x, y} for an undirected edge. we will only

deal with simple graphs ; that is, graph with no loops and no multiple edges and we will define

all graphs to have a nonempty vertex set. A graph with no edges, but at least one vertex, is

called empty graph.

It is important to note that a graph may have many different geometric representation,

but we just use these as a visualization tools and focus on V (Γ) and E(Γ) for our analysis.

A graph is said to be connected if every pair of vertices has a path connecting them.

Otherwise the graph is disconnected. The valency of a vertex is the number of edges with the

vertex as an end point.If all the vertices of a graph have the same valency then it called a

regular graph. A graph is complete if every vertex is connected to every other vertex, and we

denote the complete graph on n vertices by Kn. A graph is said to be bipartite if its vertex

set can be partitioned into two sets, V1 and V2 , such that there are no edges of the form

{x, y} where x, y ∈ V1 or x, y ∈ V2 . The complete bipartite graph Km,n is a bipartite

graph with vertex set V1

⋃
V2 , such that V1 and V2 have size m and n respectively, and

edge set {{x, y}, x ∈ V1 , y ∈ V2}. A clique of a graph is its maximal complete subgraph.

Definition 2.1 Let S be a subset of a finite group G . The Cayley digraph Γ = Cay(G, S)

of G with respect to S is the directed graph given as follows. The vertices of Γ = Cay(G, S)

are the elements of the group G . There is an arc between two vertices g and h if and only

if g−1h ∈ S . In other words, for every vertex g ∈ G and element s ∈ S , there is an arc

from g to gs .

Notice that if the identity 1 of G is in S , then there is a loop at every vertex, while if

1 /∈ S , the digraph has no loops. For convenience we will assume that the latter case holds; it

makes no difference to the results. Also notice that since S is a set, it contains no multiple

entries and hence there are no multiple arcs.

Definition 2.2 A Cayley digraph can be consider to be a Cayley graph if whenever S is closed

inverse, that is ; if s ∈ S, we also have s−1 ∈ S , since in this case every arc is a part of a

digon, and we can replace a digons with undirected edges

Definition 2.3 A non empty subset S of a group G is called a Cayley subset if S = S−1 and

1G /∈ S.
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It should be noted that, the Cayley graph depends very much on the given Cayley subset

as well as on the group. Also Cayley graph Γ = Cay(G, S) has valency |S| and that Γ =

Cay(G, S) is connected if and only if S is generating set for G i.e., 〈S〉 = G .

The complement S of Cayley subset S with respect to G∗ = G \ {1G} is also a Cayley

subset .Because if x ∈ S then x /∈ S and since S is a Cayley subset then x−1 /∈ S .Hence

x−1 ∈ S ,i.e., S is a Cayley subset. It is clear that The Γ = Cay(G, S) and Γ = Cay(G, S)

have the same vertex set as G , where vertex g and h are adjacent in Γ = Cay(G, S) if

and only if they are not adjacent in Γ = Cay(G, S) .

Definition 2.4([4]) A graph map f : Γ1 −→ Γ2 between two graphs Γ1 and Γ2 is a graph

folding if and only if f maps vertices to vertices and edges to edges, i.e., if,

(1) for each v ∈ V (Γ1), f(v) is a vertex in V (Γ2);

(2) for each e ∈ E(Γ1), f(e) is an edge in E(Γ2).

Note that if the vertices of an edge e = (u, v ) ∈ E(Γ1) are mapped to the same vertex,

then the edge e will collapse to this vertex and hence we cannot get a graph folding.

In the case of a graph folding f the set of singularities,
∑

f , consists of vertices only.

The graph folding is non trivial iff
∑

f 6= φ . In this case the no. V (f(Γ1)) ≤ no. V (Γ1) ,

also no. E(f(Γ1)) ≤ no. E(Γ1) .

§3. Folding of Cayley Graphs

In this section we will discuss the folding of Cayley graph Γ = Cay(G, S) to a subgraph Γ∗ of it.

We notice that not every Cayley graph Γ = Cay(G, S) can be folded into a subgraph of it, for

example, Let G = S3 be the Symmetric group of order 6, G = {(), (1 2) , (1 3) , (2 3) , (1 2 3 ),

(1 3 2 )} and let S = { (1 2) , (1 2 3) , (1 3 2) } since S is generating set and |S| = 3 ,

so Γ = Cay(S3, S ) is connected graph of valency 3 . This graph cannot be folded into the

induced subgraph Γ∗ which shown in Figure 1. Because the vertex (2 3) is adjacent with the

vertices (1 2 3 ) , (1 2) and (1 3) then it can not mapped by any folding to these vertices.

Also the vertex (2 3) can not mapped to the vertex ( ) because the edge {(1 3) , (2 3)} has

no image in Γ∗. Finally the vertex (2 3) can not mapped to the vertex (1 3 2) because the

edge {(1 2) , (2 3)} has no image in Γ∗.

( ) (12)

(123) (23)

(132) (13)

( ) (12)

(132) (13)

(123)

Γ Γ∗

Figure 1 Γ = Cay(G, S) can not be folded into Γ∗
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It is known that, up to isomorphism , for any finite group G , there is 1 Cayley graph of

G of valency zero. which is a trivial graph and this graph has a trivial foldings since there are

no edges, then any graph map on the vertices is a graph folding.

Theorem 3.1 Let G be a finite group and H is a subgroup of G. Then Cayley graph

Γ = Cay(G, S) of G with respect to S = H \{1G} can be folded and the end of these foldings

is a complete subgraph (clique) Kr where r = |H | i.e.,

the map φ : Γ = Cay(G, S) −→ Kr is graph folding.

Proof Let G be a finite group and H is a subgroup of G. Define the set S to be

the subgroup H with the identity removed S = H \ {1G} , so S is closed inverse. Then we

can define Cayley graph Γ∗ = Cay(H, S) as follows, from the definition, there exist an edge

between {1G} and every element x ∈ S . Also for all x, y ∈ S there exist an edge between

them, because, since S is inverse closed, then

x−1, y−1 ∈ S , xy−1 ∈ H and yx−1 ∈ H =⇒ xy−1 6= 1 or yx−1 6= 1

=⇒ xy−1 ∈ S or yx−1 ∈ S

Then Cayley graph of H with respect to S is a complete graph K|H| .

Also we can define Cayley graph Γ = Cay(G, S) such that {g, h} be an edge of

Γ = Cay(G, S) if gh−1 ∈ S and hence gh−1 an element of H . From the properties

of cosets gh−1 ∈ H implies that Hg = Hh . This means that, two vertices are adjacent if and

only if they are in the same cosets .Thus Γ = Cay(G, S) is a graph depicting or describing

the cosets of H in G .

Since the number of the cosets of H in G is the index m = |G : H | , thus there

are m components in Γ = Cay(G, S) each of which is a clique of size |H | i.e., K|H| .

Then Γ = Cay(G, S) = {H, Hx1, Hx2, ..., Hxm−1} where xi /∈ H, i = 1, 2, · · · , m − 1

We can define a graph maps φi : Γ = Cay(G, S) −→ Γ∗ = Cay(H, S) by

φi : V (Hxi) −→ V (H) , where, φi(axi) = a for all a ∈ H .

These are graph foldings since any edge in Hxi be in the form e = {axi, bxi} where a, b ∈ H

will mapped under φ into the edge e′ = {a, b} in H . Then φi preserves the edges between

vertices. The end of these foldings is the folding φ : Γ = Cay(G, S) −→ Kr where Kr is a

complete subgraph (clique) and r = |H | . 2
Example 3.1 Let G = D8 = { α, β | α4 = β2 = (αβ)2 = 1 ; αβα = β } be the

dihedral group of order 8, G = {1, α, α2, α3, β, αβ, α2β, α3β }.

(1) Let H = 〈 α 〉 = {1, α, α2, α3 } be a subgroup of G . Since H is closed inverse

but not generating set of G and |G : H | = 2 .So there exist two cosets of H in G i.e.,

H , Hβ = {β, αβ, α2β, α3β }. Let S = H \ {1}, then Γ = Cay(D8, S) has two disjoint

component { H , Hβ } each of which is a clique of size r = |H | = 4 , see Figure 2.
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-Φ

1

α

α2

α3

β

αβ

α2β

α3β

1

α

α2

α3

Figure 2 Folding of Cayley graph Γ = Cay(D8, {α, α2, α3 } )

Then, the map φ : Γ = Cay(G, S) −→ Γ∗ = Cay(H, S) ∼= K4 defined by

φ : V (Hβ) −→ V (H) , where φ (αi β) = αi , i = 0, 1, 2, 3 where αi ∈ H

This is a graph folding since it preserves the edges between vertices and the limit of the foldings

is a clique of order 4.

(2) Let H = 〈 β 〉 = {1, β} be a subgroup of G , H is closed inverse but not generating

set of G . Since |G : H | = 4 , there exist four cosets of H in G i.e., { H , αH, α2H, α3H }
.Let S = H \ {1}, then Γ = Cay(D8, S) has four disjoint component { H , αH, α2H, α3H }
each of which is a clique of size r = 2 , see Figure 3.

-1 α

αββ

α2

α2β

α3

α3β

1

β

Φ

Figure 3 Folding of Cayley graph Γ = Cay(D8, {β } )

Then the maps φi : Γ = Cay(G, S) −→ Γ∗ = Cay(H, S) ∼= K2 defined by

φi : V (αiH) −→ V (H) where φi (αia) = a , i = 0, 1, 2, 3 where a ∈ H

are graph foldings and the end of these foldings is a clique of order 2.

Theorem 3.2 For any finite group G of order n, |G | = n . Every Cayley graph Γ =

Cay(G, S) of valency n − 2 can be folded to a clique of order n
2 .

Proof Let G be a finite group of order n , G = {1, a1, a2, · · · , an−1 } , let S be a Cayley

subset of G , since the identity element 1 /∈ S and valency of Cayley graph Γ = Cay(G, S)
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is the valency of S , if Γ has valency n − 2 so |S| = n − 2 . From the definition of Cayley

graph, the identity element is adjacent to all the elements in S and since Γ = Cay(G, S) has

no loop, then there exists exactly one element y ∈ G, y /∈ S not adjacent with the identity

element. this means that the two elements which is not in S is not adjacent and they adjacent

to all elements in S . For any element ai ∈ S , since |ai| = n − 2 , {1, ai} ∈ E(Γ) and

{y, ai} ∈ E(Γ) then there exist one element b ∈ S such that {b, ai} /∈ E(Γ) and ai must

adjacent to all other elements in S. Then, the vertices of Γ = Cay(G, S) can be partitioned

into n
2 sets {A1, A2, · · · , An

2
} each set has two vertices which are not adjacent, for example

A1 = {1, y }, y /∈ S and Ai = {ak, ar }, ak, ar ∈ S such that ak and ar not adjacent

and each elements in Ai are adjacent to all elements in Aj , i 6= j, i, j = 1, 2, · · · , n
2 .

Then we have a complete n
2 partite graph K2,2,··· ,2 , so we can define n

2 foldings on Γ as

follows φk : Γ −→ Γ∗ defined by

φk (x ) = y , if x, y ∈ Ai , i, k = 1, 2, · · · , n
2

are graph foldings and the end of these foldings is a clique of order n
2 . 2

Example 3.2 Let G = D2.3 = { α, β | α3 = β2 = (αβ)2 = 1 ; αβα = β } be the

dihedral group of order 6 , G = {1, α, α2, β, αβ, α2β }, and S = { α, α2, β, αβ } be a

Cayley subset of G . The Cayley graph Γ = Cay(D6, S ) is shown in Figure 4.

-≈ Φ

1

β

αβ

α2β

α

α2 1

α2β

αβ

α2

β

α

1

α α2

Figure 4 Folding of Cayley graph Γ = Cay(D6, { α, α2, β, αβ } )

The vertices of the graph Γ = Cay(D6, S ) can divides into n
2 = 3 sets, each set has two ele-

ments which are not adjacent in Γ = Cay(D6, S ) .So we have A1 = {1, α2β }, A2 = {α, β },
A3 = {α2, αβ } . Then we can define three foldings φ1( α2β) = 1 , φ2( β) = α2 and

φ3( αβ) = α2 . The composition of these foldings is the map φ : V (Γ = Cay(D6, S )) → V (Γ =

Cay(D6, S )) defined by

φ (x) =






1 if x ∈ A1

α if x ∈ A2

α2 if x ∈ A3

Since the image of any edge of E (Γ) will be the edge, then φ is a graph folding.

Proposition 3.1 For any finite group G , |G | = n . Every Cayley graph Γ = Cay(G, S) of

valency n − 1 can not be folded.
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Proof Let G be a finite group |G| = n , let S be a Cayley subset of G , since

valency of Cayley graph Γ = Cay(G, S) is the valency of S , if Γ has valency n − 1 so

|S| = n−1 . Then S = G\ {1G} is a generating and closed inverse which implies that Cayley

graph Γ = Cay(G, S) is connected. Let H = S ∪ {1} = G , so H is a subgroup of G and

the index |G : H | = 1 . Then we have one component which is a clique of order |S| = n − 1

i.e., Γ = Cay(G, S) ∼= Kn−1, so every vertex of Γ is adjacent to all other vertices. Then we

can not define any folding on Γ since mapping any vertex to another will collapse the edge

between them. 2
Proposition 3.2 For any finite group G . Every Cayley graph Γ = Cay(G, S) of valency

one can be folded.

Proof Let G be a finite group |G| = n . Up to isomorphism, there is one Cayley

graph Γ = Cay(G, S) of valency one. This graph Γ = Cay(G, S) is disconnected graph

consists of n
2 disconnected components each component is an edge between two vertices. Since

if S = {a }, a ∈ G we have two cases

(i) If a is self inverse, a = a−1, then H = {1, a } is subgroup of G. Then from Theorem 3.1

Γ = Cay(G, S) consists of disjoint components {H, Hxi}, xi /∈ H, i = 1, 2, . . . , n
2 −1 , where

H is a clique of order two, i.e., there is an edge between the two vertices on Hxi = {xi, axi}.
so each Hxi is a clique of order two. This graph Γ = Cay(G, S) can be folded into H .

(ii) If a is not self inverse a 6= a−1 , then H is not subgroup of G . Let S =

H \ {1G} = {a }, then Γ = Cay(G, S) consists of an edge between elements of H = {1, a }.
For any other vertex x ∈ G , then x−1 ∈ G so there exists only one vertex y ∈ G such that

xy−1 = a ∈ H , which implies an edge between x and y . Then the graph Γ = Cay(G, S)

is disconnected graph consists of disconnected components each component is an edge between

two vertices, if |G| = n then Γ consists of n
2 disconnecting edges, which can be folded into

one component. . 2
§4. Folding Cayley Graph of Non-Abelian Group

In this section we will discuss the folding of Cayley graph of finite non-abelian groups.

Theorem 4.1 For any finite non-abelian group G . Every Cayley graph of G with respect

to a Cayley subset S , Γ = Cay(G, S) , where S is generating set, every elements in it is

self inverse and |S| = 1
2 |G| , can be folded to an edge.

Proof Let G be a finite non-abelian group, |G| = n and S ⊆ G such that S is

generating set, every elements in it is self inverse and |S| = 1
2 |G| . Since the valency of Cayley

graph Γ = Cay(G, S) is equal to the valency of S then |Γ| = |S| = 1
2 |G|. If x and

y ∈ S then x−1 = x ∈ S and y = y−1 ∈ S but there is no edge between x and y in

Γ = Cay(G, S) , since if there exist an edge between them this must implies that x−1y ∈ S

and x−1 y = x y , but x y /∈ G because (x y)−1 = y−1 x−1 = y x 6= xy . So to have a

graph Γ = Cay(G, S) of valency 1
2 |n|, every element in S must connected to every element
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in G − S . Then we have a complete bipartite graph Γ = Cay(G, S) = K n
2

, n
2

.

Let G = {a1, a2, · · · , an
2
, b1, b2, · · · , bn

2
} = V (Γ) and let S = {a1, a2, · · · , an

2
} , then

each vertex of S is joined to each vertex of (G − S) by exactly one edge, thus

E (Γ) = { (a1, b1) , (a1, b2) , · · · , (a1, bn
2
) , (a2, b1), (a2, b2) , · · · , (a2, bn

2
)

, · · · , (an
2
, b1) , (an

2
, b2) , · · · , (an

2
, bn

2
) }

Now, let φ : V ( Γ) −→ V (Γ) be a graph map defined by

φ (x) =





a1 if x ∈ S

b1 if x ∈ G − S

Thus the image of any edge of E (Γ) will be the edge ( a1 , b1 ), then φ is a graph folding.2
Example 4.1 Let G = S3 be the Symmetric group of order 6, G = {(), (1 2) , (1 3) , (2 3) , (1 2 3 ),

(1 3 2 )} and let S = { (1 2) , (1 3) , (2 3) } since S is generating set, every elements in it

is self inverse and |S| = 1
2 |G| = 3 , so Γ = Cay(S3, S ) has valency 3 and the vertices of Γ

can be partitioned into two sets S and G − S such that there are no edges between any two

vertices on the same set, see Figure 5. Then Γ ∼= K3,3 which can be folded by the function

φ (x) =





(1 2) if x ∈ S

( ) if x ∈ G − S

-≈

( )

(13)

(123)

(23)

(132)

(12)

(12) (13) (23)

( ) (123) (132)

Φ

(12)

( )

Figure 5 Folding of Cayley graph Γ = Cay(S3, {(1 2), (1 3), (2 3) } )
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Abstract: Triangle-trees are a kind of graphs derived from Koch networks. The Merrifield-

Simmons index of a graph is the total number of the independent sets of the graph. We

prove that P∆
k,n−k is the triangle-tree with maximal Merrifield-Simmons index among all the

triangle-trees with n triangles and k pendant triangles.
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§1. Introduction

The Koch networks (see [10], [13]) are derived from the Koch fractals (see [4], [9]) and are

constructed iteratively. Let Km,g (m is a natural number) denote the Koch network after g

iterations. Then, the family of Koch networks can be generated in the following way: initially

(g = 0), Km,0 consists of a triangle with three nodes labeled respectively by x, y, z, which have

the highest degree among all nodes in the networks. For g ≥ 1, Km,g is obtained from Km,g−1

by performing the following operation. For each of the three nodes in every existing triangle in

Km,g−1, we add m groups of nodes. Each node group contains two nodes, both of which and

their ‘mother’ node are connected to one another forming a new triangle. In other words, to

get Km,g from Km,g−1, we can replace each triangle in Km,g−1 by a connected cluster on the

right-hand side of the arrow in Fig.1.

Note that a Koch network does not have any cycle except for the triangles, we can call

such a graph a triangle-tree.

Definition 1.1 Let T ∆
n (n is a natural number) denote a triangle-tree with n triangles. The

family of triangle-trees can be generated in the following way: initially n = 1, T ∆
1 consists of a

triangle with three vertices labeled respectively by x, y, z. For n ≥ 2, T ∆
n is obtained from T ∆

n−1

by adding a pair of new vertices u, v, both of them are joined to a vertex of T ∆
n−1 and the edge

uv is also added to form a new triangle. In other words, to get T ∆
n from T ∆

n−1, we add a new

triangle to T ∆
n−1 by identifying a vertex of the new triangle with a vertex of T ∆

n−1.

1Supported by National Natural Science Foundation of China, No. 11401576.
1Received June 4, 2015, Accepted May 20, 2016.
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=⇒

m = 1

m = 2

Fig.1

· · · · · ·

P∆
n

v1 v3

v2

v5

v4

v7

v6

v2n−3 v2n−1

v2n−2

v2n+1

v2n

∆1 ∆2 ∆3 ∆n−1
∆n

S∆
n

......
v1

v2

v3

v4

v5 v6
v7

v2n

v2n+1

∆1

∆2 ∆3

∆n

Fig.2

Obviously Koch networks are all triangle-trees. Suppose T ∆ is a triangle-tree, ∆ is a

triangle of T , if there are two vertices with degree two in ∆, we call the triangle ∆ a pendant

triangle of T ∆. The triangle-path P∆
n (see Fig.2) is the only triangle-tree with only two pendant

triangles and the triangle-star S∆
n (see Fig.2) is the only triangle-tree with n pendant triangles.

For any two triangles ∆1 and ∆2 of T ∆, if ∆1 and ∆2 have a common vertex, we say ∆1 and

∆2 are adjacent, and the distance between ∆1 and ∆2 is 1, denoted by d(∆1, ∆2) = 1. If ∆1

and ∆2 do not have a common vertex, there is only one triangle-path between them. If the

triangle-path between ∆1 and ∆2 contains d triangles, we say the distance between ∆1 and

∆2 is d − 1, denoted by d(∆1, ∆2) = d − 1. The diameter of a triangle-tree is denoted by d∆,

defined as

d∆(T ∆
n ) = max{d(∆, ∆′) | ∆, ∆′are two triangles of T ∆

n }.

