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Annotation
A new solution of Maxwell equations for a vacuum, for wire with 
constant and alternating current, for the capacitor, for the sphere, etc. is 
presented. First it must be noted that the proof of the solution's 
uniqueness is based on the Law of energy conservation which is 
not observed (for instantaneous values) in the known solution. 
The solution offered:
 Complies with the energy conservation law in each moment 

of time, i.e. sets constant density of electromagnetic energy 
flux;

 Reveals phase shifting between electrical and magnetic 
intensities;

 Explains existence of energy flux along the wire that is equal 
to the power consumed.

A detailed proof is given for interested readers.
Experimental proofs of the theory are considered.
Explanation is proposed for the experiments, which have 

not yet been explained.
The work offers some technical applications of the 

solution obtained. 
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Chapter 0. Preface
Contents

1. Introduction \ 4
2. On Energy Flux in Wire \ 7
3. Requirements for Consistent Solution of Maxwell’s 

Equations \ 8
4. Variants of Maxwell’s Equations \ 8
Apppendix 0. Cartesian Coordinates \ 10
Apppendix 1. Cylindrical Coordinates \ 11
Apppendix 2. Spherical Coordinates \ 13
Apppendix 3. Some Correlations Between GHS and SI 

Systems \ 13
Apppendix 4. Known solution of Maxwell's equations for 

electromagnetic fields in vacuum \ 14

1. Introduction
Maxwell's system of equations is one of the greatest discoveries of 

the human mind. At the same time, the known solutions of this system 
of equations have a number of disadvantages. Suffice it to say that these 
solutions do not satisfy the law of conservation of energy. Such solutions 
allow some authors to doubt the reliability of the Maxwell equations 
themselves. We emphasize, however, that these dubious results follow 
only from a known decision. But the solution of Maxwell's equations can 
be different (partial differential equations, as a rule, have several 
solutions). And it is necessary to find a solution that does not contradict 
the physical laws and empirically established facts.

The author has found a new solution to the Maxwell system of 
equations, free from the indicated disadvantages. This solution is found 
for the Maxwell equations, written in the coordinate form, and cannot be 
obtained in vector form from Maxwell's equations, written in vector 
form. This, apparently, was the reason that the proposed solution has not 
yet been received.

Based on the new solution of Maxwell's equations, the spiral 
structure of electromagnetic waves and stationary electromagnetic fields 
was theoretically predicted and experimentally confirmed, and it was also 
shown that spiral structures exist in all waves and technical devices 
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Chapter 0. Preface

without exception. The spiral nature of the structures is expressed in the 
fact that coordinate-wise electric and magnetic intensities of waves and 
field vary with coordinates and time (for waves) in terms of sinusoidal 
functions.

Below, the following theoretical predictions are justified by the fact 
that these functions are such that

• does not contradict the law of conservation of energy at each 
moment in time (and not on average), i.e. establishes the constancy of the 
flux density of electromagnetic energy in time,

• reveals a phase shift between electrical and magnetic intensities 
not only in technical devices but also in waves,

• explains the existence of a flow of energy along and inside (and 
not outside) the wire, equal to the power consumption.

Below, theoretical predictions are confirmed by experimental 
observations and explanations of experiments that have not yet been 
substantiated. Among them

• existence of energy transfer devices due to the appearance of emf, 
unexplained by electromagnetic induction,

• measurements of the energy stored in the dielectric of a capacitor 
released from the plates,

• measurements of energy stored in a closed magnetic circuit,
• Milroy engine
• single wire power transmission,
• restoration of magnet energy,
• plasma crystal.

“To date, whatsoever effect that would request a modification of 
Maxwell’s equations escaped detection” [36]. Nevertheless, recently 
criticism of validity of Maxwell equations is heard from all sides. Have a 
look at the Fig.1 that shows a wave being a known solution of Maxwell’s 
equations. The confidence of critics is created first of all by the violation 
of the Law of energy conservation. And certainly "the density of 
electromagnetic energy flow (the module of Umov-Pointing vector) pulsates 
harmonically. Doesn't it violate the Law of energy conservation?" [1]. Certainly, it is 
violated, if the electromagnetic wave satisfies the known solution of 
Maxwell equations. But there is no other solution: "The proof of solution's 
uniqueness in general is as follows. If there are two different solutions, then their 
difference due to the system's linearity, will also be a solution, but for zero charges and 
currents and for zero initial conditions. Hence, using the expression for electromagnetic 
field energy we must conclude that the difference between solutions is equal to zero, 
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which means that the solutions are identical. Thus the uniqueness of Maxwell 
equations solution is proved"   [2]. So, the uniqueness of solution is being 
proved on the base of using the law which is violated in this solution.

Another result following from the existing solution of Maxwell 
equations is phase synchronism of electrical and magnetic components of 
intensities in an electromagnetic wave. This is contrary to the idea of 
constant transformation of electrical and magnetic components of energy 
in an electromagnetic wave. In [1[, for example, this fact is called "one of 
the vices of the classical electrodynamics".

Рис. 1.