Throughout this paper G = (V, E) is a finite simple undirected graph with vertex set

V = V (G) and edge set E = E(G). The neighborhood of a vertex v ∈ V is the set NG(v) =

{w : w ∈ V, vw ∈ E}, dG(v) = |NG(v)|, and NG[v] = NG(v) ∪ {v}. For S ⊆ V , we use

G − S for the subgraph induced by V (G) \ S, G[S] for the subgraph of G induced by S and

NS(v) = {w : w ∈ S, vw ∈ E(G)}. For F ⊆ E(G), we use G−F for the subgraph of G obtained

by deleting F .

Let G be a graph on n vertices. Two vertices of G are said to be independent if they

are not adjacent in G. A k-independent set of G is a set of k-mutually independent vertices.

Denote by fk(G) the number of the k-independent sets of G. For convenience, we regard the



94 Xuezheng Lv, Zixu Yan and Erling Wei

empty vertex set as an independent set. Then f0(G) = 1 for any graph G. Let α(G) denote

the cardinality of a maximal independent set of G.

The Merrifield-Sommons index was introduced by Prodinger and Tichy in 1982, which is

defined by

i(G) =

α(G)∑

s=0

fs(G),

although it is called Fibonacci number of a graph in [8]. It is one of the most popular topological

indices in chemistry, which was extensively studied in monograph [7]. Now there have been

many papers studying the Merrifield-Simmons index. In [8], Prodinger and Tichy showed

that, for trees with order n, the star has the maximal Merrifield-Simmons index and the path

has the minimal Merrifield-Simmons index. In [6], Li et al characterized the tree with the

maximal Merrifield-Simmons index among the trees with given diameter. In [11], Yu and Lv

characterized the trees with maximal Merrifield-Simmons indices, among the trees with given

pendant vertices. For more results on Merrifield-Simmons index, see [1-3], [5] and [12].

Due to the similarity of triangle-trees and ordinary trees, it is very interesting to study the

Merrifield-Simmons indices of triangle-trees. It is easy verify that, among all the triangle-trees

with n triangles, S∆
n is the triangle-tree with maximal Merrifield-Simmons index and P∆

n is

the triangle-tree with minimal Merrifield-Simmons index. As noting this result is similar to

the result of ordinary trees, we consider all the triangle-trees with n triangles and k pendant

triangles. It is very interesting to find that P∆
k,n−k (as shown in Fig. 3) is the triangle-tree with

maximal Merrifield-Simmos index among all such triangle-trees, and this result is also similar

to the result of ordinary trees.

· · · · · ····

P∆
k,n−k

∆k ∆k+1 ∆k+2 ∆n−2 ∆n−1

∆1

∆n

∆k−1

∆2

Fig.3

§2. Lemmas and Results

We first introduce the following lemma, which is obvious and well-known.

Lemma 2.1 For a graph G, we have

(1) i(G) = i(G − v) + i(G − N [v]) for any v ∈ V (G);

(2) i(G) = i(G − e) − i(G − N [e]) for any e ∈ E(G);

(3) If G = G1 ∪ G2, then i(G) = i(G1)i(G2).

Using the above lemma, we can derive some recursion formulas on the Merrifield-Simmons
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index of the triangle-path P∆
n . Denote an = i(P∆

n ). It is easy to see that a1 = 4, a2 = 10, a3 =

24. Let Qn = P∆
n − v1, where v1 is one of the vertices with degree two of the pendant-triangle

of P∆
n (as shown in Fig 2) and bn = i(Qn). It is easy to see that b1 = 3, b2 = 7, b3 = 17. Let

Rn = Qn−v2n+1, where v2n+1 is one of the vertices with degree two of another pendant-triangle

of P∆
n (as shown in Fig.2). It is easy to see that c1 = 2, c2 = 5, c3 = 12.

By Lemma 2.1, we know

an = bn + bn−1,

bn = an−1 + bn−1 = cn + cn−1,

cn = bn−1 + cn−1.

So we have

bn+1 = 2bn + bn−1,

an+1 = 2an + an−1,

cn+1 = 2cn + cn−1.

Let P∆
k = ∆1∆2 · · ·∆k be a path of a triangle-tree T ∆, where ∆i = v2i−1v2iv2i+1. If

dT∆(v1) ≥ 6, dT∆(v2k+1) ≥ 6, dT∆(v2i) = 2 (1 ≤ i ≤ k) and dT∆(v2i+1) = 4 (1 ≤ i ≤ k − 1),

we call P∆
k an internal triangle-path of T ∆. If the triangle ∆1 = v1v2v3 is a pendant triangle of

T ∆, dT∆(v2k+1) ≥ 6, dT∆(v2i) = 2 (1 ≤ i ≤ k) and dT∆(v2i+1) = 4 (1 ≤ i ≤ k − 1), we call P∆

a pendant triangle-path of T ∆. Let s(T ∆) be the number of vertices in T ∆ with degree not less

than 6 and p(T ∆) be the number of pendant triangle-paths in T ∆ with length not less than 1.

· · · ·∆1 ∆2 ∆3 ∆s ∆0

T ∆
1

G1

G2

w u v s
Operation I · · · ·∆1 ∆2 ∆3 ∆s ∆0

T ∆
0

G1

G2

wu u v

· · · ·∆1 ∆2 ∆3 ∆s ∆0

T ∆
2

G1

G2

u′

uw v

3
Fig.4

Denote T ∆
n,k (3 ≤ k ≤ n− 1) be the set of all triangle-trees with n triangles and k pendant
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triangles. In the following, we shall define two kinds of operations of T ∆ ∈ T ∆
n,k and show that

these two kinds of operations make the Merrifield-Simmons indices of the triangle-tree increase

strictly.

If T ∆ ∈ T ∆
n,k, T ∆ 6∼= P∆

k,n−k and p(T ∆) 6= 0, then T ∆ can be seen as the triangle-trees T ∆
1

or T ∆
2 as shown in Fig.4, where ∆1∆2 · · ·∆s (s ≥ 2) is a pendant path of T ∆ with s triangles,

G1 and G2 are two subtriangle-trees of T ∆ and |V (G1)| ≥ 3, |V (G2)| ≥ 3. If T ∆
0 is obtained

from T ∆
1 or T ∆

2 by Operation I (as shown in Fig.4), it is easy to see that T ∆
0 ∈ T ∆

n,k.

Now we show that operation I makes the Merrifield-Simmons indices of the triangle-trees

increase strictly.

Lemma 2.2 If T ∆
0 is obtained from T ∆

1 or T ∆
2 by operation I, then i(T ∆

0 ) > i(T ∆
1 ) and

i(T ∆
0 ) > i(T ∆

2 ).

Proof Let NG1
[v] = V1, NG2

[u] = V2 in T ∆
1 , NG2

[u′] = V ′
2 in T ∆

2 and NG2
[w] = V3 in T ∆

0 .

If s ≥ 3, by Lemma 2.1, we have

i(T ∆
1 ) = i(T ∆

1 − v) + i(T ∆
1 − NT∆

1
[v])

= i(G1 − v)(2i(G2 − u)bs + i(G2 − V2)bs−1) + i(G1 − V1)i(G2 − u)bs,

i(T ∆
2 ) = i(T ∆

2 − v) + i(T ∆
2 − NT∆

2
[v])

= i(G1 − v)(i(G2 − u′)as + i(G2 − V ′
2)bs) + i(G1 − V1)i(G2 − u′)bs,

i(T ∆
0 ) = i(T ∆

0 − v) + i(T ∆
0 − NT∆

0
[v])

= i(G1 − v)(3i(G2 − w)cs + i(G2 − V3)cs−1)

+i(G1 − V1)(3i(G2 − w)cs−1 + i(G2 − V3)cs−2).

Obviously, i(G2 −w) = i(G2 − u′) = i(G2 − u) and i(G2 − V3) = i(G2 − V ′
2) = i(G2 − V2),

so we have

i(T ∆
0 ) − i(T ∆

1 )

= i(G1 − v)i(G2 − u)(3cs − 2bs) + i(G1 − v)i(G2 − V2)(cs−1 − bs−1)

+i(G1 − V1)i(G2 − u)(3cs−1 − bs) + i(G1 − V1)i(G2 − V2)cs−2

= i(G1 − v)i(G2 − u)cs−2 − i(G1 − v)i(G2 − V2)cs−2

−i(G1 − V1)i(G2 − u)cs−2 + i(G1 − V1)i(G2 − V2)cs−2

= cs−2(i(G1 − v) − i(G1 − V1))(i(G2 − u) − i(G2 − V2)).

Since s ≥ 3, cs−2 > 0, i(G1 − v)− i(G1 − V1) > 0 and i(G2 − u)− i(G2 −V2) > 0, we know

i(T ∆
0 ) − i(T ∆

1 ) > 0 when s ≥ 3.
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Similarly,

i(T ∆
0 ) − i(T ∆

2 )

= i(G1 − v)i(G2 − u′)(3cs − as) + i(G1 − v)i(G2 − V ′
2 )(cs−1 − bs)

+i(G1 − V1)i(G2 − u′)(3cs−1 − bs) + i(G1 − V1)i(G2 − V ′
2 )cs−2

= i(G1 − v)i(G2 − u′)(cs−2 + 2cs−1) + i(G1 − v)i(G2 − V ′
2 )(−cs−2 − 2cs−1)

+i(G1 − V1)i(G2 − u′)(−cs−2) + i(G1 − V1)i(G2 − V ′
2)cs−2

= cs−2(i(G1 − v) − i(G1 − V1))(i(G2 − u′) − i(G2 − V ′
2))

+2cs−1i(G1 − v)(i(G2 − u′) − i(G2 − V ′
2)) > 0.

Therefore, i(T ∆
0 ) − i(T ∆

2 ) > 0 when s ≥ 3. If s = 2, similarly, we have

i(T ∆
0 ) − i(T ∆

1 )

= i(G1 − v)i(G2 − u)(3c2 − 2b2) + i(G1 − v)i(G2 − V2)(c1 − b1)

+i(G1 − V1)i(G2 − u)(3c1 − b2) + i(G1 − V1)i(G2 − V2)

= (i(G1 − v) − i(G1 − V1))(i(G2 − u) − i(G2 − V2)).

i(T ∆
0 ) − i(T ∆

2 )

= i(G1 − v)i(G2 − u′)(3c2 − a2) + i(G1 − v)i(G2 − V ′
2)(c1 − b2)

+i(G1 − V1)i(G2 − u′)(3c1 − b2) + i(G1 − V1)i(G2 − V ′
2)

= (i(G1 − v) − i(G1 − V1))(i(G2 − u′) − i(G2 − V ′
2))

+4i(G1 − v)(i(G2 − u′) − i(G2 − V ′
2 )) > 0.

Therefore, i(T ∆
0 ) − i(T ∆

1 ) > 0 and i(T ∆
0 ) − i(T ∆

2 ) > 0 when s = 2. 2
From Lemma 2.2, we can immediately get the following result.

Lemma 2.3 Let T ∆ ∈ T ∆
n,k(3 ≤ k ≤ n − 1), T ∆ 6∼= P∆

k,n−k and p(T ∆) ≥ 1.

(1) If s(T ∆) = 1, we can finally get a triangle-tree T ′∆ by operation I with i(T ′∆) > i(T ∆),

and p(T ′∆) = 1; it is easy to see that T ′∆ ∼= P∆
k,n−k;

(2) If s(T ∆) > 1, we can finally get a triangle-tree T ′∆ by operation I with i(T ′∆) > i(T ∆)

and p(T ′∆) = 0.

If T ∆ ∈ T ∆
n,k(3 ≤ k ≤ n − 1), T ∆ 6∼= P∆

n,k and p(T ∆) = 0, then we can find two pendant

triangles ∆1 and ∆′
1 of T ∆ such that d(∆1, ∆

′
1) = d∆(T ∆). Suppose ∆1 = uu1u

′
1 and ∆′

1 =

vv1v
′
1, where u1, u

′
1, v1, v

′
1 are the vertices with degree 2 and d(u) ≥ 6, d(v) ≥ 6. Then the

triangle-tree can be seen as the triangle-tree T ∆ shown in Fig 5, where ∆1, ∆2, · · · , ∆s are

pendant triangles with common vertex u, ∆′
1, ∆

′
2, · · · , ∆′

t are pendant triangles with common

vertex v, G1 is the subgraph of T ∆ induced by V (T ∆) \
( s⋃

i=1

V (∆i) ∪
t⋃

i=1

V (∆′
i)
)
.
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···
. . .

T ∆

G1u v
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yx

x′
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∆1
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∆′

1
∆′

2

∆′

3

∆′

t s3Operation II

···

···

T
′∆

G1u v

v′1

x

x′

v1
y

y′

∆′

1
∆s

∆1

∆′

t

∆′

2

···

···

T
′′Delta

G1u v

∆′
1

x

x′

u1
y

y′

∆′

t∆1

u′

1

∆s

∆2

Fig.5

Note that if d(∆1, ∆2) = 3, then x = y; if d(∆1, ∆2) ≥ 4, then |V (G1)| ≥ 5. T
′∆ is a

triangle-tree got from T ∆ by moving the pendant triangles ∆′
2, ∆

′
3, · · · , ∆′

t from v to u, and

T
′′∆ is a triangle-tree got from T ∆ by moving the pendant triangles ∆2, ∆3, · · · , ∆s from u to

v. We say both of T
′∆ and T

′′∆ are obtained from T ∆ by Operation II. It is easy to see that

T
′∆, T

′′∆ ∈ Γ∆
n,k p(T

′∆) = p(T
′′∆) = 1 and s(T

′∆) = s(T
′′∆) = s(T ∆) − 1.

Lemma 2.4 If T
′∆ and T

′′∆ are obtained from T ∆ by Operation II, then either i(T
′∆) > i(T ∆)

or i(T
′′∆) > i(T ∆).

Proof If d(∆1, ∆
′
1) ≥ 3, then NG1

(u) = {x, x′} and NG1
[v] = {y, y′}. Note that if

d(∆1, ∆
′
1) = 3, then x = y. By Lemma 2.2, we have

i(T ∆) = i(T ∆ − u) + i(T ∆ − NT∆ [u])

= 3s(3ti(G1) + i(G1 − {y, y′})) + 3ti(G1 − {x, x′}}) + i(G1 − {x, x′, y, y′}),

i(T
′∆) = i(T

′∆ − u) + i(T
′∆ − NT ′∆ [u])

= 3s+t−1(3i(G1) + i(G1 − {y, y′})) + 3i(G1 − {x, x′}) + i(G1 − {x, x′, y, y′}),

i(T
′′∆) = i(T

′′∆ − u) + i(T
′′∆ − NT ′′∆ [u])

= 3(3s+t−1i(G1) + i(G1 − {y, y′})) + 3s+t−1i(G1 − {x, x′}) + i(G1 − {x, x′, y, y′}).

It is easy to see that

i(T
′∆) − i(T ∆) = 3(3t−1 − 1)(3s−1i(G1 − {y, y′}) − i(G1 − {x, x′})),
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i(T
′′∆) − i(T ∆) = 3(3s−1 − 1)(3t−1i(G1 − {x, x′}) − i(G1 − {y, y′})).

Note that s, t ≥ 2. If i(T
′∆) − i(T ∆) ≤ 0, we have 3s−1i(G1 − {y, y′}) ≤ i(G1 − {x, x′}).

Then we have

i(T
′′∆) − i(T ∆) ≥ 3(3s−1 − 1)(3s−13t−1 − 1)i(G1 − {y, y′}) > 0.

If d(∆1, ∆
′
1) = 2, we have T

′∆ ∼= T
′′∆. Suppose NG2

(u) = {v, w}, NG2
(v) = {u, w}, then

i(T
′∆) − i(T ∆) = 3(3t−1 − 1)(3s−1 − 1)i(G1 − w) > 0.

Therefore, if T
′∆ and T

′′∆ are obtained from T ∆ by operation II, then either i(T
′∆) >

i(T ∆) or i(T
′′∆) > i(T ∆). 2

Theorem 2.5 Let T ∆ ∈ T ∆
n,k. Then i(T ∆) ≤ 3k−1bn−k+1 + bn−k, the equality holds if and only

if T ∆ ∼= P∆
k,n−k.

Proof By Lemma 2.1, it is easy to see that

i(P∆
k,n−k) = 3k−1bn−k+1 + bn−k.

Since T ∆
n,2 = {P∆

n } and P∆
n

∼= P∆
n,0, T ∆

n,n = {S∆
n } and S∆

n
∼= P∆

2,n−2, we may assume

3 ≤ k ≤ n − 1. It is sufficient to show that i(T ∆) < i(P∆
k,n−k) for any T ∆ ∈ T ∆

n,k and

T ∆ 6∼= P∆
k,n−k.

For T ∆ ∈ T ∆
n,k(3 ≤ k ≤ n − 1) and T ∆ 6∼= P∆

k,n−k, we know 1 ≤ s(T ∆) ≤ n − k, we shall

show i(T ∆) ≤ i(P∆
k,n−k) by induction on s(T ∆). When s(T ∆) = 1, since T ∆ 6∼= P∆

k,n−k, we

have p(T ∆) ≥ 2. By (1) of Lemma 2.3, we have i(T ∆) < i(P∆
k,n−k). Suppose the result holds

for any triangle-tree T
′∆ with s(T

′∆) = s − 1. Let s(T ∆) = s ≥ 2. If p(T ∆) 6= 0, by (2)

of Lemma 2.3, we can get a triangle-tree T ∆
1 ∈ T ∆

n,k such that p(T ∆
1 ) = 0, s(T ∆

1 ) = s and

i(T ∆
1 ) > i(T ∆). Then by Lemma 2.4, we can get a triangle-tree T ∆

2 ∈ T ∆
n,k from T ∆

1 such that

p(T ∆
2 ) = 1, s(T ∆

2 ) = s − 1 and i(T ∆
2 ) > i(T ∆

1 ). By the induction hypothesis, we have

i(T ∆) < i(T ∆
1 ) < i(T ∆

2 ) < i(P∆
k,n−k).

Therefore, if T ∆ ∈ T ∆
n,k, then i(T ∆) ≤ 3k−1bn−k+1 + bn−k = i(P∆

k,n−k) and the equality

holds if and only if T ∆ ∼= P∆
k,n−k. 2

Lemma 2.6 For 3 ≤ k ≤ n, i(P∆
n−k+2,k−2) > i(P∆

n−k+3,k−3).

Proof By Lemma 2.1, it is easy to see that

i(P∆
n−k+2,k−2) = 3k−1bn−k+1 + bn−k,

i(P∆
n−k+3,k−3) = 3k−2bn−k+2 + bn−k+1.
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Since bn+1 = 2bn + bn−1, we have

i(P∆
k,n−k) − i(P∆

n−k+3,k−3) = 3k−1bn−k+1 + bn−k − 3k−2bn−k+2 + bn−k+1

= (3k−2 − 1)(bn−k+1 − bn−k) > 0.

Hence i(P∆
n−k+2,k−2) > i(P∆

n−k+3,k−3) for 3 ≤ k ≤ n. 2
From Theorem 2.5 and Lemma 2.6, we can immediately get the following result.

Corollary 2.7 Let T ∆ be a triangle-tree with 2n + 1 vertices and n triangles. Then

(1) i(T ∆) ≤ 3n + 1 and the equality holds if and only if T ∆ ∼= S∆
n ;

(2) If T ∆ 6∼= S∆
n , then i(T ∆) ≤ 7×3n−2+3 and the equality holds if and only if T ∆ ∼= P∆

3,n−3.
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§1. Introduction

Since the revelation in 1994 [10], there are a lot of works on codes over finite rings. The

structure of certain type of codes over many finite rings are determined such as cyclic, quasi-

cyclic. Recently, it is introduced the class of skew codes which are generalized the notion cyclic,

quasi-cyclic in [5,6,12,14].

In [1], T. Abualrub, P. Seneviratre studied skew cyclic codes over F2 + vF2, v2 = v. In [2],

T. Abualrub, A. Ghrayeb, N. Aydın, I. Siap introduced skew quasi-cyclic codes. They obtained

several new codes with Hamming distance exceeding the distance of the previously best known

linear codes with comparable parameters.

In [4], they investigated the structures of skew cyclic and skew quasi-cyclic of arbitrary

length over Galois rings. They shown that the skew cyclic codes are equivalent to either

cyclic and quasi-cyclic codes over Galois rings. Moreover, they gave a necessary and sufficient

condition for skew cyclic codes over Galois rings to be free.

Jian Gao, L.Shen, F. W. Fu studied a class of generalized quasi–cyclic codes called skew

generalized quasi-cyclic codes. They gave the Chinese Remainder Theorem over the skew

polynomial ring which lead to a canonical decomposition of skew generalized quasi-cyclic codes.

Moreover, they focused on 1-generator skew generalized quasi-cyclic code in [7]. J.Gao also

presented skew cyclic codes over Fp + vFp in [8].

The MacWilliams identity supplies the relationship between the weight enumerator of a

linear code and that of its dual code [11]. The distribution of weights for a linear code is

important for its performance analysis such as linear programming bound, error correcting

1Received August 20, 2015, Accepted May 22, 2016.
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capabilities, etc. There are a lot of work about the MacWilliams identities in [3,9,15].

This paper is organized as follows. In section 2, we give some basic knowledges about the

finite ring S. In section 3, we define a new Gray map from S to F 3
2 , Lee weights of elements

of S and Lee distance in the linear codes over S. In section 4, we define a new non trivial

automorphism and we introduce skew codes over S. In section 5, we obtain the MacWilliams

identities and give an example.

§2. Preliminaries

Let S be the ring F2 + uF2 + vF2 where u2 = u, v2 = v, uv = vu = 0 and F2 = {0, 1}, a

finite commutative ring with 8 elements. S is semi local ring with three maximal ideals and a

principal ideal ring. It is not finite chain ring.

The ideals are follows;

I0 = {0}, I1 = S

Iu = {0, u}, Iv = {0, v}, I1+u+v = {0, 1 + u + v}
Iu+v = {0, u, v, u + v}, I1+u = {0, v, 1 + u, 1 + u + v}
I1+v = {0, u, 1 + v, 1 + u + v}

A linear code C over S length n is a S−submodule of Sn. An element of C is called a

codeword.

For any x = (x0, x1, · · · , xn−1), y = (y0, y1, · · · , yn−1) the inner product is defined as

x.y =

n−1∑

i=0

xiyi

If x.y = 0 then x and y are said to be orthogonal. Let C be linear code of length n over

S, the dual code of C

C⊥ = {x : ∀y ∈ C, x.y = 0} ,

which is also a linear code over S of length n. A code C is self orthogonal if C ⊆ C⊥ and self

dual if C = C⊥.

A cyclic code C over S is a linear code with the property that if c = (c0, c1, · · · , cn−1) ∈ C

then σ (C) = (cn−1, c0, · · · , cn−2) ∈ C. A subset C of Sn is a linear cyclic code of length n iff it

is polynomial representation is an ideal of S [x] / 〈xn − 1〉.
Let C be code over F2 of length n and ć = (ć0, ć1, · · · , ćn−1) be a codeword of C. The

Hamming weight of ć is defined as wH (ć) =
∑n−1

i=0 wH (ći) where wH (ći) = 1 if ći = 1 and

wH (ći) = 0 if ći = 0. Hamming distance of C is defined as dH (C) = min dH (c, ć) , where for

any ć ∈ C, c 6= ć and dH (c, ć) is Hamming distance between two codewords with dH (c, ć) =

wH (c − ć) .

Let a ∈ F 3n
2 with a = (a0, a1, · · · , a3n−1) =

(
a(0)

∣∣a(1)
∣∣ a(2)

)
, a(i) ∈ Fn

2 for i = 0, 1, 2. Let

ϕ be a map from F 3n
2 to F 3n

2 given by ϕ (a) =
(
σ
(
a(0)

) ∣∣σ
(
a(1)

)∣∣ σ
(
a(2)

))
where σ is a cyclic
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shift from Fn
2 to Fn

2 given by σ
(
a(i)
)

= ((a(i,n−1)), (a(i,0)), (a(i,1)) , · · · , (a(i,n−2))) for every

a(i) = (a(i,0), · · · , a(i,n−1)) where a(i,j) ∈ F2, 0 ≤ j ≤ n− 1. A code of length 3n over F2 is said

to be quasi cyclic code of index 3 if ϕ (C) = C.

§3. Gray Map

Let x = a + ub + uc be an element of S where a, b, c ∈ F2. We define Gray map Ψ from S to

F 3
2 by

Ψ : S → F 3
2

Ψ (a + ub + vc) = (a, a + b, a + c)

The Lee weight of elements of S are defined wL (a + ub + vc) = wH(a, a + b, a + c) where

wH denotes the ordinary Hamming weight for binary codes. Hence, there is one element whose

weight is 0, there are u, v, 1 + u + v elements whose weights are 1, there are 1 + u, 1 + v, u + v

elements whose weights are 2, there is one element whose weight are 3.

Let C be a linear code over S of length n. For any codeword c = (c0, · · · , cn−1) the

Lee weight of c is defined as wL (c) =
∑n−1

i=0 wL (ci) and the Lee distance of C is defined as

dL (C) = min dL (c, ć) , where for any ć ∈ C, c 6= ć and dL (c, ć) is Lee distance between two

codewords with dL (c, ć) = wL (c − ć) . Gray map Ψ can be extended to map from Sn to F 3n
2 .

Theorem 3.1 The Gray map Ψ is a weight preserving map from (Sn,Lee weight) to (F 3n
2 , Ham−

ming weight). Moreover it is an isometry from Sn to F 3n
2 .

Theorem 3.2 If C is an [n, k, dL] linear codes over S then Ψ (C) is a [3n, k, dH ] linear codes

over F2, where dH = dL.

§4. Skew Codes over S

We are interested in studying skew codes using the ring S = F2 +uF2 +vF2 where u2 = u, v2 =

v, uv = vu = 0.. We define non-trivial ring automorphism θ on the ring S by θ (a + ub + vc) =

a + vb + uc for all a + ub + vc ∈ S.

The ring S[x, θ] = {a0 + a1x + · · · + an−1x
n−1 : ai ∈ S, n ∈ N} is called a skew polyno-

mial ring. This ring is a non-commutative ring. The addition in the ring S[x, θ] is the usual

polynomial addition and multiplication is defined using the rule, (axi)(bxj) = aθi(b)xi+j . Note

that θ2(a) = a for all a ∈ S. This implies that θ is a ring automorphism of order 2.

Definition 4.1 A subset C of Sn is called a skew cyclic code of length n if C satisfies the

following conditions,

(i) C is a submodule of Sn;

(ii) If c = (c0, c1, · · · , cn−1) ∈ C, then σθ (c) =
(
θ(cn−1), θ(c0), · · · , θ(cn−2)

)
∈ C.
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Let (f(x)+ (xn −1)) be an element in the set Sn = S [x, θ] /(xn −1) and let r(x) ∈ S [x, θ].

Define multiplication from left as follows:

r(x)(f(x) + (xn − 1)) = r(x)f(x) + (xn − 1)

for any r(x) ∈ S [x, θ].

Theorem 4.2 Sn is a left S [x, θ]-module where multiplication defined as in above.

Theorem 4.3 A code C in Sn is a skew cyclic code if and only if C is a left S [x, θ]-submodule

of the left S [x, θ]-module Sn.

Theorem 4.4 Let C be a skew cyclic code in Sn and let f(x) be a polynomial in C of minimal

degree. If f(x) is monic polynomial, then C = (f(x)) where f(x) is a right divisor of (xn − 1).

Theorem 4.5 Let n be odd and C be a skew cyclic code of length n. Then C is equivalent to

cyclic code of length n over S.

Proof Since n is odd, gcd(2, n) = 1. Hence there exist integers b, c such that 2b + nc = 1.

So 2b = 1 − nc = 1 + zn where z > 0. Let a(x) = a0 + a1x + · · · + an−1x
n−1 be a codeword in

C. Note that x2ba(x) = θ2b(a0)x
1+zn + θ2b(a1)x

2+zn + · · · + θ2b(an−1)x
n+zn = an−1 + a0x +

· · · + an−2x
n−2 ∈ C. Thus C is a cyclic code of length n. 2

Corollary 4.6 Let n be odd. Then the number of distinct skew cyclic codes of length n over S

is equal to the number of ideals in S [x] /(xn −1) because of Theorem 7. If xn −1 =
∏r

i=0 psi

i (x)

where pi(x) are irreducible polynomials over F2. Then the number of distinct skew cyclic codes

of length n over S is
∏r

i=0(si + 1)2.

Example 4.7 Let n = 15 and g(x) = x4 + x3 + x2 + x + 1. Then g(x) generates a skew cyclic

codes of length 15. This code is equivalent to a cyclic code of length 15. Since x15 − 1 =

(x + 1)(x2 + x + 1)(x4 + x + 1)(x4 + x3 + 1)(x4 + x3 + x2 + x + 1), it follows that there are 28

skew cyclic code of length 15.

Definition 4.8 A subset C of Sn is called a skew quasi-cyclic code of length n if C satisfies

the following conditions:

(i) C is a submodule of Sn;

(ii) If e = (e0,0, · · · , e0,l−1, e1,0, · · · , e1,l−1, · · · , es−1,0, · · · , es−1,l−1) ∈ C, then τθ,s,l (e) =

(θ(es−1,0), · · · , θ(es−1,l−1), θ(e0,0), · · · , θ(e0,l−1), θ(es−2,0), · · · , θ(es−2,l−1)) ∈ C.

We note that xs − 1 is a two sided ideal in S [x, θ] if m|s where m = 2 is the order of θ. So

S [x, θ] /(xs − 1) is well defined.

The ring M l
s = (S [x, θ] /(xs − 1))l is a left Ms = S [x, θ] /(xs − 1) module by the following

multiplication on the left f(x)(g1(x), · · · , gl(x)) = (f(x)g1(x), · · · , f(x)gl(x)). If the map γ is

defined by

γ : Sn −→ M l
s
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(e0,0, · · · , e0,l−1, e1,0, · · · , e1,l−1, · · · , es−1,0, · · · , es−1,l−1) 7→ (c0(x), · · · , cl−1(x)) such that ej(x) =
∑s−1

i=0 ei,jx
i ∈ M l

s where j = 0, 1, · · · , l − 1 then the map γ gives a one to one correspondence

Sn and the ring M l
s.

Theorem 4.9 A subset C of Sn is a skew quasi-cyclic code of length n = sl and index l if and

only if γ(C) is a left Ss-submodule of M l
s.

§5. MacWilliams Identities

Let the elements of S be represented as S = {f1, f2, · · · , f8} = {0, 1, u, v, 1+ u, 1 + v, u + v, 1 +

u + v} where the order of elements is fixed.

Definition 5.1 Define χ : S −→ C∗ by χ(a+ub+vc) = (−1)a+b+c. χ is a non-trivial character

of each non-zero ideal I of S. Hence we have
∑

a∈I χ(a) = 0.

Lemma 5.2 Let C be a linear code over S of length n. Then for any m ∈ Sn,

∑

c∈C

χ(c.m) =





0, if m /∈ C⊥

|C| , if m ∈ C⊥

Theorem 5.3([11]) Let C be a linear code over S of length n and f̂(c) =
∑

m∈Sn χ(c.m)f(m).

Then
∑

m∈C⊥ f(m) = 1
|C|
∑

c∈C f̂(c).

Let A is a 8 × 8 matrix.A matrix defined by A(i, j) = χ(fifj). The matrix A is given as

follows

A =





1 1 1 1 1 1 1 1

1 −1 −1 −1 1 1 1 −1

1 −1 −1 1 1 −1 −1 1

1 −1 1 −1 −1 1 −1 1

1 1 1 −1 1 −1 −1 −1

1 1 −1 1 −1 1 −1 −1

1 1 −1 −1 −1 −1 1 1

1 −1 1 1 −1 −1 1 −1





Definition 5.4 Let C be a linear code of length n over S, then LeeC(x, y) =
∑

c∈C x3n−wL(c)ywL(c)

can be called as the Lee weight enumerator of C and HamC(x, y) =
∑

c∈C xn−wH (c)ywH(c) can

be called as the Hamming weight enumerator of C. Besides,

SweC(x, y, z, w) =
∑

c∈C

xn0(c)yn1(c)zn2(c)wn3(c)

is the symmetric weight enumerator where ni(c) denote the number of elements of c with Lee
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weight 0, 1, 2, 3, respectively.

Definition 5.5 The complete weight enumerator of a linear code C over R is defined as

cweC(x1, x2, · · · , x8) =
∑

c∈C x
nf1

(c)
1 · · ·xnf8

(c)
8 where nfi

(c) is the number of appearances of fi

in the vector c.

The complete weight enumerator gives us a lot of information about the code, such as the

size of the code, the minimum weight of the code and the weight enumerator of the code for

any weight function.

We can define the symmetrized weight enumerator as follows.

Definition 5.6 Let C be a linear code of length n over S. Then define the symmetrized weight

enumerator of C as

SweC(x, y, z, w) = cweC(x, w, y, y, z, z, z, y)

Here x represents the elements that have weight 0 (the 0 element), y represents the elements

with weight 1 (the elements u, v, 1+u+v), z represents the elements with weight 2 (the elements

1 + u, 1 + v, u + v), w represents the elements with weight 3 (the element 1).

Theorem 5.7 Let C be a linear code of length n over S and let C⊥ be its dual. Then

cweC⊥(x1, x2, · · · , x8) = 1
|C|cweC(A.(x1 x2 · · · x8)

⊤) where ()⊤ denotes the transpose.

Theorem 5.8 Let C be a linear code of length n over S and let C⊥ be its dual. Then

SweC⊥(x, y, z, w) = 1
|C|SweC(x + w + 3y + 3z, x − w − 3y + 3z, x − w + y − z, x + w − y − z).

Proof The proof follows simply from calculating the matrix product

A.(x w y y z z z y)⊤

where ()⊤ denotes the transpose. 2
Theorem 5.9 Let C be a linear code of length n over S. Then,

(i) LeeC(x, y) = SweC(x3, x2y, y2x, y3);

(ii) LeeC⊥(x, y) = 1
|C|LeeC(x + y, x − y).

Proof (i) Let wL(c) = n1(c)+2n2(c)+3n3(c) where ni(c) denote the number of elements of

c with Lee weight 0, 1, 2, 3, respectively. Since n = n0(c) + n1(c) + n2(c) + n3(c), 3n−wL(c) =

3n0(c) + 2n1(c) + n2(c). From the definition,

LeeC(x, y) =
∑

c∈C

x3n−wL(c)ywL(c) =
∑

c∈C

x3n0(c)+2n1(c)+n2(c)yn1(c)+2n2(c)+3n3(c)

=
∑

c∈C

x3n0(c)(x2y)n1(c)(y2x)n2(c)y3n3(c) = SweC(x3, x2y, y2x, y3)
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(ii) From Theorems 5.7 and 5.8,

LeeC⊥(x, y) =
1

|C|SweC(x3 + 3x2y + 3y2x + y3, x3 − y3 − 3x2y + 3xy2,

x3 − y3 + x2y − xy2, x3 + y3 − x2y − xy2)

=
1

|C|SweC((x + y)3, (x + y)2(x − y), (x − y)2(x + y), (x − y)3)

=
1

|C|LeeC(x + y, x − y). 2
Theorem 5.10 Let C be a linear code of length n over S. Then we have

(i) HamC⊥(x, y) = 1
|C|HamC(x + 7y, x − y);

(ii) HamC(x, y) = SweC(x, y, y, y).

Proof (i) It is straightforward from [13].

(ii) The Hamming weight wH(c) is defined as wH(c) = n0(c) + n1(c) + n2(c) + n3(c).

HamC(x, y) =
∑

c∈C

xn−wH (c)ywH(c) =
∑

c∈C

xn0(c)yn1(c)+n2(c)+n3(c)

= SweC(x, y, y, y). 2
Example 5.11 Let C = {(0, 0), (v, v)} be a linear code of length 2 over S. The Lee weight

enumerator is LeeC(x, y) = x6 + x4y2; the Hamming enumerator is HamC(x, y) = x2 + y2. Lee

weight enumerator of C⊥ is LeeC⊥(x, y) = x6 + 4x5y + 7x4y2 + 8x3y3 + 7x2y4 + 5xy5 + y6;

Hamming weight enumerator of C⊥ is

HamC⊥(x, y) = x2 + 6xy + 25y2.
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Abstract: Let G be a graph. If u, v ∈ V (G), a u − v geodesic of G is the shortest path

between u and v. The closed interval I[u, v] consists of all vertices lying in some u - v

geodesic of G. For S ⊆ V (G) the set I[S] is the union of all sets I[u, v] for u, v ∈ S . A set S

is a geodetic set of G if I(S) = V (G). The cardinality of a minimum geodetic set of G is the

geodetic number of G, denoted by g(G). In this paper, we study the nonsplit geodetic number

of a graph gns(G). The set S ⊆ V (G) is a nonsplit geodetic set in G if S is a geodetic set and

〈V (G) − S〉 is connected, nonsplit geodetic number gns(G) of G is the minimum cardinality

of a nonsplit geodetic set of G. We investigate the relationship between nonsplit geodetic

number and geodetic number. We also obtain the nonsplit geodetic number in the cartesian

product of graphs.

Key Words: Cartesian products, distance, edge covering number, Smarandachely k-

geodetic set, geodetic number, vertex covering number.

AMS(2010): 05C05, 05C12.

§1. Introduction

As usual n = |V | and m = |E| denote the number of vertices and edges of a graph G respectively.

The graphs considered here are finite, undirected,simple and connected. The distance d(u, v)

between two vertices u and v in a connected graph G is the length of a shortest u − v path in

G. It is well known that this distance is a metric on the vertex set V (G). For a vertex v of

G, the eccentricity e (v) is the distance between v and a vertex farthest from v. The minimum

eccentricity among the vertices of G is radius, rad G and the maximum eccentricity is the

diameter, diam G. A u− v path of length d(u, v) is called a u− v geodesic. We define I[u, v] to

the set (interval) of all vertices lying on some u−v geodesic of G and for a nonempty subset S of

V (G), I[S] = ∪u,v∈SI[u, v]. A set S of vertices of G is called a geodetic set in G if I[S] = V (G),

and a geodetic set of minimum cardinality is a minimum geodetic set, and generally, if there is

a k-subset T of V (G) such that I(S)
⋃

T = V (G), where 0 ≤ k < |G| − |S|, then S is called a

Smarandachely k-geodetic set of G. The cardinality of a minimum geodetic set in G is called

1Received December 3, 2014, Accepted December 6, 2015.
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the geodetic number and is denoted by g (G). The concept of geodetic number of a graph was

introduced in [1, 4, 7], further studied in [2, 3], and the split geodetic number of a graph was

introduced in [10]. It was shown in [7] that determining the geodetic number of a graph is an

NP-hard problem.

A set of vertices S in a graph G is a nonsplit geodetic set if S is a geodetic set and the

subgraph G [V − S] induced by 〈V (G) − S〉 is connected. The minimum cardinality of a nonsplit

geodetic set, denoted gns (G), is called the nonsplit geodetic number of G.

w

vu

x

y

Figure 1.1

Consider the graph G of Figure 1.1. For the vertices u and y in G d (u, y) = 3 and every

vertex of G lies on an u − y geodesic in G. Thus S = {u, y} is the geodetic set of G and so

g (G). Here the induced subgraph 〈V (G) − S〉 is connected. So that S is a minimum nonsplit

geodetic set of G. Therefore nonsplit geodetic number gns(G) = 2.

A vertex v is an extreme vertex in a graph G, if the subgraph induced by its neighbours

is complete. A vertex cover in a graph G is a set of vertices that covers all edges of G. The

minimum number of vertices in a vertex cover of G is the vertex covering number α0 (G) of G.

An edge cover of a graph G without isolated vertices is a set of edges of G that covers all the

vertices of G. The edge covering number α1 (G) of a graph G is the minimum cardinality of an

edge cover of G. For any undefined term in this paper, see [1, 6]

§2. Preliminary Notes

We need the following results to prove our results.

Theorem 2.1 Every geodetic set of a graph contains its extreme vertices.

Theorem 2.2 For any tree T with k pendant vertices, g(T ) = k.

Theorem 2.3 For any graph G of order n, α1(G) + β1(G) = n.
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Theorem 2.4 For cycle Cn of order n ≥ 3,

g(Cn) =





2 if n even,

3 if n odd.

Theorem 2.5 If G is a nontrivial connected graph, then g(G) ≤ g(G × K2).

§3. Nonsplit Geodetic Number

Theorem 3.1 For cycle Cn of order n ≥ 3,

gns(Cn) =






n
2 + 1 if n is even,
⌊

n
2

⌋
+ 2 if n is odd.