Such results following from the known solution of Maxwell 
equations allow doubting the authenticity of Maxwell equations. 
However, we must stress that these results follow only from the found 
solution. But this solution, as has been stated above, can be different (in 
their partial derivatives, equations generally have several solutions).

For convenience of the reader Annex 4 states the method of 
obtaining of a known solution. Further we shall deduct another solution 
of Maxwell equation, in which the density of electromagnetic energy flow 
remains constant in time, and electrical and magnetic components of 
intensities in the electromagnetic wave are shifted in in phase.

In addition, consider an electromagnetic wave in wire. With an 
assumed negligibly low voltage, Maxwell’s equations for this wave literally 
coincide with those for the wave in vacuum. Yet, electrical engineering 
eludes any known solution and employs the one that connects an 
intensity of the circular magnetic field with the current in the wire (for 
brevity, it will be referred to as “electrical engineering solution”). This 
solution, too, satisfies the Maxwell’s equations. However, firstly, it is one 
more solution of those equations (which invalidates the theorem of the 
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only solution known). Secondly, and the most important, electrical 
engineering solution does not explain the famous experimental fact.

The case in point is skin-effect. Solution to explain skin-effect 
should contain a non-linear radius-to-displacement current (flowing 
along the wire) dependence. According to Maxwell’s equations, such 
dependence should fit with radial and circular electrical and magnetic 
intensities that have non-linear dependence from the radius. Electrical 
engineering solution offers none of these. Explanation of skin-effect 
bases on the Maxwell’s equations, yet it does not follow from electrical 
engineering solution. It allows the statement that electrical engineering 
solution does not explain the famous experimental fact.

At last, the existing solution denies the existence of so called 
twisted light [65].

2. On Energy Flux in Wire 
Now, refer to energy flux in wire. The existing idea of energy 

transfer through the wires is that the energy in a certain way is spreading 
outside the wire [13]: "… so our “crazy” theory says that the electrons are getting 
their energy to generate heat because of the energy flowing into the wire from the field 
outside. Intuition would seem to tell us that the electrons get their energy from being 
pushed along the wire, so the energy should be flowing down (or up) along the wire. But 
the theory says that the electrons are really being pushed by an electric field, which has 
come from some charges very far away, and that the electrons get their energy for 
generating heat from these fields. The energy somehow flows from the distant charges 
into a wide area of space and then inward to the wire."

Such theory contradicts the Law of energy conservation. Indeed, 
the energy flow, travelling in the space must lose some part of the energy. 
But this fact was found neither experimentally, nor theoretically. But, 
most important, this theory contradicts the following experiment. Let us 
assume that through the central wire of coaxial cable runs constant 
current. This wire is isolated from the external energy flow. Then whence 
the energy flow compensating the heat losses in the wire comes? With 
the exception of loss in wire, the flux should penetrate into a load, e.g. 
winding of electrical motors covered with steel shrouds of the stator. 
This matter is omitted in the discussions of the existing theory.

So, the existing theory claims that the incoming (perpendicularly to 
the wire) electromagnetic flow permits the current to overcome the 
resistance to movement and performs work that turns into heat. This 
known conclusion veils the natural question: how can the current attract 
the flow, if the current appears due to the flow? It is natural to assume 
that the flow creates a certain emf which "moves the current". Meanwhile, 
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energy flux of the electromagnetic wave exists in the wave itself and does 
not use space exterior towards the wave.

Solution of Maxwell’s equations should model a structure of the 
electromagnetic wave with electromagnetic flux energy presenting in it.

The intuition Feynman speaks of has been well founded. The 
author proves it further while restricted himself to Maxwell’s equations.

3. Requirements for Consistent Solution of 
Maxwell’s Equations 
Thus, the solution of Maxwell’s equations must:

 describe wave in vacuum and wave in wire;  
 comply with the energy conservation law in each moment of time, 

i.e. set constant density of electromagnetic energy flux;  
 reveal phase shifting between electrical and magnetic intensities; 
 explain existence of energy flux along the wire that is equal to 

power consumed.   
What follows is an appropriate derivation of Maxwell’s equations.   

4. Variants of Maxwell’s Equations
Further, we separate different special cases (alternatives) of 

Maxwell’s equations system numbered for convenience of presentation.

Variant 1.
Maxwell's equations in the general case in the GHS system are of 

the form [3]:

  0rot 




t

H
c

E  , (1)

  04rot 



 I
ct

E
c

H  , (2)

  0div E , (3)
  0div H , (4)

EI  , (5)
where 

EHI ,,  - сonduction current, magnetic and electric intensities 
respectively,

 ,,  - dielectric constant, magnetic permeability, conductivity 
wire of medium.
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Variant 2.
For the vacuum must be taken 0,1,1   . When the 

system of equations (1-5) takes the form:

  01rot 




t

H
c

E , (6)

  01rot 




t
E

c
H , (7)

  0div E , (8)
  0div H . (9)

The solution to this system is offered in the Chapter 1. 