Proof Suppose Cn be cycle with n ≥ 3, we have the following

Case 1. Let n be even. Consider C2p = {v1, v2, · · · , v2p, v1} be a cycle with 2p vertices.

Then vp+1 is the antipodal vertex of v1. Suppose S = {v1, vp+1} be the geodetic set of G.

It is clear that 〈V (G) − S〉 is not connected. Thus S is not a nonsplit geodetic set. But

S′ = {v1, v2, · · · , vp+1} is a nonsplit geodetic set of G. So that gns(G) ≤ (p + 1). If S1 is any

set of vertices of G with |S1| < |S′| then S1 contains at most p-elements. Hence V (G) − S1 is

not connected. This follows that gns(G) = p + 1 = n
2 + 1.

Case 2. Let n be odd. Consider C2p+1 = {v1, v2, · · · , v2p+1, v1} be a cycle with 2p+1

vertices. Then vp+1 and vp+2 are the antipodal vertices of v1. Now consider S = {v1, vp+1, vp+2}
be the geodetic set of G and it is clear that 〈V (G) − S〉 is not connected. Thus S is not a

nonsplit geodetic set. But S′ = {v1, v2, · · · , vp+1, vp+2} is a nonsplit geodetic set of G so that

gns(G) ≤ p + 2. If S1 is any set of vertices of G with |S1| < |S′| then S1 contains at most

p-elements. Hence 〈V (G) − S1〉 is not connected. This follows that

gns(G) = p + 2 =
⌊n

2

⌋
+ 2. 2

Theorem 3.2 For any nontrivial tree T with k-pendant-vertices, then gns(T ) = k.

Proof Let S = {v1, v2, · · · , vk} be the set containing pendant vertices of a tree T. By

Theorem 2.2, g(T ) ≥ |S|. On the other hand, for an internal vertex v of T there exist pendant

vertices x,y of T such that v lies on the unique x-y geodesic in T. Thus, v ∈ I [S] and I [S] =

V (T ).Then g(T ) ≤ |S|. Thus S itself a minimum geodetic set of T.Therefore g(T ) = |S| = k

and 〈V − S〉 is connected. Hence gns(T ) = k. 2
Theorem 3.3 For any integers r, s ≥ 2,gns(Kr,s) = r + s − 1.

Proof Let G =Kr,s, such that U = {u1, u2, · · · , ur}, W = {w1, w2, · · · , ws} are the partite
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sets of G, where r ≤ s and also V = U ∪ W .

Consider S = U ∪ W − x for any x ∈ W . Every wk ∈ W , 1 ≤ k ≤ s − 1 lies on ui − uj

geodesic for 1 ≤ i 6= j ≤ r, so that S is a geodetic set of G. Since 〈V (G) − S〉 is connected and

hence S itself a nonsplit geodetic set of G . Let S′ be any set of vertices such that |S′| < |S|. If

S′ is not a subset of U then 〈V (G) − S′〉 is not connected and so S′ is not a nonsplit geodetic

set of G. If S′ is not a subset of W − x, again S′ is not a nonsplit geodetic set of G, by a

similar argument.If S′ = U then S′ is a geodetic set but 〈V (G) − S′〉 is not connected, so

S′ is not nonsplit geodetic set. If S′ = W − x then S′ is not a nonsplit geodetic set of G.

From the above argument, it is clear that S is a minimum nonsplit geodetic set of G. Hence

gns(Kr, s) = |S| = r + s − 1. 2
Theorem 3.4 If G is a star then gns(G) = n − 1.

Proof Let V (G) = {v1, v2, · · · , vn−1, vn} and let S = {v1, v2, · · · , vn−1} be the set of pen-

dant vertices of G and is the geodetic set of G. Clearly, the subgraph induced by 〈V (G) − S = vn〉
is connected. Hence S = {v1, v2, · · · , vn−1} is a minimum nonsplit geodetic set of G. Therefore

gns(G) = n − 1. 2
Theorem 3.5 For any nontrivial connected graph G different from star of order n and diameter

d, gns(G) ≤ n − d + 1.

Proof Let u and v be the vertices of G for which d(u, v) = d and let u = v0, v1, · · · , vd = v

be a u − v path of length d. Now S = V (G) − {v1, v2, · · · , vd−1} then I[S] = V [G] and

consequently gns(G) ≤ |S| ≤ n − d + 1. 2
Theorem 3.6 For any tree T , gns(T ) + g(T ) < 2m.

Proof Suppose S = {v1, v2, v3, · · · , vk} be the set of all pendant vertices in T , forms a

minimal geodetic set of I [S] = V (T ) . Further {u1, u2, u3, · · · , ul} ⊂ V (G) − S is the set of

internal vertices in T . Then 〈V (G) − S〉 forms a minimal non split geodetic set of T , it follows

that |S| + |S| < 2m . Hence gns(T ) + g(T ) < 2m. 2
Theorem 3.7 For any graph G of order n, gns(G) ≤ gs(G), where G is not a cycle..

Proof Let G be any graph with n vertices. Consider a nonsplit geodetic set S = {v1, v2, · · · , vk}
of a graph G. Since 〈V (G) − S〉 is connected, the set S is not a split geodetic set of G. Now,

we consider a set S′ = S ∪ {a, b} for any a, b ∈ V (G) such that 〈V (G) − S′〉 is disconnected.

Therefore S′ is the split geodetic set of G with minimum cardinality. Thus |S| < |S′|. Clearly

gns(G) ≤ gs(G). 2
Theorem 3.8 Let G be a cycle of order n then gs(G) ≤ gns(G).

Proof Let G be a cycle of order n, we discuss the following cases.

Case 1. Suppose n is even. Let S = {vi, vj} be the split geodetic set of G where vi, vj are the

two antipodal vertices of G. The vi − vj geodesic includes all the vertices of G and 〈V (G) − S〉
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is disconnected. But S′ = {vi, vi+1, · · · , vj} is a nonsplit geodetic set of G and the induced

subgraph 〈V (G) − S′〉 is connected. Thus |S| ≤ |S′|. Clearly gs(G) ≤ gns(G).

Case 2. Suppose n is odd. Let S = {vi, vj , vk} be the split geodetic set of G. By the Theorem

2.4, no two vertices of S form a non split geodetic set and 〈V (G) − S〉 is disconnected. But

S′ = {vi, vi+1, · · · , vj , vk} is a nonsplit geodetic set of G and the induced subgraph 〈V (G) − S′〉
is connected. Thus |S| ≤ |S′|. Clearly gs(G) ≤ gns(G). 2
Theorem 3.9 For the wheel Wn = k1 + Cn−1 (n ≥ 5),

gns(Wn) =






n
2 if n is even

n−1
2 if n is odd

Proof Let Wn = K1+Cn−1 and let V (Wn)={x, u1, u2, · · · , un−1}, where deg(x) = n−1 >

3 and deg(ui) = 3 for each i ∈ {1, 2, · · · , n − 1}. We discuss the following cases.

Case 1. Let n be even. Consider geodesic

P : {u1, u2, u3} , Q : {u3, u4, u5} , · · · , R : {u2n−1, u2n, u2n+1, }.
It is clear that the vertices u2, u4 · · · , u2n lies on the geodesic P, Q and R. Also u1, u3, u5, · · · ,

u2n−1, u2n+1 is a minimum nonsplit geodetic set such that 〈V (G) − S〉 is connected and it has
n
2 vertices. Hence gns(Wn) = n

2 .

Case 2. Let n be odd. Consider geodesic

P : {u1, u2, u3} , Q : {u3, u4, u5} , · · · , R : {u2n−1, u2n, u2n+1, }.
It is clear that the vertices u2, u4, · · · , u2n lies on the geodesic P, Q and R. Also u1, u3, u5,

· · · , u2n−1, u2n+1 is a minimum nonsplit geodetic set such that 〈V (G) − S〉 is connected and it

has n−1
2 vertices. Hence gns(Wn) = n−1

2 . 2
Theorem 3.10 Let G be a graph such that both G and G are connected then gns(G)+gns(G) ≤
n(n − 3) + 2.

Proof Since both G and G are connected , we have ∆(G)·∆(G) < n−1.Thus β0(G), β0(G) ≥
2. Hence,

gns ≤ n − 1 ⇒ gns(G) ≤ 2(n − 1) − n + 1 ⇒ gns(G) ≤ 2m − n + 1.

Similarly, gns(G) ≤ 2m − n + 1. Thus,

gns(G) + gns(G) ≤ 2(m + (m)) − 2n + 2 ⇒ gns(G) + gns(G) ≤ n(n − 1) − 2n + 2

⇒ gns(G) + gns(G) ≤ n2 − n − 2n + 2

⇒ gns(G) + gns(G) ≤ n2 − 3n + 2

⇒ gns(G) + gns(G) ≤ n(n − 3) + 2. 2
Theorem 3.11 For any nontrivial tree T , gns(T ) ≥ α0(T ).
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Proof Let S be a minimum cover set of vertices in T . Then S has at least one vertex and

every vertex in S is adjacent to some vertices in 〈V (G) − S〉. This implies that S is a nonsplit

geodetic set of G. Thus gns(T ) ≥ α0(T ). 2
Theorem 3.12 For any nontrivial tree T with m edges, gns(T ) ≤ m−⌈α1(T )

2 ⌉+2,where α1(T )

is an edge covering number.

Proof Suppose S′ = {e1, e2, · · · , ei} be the set of all end edges in T and J ⊆ E(T ) − S′

be the minimal set of edges such that |S′ ∪ J | = α1(T ). By the Theorem 2.2 S′ is the minimal

geodetic set of G. Also it follows that 〈V (G) − S′〉 is connected. Clearly,

gns(T ) ≤ |E(T )| −
∣∣∣∣

⌈
S′ ∪ J

2

⌉∣∣∣∣+ 2 ⇒ gns(T ) ≤ m −
⌈

α1(T )

2

⌉
+ 2. 2

Theorem 3.13 For a cycle Cn of order n, gns(G) = α0(Cn) + 1.

Proof Consider a cycle Cn of order n. We discuss the following cases.

Case 1. Suppose that n is even and α0(Cn) is the vertex covering number of Cn. We have by

Theorem 3.1, gns(G) = n
2 + 1 and also for an even cycle, vertex covering number α0(Cn) = n

2 .

Hence,

gns(G) =
n

2
+ 1 = α0(Cn) + 1.

Case 2. Suppose that n is odd and α0(Cn) is the vertex covering number of Cn. We have by

Theorem 3.1, gns(G) = ⌊n
2 ⌋ + 2 and also for an odd cycle, vertex covering number α0(Cn) =

⌊n
2 ⌋ + 1. Hence,

gns(G) = ⌊n

2
⌋ + 2 ⇒ gns(G) = α0(Cn) + 1. 2

Theorem 3.14 If is a connected noncomplete graph G of order n,gns ≤ (n− κ(G)) + 1, where

κ(G) is vertex connectivity.

Proof Let κ(G) = k. Since G is connected but not complete 1 ≤ κ(G) ≤ n − 2. Let

U = {u1, u2, · · · , uk} be a minimum cut set of G, let G1, G2, · · · , Gr(r ≥ 2) be the components

of G − U and let W = V (G) − (U − 1) then every vertex ui(1 ≤ i ≤ k) is adjacent to at least

one vertex of Gj for every (i ≤ j ≤ r). Therefore, every vertex ui belongs to a W geodesic

path. Thus

gns(G) = |W | ≤ (V (G) − U) + 1 ≤ (n − κ(G)) + 1. 2
§4. Corona Graph

Let G and H be two graphs and let n be the order of G. The corona product G◦H is defined as

the graph obtained from G and H by taking one copy of G and n copies of H and then joining

by an edge, all the vertices from the ith-copy of H with the ith-vertex of G.

Theorem 4.1 Let G be a connected graph of order n and H be any graph of order m then

gns(G ◦ H) = nm.
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Proof Let S be a nonsplit geodetic set in G ◦H , vi ∈ V (G), 1 ≤ i ≤ n and uj ∈ V (H), 1 ≤
j ≤ m. For each vi there is a copy Hvi which contains uj vertices. Clearly V (Huj) ∩ S is a

geodetic set of G ◦ H and 〈V (G) − S〉 is connected. Further every wk ∈ (G ◦ H) lies on the

geodesic path in S. Therefore S is the minimum nonsplit geodetic set. Thus, |S| = gns(G◦H) =

nm. 2
§5. Adding a Pendant Vertex

An edge e = (u, v) of a graph G with deg(u) = 1 and deg(v) > 1 is called an pendant edge and

u an pendant vertex.

Theorem 5.1 Let G′ be the graph obtained by adding an pendant edge (u, v) to a cycle G = Cn

of order n > 3, with u ∈ G and v /∈ G, then

gns(G
′) =





2 if n is even

3 if n is odd

Proof Let {u1, u2, u3, · · · , un, u1} be a cycle with n vertices. Let G′ be the graph obtained

from G = Cn by adding an pendant edge (u, v) such that u ∈ G and v /∈ G. We discuss the

following cases.

Case 1. For G = C2n, let S = {v, ui} be a non split geodetic set of G′ , where v is the pendant

vertex of G′ and diam(G′) = v − ui path , clearly I[S] = V [G′]. Also for all x, y ∈ V (G′) − S,

〈V (G′) − S〉 is connected. Hence, gns(G
′) = 2.

Case 2. For G = C2n+1, let S = {v, a, b} be a non split geodetic set of G′ , where v is

the pendant vertex of G′ and a, b ∈ G such that d(v, a) = d(v, b). Thus I[S] = V [G′] and

〈V (G′) − S〉 is connected. Hence, gns(G
′) = 3. 2

Theorem 5.2 Let G′ be the graph obtained by adding a pendant vertex (ui, vi)for i = 1, 2, 3, · · · , n

to each vertex of G = Cn such that u ∈ G,vi /∈ G, then gns(G
′) = k.

Proof Let G = Cn = {u1, u2, u3, · · · , un, u1} be a cycle with n vertices. Let G′ be the

graph obtained by adding an pendant vertex {ui, vi}, i = 1, 2, 3, · · · , n to each vertex of G such

that ui ∈ G and vi /∈ G. Let S = {v1, v2, v3, · · · , vk} be a non split geodetic set of G′. Clearly

I[X ] 6= V (G′). Also, x, y ∈ V (G′) − S with V (G′) − S connected. Thus, gns(G
′) = k. 2

Theorem 5.3 Let G′ be the graph obtained by adding k pendant vertices {(u, v1), · · · , (u, vk)}
to a cycle G = Cn of order n > 3, with u ∈ G and {v1, v2, · · · , vk} /∈ G. Then

gns(G
′) =





k + 1 if n is even

k + 2 if n is odd

Proof Consider {u1, u2, u3, · · · , un, u1} be a cycle with n vertices. Let G′ be the graph
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obtained from G = Cn by adding k pendant edges {uiv1, uiv2, · · · , uivk} such that ui a single

vertex of G and {v1, v2, v3, · · · , vk} does not belongs to G. We discuss the following cases.

Case 1. Let G = C2n. Consider X = {v1, v2, v3, · · · , vk} ∪ ui , for any vertex ui of G . Now

S = {X} be a non split geodetic set , such that {v1, v2, v3, · · · , vk} are the pendant vertices of G′

and uj is the antipodal vertex of ui in G. Thus I[X ] = V [G′]. Consider P = {v1, v2, v3, · · · , vk}
as a set of pendant vertices such that |P | < |S| is not a non split geodetic set i.e for some vertex

uj ∈ VG′ ,uj /∈ I[P ]. If P = X , then P is not nonsplit geodetic set. Thus S is a minimum non

split geodetic set of G′ and 〈V (G′) − S〉 is connected. Thus, gns(G
′) = k + 1.

Case 2. Let G = C2n+1. Consider S = {v1, v2, v3, · · · , vk, a, b} be a non split geodetic set,

where {v1, v2, · · · , vk} /∈ G are k pendant vertices of G′ not in G and a, b ∈ G such that

d(u, a) = d(u, b). Thus I[S] = V [G′]. Also x, y ∈ V (G′) − S it follows that 〈V (G′) − S〉 is

connected. Therefore, gns(G
′) = k + 2. 2

§6. Cartesian Products

The cartesian product of the graphs H1 and H2 written as H1 × H2, is the graph with vertex

set V (H1) × V (H2), two vertices u1, u2 and v1, v2 being adjacent in H1 × H2 iff either u1 = v1

and (u2, v2) ∈ E(H2), or u2 = v2 and (u1, v1) ∈ E(H1).

Theorem 6.1 Let K2 and G = Cn be the graphs then

gns(K2 × G) =






2 if n is even

3 if n > 5 is odd

4 if n=3

Proof Consider G = Cn, let K2 × G be graphs formed from two copies G1 and G2 of G.

Let V = {v1, v2, · · · , vn} be the vertices of G1 and W = {w1, w2, · · · , wn} be the vertices of G2

and U = V ∪ W . We consider the following cases.

Case 1. Let n be even. Consider S = {vi, wj} be the non split geodetic of K2×G such that vi

to wj path is equal to diam(K2 ×G) which includes all the vertices of K2 ×G. Hence 〈U − S〉
is connected. Therefore, gns[K2 × G] = 2.

Case 2. Let n be odd. Consider S = {vi, wj , vk} be the non split geodetic set of K2 ×G such

that vi to wj path is equal to diam(K2×G) and is equal to wj−vkpath and also vi−wj∪wj−vk

path includes all the vertices of K2×G. Hence 〈U − S〉 is connected. Therefore, gns[K2×G] = 3.

Case 3. For n = 3, let S = {vi, wj , vk} be the geodetic set of K2 × G, that is vi − wj is

equal to diam(K2 ×G) and is equal to wj − vk and also I[S] = U(K2 ×G). But 〈U − S〉 is not

connected. Let S′ = S ∪{vn} = {vi, wj , vk, vn} be the non split geodetic set of K2 ×G. Hence,

〈U − S′〉 is connected. Therefore, gns[K2 × G] = 4. 2
Theorem 6.2 For any complete graph Kn of order n, gns[K2 × Kn] = n + 1.
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Proof Consider K2 × Kn be graph formed from two copies of G1 and G2 of G. Now, let

us prove the result by mathematical induction,

For n = 2 , gns[k2 ×K2] = 3, since K2 ×K2 = C4 by Theorem 3.1 we have gns[C4] = 3 the

result is true.

Let us assume that the result is true for n=m,that is gns[K2 × Km] = m + 1.

Now, we shall prove the result for n = m+1. Let S = {v1, v2, v3, · · · , vm+2} be the nonsplit

geodetic set formed from some elements in G1 and the elements which are not corresponds to

elements in G1 of K2 × Km+1. Clearly I[S] = V (K2 × Kn). Let P be any set of vertices

such that |P | < |S|. Suppose P = {v1, v2, v3, · · · , vm} which is not non split geodetic set,

because I[P ] 6= V [K2 × Km+1]. So S itself a minimum geodetic set of K2 × Km+1. Hence,

gns[K2 × Km+1] = m + 1 + 1. Thus, gns(K2 × Kn) = n + 1. 2
Theorem 6.3 For any complete graph of order n ≥ 3 , gns(Kn × Kn) = n.

Proof We shall prove the result by mathematical induction, For n ≥ 3, let us assume that

the result is true for n = m, that is gns(Km × Km) = m.

Now, we shall prove the result for n = m + 1. Let S = {v1, v2, v3, · · · , vm+1} be the non

split geodetic set formed from some elements in G1 and the elements which are not corresponds

to elements in G1 of Km+1 × Km+1. Clearly I[S] = V (K2 × Kn) . Now, consider P be any set

of vertices such that |P | < |S|. Suppose P = {v1, v2, v3, · · · , vm} which is not non split geodetic

set, because I[P ] 6= V (Km+1 × Km+1). So S itself a minimum geodetic set of Km+1 × Km+1.

Hence, gns(Km+1 × Km+1) = m + 1. Thus gns(Kn × Kn) = n. 2
Theorem 6.4 Let G and H be graphs then gns(G × H) ≥ max{g(G), g(H)}.Equality holds

when G,H are complete graphs and n ≥ 3.

Proof If S is a minimum geodetic set in G × H then we have I[S] = ∪a,b∈SI[a, b] =

∪a,b∈SI[a1, b1]× I[a2, b2] ⊆ (∪a1,b1∈SI[a1, b1])× (∪a2,b2∈SI[a2, b2]) = I[S1]× I[S2],V (G×H) =

I[S] ⊆ I[S1] × I[S2]. Therefore S1 and S2 geodetic set in G, H respectively, so gns(G × H) =

|S| ≥ max{|s1|, |s2|} ≥ max{g(G), g(H)}, proving the lower bound.

Consider complete graphs G, H with vertex sets V (G) = {u1, u2, · · · , up} and V (H) =

{v1, v2, · · · , vq} where without loss of generality p ≥ q. Then g(G) = p and g(H) = q. Let

S = {(u1, v2), (u2, v2), · · · , (uq, vq), (uq+1, vq), (uq+2, vq), · · · , (up, vq)}.
It is straight forward to verify that S is a non split geodetic set for G × H . Hence,

gns(G × H) ≤ |S| ≤ p = max{g(G), g(H)} ≤ gns(G × H), so equality holds. 2
Theorem 6.5 Let G = T and H = K2 be the graphs with g(G) = p ≥ g(H) = q ≥ 2 then

gns(G × H) ≤ pq − q.

Proof Set X = G × H . Let S = {g1, g2, ..., gp} and T = {h1, h2, · · · , hq} be the geodetic

sets of G and H respectively, and U = {(S × T )/ ∪p,q
i,j=1 {(gi, hj)}}.

We claim that IX [U ] = V (X). Let (g, h) be an arbitrary vertex of X.Then there exists

indices i and i′ such that g ∈ IG[gi, gi′ ] and there are indices j and j′ such that h ∈ IH [hj , hj′ ].

Since p, q ≥ 2 we may assume that i = i′ and j = j′. Indeed ,if say g = gi then i′ to be an
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arbitrary index from {1, 2, · · · , p} different from i. Set B = {(gi, hj), (gi, hj′), (gi′ , hj), (gi′ , hj′)}.
Suppose that one of the vertices from B is not in U. We may without loss of generality

assume (gi, hj) 6 inU . This means that i = j. Therefore i′ 6= j and i 6= j′. Then we infer

that (g, h) ∈ IX [(gi, hj′), (gi′ , hj)]. Otherwise, all vertices from B are in U, then (g, h) ∈
IX [(gi, hj), (gi′ , hj′)]. Hence, gns[G × H ] ≤ pq − q. 2
Theorem 6.6 Let K2 and T be the graphs then gns(K2 × T ) = gns(T ).

Proof Consider a tree T . Let K2 × T be a graph formed from two copies T1 and T2 of T

and S be a minimum non split geodetic set of K2 × T . Now, we define S’ to be the union of

those vertices of S in T1 and the vertices of T1 corresponding to vertices of T2 belonging to S.

Let v ∈ V (T1) lies on some x − y geodesic,where x, y ∈ S.Since S is a non split geodetic set

by Theorem 3.2, i.e., gns(T ) = k at least one of x and y belongs to V1. If both x, y ∈ V1 then

x, y ∈ S′. Hence, we may assume that x ∈ V1, y ∈ V2. If y corresponds to x then v = x ∈ S′.

Hence, we assume that y corresponds to y′ ∈ S′,where y′ 6= x. Since d(x, y) = d(x, y′) + 1 and

the vertex v lies on an x − y geodesic in K2 × G. Hence, v lies on x − y geodesic in G that is

gns(G) ≤ gns(K2 × G).

Conversely, let S contains a vertex with the property that every vertex of T1 lies on x−w

geodesic T1 for some w ∈ S. Let S′ consists of x together with those vertices of T2 corresponding

to those S − {x}. Thus, |S′| = |S|. We show that S′ is a non split geodetic set of K2 × T .

Hence gns(K2 × T ) ≤ gns(T ). Thus, gns(K2 × T ) = gns(T ). 2
Theorem 6.7 Let K2 and G = Pn be the two graphs,

gns(K2 × G) =





2 ifn ≥ 3

3 ifn = 2

Proof Consider a trivial graph K1 as a connected graph. Let G1 and G2 be the two

copies of G and also V (G1) = {a1, a2, · · · , an}, V (G2) = {b1, b2, · · · , bn}. Let S = {a1, bn}
be the non split geodetic set of K2 × G and also d(a1, bn) = diam(a1, bn). Thus, V − S =

{a2, a3, · · · , an, b1, b2, · · · , bn−1} is the induced subgraph and it is connected. Hence gns[K2 ×
G] = 2.

Similarly,the result is obvious for n = 2 that is gns[K2 × G] = 3. 2
§7. Block Graphs

A block graph has a subgraph G1 of G(not a null graph) such that G1 is non separable and if

G2 is any other graph of G, then G1 ∪ G2 = G1 or G1 ∪ G2 is separable. For any graph G a

complete subgraph of G is called clique of G. The number of vertices in a largest clique of G is

called the clique number of G and denoted by ω(G).

Theorem 7.1 For any block graph G, gns(G) = n − ci where n be the number of vertices and

ci be the number of cut vertices.
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Proof Let V = {v1, v2, · · · , vn} be the number of vertices of G. Consider S be the geodetic

set of G and 〈V (G) − S〉 is connected. Thus S itself a nonsplit geodetic set of G. Since every

geodetic set does not contain any cut vertices. Hence, gns(G) = n − ci. 2
Theorem 7.2 For any block graph G, gns(G) ≤ ω(G) + 2ci where ω(G) be the clique number

and ci be the number of cut vertices.

Proof Let V = {v1, v2, · · · , vn} be the number of vertices of G. In a block graph, every

geodetic set is a nonsplit geodetic set. Consider S be the geodetic set of G and 〈V (G) − S〉 is

connected. Thus S itself a nonsplit geodetic set of G. By the definition, the number of vertices

in a largest clique of G is ω(G) and also every geodetic set does not contain any cut vertices of

G. It follows that gns(G) ≤ ω(G) + 2ci. 2
Theorem 7.3 For any block graph G, gns(G) = α0(G) + 1 where α0(G) be the vertex covering

number.

Proof Let G be a block graph of order n. Now, we prove the result by mathematical

induction.

For ci = 1, the vertex covering number of G is

α0(G) = n − ci − 1 ⇒ α0(G) = n − 1 − 1 ⇒ α0(G) + 1 = n − 1,

by Theorem 7.1, we have

gns(G) = n − ci ⇒ gns(G) = n − 1.

Therefore, gns(G) = α0(G) + 1. Thus the result is result is true for ci = 1. Let us assume that

the result is true for ci = m that is gns(G) = α0(G) + 1.

Now, we shall prove the result for ci = m + 1, where m+1 is the number of cut vertices.

Let S = {v1, v2, · · · , vn} be the minimum nonsplit geodetic set of G. Since every geodetic set

does not contain any cut vertex, by Theorem 7.1 we have gns(G) = n − m − 1. Therefore,

α0(G) = n − ci − 1 ⇒ α0(G) = (n − m − 1) − 1 ⇒ α0(G) + 1 = n − m − 1.

Thus, gns(G) = α0(G) + 1. 2
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Abstract: In this paper we introduce new graph labeling called k-difference cordial la-

beling. Let G be a (p, q) graph and k be an integer, 2 ≤ k ≤ |V (G)|. Let f : V (G) →

{1, 2, · · · , k} be a map. For each edge uv, assign the label |f(u) − f(v)|. f is called a k-

difference cordial labeling of G if |vf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x)

denote the number of vertices labelled with x, ef (1) and ef (0) respectively denote the num-

ber of edges labelled with 1 and not labelled with 1. A graph with a k-difference cordial

labeling is called a k-difference cordial graph. In this paper we investigate k-difference cor-

dial labeling behavior of star, m copies of star and we prove that every graph is a subgraph

of a connected k-difference cordial graph. Also we investigate 3-difference cordial labeling

behavior of some graphs.

Key Words: Path, complete graph, complete bipartite graph, star, k-difference cordial

labeling, Smarandachely k-difference cordial labeling.
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§1. Introduction

All graphs in this paper are finite and simple. The graph labeling is applied in several areas

of sciences and few of them are coding theory, astronomy, circuit design etc. For more details

refer Gallian [2]. Let G1, G2 respectively be (p1, q1), (p2, q2) graphs. The corona of G1 with

G2, G1 ⊙ G2 is the graph obtained by taking one copy of G1 and p1 copies of G2 and joining

the ith vertex of G1 with an edge to every vertex in the ith copy of G2. The subdivision

graph S (G) of a graph G is obtained by replacing each edge uv by a path uwv. The union

of two graphs G1 and G2 is the graph G1 ∪ G2 with V (G1 ∪ G2) = V (G1) ∪ V (G2) and

E (G1 ∪ G2) = E (G1) ∪ E (G2). In [1], Cahit introduced the concept of cordial labeling of

graphs. Recently Ponraj et al. [4], introduced difference cordial labeling of graphs. In this

way we introduce k-difference cordial labeling of graphs. Also in this paper we investigate the

k-difference cordial labeling behavior of star, m copies of star etc. ⌊x⌋ denote the smallest

integer less than or equal to x. Terms and results not here follows from Harary [3].

1Received June 4, 2015, Accepted May 26, 2016.



122 R.Ponraj, M.Maria Adaickalam and R.Kala

§2. k-Difference Cordial Labeling

Definition 2.1 Let G be a (p, q) graph and k be an integer 2 ≤ k ≤ |V (G)|. Let f : V (G) →
{1, 2, · · · , k} be a function. For each edge uv, assign the label |f(u) − f(v)|. f is called a

k-difference cordial labeling of G if |vf (i) − vf (j)| ≤ 1 and |ef(0) − ef (1)| ≤ 1, and Smaran-

dachely k-difference cordial labeling if |vf (i) − vf (j)| > 1 or |ef(0) − ef (1)| > 1, where vf (x)

denote the number of vertices labelled with x, ef(1) and ef (0) respectively denote the number

of edges labelled with 1 and not labelled with 1. A graph with a k-difference cordial labeling

or Smarandachely k-difference cordial labeling is called a k-difference cordial graph or Smaran-

dachely k-difference cordial graph, respectively.

Remark 2.2 (1) p-difference cordial labeling is simply a difference cordial labeling;

(2) 2-difference cordial labeling is a cordial labeling.

Theorem 2.3 Every graph is a subgraph of a connected k-difference cordial graph.

Proof Let G be (p, q) graph. Take k copies of graph Kp. Let Gi be the ith copy of Kp.

Take k copies of the K(p
2)

and the ith copies of the K(p
2)

is denoted by G′
i. Let V (Gi) = {uj

i :

1 ≤ j ≤ k, 1 ≤ i ≤ p}. Let V (G′
i) = {vj

i : 1 ≤ j ≤ k, 1 ≤ i ≤ p}. The vertex and edge set of

super graph G∗ of G is as follows:

Let V (G∗) =
k⋃

i=1

V (Gi) ∪
k⋃

i=1

V (G′
i) ∪ {wi : 1 ≤ i ≤ k} ∪ {w}.

E(G∗) =
k⋃

i=1

E(Gi)∪{uj
1v

j
i : 1 ≤ i ≤

(
p
2

)
, 1 ≤ j ≤ k−1}∪{uk

1w, wvk
i : 1 ≤ i ≤

(
p
2

)
}∪{uj

pwj :

1 ≤ j ≤ k} ∪ {uj
2u

j+1
2 : 1 ≤ j ≤ k − 1} ∪ {w1w2}.

Assign the label i to the vertices of Gi, 1 ≤ i ≤ k. Then assign the label i + 1 to the

vertices of G′
i, 1 ≤ i ≤ k − 1. Assign the label 1 to the vertices of G′

k. Then assign 2 to the

vertex w. Finally assign the label i to the vertex wi, 1 ≤ i ≤ k. Clearly vf (i) = p +
(

p
2

)
+ 1,

i = 1, 3, . . . , k, vf (2) = p +
(
p
2

)
+ 2 and ef (1) = k

(
p
2

)
+ k, ef(0) = k

(
p
2

)
+ k + 1. Therefore G∗ is

a k-difference cordial graph. 2
Theorem 2.4 If k is even, then k-copies of star K1,p is k-difference cordial.

Proof Let Gi be the ith copy of the star K1,p. Let V (Gi) = {uj, v
j
i : 1 ≤ j ≤ k, 1 ≤ i ≤ p}

and E(Gi) = {ujv
j
i : 1 ≤ j ≤ k, 1 ≤ i ≤ p}. Assign the label i to the vertex uj , 1 ≤ j ≤ k.

Assign the label i + 1 to the pendent vertices of Gi, 1 ≤ i ≤ k
2 . Assign the label k − i + 1

to the pendent vertices of G k
2
+i, 1 ≤ i ≤ k

2 − 1. Finally assign the label 1 to all the pendent

vertices of the star Gk. Clearly, vf (i) = p + 1, 1 ≤ i ≤ k, ef (0) = ef(1) =
kp

2
. Therefore f is a

k-difference cordial labeling of k-copies of the star K1,p. 2
Theorem 2.5 If n ≡ 0 (mod k) and k ≥ 6, then the star K1,n is not k-difference cordial.

Proof Let n = kt. Suppose f is a k-difference cordial labeling of K1,n. Without loss

of generality, we assume that the label of central vertex is r, 1 ≤ r ≤ k. Clearly vf (i) = t,
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1 ≤ i ≤ n and i 6= r, vf (r) = t + 1. Then ef (1) ≤ 2t and ef(0) ≥ (k − 2)t. Now ef(0) ≥
(k − 2)t − 2t ≥ (k − 4)t ≥ 2, which is a contradiction. Thus f is not a k-difference cordial. 2

Next we investigate 3-difference cordial behavior of some graph.

§3. 3-Difference Cordial Graphs

First we investigate the path.

Theorem 3.1 Any path is 3-difference cordial.

Proof Let u1u2 . . . un be the path Pn. The proof is divided into cases following.

Case 1. n ≡ 0 (mod 6).

Let n = 6t. Assign the label 1, 3, 2, 1, 3, 2 to the first consecutive 6 vertices of the path

Pn. Then assign the label 2, 3, 1, 2, 3, 1 to the next 6 consecutive vertices. Then assign the

label 1, 3, 2, 1, 3, 2 to the next six vertices and assign the label 2, 3, 1, 2, 3, 1 to the next six

vertices. Then continue this process until we reach the vertex un.

Case 2. n ≡ 1 (mod 6).

This implies n − 1 ≡ 0 (mod 6). Assign the label to the vertices of ui, 1 ≤ i ≤ n − 1 as in

case 1. If un−1 receive the label 2, then assign the label 2 to the vertex un; if un−1 receive the

label 1, then assign the label 1 to the vertex un.

Case 3. n ≡ 2 (mod 6).

Therefore n−1 ≡ 1 (mod 6). As in case 2, assign the label to the vertices ui, 1 ≤ i ≤ n−1.

Next assign the label 3 to un.

Case 4. n ≡ 3 (mod 6).

This forces n − 1 ≡ 2 (mod 6). Assign the label to the vertices u1, u2, . . . un−1 as in case

3. Assign the label 1 or 2 to un according as the vertex un−2 receive the label 2 or 1.

Case 5. n ≡ 4 (mod 6).

This implies n − 1 ≡ 3 (mod 6). As in case 4, assign the label to the vertices u1, u2, · · · ,
un−1. Assign the label 2 or 1 to the vertex un according as the vertex un−1 receive the label 1

to 2.

Case 6. n ≡ 5 (mod 6).

This implies n − 1 ≡ 4 (mod 6). Assign the label to the vertices u1, u2, · · · , un−1 as in

Case 5. Next assign the label 3 to un. 2
Example 3.2 A 3-difference cordial labeling of the path P9 is given in Figure 1.

b b b b b b b b b

1 3 2 1 3 2 2 3 1

Figure 1
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Corollary 3.3 If n ≡ 0, 3 (mod 4), then the cycle Cn is 3-difference cordial.

Proof The vertex labeling of the path given in Theorem 3.1 is also a 3-difference cordial

labeling of the cycle Cn. 2
Theorem 3.4 The star K1,n is 3-difference cordial iff n ∈ {1, 2, 3, 4, 5, 6, 7, 9}.

Proof Let V (K1,n) = {u, ui : 1 ≤ i ≤ n} and E(K1,n) = {uui : 1 ≤ i ≤ n}. Our proof is

divided into cases following.

Case 1. n ∈ {1, 2, 3, 4, 5, 6, 7, 9}.

Assign the label 1 to u. The label of ui is given in Table 1.

n\ui u1 u2 u3 u4 u5 u6 u7 u8 u9

1 2

2 2 3

3 2 3 1

4 2 3 1 2

5 2 3 1 2 3

6 2 3 1 2 3 2

7 2 3 1 2 3 2 3

9 2 3 1 2 3 2 3 1 2

Table 1

Case 2. n /∈ {1, 2, 3, 4, 5, 6, 7, 9}.

Let f(u) = x where x ∈ {1, 2, 3}. To get the edge label 1, the pendent vertices receive the

label either x − 1 or x + 1.

Subcase 1. n = 3t.

Subcase 1a. x = 1 or x = 3.

When x = 1, ef(1) = t or t + 1 according as the pendent vertices receives t’s 2 or (t+1)’s

2. Therefore ef(0) = 2t or 2t − 1. Thus ef (0) − ef (1) = t − 2 > 1, t > 4 a contradiction.

When x = 3, ef (1) = t or t + 1 according as the pendent vertices receives t’s 2 or (t+1)’s 2.

Therefore ef (0) = 2t or 2t− 1. Thus ef (0)− ef (1) = t or t− 2. Therefore, ef (0)− ef (1) > 1, a

contradiction.

Subcase 1b. x = 2.

In this case, ef (1) = 2t or 2t + 1 according as pendent vertices receives t’s 2 or (t-2)’s 2.

Therefore ef (0) = t or t − 1. ef (1) − ef(0) = t or t + 2 as t > 3. Therefore, ef (0) − ef(1) > 1,

a contradiction.

Subcase 2. n = 3t + 1.
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Subcase 2a. x = 1 or 3.

Then ef(1) = t or t +1 according as pendent vertices receives t’s 2 or (t+1)’s 2. Therefore

ef (0) = 2t + 1 or 2t. ef(0) − ef(1) = t + 1 or t − 1 as t > 3. Therefore, ef (0) − ef (1) > 3, a

contradiction.

Subcase 2b. x = 2.

In this case ef (1) = 2t or 2t + 1 according as pendent vertices receives t’s 1 and t’s 3 and

t’s 1 and (t+3)’s 3. Therefore ef (0) = t + 1 or t. ef (1)− ef(0) = t− 1 or t as t > 3. Therefore,

ef (0) − ef (1) > 1, a contradiction.

Subcase 3. n = 3t + 2.

Subcase 3a. x = 1 or 3.

This implies ef(1) = t + 1 and ef (0) = 2t + 1. ef (0) − ef (1) = t as t > 3. Therefore,

ef (0) − ef (1) > 1, a contradiction.

Subcase 3b. x = 2.

This implies ef(1) = 2t + 2 and ef(0) = t. ef(1) − ef(0) = t + 2 as t > 1. Therefore,

ef (1)− ef (0) > 1, a contradiction. Thus K1,n is 3-difference cordial iff n ∈ {1, 2, 3, 4, 5, 6, 7, 9}.2
Next, we research the complete graph.

Theorem 3.5 The complete graph Kn is 3-difference cordial if and only if n ∈ {1, 2, 3, 4, 6, 7, 9, 10}.

Proof Let ui, 1 ≤ i ≤ n be the vertices of Kn. The 3-difference cordial labeling of Kn,

n ∈ {1, 2, 3, 4, 6, 7, 9, 10} is given in Table 2.

n\ui u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

1 1

2 1 2

3 1 2 3

4 1 1 2 3

6 1 1 2 2 3 3

7 1 1 1 2 2 3 3

9 1 1 1 2 2 2 3 3 3

10 2 2 2 2 1 1 1 3 3 3

Table 2

Assume n /∈ {1, 2, 3, 4, 6, 7, 9, 10}. Suppose f is a 3-difference cordial labeling of Kn.

Case 1. n ≡ 0 (mod 3).

Let n = 3t, t > 3. Then vf (0) = vf (1) = vf (2) = t. This implies ef (0) =
(

t
2

)
+
(

t
2

)
+
(

t
2

)
+
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t2 = 5t2−3t
2 . Therefore ef (1) = t2 + t2 = 2t2. ef(0) − ef(1) = 5t2−3t

2 − 2t2 > 1 as t > 3, a

contradiction.

Case 2. n ≡ 1 (mod 3).

Let n = 3t + 1, t > 3.

Subcase 1. vf (1) = t + 1.

Therefore vf (2) = vf (3) = t. This forces ef(0) =
(
t+1
2

)
+
(

t
2

)
+
(

t
2

)
+ t(t + 1) = 1

2 (5t2 + t).

ef (1) = t(t + 1) + t2 = 2t2 + t. Then ef(0) − ef (1) = 1
2 (5t2 + t) − (2t2 + t) > 1 as t > 3, a

contradiction.