Variant 3.
Consider the case 1 in the complex presentation:

  0rot  H
c

iE  , (10)

     0)(imagreal4rot  IiI
c

E
c

iH  , (11)

  0div E , (12)
  0div H , (13)
   EI absreal  . (14)

It should be noted that instead of showing the whole current, (14) 
shows only its real component, i.e. conductivity current. Imaginary 
component formed by a displacement current does not depend on 
electrical charges.

The solution to this system is offered in the Chapter 4. 

Variant 4.
For the wire with sinusoidal current I flowing out of an external 

source,  Ireal  may at times be excluded from equations (11-14). It is 
possible for a low-resistance wire and for a dielectric wire (for more 
details, refer to Chapter 2). As this takes place, the system (11-14) takes 
the form of

  0rot 




t

H
c

E  , (15)

  04rot 



 I
ct

E
c

H  , (16)

  0div E , (17)
  0div H . (18)
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It is significant that current I is not a conductivity current even 
when it flows along the conductor. 

The solution for this system will be considered in the Chapter 2.

Variant 5.
For a constant current wire, system in alternative 1 simplifies due 

to lack of time derivative and takes the form of:
  0rot E , (21)

  04rot  I
c

H  , (22)

  0div E , (24)
  0div H , (25)

EI  (26)
or

Variant 6.
  0rot I , (27)

  04rot  I
c

H  , (28)

  0div I , (29)
  0div H . (30)

The solution for this system will be considered in the Chapter 5.

We will be searching a monochromatic solution of the systems 
mentioned. A transition to polychromatic solution can be accomplished 
via Fourier transformation.

Apppendix 0. Cartesian Coordinates 
As it is known to [4], in Cartesian coordinates x, y, z scalar 

divergence of H vector, vector gradient of scalar function  zyxа ,, , 
vector rotor of H vector, accordingly, take the form of

  




















z

H
y

H
x

HH zyxdiv ,

  

















z
a

y
a

x
aa ,,grad ,

  
























































y

H
x

H
x

H
z

H
z

H
y

HH xyzxyz ,,rot .
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Electric and magnetic intensities in Cartesian coordinates, obtained 
as a result of this decision, are shown are shown in the following figure.
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Apppendix 1. Cylindrical Coordinates 
As it is known to [4], in cylindrical coordinates 𝑟, φ, 𝑧 scalar 

divergence of H vector, vector gradient of scalar function 𝑎(𝑟, φ, 𝑧), 
vector rotor of H vector, accordingly, take the form of 

  




















z

HH
rr

H
r

HH zrr

1div , (a)

      ,grad,1grad,grad
z
aaa

r
a

r
aa zr 












 (b)

  ,1rot 
















z
HH

r
H z

r



(c)

  ,rot 















r

H
z

HH zr
 (d)

  .1rot 

















 r

z
H

rr
H

r
H

H (e)
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Apppendix 2. Spherical Coordinates
Fig. 1 shows a system of spherical coordinates  ,, , and Table 1 

contains expressions for rotor and divergence of vector E in these 
coordinates [4].

Fig. 1.
Table 1.

1 2 3
1  Erot

    










sintg

EEE

2  Erot
  









 EEE
sin

3  Erot











EEE

4  Ediv
    















sintg

EEEEE

Apppendix 3. Some Correlations Between GHS and 
SI Systems 
Further, formulas appear in GHS system, yet, for illustration, some 

examples are shown in SI system. This is why, for reader’s convenience, 
Table 1 contains correlations between some measurement units of these 
systems.
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Table 1.
Name GHS SI

electric current 1 GHS 3,33·10-10 A
voltage 1 GHS 3·102 V
power, energy flux density 1 GHS 10-7 Wt
energy flux density per unit 
length of wire

1 GHS 10-5 Wt/m

electric current density 1 GHS 3.33·10-6 A/m2

3.33·10-12 A/mm2

electric field intensity 1 GHS 3·104 V/m
magnetic field intensity 1 GHS 80 A/m
magnetic induction 1 GHS 10-4T
absolute dielectric permittivity 1 GHS 8.85·10-12 F/m
absolute magnetic permeability 1 GHS 1.26·10-8 H/m
capacitance 1 GHS 1.1·10-12 F

inductance 1 GHS 10-9 H
electrical resistance 1 GHS 9·1011 Om
electrical conductivity 1 GHS 1.1·10-12 sm
specific electrical resistance 1 GHS 9·109 Om·m
specific electrical conductivity 1 GHS 1.1·10-10 sm/m

Apppendix 4. Known solution of Maxwell's 
equations for electromagnetic fields in 
vacuum
Let us consider a system of Maxwell’s equations for vacuum stated 

before in Section 4:

 
t

H
c

E




1rot , (1)

 
t
E

c
H





1rot , (2)

  0div E , (3)
  0div H . (4)

Taking a curl from each part of the equation (1), we obtain:

   











t

H
c

E 1rotrotrot (5)
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or

     H
tc

E rot1rotrot



 . (6)

Having combined equations (2, 6), we find out that

    E
tc

E 2

2

2
1rotrot




 . (6а)

It is stated [4, p.131] that 
      EEE  divgradrotrot . (7)

where orthogonal coordinates show that 

2

2

2

2

2

2

z
E

y
E

x
EE












 . (8)

From (3, 7) we find that 
   EE rotrot . (9)

Having combined equations (6а, 8, 9), we find out that

2

2

2

2

2

2

2

2

2
1

z
E

y
E

x
E

t
E

c 













 . (10)

This equation has a complex solution in orthogonal coordinates of the 
following kind:

 ozyx tzkykxk
peeEzyxtE  ),,,( , (11)

which can be verified by direct substitutions. For this purpose, the first 
and second derivatives of (10) are pre-calculated. Constants 
 ozyxp kkkeE ,,,,,,  have a certain physical significance 
(which will be not discussed here).