Subcase 2. vf (3) = t + 1.

Similar to Subcase 1.

Subcase 3. vf (2) = t + 1.

Therefore vf (1) = vf (3) = t. In this case ef(0) = 5t2+t
2 and ef (1) = t(t + 1) + t(t + 1) =

2t2 + 2t. This implies ef (0) − ef (1) = 5t2+t
2 − (2t2 + 2t) > 1 as t > 3, a contradiction.

Case 3. n ≡ 2 (mod 3).

Let n = 3t + 2, t ≥ 1.

Subcase 1. vf (1) = t.

Therefore vf (2) = vf (3) = t + 1. This gives ef (0) =
(

t
2

)
+
(
t+1
2

)
+
(
t+1
2

)
+ t(t + 1) = 5t2+3t

2

and ef (1) = t(t+1)+(t+1)2 = 2t2+3t+1. This implies ef (0)−ef (1) = 5t2+3t
2 −(2t2+3t+1) > 1

as t ≥ 1, a contradiction.

Subcase 2. vf (3) = t.

Similar to Subcase 1.

Subcase 3. vf (2) = t.

Therefore vf (1) = vf (3) = t + 1. In this case ef (0) =
(

t+1
2

)
+
(
t+1
2

)
+
(

t
2

)
+ (t + 1)(t + 1) =

5t2+5t+2
2 and ef (1) = t(t + 1) + t(t + 1) = 2t2 + 2t. This implies ef (0) − ef(1) = 5t2+5t+2

2 −
(2t2 + 2t) > 1 as t ≥ 1, a contradiction. 2
Theorem 3.6 If m is even, the complete bipartite graph Km,n (m ≤ n) is 3-difference cordial.

Proof Let V (Km,n) = {ui, vj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and E(Km,n) = {uivj : 1 ≤ i ≤
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m, 1 ≤ j ≤ n}. Define a map f : V (Km,n) → {1, 2, 3} by

f(ui) = 1, 1 ≤ i ≤ m
2

f(u m
2

+i) = 2, 1 ≤ i ≤ m
2

f(vi) = 3, 1 ≤ i ≤
⌈

m+n
3

⌉

f(v⌈m+n
3 ⌉+i) = 1, 1 ≤ i ≤

⌈
m+n

3

⌉
− m

2 − 1 if m + n ≡ 1, 2 (mod 3)

1 ≤ i ≤
⌈

m+n
3

⌉
− m

2 if m + n ≡ 0 (mod 3)

f(v2⌈m+n
3 ⌉−m

2
−1+i) = 2, 1 ≤ i ≤ n − 2

⌈
m+n

3

⌉
+ m

2 + 1 if m + n ≡ 1, 2 (mod 3)

f(v2⌈m+n
3 ⌉−m

2
+i) = 2, 1 ≤ i ≤ n − 2

⌈
m+n

3

⌉
+ m

2 if m + n ≡ 0 (mod 3)

Since ef (0) = ef (1) = mn
2 , f is a 3-difference cordial labeling of Km,n. 2

Example 3.7 A 3-difference cordial labeling of K5,8 is given in Figure 2.

b b b b

b b b b b b
b b

1 1 1 1 2 2 2 2

3 3 3 3

Figure 2

Next, we research some corona of graphs.

Theorem 3.8 The comb Pn ⊙ K1 is 3-difference cordial.

Proof Let Pn be the path u1u2 . . . un. Let V (Pn ⊙ K1) = V (Pn) ∪ {vi : 1 ≤ i ≤ n} and

E(Pn ⊙ K1) = E(Pn) ∪ {uivi : 1 ≤ i ≤ n}.

Case 1. n ≡ 0 (mod 6).

Define a map f : V (G) → {1, 2, 3} by

f(u6i−5) = f(u6i) = 1, 1 ≤ i ≤ n
6

f(u6i−4) = f(u6i−1) = 3, 1 ≤ i ≤ n
6

f(u6i−3) = f(u6i−2) = 2, 1 ≤ i ≤ n
6 .

In this case, ef(0) = n − 1 and ef (1) = n.

Case 2. n ≡ 1 (mod 6).

Assign the label to the vertices ui, vi (1 ≤ i ≤ n − 1) as in case 1. Then assign the labels

1, 2 to the vertices un, vn respectively. In this case, ef (0) = n − 1, ef (1) = n.
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Case 3. n ≡ 2 (mod 6).

As in Case 2, assign the label to the vertices ui, vi (1 ≤ i ≤ n− 1). Then assign the labels

3, 3 to the vertices un, vn respectively. In this case, ef (0) = n, ef(1) = n − 1.

Case 4. n ≡ 3 (mod 6).

Assign the label to the vertices ui, vi (1 ≤ i ≤ n − 1) as in case 3. Then assign the labels

2, 1 to the vertices un, vn respectively. In this case, ef (0) = n − 1, ef (1) = n.

Case 5. n ≡ 4 (mod 6).

As in Case 4, assign the label to the vertices ui, vi (1 ≤ i ≤ n− 1). Then assign the labels

2, 3 to the vertices un, vn respectively. In this case, ef (0) = n − 1, ef (1) = n.

Case 6. n ≡ 5 (mod 6).

Assign the label to the vertices ui, vi (1 ≤ i ≤ n−1) as in case 5. Then assign the labels 3,

1 to the vertices un, vn respectively. In this case, ef(0) = n− 1, ef (1) = n. Therefore Pn ⊙K1

is 3-difference cordial. 2
Theorem 3.9 Pn ⊙ 2K1 is 3-difference cordial.

Proof Let Pn be the path u1u2 · · ·un. Let V (Pn ⊙ 2K1) = V (Pn) ∪ {vi, wi : 1 ≤ i ≤ n}
and E(Pn ⊙ 2K1) = E(Pn) ∪ {uivi, uiwi : 1 ≤ i ≤ n}.

Case 1. n is even.

Define a map f : V (Pn ⊙ 2K1) → {1, 2, 3} as follows:

f(u2i−1) = 1, 1 ≤ i ≤ n
2

f(u2i) = 2, 1 ≤ i ≤ n
2

f(v2i−1) = 1, 1 ≤ i ≤ n
2

f(v2i) = 2, 1 ≤ i ≤ n
2

f(wi) = 3, 1 ≤ i ≤ n
2 .

In this case, vf (1) = vf (2) = vf (3) = n, ef (0) = 3n
2 and ef (1) = 3n

2 − 1.

Case 2. n is odd.

Define a map f : V (Pn ⊙ 2K1) → {1, 2, 3} by f(u1) = 1, f(u2) = 2, f(u3) = 3, f(v1) =

f(v3) = 1, f(w1) = f(w2) = 3, f(v2) = f(w3) = 2,

f(u2i+2) = 2, 1 ≤ i ≤ n−3
2

f(u2i+3) = 1, 1 ≤ i ≤ n−3
2

f(v2i+2) = 2, 1 ≤ i ≤ n−3
2

f(v2i+3) = 1, 1 ≤ i ≤ n−3
2

f(wi+3) = 3, 1 ≤ i ≤ n − 3.
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Clearly, vf (1) = vf (2) = vf (3) = n, ef (0) = ef (1) = 3n−1
2 . 2

Next we research on quadrilateral snakes.

Theorem 3.10 The quadrilateral snakes Qn is 3-difference cordial.

Proof Let Pn be the path u1u2 · · ·un. Let V (Qn) = V (Pn) ∪ {vi, wi : 1 ≤ i ≤ n − 1}
and E(Qn) = E(Pn) ∪ {uivi, viwi, wiui+1 : 1 ≤ i ≤ n − 1}. Note that |V (Qn)| = 3n − 2 and

|E(Qn)| = 4n− 4. Assign the label 1 to the path vertices ui, 1 ≤ i ≤ n. Then assign the labels

2, 3 to the vertices vi, wi 1 ≤ i ≤ n − 1 respectively. Since vf (1) = n, vf (2) = vf (3) = n − 1,

ef (0) = ef (1) = 2n − 2, f is a 3-difference cordial labeling. 2
The next investigation is about graphs Bn,n, S(K1,n), S(Bn,n).

Theorem 3.11 The bistar Bn,n is 3-difference cordial.

Proof Let V (Bn,n) = {u, v, ui, vi : 1 ≤ i ≤ n} and E(Bn,n) = {uv, uui, vvi : 1 ≤ i ≤ n}.
Clearly Bn,n has 2n + 2 vertices and 2n + 1 edges.

Case 1. n ≡ 0 (mod 3).

Assign the label 1, 2 to the vertices u and v respectively. Then assign the label 1 to the

vertices ui, vi (1 ≤ i ≤ n
3 ). Assign the label 2 to the vertices u n

3
+i, vn

3
+i (1 ≤ i ≤ n

3 ). Finally

assign the label 3 to the vertices u 2n
3

+i, v 2n
3

+i (1 ≤ i ≤ n
3 ). In this case ef (1) = n + 1 and

ef (0) = n.

Case 2. n ≡ 1 (mod 3).

Assign the labels to the vertices u, v, ui, vi (1 ≤ i ≤ n − 1) as in Case 1. Then assign the

label 3, 2 to the vertices un, vn respectively. In this case ef (1) = n and ef (0) = n + 1.

Case 3. n ≡ 2 (mod 3).

As in Case 2, assign the label to the vertices u, v, ui, vi (1 ≤ i ≤ n − 1). Finally assign 1,

3 to the vertices un, vn respectively. In this case ef (1) = n and ef (0) = n + 1. Hence the star

Bn,n is 3-difference cordial. 2
Theorem 3.12 The graph S(K1,n) is 3-difference cordial.

Proof Let V (S(K1,n)) = {u, ui, vi : 1 ≤ i ≤ n} and E(S(K1,n)) = {uui, uivi : 1 ≤ i ≤ n}.
Clearly S(K1,n) has 2n + 1 vertices and 2n edges.

Case 1. n ≡ 0 (mod 3).

Define a map f : V (S(K1,n)) → {1, 2, 3} as follows: f(u) = 2,

f(ui) = 1, 1 ≤ i ≤ t

f(ut+i) = 2, 1 ≤ i ≤ 2t

f(vi) = 3, 1 ≤ i ≤ 2t

f(v2t+i) = 1, 1 ≤ i ≤ t.
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Case 2. n ≡ 1 (mod 3).

As in Case 1, assign the label to the vertices u, ui, vi (1 ≤ i ≤ n − 1). Then assign the

label 1, 3 to the vertices un, vn respectively.

Case 3. n ≡ 2 (mod 3).

As in Case 2, assign the label to the vertices u, ui, vi (1 ≤ i ≤ n − 1). Then assign the

label 2, 1 to the vertices un, vn respectively. f is a 3-difference cordial labeling follows from

the following Table 3.

Values of n vf (1) vf (2) vf (3) ef (0) ef (1)

n = 3t 2t 2t + 1 2t 3t 3t

n = 3t + 1 2t + 1 2t + 1 2t + 1 3t + 1 3t + 1

n = 3t + 2 2t + 2 2t + 2 2t + 1 3t + 2 3t + 2

Table 3

Theorem 3.13 S(Bn,n) is 3-difference cordial.

Proof Let V (S(Bn,n)) = {u, w, v, ui, wi, vi, zi : 1 ≤ i ≤ n} and E(S(Bn,n)) = {uw, wv, uui, uiwi, vvi, vizi :

1 ≤ i ≤ n}. Clearly S(Bn,n) has 4n + 3 vertices and 4n + 2 edges.

Case 1. n ≡ 0 (mod 3).

Define a map f : V (S(Bn,n)) → {1, 2, 3} by f(u) = 1, f(w) = 3, f(v) = 2,

f(wi) = 2, 1 ≤ i ≤ n

f(vi) = 1, 1 ≤ i ≤ n

f(zi) = 3, 1 ≤ i ≤ n

f(ui) = 1, 1 ≤ i ≤ n
3

f(u n
3
+i) = 2, 1 ≤ i ≤ n

3

f(u 2n
3

+i) = 3, 1 ≤ i ≤ n
3 .

Case 2. n ≡ 1 (mod 3).

As in Case 1, assign the label to the vertices u, w, v, ui, vi, wi, zi (1 ≤ i ≤ n − 1). Then

assign the label 1, 2, 1, 3 to the vertices un, wn, vn, zn respectively.

Case 3. n ≡ 2 (mod 3).

As in Case 2, assign the label to the vertices u, w, v, ui, vi, wi, zi (1 ≤ i ≤ n − 1). Then

assign the label 2, 2, 1, 3 to the vertices un, wn, vn, zn respectively. f is a 3-difference cordial

labeling follows from the following Table 4.
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Values of n vf (1) vf (2) vf (3) ef (0) ef(1)

n ≡ 0 (mod 3) 4n+3
3

4n+3
3

4n+3
3

4n+2
2

4n+2
2

n ≡ 1 (mod 3) 4n+5
3

4n+2
3

4n+2
3

4n+2
2

4n+2
2

n ≡ 2 (mod 3) 4n+4
3

4n+4
3

4n+1
3

4n+2
2

4n+2
2

Table 4

Finally we investigate cycles C
(t)
4 .

Theorem 3.14 C
(t)
4 is 3-difference cordial.

Proof Let u be the vertices of C
(t)
4 and ith cycle of C

(t)
4 be uui

1u
i
2u

i
3u. Define a map f from

the vertex set of C
(t)
4 to the set {1, 2, 3} by f(u) = 1, f(ui

2) = 3, 1 ≤ i ≤ t, f(ui
1) = 1, 1 ≤ i ≤ t,

f(ui
3) = 2, 1 ≤ i ≤ t. Clearly vf (1) = t + 1, vf (2) = vf (3) = t and ef (0) = ef(1) = 2t. Hence f

is 3-difference cordial. 2
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§1. Introduction

All graphs considered here are simple, connected,undirected graphs. Let G be a graph with

vertex set V(G)={v1, v2, v3, · · · , vn} and edge set E(G) = {e1, e2, e3, · · · , em}. We refer the

reader to Harary [3].

R.Fabila-Monroy and et.al. introduced a model in which, k indistinguished tokens move

from vertex to vertex along the edges of a graph. This idea is formalized as follows, for a graph

G and integer k ≥ 1, we define Fk(G) to be the graph with vertex set
(
V (G)

k

)
, where two vertices

A and B of Fk(G) are adjacent whenever their symmetric difference A△B is a pair {a, b} such

that a ∈ A, b ∈ B and ab ∈ E(G). Thus the vertices of Fk(G) correspond to configurations of k-

indistinguishable tokens placed at distinct vertices of G, where two configurations are adjacent

whenever one configuration can be reached from the other by moving one token along an edge

from its current position to an unoccupied vertex. The Fk(G) is called the k-token graph of G.

Many problems in mathematics and computer science are modeled by moving objects on

the vertices of a graph according to certain prescribed rules. In graph pebbeling, a pebbling step

consists of removing two pebbels from a vertex and placing one pebble on an adjacent vertex;

[4] and [5] for surveys. Related pebbling games have been used to study rigidity [6,7], motion

planning[1,9], and as models of computation[10]. In the ”chip firing game”, a vertex v fires by

distributing one chip to each of its neighbors(assuming the number of chips at v is at least its

degree). This model has connections with matroid, the Tutte polynomial, and mathematical

physics [8].

Inspired by this we investigate the some more properties like traversability and covering

invariants of token graphs.

1Received September 26, 2015, Accepted May 28, 2016.
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Remark 1.1([2]) Let G be a graph and Fk(G) be the token graph of G with k ≥ n − 1,

|V (Fk(G))|=
(

n
k

)
, |E(Fk(G))|=

(
n−2
k−1

)
|E(G)|.

Remark 1.2([2]) Two vertices A and B are adjacent in Fk(G) if and only if V (G) \ A and

V (G) \B are adjacent in Fn−1(G), Fk(G) ∼= Fn−k(G), with only one token, the token graph is

isomorphic to G. Thus, F1(G) ∼= G.

Remark 1.3 Degree of vertices in Fk(G) is

deg(V Fk
(G)) =

n−1∑

i=1

degG(Vi) − 2

(sum of pairs of vertices vi; i ∈ k of G which are the elements of V )

if vi and vj are two vertices in G, then in Fk(G)

vivj = 1, if vi is adjacent to vj in G.

= 0, if vi is not adjacent to vj in G.

Remark 1.4 If degree of all the vertices in a graph G is even or even regular then by the

Remark 3 degree of all the vertices in Fk(G) is even, irrespective of tokens being odd or even.

Remark 1.5 If degree of all the vertices in a graph G is odd or odd regular then by Remark

3, degree of all the vertices in Fk(G) is even, only when k is even token.

Remark 1.6 If G contains both even and odd degree vertices then the vertices in Fk(G) are

also of odd and even degree, irrespective of tokens being odd or even.

§2. Traversability of Token Graphs

In this section we obtain the traversability properties of token graphs.

Theorem 2.1 Let G be a connected graph. Then Fk(G) is Eulerian if and only if it satisfies

either of the following conditions.

(i) Every vertex in G is of even degree;

(ii) Every vertex in G is of odd degree and k-is even.

Proof Let Fk(G) be a token graph of graph G. Assume Fk(G) is Eulerian, that is each

vertices in Fk(G) is of even degree. By the Remark 1.3, we have, d(VF k(G)) = deg(u) + deg(v)-

2(sum of pair of adjacent elements of G in V of Fk(G)).

Depending upon the degree, we consider the following cases.

Case 1. Suppose deg(u)+deg(v) is odd, then by Remark 3, d(VF k(G)) is odd, a contradiction.

Thus condition (i) is satisfied.

Case 2. Suppose deg(u)+deg(v) is even, where u and v are odd or odd regular with odd tokens
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then by Remarks 1.3 and 1.5. Fk(G) is non-Eulerian, a contradiction. Thus the condition (ii)

is satisfied.

If G is Eulerian, that is it contains even degree of vertices. Then by the Remark 4, Fk(G)

is Eulerian. That is it contains even degree vertices.

The converse follows from Remarks 1.4 and 1.5. 2
Corollary 2.2 If G be Eulerian graph, then Fn−1(G) is also Eulerian.

Proof Let G be Eulerian graph. Then by the Remark 1.2, Fn−1(G) is Eulerian. 2
Lemma 2.3 If G is hamiltonian, then Fn−1(G) is also hamiltonian.

Proof Suppose G is hamiltonian, by the Remark 1.2, we know that

G ∼= F1(G) and Fk(G) ∼= Fn−1(G).

If k = 1 then,

F1(G) ∼= Fn−1(G)

Therefore,

G ∼= F1(G), G ∼= Fn−1(G).

Thus, Fn−1(G) is also hamiltonian. 2
Theorem 2.4 Fk(G) is hamiltonian if and only if G is complete graph.

Proof Let G be complete graph and let {v1, v2, v3, · · · , vn} be the vertices in a graph G.

In complete graph all vertices are mutually adjacent and G is hamiltonian.

By the definition of token graph, Fk(G) contains
(
n
k

)
number of vertices and by the Lemma

2.3, F1(G) and Fn−1(G) are hamiltonian.

Now, we have to prove for k = 2, 3, 4, · · · , n−2 tokens. We prove this by induction method,

here (k + 1)th term is n-2 token.

If k=2 token then,

V (F2(G)) = {(v1v2), (v1v3), (v1v4), · · · , (v1vn) ∪ (v2v3), (v2v4), (v2v5),

· · · , (v2vn)∪, · · · ,∪(vn−1vn)}.

Here we consider two vertices A = {v1vn} and B = {v2vn}. By the symmetric difference

we get v1v2. That is,|A △ B| = (A ∪ B) − (A ∩ B) =v1v2vn − vn= v1v2. Therefore v1v2 are

adjacent in G then A and B are also adjacent in F2(G).

Similarly v2vn is adjacent with v3vn and the same follows for all vertices.
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Now if k=3 token, then

V (F3(G)) = {(v1v2v3), (v1v2v4), · · · , (v1v2v3), (v1v3v4), (v1v3v5),

· · · , (v1v3vn), · · · , (vn−2vn−1vn)}.

Here also (v1v2vn) is adjacent with (v1v3vn),(v1v3vn) with (v1v4vn) ,· · · and (vn−3vn−2vn−1)

with (vn−2vn−1vn). Hence, we get spanning cycle in F3(G) as {v1vn−1vn, v2vn−1vn, v3vn−1vn, · · · ,

vn−2vn−1vn, v1vn−1vn}. Therefore, F3(G) is hamiltonian graph. Thus the result is true for all

k=n.