The obtained solution is complex. It is known that an actual part 
of a complex solution is also a solution. Consequently, the following kind 
of solution can be taken instead (11): 

 ozyxp tzkykxkeEzyxtE   cos),,,( , (12)

Similarly we obtain a solution of the following kind:
 ozyxp tzkykxkhHzyxtH   cos),,,( . (13)

It should be stated that energy is calculated as an integral  
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 
 

     

     )2sin(...
8
1

)(...cos
2
1

)cos(...

)cos(...

2
1

22

0

22

222

2

2
22

teEeE

dtteEeE

dt
teE

teE
dtHEW

t

pp

t
pp

t p

p

t


























 















, (14)

From (12, 13, 14) it can be clearly stated that:
1. the energy transforms in time, which contradicts the low of 

energy conservation
2. vorticities E and H are cophased, which contradicts electrical 

engineering.
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Chapter 1. The Second Solution of Maxwell's Equations for vacuum

Chapter 1. The Second Solution of 
Maxwell's Equations for vacuum

Contents
1. Introduction \ 1 
2. Solution of Maxwell's Equations \ 1
3. Intensities \ 3
4. Energy Flows \ 8
5. Speed of energy movement \ 10
6. Discussion \ 11
Appendix 1 \ 12

1. Introduction
In Chapter "Introduction" inconsistency of well-known solution of 

Maxwell's equations was demonstrated. A new solution Maxwell's 
equations for vacuum is proposed below [5].

2. Solution of Maxwell's Equations
First we shall consider the solution of Maxwell equation for vacuum, 
which is shown in Chapter "Introduction" as variant 1, and takes the 
following form

  0rot 




t
H

c
E  , (а)

  0rot 




t
E

c
H  , (b)

  0div E , (c)
  0div H . (d)

In cylindrical coordinates system zr ,,   these equations look as 
follows:

01














z
EE

rr
E

r
E zrr


 , (1)

,1
r

z M
z
EE

r








 


(2)

,Mr
E

z
E zr 








(3)
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,1
z

r ME
rr

E
r
E












 (4)

01














z
HH

rr
H

r
H zrr


 , (5)

,1
r

z J
z
HH

r








 


(6)

,Jr
H

z
H zr 








(7)

,1
z

r JH
rr

H
r
H












 (8)

t
E

c
J







, (9)

t
H

c
M







. (10)

For the sake of brevity further we shall use the following notations:  
)cos( tzco   , (11)

)sin( tzsi   , (12)

where  ,,  – are certain constants. Let us present the unknown 
functions in the following form:

 corjJ rr . , (13)

sirjJ )(.   , (14)

sirjJ zz )(.  , (15)

 corhH rr . , (16)

sirhH )(.   , (17)

sirhH zz )(.  , (18)

 sireE rr . , (19)

coreE )(.   , (20)

coreE zz )(.  , (21)

 cormM rr . ,             (21а)

sirmM )(.   , (22)

sirmM zz )(.  , (23)

where )(),(),(),( rmrerhrj - certain function of the coordinate r . 
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By direct substitution we can verify that the functions (13-23) 
transform the equations system (1-10) with three arguments zr ,,   
into equations system with one argument r  and unknown functions

)(),(),(),( rmrerhrj .
In Appendix 1 it is shown that for such a system there exists a 

solution of the following form (in Appendix 1 see (24, 27, 18, 31, 33, 34, 
32) respectively):

0)( rhz , 0)( rez , (24)

 1

2
)()(  

 rArerer , (25)

 re)r(h r


  , . (26)

  ),r(erhr 


 (27)

c  , (28)

where  ,,,,,, cA  – constants.
Thus we have got a monochromatic solution of the equation 

system (1-10). A transition to polychromatic solution can be achieved 
with the aid of Fourier transform.

If it exists in cylindrical coordinate system, then it exists in any 
other coordinate system. It means that we have got a common solution 
of Maxwell equations in vacuum.

3. Intensities
We consider (2.25):

15.0  
 rAeer , (1)

where A is some constant. From (1) it follows that

   12
2

22

4
 

 rAeer . (2)

Fig. 1 shows, for example, the graphics functions (1, 2) for 
8.0,1  A . 

Fig. 2 shows the vectors of intensities originating from the point

 ,rA . Let us remind that projections  re)r(h r


   and 

  ),r(erhr 


 - see (2.26, 2.27). The directions of vectors  rer  and 
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)(re  are chosen as:   0rer , 0)( re . Note that the vectors HE,  
are always orthogonal. 

In order to demonstrate phase shift between the wave components 
let's consider the functions (2.11, 2.12) and (2.16-2.21). It can be seen, 
that at each point with coordinates zr ,,   intensities EH ,  are 
shifted in phase by a quarter-period - see Fig. 0.



r

E H

rH

rE z

Fig. 0.

Density of energy
𝑊 = 1

8π(ε𝐻2 + μ𝐸2) (2)
Taking into account (2.17, 2.18, 2.20, 2.21, 2.26, 2.27), we find:

𝑊 = 1
8π(ε((𝑒𝑟𝑠𝑖)2 + (𝑒φ𝑐𝑜)2) + μ((ℎ𝑟𝑐𝑜)2 + (ℎφ𝑠𝑖)2)) = 1

8π(ε((𝑒𝑟𝑠𝑖)2 + (𝑒φ𝑐𝑜)2) + με
μ(

or
𝑊(𝑟) = ε

4π(𝑒𝑟(𝑟))2
(3)

- see also Fig. 1. From (3, 3.2) we find:
𝑊(𝑟) = 𝐴2ε

16π𝑟2(α ‒ 1)
(3a)

Thus, electromagnetic wave energy density is constant in time and 
equal in all points of the cylinder of given radius.
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-0.5
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ef
(r)
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-0.25

-0.2

-0.15

-0.1

-0.05

A
*e

f(r
)2

Fig.1. SecondSolMax.m

Let R  be the radius of the circular wave front. Then the energy of 
the electromagnetic wave, per unit wavelength,

  
 

 1244
W

12

0

12








 
 

 RAdrrA R

r

. (3в)

A

O 

re

e
h

rh

H

E

A

O

re

e
h rh

H

E

Fig. 2. Fig. 3.

The solution exists also for changed signs of the functions (2.11, 
2.12). This case is shown on Fig 3. Fig. 2 and Fig. 3 illustrate the fact that 
there are two possible type of electromagnetic wave circular 
polarization. 

Let's consider the functions (2.11, 2.12) and (2.28). Then, we can 
find
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)cos( tz
c

co   , )sin( tz
c

si   . (4)

Let's consider a point moving along a cylinder of constant radius 
r , at which the value of intensity depends on time as follows:

   trhH rr cos.  (5)
Comparing this equation with (2.16) and taking (4) into account, we can 
notice that equation (5) is the same as (2.16), if at any moment of time

0 z
c
 (6)

or

z
c





 . (7)

Thus, at the cylinder of constant radius r  a path of this point exists, 
which is described by equations (4, 7), where all the intensities vary 
harmonically. On the other hand, this path is a helix. Thus, the line, along 
which the point moves in such a way, that its intensity .rH  varies in a 
sinusoidal manner, is a helix. The same conclusion can be repeated for 
other intensities (2.17-2.21). Thus, 

the path of the point, which moves along a cylinder of given 
radius in such a manner, that each intensity varies 
harmonically with time, is described by a helix.

(A)

-1
-0.5

0
0.5

1

-1
-0.5

0

0.5
1

-2000

-1500

-1000

-500

0

(TokPotok33.m)Fig. 4.
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-2
-1

0
1

2

-2
-1

0

1
2
0

500

1000

1500

2000

(TokPotok33.m)Fig. 4a.

For example, Fig. 4 shows a helix, for which 
  20,3,3000,300000,1  cr . Fig. 4a shows 

helices in the same conditions, but for different radii, where 
 1.1,0.1...,6.0,5.0r . Straight lines indicate the geometric loci of 

points with equal  . 
The last means (A) that at point T, moving along this helix the 

vectors of intensities (2.16-2.21) can be written as follows:
   trhH rr cos. ,  trhH  sin)(.  ,  trhH zz sin)(. ,

   treE rr sin.  ,   treE  cos)(.  ,   treE zz cos)(. .

It was shown above (see 2.24-2.27), that 0)( rhz , 0)( rez , 

)()()( rerere rr   ,  re)r(h r 


 ,   )r(erh rr 


 . Therefore, 

at each point there are only vectors

   tcosre.H rr 



 ,  tsin)r(e.H r 



  , 

   treE rr  sin.  ,      treE r  cos)(. .
In this case resultant vectors  HHHr  r  and  EEEr  r  lay in 

plane ,r , and their modules are  reH rr  


  and  reE rr   . 
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Fig. 4b shows all these vectors. It can be seen, that when the point T  
moves along the helix, resultant vectors rH  and rE  rotate in plane 

,r . Their moduli are constant and equal one to the other. These 
vectors rH  and rE  are always orthogonal.

So, harmonic wave is propagating along the helix, and in this 
case at each point T , which moves along this helix, projections of 
vectors of magnetic and electric intensities: 

 exist only in the plane which is perpendicular to the helix axis, 
i.e. there only two projections of these vectors exist,

 vary in a sinusoidal manner,
 are shifted in phase by a quarter-period.