Similarly, If k=n-2 token, then V (Fn−2(G)) = V (F2(G)). By the Lemma 2.3 and Remark

1.2, Fn−1(G) ∼= F1(G). That is,

Fk(G) ∼= Fn−k(G), (1)

F2(G) ∼= Fn−k(G), (2)

and if k = 1, then

F1(G) ∼= Fn−1(G). (3)

Then G ∼= F1(G) ∼= Fn−1(G). Thus Fn−1(G) is hamiltonian.

For the converse, assume Fk(G) is hamiltonian, we have to prove G is complete. Suppose

G is not complete graph then by the symmetric difference the vertices in Fk(G); k= 2,3,...,n-2,

form a sub graph homiomorphic to K2,3 a contradiction.

Theorem 2.5 If G is wheel, then Fk(G) is hamiltonian graph.

Proof Let G be wheel, hence it contains spanning cycle and let {v1, v2, v3, · · · , vn} be the

vertex of graph G. Here vn is a vertices of maximum degree in G. Let V1, V2, V3, · · · , V(n

k)
be

the vertices in graph Fk(G). By the lemma 2.3, we know that

G ∼= F1(G) ∼= Fn−1(G).

Then G is hamiltonian then F1(G) and Fn−1(G) are also hamiltonian.

Now we prove for k = 2, 3, 4, · · · , n − 2 tokens. We know that Fk(G) ∼= Fn−1(G). If k=2

then,

V (F2(G)) = {V1, V2, V3, · · · , V(n
k)
}

= {(v1v2), (v1v3), · · · , (v1vn), (v2v3), · · · , (v2vn), (v3v4),

(v3v5), ..., (v3vn), ..., (vn−1vn)}.

In graph G, the nth vertex is adjacent with remaining all the vertices. Therefore by the sym-

metric difference we get spanning cycle as {v1vn, v1vn−1, v1vn−2, · · · , v1v2, v2vn, v2vn−1, · · · , v2v3,

v3vn, · · · , v3v4, v4vn, · · · , vn−2vn−1, vn−1vn, v1vn}. Thus F2(G) contains spanning cycle then

Fn−2(G) also contains spanning cycle. Clearly, by Remark 2.2, F2(G) and Fn−2(G) are hamil-

tonian.

Similarly for all tokens we get spanning cycle. Hence Fk(G) is hamiltonian. 2
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§3. Covering Invariants Of Token Graphs

In the following section, we determine the point covering number α0(G),line covering number

α1(G), point independence number β0(G) and line independence number β1(G) of token graph

of complete graph.

Theorem 3.1 For any complete graph Kn; n > 1,

α1(Fk(Kn)) =

⌈(
n
k

)

2

⌉
, β1(Fk(Kn)) =

⌊(
n
k

)

2

⌋
.

Proof Let Kn be the complete graph with n-vertices and Fk(Kn) be the token graph of

complete graph with
(
n
k

)
number of vertices.

⌈
(n

k)
2

⌉
lines are required cover all the points in

Fk(Kn). By Remark 1.2, F1(Kn) ∼= Kn and Fn−1(Kn) ∼= Kn, i.e., Fk(Kn) ∼= Kn when k = 1

or n − 1.

For k = 2, 3, 4, · · · , n−2, the vertices Fk(Kn) are adjacent but not mutually and by Remark

1.1, it contains
(
n
k

)
number of vertices. Hence

⌈
(n

k)
2

⌉
number of lines are require to cover all

the points. α1(Fk(Kn)) =

⌈
(n

k)
2

⌉
.

From the Gallai result, we know that

α1(G) + β1(G) = |G|

In Fk(Kn),

α1(Fk(Kn)) + β1(Fk(Kn)) =

(
n

k

)
⇒ ⌈

(
n
k

)

2
⌉ + β1(Fk(Kn)) =

(
n

k

)
,

β1(Fk(Kn)) =

(
n

k

)
−
⌈(

n
k

)

2

⌉

=

(
n

k

)
−
(
n
k

)

2
(Note that

(
n
k

)

2
∼=
⌈(

n
k

)

2

⌉
.)

=

(
n
k

)

2
.

But Fk(G) contains odd number of vertices then,

β1(Kn) =

(
n
k

)

2
∼= ⌊

(
n
k

)

2
⌋, β1(Kn) = ⌊

(
n
k

)

2
⌋. 2

Theorem 3.2 For any complete graph Kn; n > 1,

β0(Fk(Kn)) =






⌈
(n

k)
△(Kn)

⌉
if

(
n
k

)
is even,

⌊
(n

k)
△(Kn)

⌋
+ 1 if

(
n
k

)
is odd
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and α0(Fk(Kn)) =
(
n
k

)
− β0(Fk(Kn)).

Proof Let Kn be the complete graph with n-vertices and Fk(Kn) be the token graph of

complete graph with
(
n
k

)
number of vertices. By the definition of complete graph, △(Kn) = n−1

and α0(Kn) = n − 1, β0(Kn) = 1. Therefore by the Remark 1.1, α0(Fk(Kn)) = n − 1 and

β0(Fk(Kn)) = 1 when k = 1 or n − 1.

Now we have to prove for k = 2, 3, 4, · · · , n − 2 tokens. Fk(Kn) contains
(
n
k

)
number of

vertices, and

⌈
(n

k)
△(Kn)

⌉
are required to cover the vertices in Fk(Kn).

⌈
(n

k)
△(Kn)

⌉
number of vertices

are non-adjacent to each other and adjacent with remaining
(
n
k

)
−
⌈

(n
k)

△(Kn)

⌉
number of vertices

in Fk(Kn), when
(
n
k

)
is even. if

(
n
k

)
is odd, then

(
n
k

)
is covered by

⌈
(n

k)
△(Kn)

⌉
+ 1 vertices, which

are non-adjacent to each other and are adjacent with remaining
(
n
k

)
−
⌈

(n
k)

△(Kn)

⌉
+ 1 vertices in

Fk(Kn). Thus independence number in Fk(Kn) is

⌈
(n

k)
△(Kn)

⌉
or

⌈
(n

k)
△(Kn)

⌉
+ 1. So,

β0(Fk(Kn)) =






⌈
(n

k)
△(Kn)

⌉
if
(
n
k

)
is even,

⌊
(n

k)
△(Kn)

⌋
+ 1 if

(
n
k

)
is odd.

From the Gallai result, we know that

α1(G) + β1(G) = |G|.

In Fk(Kn), when
(
n
k

)
is even then,

α0(Fk(Kn)) + β0(Fk(Kn)) =

(
n

k

)

⇒ α0(Fk(Kn)) +

⌈ (
n
k

)

△(G)

⌉
=

(
n

k

)

α0(Fk(Kn)) =

(
n

k

)
−
⌈ (

n
k

)

△(G)

⌉

α0(Fk(Kn)) =

(
n

k

)
− β0(Fk(Kn)).

If
(
n
k

)
is odd then,

α0(Fk(Kn)) + β0(Fk(Kn)) =

(
n

k

)

⇒ α0(Fk(Kn)) +

⌈ (
n
k

)

△(G)

⌉
+ 1 =

(
n

k

)



138 Keerthi G. Mirajkar and Priyanka Y. B

α0(Fk(Kn)) =

(
n

k

)
−
⌈ (

n
k

)

△(G)

⌉
+ 1

α0(Fk(Kn)) =

(
n

k

)
− β0(Fk(Kn)).
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Abstract: A graph G = (V, E) with p vertices and q edges is said to be a mean graph

if there exists an injective function f : V → {0, 1, · · · , q} that induces an edge labeling

f∗ : E → {1, 2, · · · , q} defined by

f
∗(uv) =

f(u) + f(v)

2
if f(u) + f(v) is even

=
f(u) + f(v) + 1

2
if f(u) + f(v) is odd

for every edge uv of G.Further f is called a super-mean labeling if f(V (G)) ∪ {f∗(e) : e ∈

E(G)} = {1, 2, · · · , p + q}. If the vertex labels are all even numbers in {2, 4, · · · , 2q} so

that f∗(e) = f(u)+f(v)
2

then f is an even mean labeling of G and if the vertex labels are in

{1, 3, · · · , 2q − 1} so that f∗(e) = f(u)+f(v)+1
2

, then G is an odd-mean graph. In this paper,

we investigate a typical class of trees based on this definition.

Key Words: Mean labeling, super-mean labeling, even-mean labeling, odd-mean labeling,

parallel transformation of trees.

AMS(2010): 05C78.

§1. Introduction

Throughout this paper ,by a graph we mean a simple finite undirected graph without isolated

vertices.For basic notations and terminology in graph theory we follow [1]. The concept of mean

labeling was introduced in [5], super-mean labeling in [4] and odd-mean labeling in [2].

§2. Tn Class of Trees

In [3], Tn class of trees are defined as follows.

Definition 2.1 Let T be a tree and x and y be two adjacent vertices in T .Let there be two end

vertices(non-adjacent vertices of degree 1)x′ and y′ in T such that the length of x − x′ is equal

to the length of the path y − y′. If the edge xy is deleted and x′ , y′ are joined by an edge x′y′,

1Received April 24, 2015, Accepted May 31, 2016.
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then such a transformation of edges from xy to x′y′ is called a parallel transformation of an

edge in T .

Definition 2.2 A tree is said to be a Tn tree if and only if a resultant parallel transformation

of edges reduce T into a Hamiltonian path. Such Hamiltonian path is denoted as PT .

T27 is given below in figure 2.1(a). Here e1, e2, e3, e4 and e5 are the edges to be deleted and

e′i ; i = 1, · · · , 5 ( shown in broken lines ) the corresponding edges to be added to generate

PT from T27 (Figure 2.1(b)).

e
′

1 e
′

3 e
′

5

e2 e4

e3

e1 e5

e
′

2 e
′

4

Fig 2.1 (a)

Fig 2.1 (b)

Theorem 2.1 Tn is a mean graph.

Proof Let Tn be a tree on n vertices and by definition there exist a path PT corresponding

to Tn. Let E = {e1, e2, · · · , en−1} be the edges of Tn. Let ES = {e1, e2, · · · , es} be the set of

edges to be deleted from and E′
s = {e′1, e′2, · · · , e′s} be the edges to be added to Tn so as to

obtain a Hamiltonian path PT with V (PT ) = V (Tn) and E(PT ) = {E(Tn) − ES} ∪ E′
S . Label

the vertices of PT as x1, x2, · · · , xn starting from the initial pendant vertex.
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Define an injective mapping f : V (PT ) → {0, 1, · · · , n− 1}, as f(xi) = i − 1 for all i. Now

f induces edge labeling f∗ on E(PT ) as

f∗(xy) =
f(x) + f(y)

2
if f(x) and f(y) are of same parity

=
f(x) + f(y) + 1

2
otherwise

where xy ∈ E(PT ).

Since PT is a path, every edge of PT is of the form xixi+1.

f∗(xixi+1) =
f(xi) + f(xi+1) + 1

2
, since f(xi) and f(xi+1) are of different parity

=
i − 1 + i + 1

2
= i for i = 1, 2, · · · , n − 1

Obviously f is injective and f∗(G) = {1, 2, · · · , n − 1}. So it is proved that f is a mean

labeling on PT . We have to prove that f is a mean labeling on Tn.

For this, it is enough to prove that f∗(es) = f∗(e′s) where es = xixj ∈ E(Tn) and e′s =

xi+rxj−r ∈ E(Tn).

Now, e′s must be of the form xi+rxi+r+1, since it is an edge of a path PT . So

(xi+r , xj−r) = (xi+r , xi+r+1)

f(xi+r) + f(xj−r) + 1

2
=

f(xi+r) + f(xi+r+1) + 1

2

Therefore

j = i + 2r + 1

So

f∗(es) =
f(xi) + f(xi+2r+1) + 1

2
= i + r

and

f∗(e′s) = f∗(xi+r , xi+r+1)

=
f(xi+r) + f(xi+r+1) + 1

2
= i + r

Therefore,

f∗(es) = f∗(e′s).

Thus, f admits mean labeling on Tn. Hence we get the theorem. 2
Definition 2.3 A graph with p vertices and q edges is said to be odd mean if there exists a

function f : V (G) → {0, 1, · · · , 2q − 1} which is one-one and the induced map f∗ : E(G) →
{1, 3, · · · , 2q− 1} defined by f∗(uv) = f(u)+f(v)

2 , if f(u)+ f(v) is even or f(u)+f(v)+1
2 if f(u) +

f(v) is odd, is a bijection. If a graph has an odd mean labeling, then we say that G is an odd

mean graph.
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Definition 2.4 A function f is called an even-mean labeling of a graph G with p vertices and

q edges if f is an injection from the vertices of G to {2, 4, · · · , 2q} such that when each edge uv

is assigned the label f(u)+f(v)
2 , then the resulting edge labels are distinct.A graph which admits

an even mean labeling is said to be an even-mean graph.

Theorem 2.2 Tn satisfies both even and odd mean labeling.

Proof To prove Tn is an even-mean graph,we consider fe : V (G) → {2, 4, · · · , 2q} such

that fe(xi) = 2i for i = 1, 2, · · · , n.

Now, to show Tn is odd-mean, we take another injective mapping fo : V (G) → {1, 3, · · · , 2q+

1} as fo(xi) = 2i − 1 for i = 1, 2, · · · , n. 2
Theorem 2.3 Parallel transformation of trees generate a class of super-mean graphs.

Proof Consider a Tn tree on n vertices. By definition there exist a PT corresponding to

Tn. Let E = {e1, · · · , en−1} be the edges of Tn. Let Er = {e1, e2, · · · , er} be the edges to be

deleted from Tn, Er ⊂ E and E′
r = {e′1, · · · , e′r} be the set of edges to be added to Tn to make

a path PT , such that if en is the deleted edge, e′n is the corresponding edge added at a distance

dn by parallel transformation. Now we have V (PT ) = V (Tn) and E(PT ) = {E(Tn)−Er}∪E′
r.

Now we label the vertices of PT by x1, x2, · · · , xn successively starting at one end vertex

of the path PT . Define a mapping f : V (PT ) → {1, 2, · · · , 2n − 1} such that f(xi) = 2i − 1

for all i = 1, . . . , n. Now, by the definition itself, f is one-one. Let f∗ be the induced mapping

defined on the edge set of PT such that

f ∪ f∗ = {1, 2, · · · , 2n − 1} as

f∗(xy) =
f(x) + f(y)

2
if f(x) + f(y) is even

=
f(x) + f(y) + 1

2
if f(x) + f(y) is odd

where xy ∈ E(PT ).

Since PT is a path, every edge of PT is of the form xixi+1 for i = 1, 2, · · · , n − 1

f∗(xixi+1) =
f(xi) + f(xi+1)

2
= 2i ; i = 1, 2, · · · , n − 1

Hence it is clear that f∗ is one one and f(G) ∪ f∗(G) = {1, 2, · · · , 2n − 1}. Hence f is a

super mean labeling on PT . Now it is to show f is super mean on Tn. It is enough to show

that f∗(ek) = f∗(e′k).

Let ek = xixj where xixj ∈ E(Tn). To get PT , we have to delete ek and adjoin e′k at a

distance d from xi such that e′k = xi+rxj−r . Since e′k is an edge of PT , it must be of the form

e′k = xi+rxi+r+1.
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Hence

(xi+r , xj−r) = (xi+r , xi+r+1)

f(xi+r) + f(xj−r)

2
=

f(xi+r) + f(xi+r+1)

2
=⇒ j = i + 2r + 1

f∗(ek) = f∗(xixj)

=
f(xi) + f(xj)

2

=
f(xi) + f(xi+2r+1)

2
= 2(i + r)

f∗(e′k) = f∗(xi+r , xi+r+1)

=
f(xi+r) + f(xi+r+1)

2
= 2(i + r)

Therefore,

f∗(ek) = f∗(e′k).

Thus, f is super mean on Tn also. Hence, Tn is a super mean graph.

Example 2.1 In Figure 2.2, we show a super-mean labeling on tree T20.
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Fig 2.2
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Abstract: Let G = (V,E) be a graph with p vertices and q edges. A Cap (∧) cordial

labeling of a Graph G with vertex set V is a bijection from V to 0,1 such that if each edge

uv is assigned the label

f(uv) =





1, if f(u)=f(v)=1,

0, otherwise.

with the condition that the number of vertices labeled with 0 and the number of vertices

labeled with 1 differ by at most 1 and the number of edges labeled with 0 and the number

of edges labeled with 1 differ by at most 1. Otherwise, it is called a Smarandache ∧ cordial

labeling of G. A graph that admits a ∧ cordial labeling is called a ∧ cordial graph (CCG).

In this paper, we proved that cycle Cn (n is even), bistar Bm,n, Pm ⊙ Pn and Helm are ∧

cordial graphs.

Key Words: Cap cordial labeling, Smarandache ∧ cordial labeling, Cap cordial graph.
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§1. Introduction

A graph G is a finite non-empty set of objects called vertices together with a set of unordered

pairs of distinct vertices of G which is called edges. Each pair e = {uv} of vertices in E is

called an edge or a line of G. In this paper, we proved that Cycle Cn (n : even), Bi-star Bm,n,

Pm ⊙ Pn and Helm are ∧ cordial graphs.

§2. Preliminaries

Let G = (V,E) be a graph with p vertices and q edges. A ∧ (cap) cordial labeling of a Graph G

1Received February 10, 2015, Accepted December 15, 2015.
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with vertex set V is a bijection from V to (0, 1) such that if each edge uv is assigned the label

f(uv) =





1, if f(u) = f(v) = 1

0, otherwise.

with the condition that the number of vertices labeled with 0 and the number of vertices labeled

with 1 differ by at most 1 and the number of edges labeled with 0 and the number of edges

labeled with 1 differ by at most 1. Otherwise, it is called a Smarandache ∧ cordial labeling of

G.

The graph that admits a ∧ cordial labeling is called a ∧ cordial graph (CCG). we proved

that cycle Cn (n is even), bistar Bm,n, Pm ⊙ Pn and Helm are ∧ cordial graphs

Definition 2.1 A graph with sequence of vertices u1, u2, · · · , un such that successive vertices

are joined with an edge, Pn is a path of length n − 1.

The closed path of length n is Cycle Cn.

Definition 2.2 A Pm ⊙ Pn graph is a graph obtained from a path Pm by joining a path of

length Pn at each vertex of Pm.

Definition 2.3 A bistar is a graph obtained from a path P2 by joining the root of stars Sm and

Sn at the terminal vertices of P2. It is denoted by Bm, n.

Definition 2.4 A Helm graph is a graph obtained from a Cycle Cn by joining a pendent vertex

at each vertex of on Cn. It is denoted by Cn ⊙ K1.

§3. Main Results

Theorem 3.1 A cycle Cn (n : odd) is a ∧ cordial graph

Proof Let V (Cn) = {ui : 1 ≤ i ≤ n}, E(Cn) = {[(uiui+1) : 1 ≤ i ≤ n − 1]
⋃

(u1un)}. A

vertex labeling f : V (Cn) → {0, 1} is defined by

f(ui) =





0, 1 ≤ i ≤ n−1

2 ,

1, n+1
2 ≤ i ≤ n

with an induced edge labeling f∗(u1un) = 0,

f∗(uiui+1) =





0, 1 ≤ i ≤ n−1

2 ,

1, n+1
2 ≤ i ≤ n − 1,

Here V0(f) + 1 = V1(f) and E0(f) = E1(f) + 1. It satisfies the condition

|V0(f) − V1(f) |≤ 1, |E0(f) − E1(f) |≤ 1.
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Hence, Cn is ∧ cordial graph. 2
For example, C7 is ∧ cordial graph as shown in the Figure 1.

u 7

u
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u 4u 3

u10

1

1

1

1

1

1

1
u

6

0

0 0

0

0

0

Figure 1 Graph C7

Theorem 3.2 A star Sn is a ∧ cordial graph.

Proof Let V (Sn) = {u, ui : 1 ≤ i ≤ n} and E(Sn) = {(uui) : 1 ≤ i ≤ n}. Define

f : V (Sn) → 0, 1 with vertex labeling as follows:

Case 1. If n is even, then f(u) = 1,

f(ui) =





0, 1 ≤ i ≤ n

2 ,

1, n
2 + 1 ≤ i ≤ n

and an induced edge labeling

f∗(uui) =





0, 1 ≤ i ≤ n

2 ,

1, n
2 + 1 ≤ i ≤ n.

Here V0(f) + 1 = V1(f) and E0(f) = E1(f). It satisfies the condition

|V0(f) − V1(f) |≤ 1 and |E0(f) − E1(f) |≤ 1.