Resultant vectors:
 rotate in these plane,
 have constant moduli,
 are orthogonal to each other.

Er

Hr

Ef

Hf

Erf

Hrf

T

r


t2

Fig. 4b.

4. Energy Flows
The density of electromagnetic flow is Pointing vector 

HES  , (1)
where 

 4c . (2)
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In the SI system 1  and the last formula (1) takes the form:
HES  , (3)

In cylindrical coordinates zr ,,   the density flow of 

electromagnetic energy has three components zr SSS ,,  , directed along 
вдоль the axis accordingly. They are determined by the formula

𝑆 = [𝑆𝑟
𝑆φ
𝑆𝑧

] = η(𝐸 × 𝐻) = η[𝐸φ𝐻𝑧 ‒ 𝐸𝑧𝐻φ
𝐸𝑧𝐻𝑟 ‒ 𝐸𝑟𝐻𝑧
𝐸𝑟𝐻φ ‒ 𝐸φ𝐻𝑟

]
. (4)

Thus, the flux density of electromagnetic energy propagating along 
the radius, along the circumference, along the axis oz is determined, 
respectively, by the formulas of the following form:

𝑒𝑟
𝑟 + 𝑒̇𝑟 ‒

𝑒𝑟
𝑟 α ‒ χ𝑒𝑧 = 0

, (1)

𝑒𝑟
𝑟 + 𝑒̇𝑟 ‒

𝑒𝑟
𝑟 α + μω

𝑐 ℎ𝑧 = 0
, (4)

‒
𝑒𝑧
𝑟 α + 𝑒𝑟χ ‒ μω

𝑐 ℎ𝑟 = 0
,  (2)

𝑒𝑟χ ‒ 𝑒̇𝑧 ‒ μω
𝑐 ℎ𝑟 = 0

,  (3)

ℎ𝑟
𝑟 + ℎ̇𝑟 ‒

ℎ𝑟
𝑟 α + χℎ𝑧 = 0

, (5)

‒
ℎ𝑟
𝑟 ‒ ℎ̇𝑟 +

ℎ𝑟
𝑟 α + εω

𝑐 𝑒𝑧 = 0
, (8)

ℎ𝑧
𝑟 α + ℎ𝑟χ ‒ εω

𝑐 𝑒𝑟 = 0
,  (6)

‒ ℎ𝑟χ ‒ ℎ̇𝑧 + εω
𝑐 𝑒𝑟 = 0

.  (7)

The flow passing through a given section of a cylindrical wave at a 
given time,
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.

̅ 𝑆 = [ 𝑆̅𝑟
̅𝑆φ

𝑆̅𝑧
] = ∬

𝑟,φ
([𝑆𝑟

𝑆φ
𝑆𝑧

]𝑑𝑟 ∙ 𝑑φ)
(6)

It is shown above that 0)( rhz , 0)( rez . Therefore, 
𝑆𝑟 = 0,  𝑆φ = 0, i.e. the energy flux propagates only along the axis oz 
and is equal to

.

̅ 𝑆 = 𝑆̅𝑧 = η∬
𝑟,φ

((𝑒𝑟ℎφ𝑠𝑖2 ‒ 𝑒φℎ𝑟𝑐𝑜2)𝑑𝑟 ∙ 𝑑φ)
(7)

Lack of radial energy flux indicates that area of wave existence is 
NOT growing. Existence of laser provides evidence of this fact.

We'll find zs . From (2.26, 2.27, 2.25), we obtain:

2
rr ehe




  , (8)

2
 

 ehe r  , (9)

𝑒𝑟 = 𝑒φ. (10)
In this way,

𝑆𝑧 = η𝑒2
𝑟

ε
μ = с

4π𝑒2
𝑟

ε
μ (11)

or, taking into account (2, 2.25),

.
𝑆𝑧 = 𝐴2

16π
ε
μ𝑐𝑟2(α ‒ 1)

(12)
Consequently, the energy flux of the electromagnetic wave is 
constant in time.

It follows that the energy flux passing through the cross-sectional 
area is independent of zt ,,  . This value does not vary with time, and 
this complies with the Law of energy conservation.

5. Speed of energy movement
First of all, we find the propagation speed of a monochromatic 

electromagnetic wave. Obviously, this speed is equal to the derivative 

dt
dz of the function )(tz  given implicitly in the form (2.16-2.21). 

Consider, for example, the function (2.16). We have:
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     rr
r hsitz

dz
dh

dz
Hd

 )cos( ,

     rr
r hsitz

dt
dh

dt
Hd

 )cos( .

Then the propagation speed of a monochromatic electromagnetic wave
   





dz
Hd

dt
Hd

dt
dzv rr

m .

Taking (2.28) into account, we obtain
   





dz
Hd

dt
Hd

dt
dzv rr

m . (1a)

Учитывая (2.28), получаем

 


 ccvm m . (1b)

Consequently, the propagation speed of a monochromatic 
electromagnetic wave is equal to the speed of light.