Case 2. If n is odd, then f(u) = 1,

f(ui) =





0, 1 ≤ i ≤ n+1

2 ,

1, n+3
2 ≤ i ≤ n

and with an induced edge labeling

f∗(uui) =





0, 1 ≤ i ≤ n+1

2 ,

1, n+3
2 ≤ i ≤ n.
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Here V0(f) = V1(f) and E0(f) = E1(f) + 1. It satisfies the condition

|V0(f) − V1(f) |≤ 1 and |E0(f) − E1(f) |≤ 1.

Hence, Sn is ∧ cordial graph. 2
For example, S5 and S6 are cordial graphs as shown in the Figures 2 and 3.
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Figure 2 Graph S6
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Figure 3 Graph S5

Theorem 3.3 A bistar Bm,n is a ∧ cordial graph.

Proof Let V (Bm,n) = {(u, v), (ui : 1 ≤ i ≤ m), (vj : 1 ≤ j ≤ n)} and E(Bm,n) = {[(uui) :

1 ≤ i ≤ m]
⋃

[(vvi) : 1 ≤ i ≤ m]
⋃

[(uv)]}. Define f : V (Bm,n) → {0, 1} by two cases.

Case 1. If m = n, the vertex labeling is defined by f(u) = {0}, f(v) = {1}, f(ui) = {0, 1 ≤
i ≤ m}, f(vi) = {1, 1 ≤ i ≤ m} with an induced edge labeling f∗(uui) = {0, 1 ≤ i ≤ m},
f∗(vvi) = {1, 1 ≤ i ≤ m} and f∗(uv) = 0. Here V0(f) = V1(f) and E0(f) = E1(f) + 1. It

satisfies the condition

|V0(f) − V1(f) |≤ 1 and |E0(f) − E1(f) |≤ 1.

Case 2. If m < n, the vertex labeling is defined by f(u) = {0}, f(v) = {1}, f(ui) = {0, 1 ≤
i ≤ m}, f(vi) = {1, 1 ≤ i ≤ m},

f(vm+i) =





1, i ≡ 1 mod 2,

0, i ≡ 0 mod 2, 1 ≤ i ≤ n − m,
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with an induced edge labeling f∗(uui) = {0, 1 ≤ i ≤ m}, f∗(vvj) = {1, 1 ≤ j ≤ m}, f∗(uv) = 0,

f∗(vvm + i) =





1, i ≡ 1 mod 2,

0, i ≡ 0 mod 2, 1 ≤ i ≤ n − m.

Here, if n − m is odd, then V0(f) + 1 = V1(f) and E0(f) = E1(f); if n − m is even, then

V0(f) = V1(f) and E0(f) = E1(f) + 1. It satisfies the condition

|V0(f) − V1(f) |≤ 1 and |E0(f) − E1(f) |≤ 1.

Case 3. If n < m, by substituting m by n and n by m in Case 2 the result follows.

Hence, Bm,n is a ∧ cordial graph. 2
For example B3,3, B2,6 and B6,2 are cordial graphs as shown in the Figures 4, 5 and 6.
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Figure 4 Graph B3,3
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Theorem 3.4 A graph Pm ⊖ Pn is ∧ cordial.

Proof Let G be the graph Pm ⊖ Pn with V (G) = {[ui : 1 6 i 6 m], [vij
: 1 6 i 6 m, 1 6

j 6 n − 1]} and E(G) = {[(uiui+1) : 1 6 i 6 m − 1]
⋃

[(uivi1) : 1 6 i 6 m]
⋃

[(vijvij+1) : 1 6

i 6 m, 1 6 j 6 n − 2]}. Define f : V (G) → {0, 1} by cases following.

Case 1. If m is even, then the vertex labeling is defined by

f(ui) =





0, 1 ≤ i ≤ m

2 ,

1, m
2 + 1 ≤ i ≤ m,

f(vij) =





0, 1 ≤ i ≤ m

2 , 1 6 j 6 n − 1,

1, m
2 + 1 ≤ i ≤ m, 1 6 j 6 n − 1

with an induced edge labeling

f∗(uiui+1) =





0, 1 ≤ i ≤ m

2 ,

1, m
2 + 1 ≤ i ≤ m − 1,

f∗(uivi1) =





0, 1 ≤ i ≤ m

2 ,

1, m
2 + 1 ≤ i ≤ m,

f∗(vijvij+1) =





0, 1 ≤ i ≤ m

2 , 1 6 j 6 n − 2,

1, m
2 + 1 ≤ i ≤ m, 1 6 j 6 n − 2.

Here V0(f) = V1(f) and E0(f) = E1(f) + 1. It satisfies the condition

|V0(f) − V1(f) |≤ 1 and |E0(f) − E1(f) |≤ 1.
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Case 2. If m is odd and n is odd, the vertex labeling is defined by

f(ui) =





0, 1 ≤ i ≤ m−1

2 ,

1, m+1
2 ≤ i ≤ m,

f(vij) =





0, t1 ≤ i ≤ m−1

2 , 1 6 j 6 n − 1,

1, m+1
2 ≤ i ≤ m, 1 6 j 6 n − 1,

f(vm+1

2
j) =





1, 1 ≤ j ≤ n

2 ,

0, n
2 + 1 6 j 6 n − 1

with an induced edge labeling

f∗(uiui+1) =





0, 1 ≤ i ≤ m−1

2 ,

1, m+1
2 + 1 ≤ i ≤ m − 1,

f∗(uivi1) =





0, 1 ≤ i ≤ m−1

2 ,

1, m+1
2 + 1 ≤ i ≤ m,

f∗(vijvij+1) =





0, 1 ≤ i ≤ m−1

2 , 1 6 j 6 n − 2,

1, m+3
2 ≤ i ≤ m, 1 6 j 6 n − 2,

f∗(vm+1

2
jvm+1

2
j+1) =





1, 1 ≤ j ≤ n−3

2 ,

0, n−1
2 ≤ j 6 n − 2.

Here V0(f) + 1 = V1(f) and E0(f) = E1(f). It satisfies the condition

|V0(f) − V1(f) |≤ 1 and |E0(f) − E1(f) |≤ 1.

Case 3. If m is odd and n is even, the vertex labeling is defined by

f(ui) =





0, 1 ≤ i ≤ m−1

2 ,

1, m+1
2 ≤ i ≤ m,

f(vij) =





0, 1 ≤ i ≤ m−1

2 , 1 6 j 6 n − 1,

1, m+1
2 ≤ i ≤ m, 1 6 j 6 n − 1

with an induced edge labeling

f∗(uiui+1) =





0, 1 ≤ i ≤ m−1

2 ,

1, m+1
2 + 1 ≤ i ≤ m − 1,

f∗(uivi1) =





0, 1 ≤ i ≤ m−1

2 ,

1, m+1
2 + 1 ≤ i ≤ m,

f∗(vijvij+1) =





0, 1 ≤ i ≤ m−1

2 , 1 6 j 6 n − 2,

1, m+1
2 ≤ i ≤ m, 1 6 j 6 n − 2,

f∗(vm+1

2
jvm+1

2
j+1) =





1, 1 ≤ j ≤ n−4

2 ,

0, n−2
2 ≤ j 6 n − 2.

Here V0(f) = V1(f) and E0(f) = E1(f) + 1. It satisfies the condition

|V0(f) − V1(f) |≤ 1 and |E0(f) − E1(f) |≤ 1.
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Hence, the graph Pm ⊖ Pn is ∧ cordial. 2
For example, P4 ⊖ P5, P5 ⊖ P5 and P5 ⊖ P6 are ∧ cordial as shown in Figures 7, 8 and 9.
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Theorem 3.5 A Helm (Cn ⊙ K1) is ∧ cordial.

Proof Let G be the graph (Cn ⊙ K1) with V (G) = {ui, vi : 1 6 i 6 m} and E(G) =

{(uivi) : 1 6 i 6 m}. A vertex labeling on G is defined by f(ui) = {1, 1 6 i 6 m}, f(vi) =

{0, 1 6 i 6 m} with an induced edge labeling f∗(uiui+1) = {1, 1 6 i 6 m − 1}, f∗(umu1) = 1,

f∗(uivi) = {0, 1 6 i 6 m}. Here V0(f) = V1(f) and E0(f) = E1(f). It satisfies the condition

|V0(f) − V1(f) |≤ 1 and |E0(f) − E1(f) |≤ 1.

Hence, A Helm is ∧ cordial. 2
For example, a Helm (C6 ⊙ K1) is ∧ cordial as shown in the Figure 10.

0

u 6

u 5

u 2
u 4

u 3

v1

v 6

v 3

v 2 v 4

v 5

u1

0

0

0

0

0

0

0

0

0

0

01
1

1
1

1

1

1

11

1

1 1

Figure 10 Graph (C6 ⊙ K1)
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Abstract: The purpose of this paper is to describe the problems which involves in the

reduction of traffic congestion. In particular we use graph theoretical approach which

is quite appropriate. We use crossing number technique to reduce traffic congestion.

The minimum number of crossing points in a complete graph is given by Cr(Kn) ≤
1
4

[
n
2

] [
n−1

2

] [
n−2

2

] [
n−3

2

]
where[ ] represents greatest integer function. And we illustrate

the result with counter examples.

Key Words: crossing number, complete graph, traffic control, edge connectivity, vertex

connectivity.

AMS(2010): 05C90.

§1. Introduction

The crossing number (sometimes denoted as C(G)) of a graph G is the smallest number of pair

wise crossings of edges among all drawings of G in the plane. In the last decade, there has been

significant progress on a true theory of crossing numbers. There are now many theorems on

the crossing number of a general graph and the structure of crossing critical graphs, whereas

in the past, most results were about the crossing numbers of either individual graphs or the

members of special families of graphs. The study of crossing numbers began during the Second

World War with Paul Turan. In [1], he tells the story of working in a brickyard and wondering

about how to design an efficient rail system from the kilns to the storage yards. For each kiln

and each storage yard, there was a track directly connecting them. The problem he Consider

was how to lay the rails to reduce the number of crossings, where the cars tended to fall off the

tracks, requiring the workers to reload the bricks onto the cars. This is the problem of finding

the crossing number of the complete bipartite graph. It is also natural to try to compute the

crossing number of the complete graph. To date, there are only conjectures for the crossing

numbers of these graphs Called Guys conjecture which suggest that crossing number of complete

1Received October 2, 2015, Accepted June 6, 2016.
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graph Kn is given by V (Kn) = Z(n)[2][3] where [ ] represents greatest integer function.

z(n) =
1

4

[n
2

] [n − 1

2

] [
n − 2

2

] [
n − 3

2

]

which can also be written as

z(n) =






1
64n(n − 2)2(n − 4) n even

1
64 (n − 1)2(n − 3)2 n odd

Guy prove it for n ≤ 10 in 1972 in 2007 Richter prove it for n ≤ 12 For any graph G, we

say that the crossing number c(G) is the minimum number of crossings with which it is possible

to draw G in the plane. We note that the edges of G need not be straight line segments, and

also that the result is the same whether G is drawn in the plane or on the surface of a sphere.

Another invariant of G is the rectilinear crossing number, c(G), which is the minimum number

of crossings when G is drawn in the plane in such a way that every edge is a straight line

segment. We will find by an example that this is not the same number obtained by drawing G

on a sphere with the edges as arcs of great circles. In drawing G in the plane, we may locate

its vertices wherever it is most convenient. A plane graph is one which is already drawn in the

plane in such a way that no two of its edges intersect. A planar graph is one which can be

drawn as a plane graph [6]. In terms of the notation introduced above, a graph G is planar if

and only if c(G) = 0. The earliest result concerning the drawing of graphs in the plane is due to

Fary [4] [7], who showed that any planar graph (without loops or multiple edges) can be drawn

in the plane in such a way that every Edge is straight. Thus Farys result may be rephrased:

if c(G) = 0, then c(G) = 0. In a drawing, the nodes of the graph are mapped into points of

a plane, and the arcs into continuous curves of the plane, no three having a point in common.

A minimal drawing does not contain an arc which crosses itself, nor two arcs with more than

one point in common, [5],[8]. In general for a set of n line segments, there can be up to ©(n2)

intersection points, since if every segment intersects every other segment, there would be

n(n − 1)

2
= ©(n2)

Crossing points to compute them all we require ©(n2) algorithm.

The traffic theory is a physical phenomenon that aims at understanding and improving

automobile traffic, and the problem associated with it such as traffic congestion [9]. The traffic

control problem is to minimize the waiting time of the public transportation while maintaining

the individual traffic flow optimally [10]. Significant development of traffic control systems using

traffic lights have been achieved since the first traffic controller was installed in London in 1868.

The first green wave was realized in Salt Lake City (U.K.) in 1918, and the first area traffic

controller was introduced in Toronto in 1960. At the beginning, electromechanical devices were

used to perform traffic control. Then Intelligent Transportation System (ITS) is used exten-

sively in urban areas to control traffic at an intersection [11]. The traffic data in a particular

region can be used to direct the traffic flow to improve traffic output without adding new roads.

In order to collect accurate traffic data semi conductor-based controllers known as sensors were
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placed in different places to collect traffic information are used in traffic control system [11],

[12], [13]. Nowadays, microprocessor based controller are used in Traffic Control Systems. The

combinatorial approach to the optimal traffic control problem was founded by Stoffers [14] in

1968 by introducing the Compatibility Graph of traffic streams. One of the main uses of traf-

fic theory is the development of traffic models which can be used for estimation, prediction,

and control related tasks for the automobile traffic process. The term Intelligent Transporta-

tion System (ITS) refers to information and communication technology applied to transport

infrastructure and vehicles, that improves transport outcomes such as transport safety, trans-

port productivity, transport reliability, informed traveler choice, environmental performance

etc. [15] , [16]. ITS mainly comes from the problems caused by traffic congestion and synergy

of new information technology for simulation, real time control and communication networks.

Traffic congestion has been increased world wide as a result of increased motorization, urban-

ization, population growth and changes in population density. Congestion reduces efficiency of

transportation infrastructure and increases travel time, air pollution and fuel consumption. At

the beginning of 1920, in United States large increase in both motorization and urbanization

led to the migration of the population from sparsely populated rural areas and densely packed

urban areas into suburbs (sub urban areas). Intelligent Transport Systems vary in technologies

applied, from basic management system such as car navigation; traffic signal control systems;

container management system; variable message sign; automatic number plate recognition or

speed cameras to monitor applications; such as security CCTV systems; and to more advanced

applications that integrate live data and feedback from a number of other sources, such as

parking guidance and information systems; weather information etc. Additional predictive

techniques are being developed to allow advanced modeling and comparison with historical

data. The traffic flow predictions will be delivered to the drivers via different channels such as

roadside billboards, radio stations, internet, and on vehicle GPS (Global Positioning Systems)

systems. One of the components of an ITS is the live traffic data collection. To collect accurate

traffic data sensors have to be placed on the roads and streets to measure the flow of traffic.

Some of the constituent technologies implemented in ITS are namely, Wireless Communication,

Computational technologies, Sensing technologies, Video Vehicle Detection etc. Urban traffic

congestion is a significant and growing problem in many parts of the world. Moreover, as

congestion continues to increase, the conventional approach of ”building more roads” doesn’t

always work for a variety of political, financial, and environmental reasons. In fact, building

new roads can actually compound congestion, in some cases, by inducing greater demands for

vehicle travel that quickly eat away the additional capacity? Against this backdrop of serious

existing and growing congestion traffic Control techniques and information systems are needed

that can substantially increase capacity and Improve traffic flow efficiency. Application of ITS

technologies in areas such as road user information and navigation systems, improved traffic

control systems and vehicle guidance and control systems has significant potential for relieving

traffic congestions.

Theorem 1.1 The edge connectivity of a graph G cannot exceed the degree of the vertex with

the smallest degree in G.
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Theorem 1.2 The vertex connectivity of any graph G can never exceed the edge connectivity

of G.

Theorem 1.3 The maximum vertex connectivity one can achieve in a graph of n vertices and

e edges is e ≥ n − 1 Thus we conclude that vertexconnectivity ≤ edgeconnectivity ≤ 2e
n .

Definition 1.4 A graph G(v, e) where v is the set of vertices and e the set of edges is said to

be complete if degree of each vertex is v − 1.

Definition 1.5 The number of edges incident on a vertex is said to be degree of the vertex.

Proposed Solution 1.6 As congestion continues to increase, the conventional approach of

building more roads doesn’t always work for a variety of political, financial, and environmental

reasons. In fact, building new roads can actually compound congestion. There is no particular

technique which reduces traffic congestion. Numbers of techniques are simultaneously required

to curb this problem. Traffic congestion is one of the challenging problem in the world the

aim of this research paper is that how to curb this problem. Before giving the solution to the

problem we would like to introduce you the graph theoretical approach of the problem, using

underlying graphs. We represent various cities by vertices and roads connected them by edges.

Since every city must be connected with all other cities in particular geographical area so first of

all we are dealing with complete graphs then we shall remove all the edges in the graph in such

a way that maximum crossing pointes will be removed and there is no effect in the connectivity.

Following are the techniques require curbing traffic congestion.

Definition 1.7 Let G(v, e) be a complete graph v the set of vertices and e the set of edges. the

crossing number Cr(G) of a complete graph G(v, e) is the least number of crossings, common

points of two arcs other than a vertex, in any drawing of graph in a plane (or on a sphere) in

a drawing the vertex of the graph are mapped into points of a plane and the arcs into continue

curves of the plane no three having a point in common, unless it be an end point (vertex) of the

arc. A drawing which exhibits a crossing number is called minimal a minimal drawing does not

contain an arc which crosses itself nor two arcs with more than one point in common. For any

complete graph Kn it has been shown that the minimum number of crossing points is given by

Cr(Kn) ≤ 1
4

[
n
2

] [
n−1

2

] [
n−2

2

] [
n−3

2

]
, where[ ] represents greatest integer function.

Since minimum number of crossing points means minimum number of interruptions on

roads which minimize the waiting time of the traffic participants so traffic congestion is reduces.

After drawing the graph with minimum crossings we remove all those edges in a graph which

does not effect the connectivity of the graph but reduce more crossings so the graph becomes

more efficient as shown in Figure 1 here red dots represent vertices and yellow dots represent

crossing points.
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Figure 1

We shall keep this point in mind that no three edges has a point in common if it is necessary

then we have to keep other crossing point at least one kilometer away from one another as shown

in Figure 2

Figure 2

Because more than one crossing at point will increase interruption on traffic flow, first of

all we have to try our best to reduce the intensity of crossing points, if it is not possible then

flyovers should be constructed at every crossing so that there is no interruption on traffic flow,

in this case only slow moments are possible not traffic jam. The above crossing point technique

will reduce traffic congestion in a large extent. if there are maximum crossing points on the

roads then maximum traffic congestion is possible so minimum crossing means minimum traffic

congestion so we have to reduce the crossing points then traffic congestion is reduced. The aim

to reduce traffic congestion is to reduce the crossing points. There are certain crossing points

where more than two roads cross each other and traffic lights are imposed to allow the traffic

flow alternatively one by one. so traffic congestion is increased because more and more vehicles
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have to be stopped on the roads First of all we shall try over best to reduce those crossing points

where more than two crossing points exist which is quite possible, if it is necessary then, on

these intersection pointes where more than two crossings points exist we have to make flyovers

(as shown in fig 1.3 below these flyovers have already designed in certain parts of the world for

this purpose) in such a way that there should not be any crossing point and traffic flow should

be in continuous manner may be some times there are slow moments but still it will reduce

traffic congestion.

Figure 3

§3. Methods

Method 3.1 There should be exclusive lanes for public transport so that private transport

system does not affect the moment of the public transport.

Method 3.2 A turning restriction is imposed on the traffic, and vehicles are allow to turn

on certain places turning points are at least one kilometer away from the crossing points if the

turning points are at crossing points it will definitely increase traffic congestion, and proper fly-

overs system is imposed as shown in Figure 4, which will automatically reduce traffic congestion

in a large extent.
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Figure 4

Method 3.3 A double win method has already imposed in certain cities of the world and has

been proved to be very happy one. A congestion charge is essentially an economic method of

regulating traffic by imposing fees on vehicle users that travels a city more crowed roads, but

charge vary by city to city depending up on crowed on the city.

Method 3.4 The Parking restrictions on road side should be banned to reduce congestion.

Method 3.5 Remove some link roads at high efficiency points. Then we have to connect them

other side so that minimum crossings are possible.
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The people who get on in this world are the people who get up and look for

circumstances they want, and if they cannot find them. they make them.

By George Bernard Shaw, a British dramatist .
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