Umov's concept [81] is generally accepted, according to which the 
energy flux density s  is a product of the energy density w  and the speed 
of energy movement ev :

evws  . (2)

Из (4.11, 3.3) получаем:

𝑣𝑒 =
𝑆𝑧
𝑊 = ( с

4π𝑒2
𝑟

ε
μ) ( ε

4π𝑒2
𝑟) = 𝑐

εμ (3)
The speed of movement of electromagnetic energy ev  is not always 

equal to the speed of light. For example, in a standing wave 0ev , and 
generally in a wave that is the sum of two monochromatic 
electromagnetic waves of the same frequency propagating in opposite 
directions, the energy transfer is weakened and cve  .

Note that, based on the known solution and formula (18), we can 
not find the speed ev . Indeed, in the SI system we find:







 










E
H

H
EHE

W
Svе 


 2

22
EH

22

.

If 



22

22 HE
 , then 

E
H . Then for a vacuum
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37612 















еv ,

which is not true. In general, the solution obtained here can not be 
found in vector form.

6. Discussion
The Fig. 8 shows the intensities in Cartesian coordinates. The 

resulting solution describes a wave. The main distinctions from the 
known solution are as follows: 

1. Instantaneous (and not average by certain period) energy flow 
does not change with time, which complies with the Law of 
energy conservation.  

2. The energy flow has a positive value  
3. The energy flow extends along the wave.
4. Magnetic and electrical intensities on one of the coordinate 

axes zr ,,   phase-shifted by a quarter of period.

5. The solution for magnetic and electrical intensities is a real 
value.

6.  The solution exists at constant speed of wave propagation.
7. The existence region of the wave does not expand, as 

evidenced by the existence of laser.   
8. The vectors of electrical and magnetic intensities are 

orthogonal.  
9. There are two possible types of electromagnetic wave circular 

polarization. 
10. The path of the point, which moves along a cylinder of given 

radius in such a manner, that each intensity value varies 
harmonically with time, is a helix.

Appendix 1
Let us consider the solution of equations (2.1-2.10) in the form of 

(2.13-2.23). Further the derivatives of r  will be designated by strokes. We 
write the equations (2.1-2.10) in view of (2.11, 2.12) in the form

0)(
)(

)()(
 re

r
re

re
r
re

zr
r  ,  (1)

 ,)()(1 rmrere
r rz     (2)

  ),()( rmrere zr    (3)
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  ),()(
)(

rm
r
rere

r
re

z
r  

 (4)

    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  , (5)

 ,)()(1 rjrhrh
r rz     (6)

  ),()( rjrhrh zr   (7)

  ,0)()(
)(

 rj
r
rhrh

r
rh

z
r 

  (8)

rr e
c

j 
 , 

 e
c

j  , zz e
c

j 
 , (9)

rr h
c

m 
 , 

 h
c

m  , zz h
c

m 
 , (10)

We consider travelling wave in vacuum. In this case 0)( rez , as 
there is no external energy source. 

Along with that, according to (9) we obtain 0)( rjz . Then, the 
initial system (1, 5-8) will be as follows:

0
)(

)()(
 

r
re

re
r
re

r
r , (17)

    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  , (18)

 ,)()(1 rjrhrh
r rz    (19)

  ),()( rjrhrh zr   (20)

  ,0)(
)(

 


r
rhrh

r
rh r (21)

Substituting (9) in (17), we get:

0
)(

)()(
 

r
rj

rj
r
rj

r
r ,  (22)

Substituting (19, 20) in (22), we get:

   0)()()(1)(1)(1
2 

r
rhrhrhrh

r
rh

r
rh

r zrzz
 

or

  0)()(1)(1
2 

r
rhrhrh

r
rh

r rz
  (23)
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In this case, for calculation of three intensities we obtain three equations 
(19, 21, 23). Then, we exclude )(rh  from (21, 23):

    0)(1)(1)(1
2 






 

r
rh

r
rhrh

r
rh

r
rh

r rrz
 

or 0)(1
2 

 rh
r z  or 0)( rhz . Thus, in a 0)( rez  condition 

0)( rhz  to be respected. This implies
Lemma 1. The equation system (1, 5-9) for 0)( rez  is compatible 

only if 0)( rhz .
If 0)( rez  and 0)( rhz , then equations (1, 5-9) will be as 

follows – equations (1, 5, 8) can be simplified, and equations (6, 7) taking 
(9) into account, can be substituted for the following equations (1.3, 1.4):

0
)(

)()(
 

r
re

re
r
re

r
r , (1.1)

    0
)(

 

r
rh

rh
r
rh

r
r , (1.2)

 ,re)r(hc
r

 (1.3)

  )r(erhc
r 


 , (1.4)

  0)(
)(

 


r
rhrh

r
rh r .  (1.5)

In a similar way we can prove
Lemma 2. If 0)( rez , system of equations (1-5, 10) has a solution 

only in that case, when 0)( rhz .
In this case, similar to equations (24, 28), we can obtain equations

0
)(

)()(
 

r
re

re
r
re

r
r ,  (2.1)

 ,rh
c

)r(e r
  (2.2)

  ),r(h
c

rer 
  (2.3)

  ,0)(
)(

 


r
rere

r
re r (2.4)

    0
)(

 

r
rh

rh
r
rh

r
r . (2.5)
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From Lemmas 1 and 2 follows 
Lemma 3. System of equations (1-10) has a solution only if

0)( rhz , 0)( rez . (3.1)
Therefore, initial system of equations (1-10) can be written in the 

form of equations shown in lemmas 1 and 2. We combined them for 
readers' convenience.

0
)(

)()(
 

r
re

re
r
re

r
r , (24)

 ,rh
c

)r(e r
  (25)

  ),r(h
c

rer 
  (26)

  ,0)(
)(

 


r
rere

r
re r (27)

    0
)(

 

r
rh

rh
r
rh

r
r , (28)

 ,re
c

)r(h r
  (29)

  ),r(e
c

rhr 
   (30)

  0)(
)(

 


r
rhrh

r
rh r . (31)

We multiply equations (26, 29). Then we get:

    )()(
2

2 rhre
c

rhre rr 
 





             

or
c  . (32)

Substituting (32) in (26, 29), we get:

 re)r(h r


  . (33)

Thus, with condition (32) equation (26, 29) are equivalent to a 
single equation (33). A similar equation follows from (25, 30):

  ),r(erhr 


 (34)
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Chapter 2. Solution of Maxwell's 
Equations for Electromagnetic Wave in the 

Dielectric Circuit of Alternating Current
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1. Introduction
An electromagnetic field in vacuum is considered in chapter 1. The 

evident solution obtained there is extended to a non-conducting 
dielectric medium with certain dielectric and magnetic permeability ε and 
μ, respectively. Therefore, the electromagnetic field does also exist in a 
capacitor as well. However, a considerable difference of the capacitor is 
that its field has a non-zero electrical intensity along on of the 
coordinates induced by an external source. The electromagnetic field in 
vacuum was examined on the basis of an assumption that an external 
source was absent. 

The same can be said about an alternating current dielectric circuit. 
The system of Maxwell equations is applied to such a circuit. It is shown 
that an electromagnetic wave is also formed in this circuit. An important 
difference between this wave and the wave in vacuum is that the former 
has a longitudinal electrical intensity induced by an external power 
source. 

Below are considered the Maxwell equations of the following form 
written in the GHS system (as in chapter 1, but with ε and μ which are 
not equal to 1 and taking into account displacement currents):

  0rot 




t
H

c
E  , (1)
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𝑟𝑜𝑡(𝐻) ‒ ε
𝑐

∂𝐸
∂𝑡 ‒ 4π

𝑐 𝐽 = 0, (2)
  0div E , (3)
  0div H , (4)

where EH ,  are the magnetic intensity and the electrical intensity, 
respectively,  𝐽 - displacement currents. 

2. Maxwell Equations Solution
Let us consider solution to the Maxwell equations (1.1-1.4) [37]. In 

the cylindrical coordinate system zr ,,  , these equations take the 
form:

01














z
EE

rr
E

r
E zrr


 , (1)

,1
dt
dHv

z
EE

r
rz 







 


(2)

,
dt
dH
v

r
E

z
E zr 








(3)

,1
dt
dHvE

rr
E

r
E zr 











 (4)

01














z
HH

rr
H

r
H zrr


 , (5)

dt
dEq

z
HH

r
rz 







 


1 +𝑔 ∙ 𝐽𝑟 (6)

,
dt
dE
q

r
H

z
H zr 






 + 𝑔 ∙ 𝐽φ (7)

dt
dEqH

rr
H

r
H zr 











 1
+𝑔 ∙ 𝐽𝑧 (8)

where 
cv  , (9)

cq  , (10)
𝑔 = 4π/𝑐,           (10a)

zr EEE ,,   are the electrical intensity components,

zr HHH ,,   are the magnetic intensity components.

A solution should be found for non-zero intensity component 𝐻𝑧. 
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To write the equations in a concise form, the following 
designations are used below: 

)cos( tzco   , (11)
)sin( tzsi   , (12)

where  ,,  are constants. Let us write the unknown functions in the 
following form:

 corhH rr . , (13)

sirhH )(.   , (14)

sirhH zz )(.  , (15)

 sireE rr . , (16)

coreE )(.   , (17)

coreE zz )(.  , (18)
𝐽𝑟 = 𝑗𝑟𝑐𝑜,              (18a)
𝐽φ = 𝑗φ𝑠𝑖,              (18b)
𝐽𝑧 = 𝑗𝑧𝑠𝑖.

             (18c)

where )(),( rerh ,  𝑗(𝑟) are function of the coordinate r . 
Direct substitution enables us to ascertain that functions (13-18) 

convert the system of equations (1-8) with four arguments tzr ,,,   in 
a system of equations with one argument r  and unknown functions 

)(),( rerh , 𝑗(𝑟). This system of equations has the following form:

0)(
)(

)()(
 re

r
re

re
r
re

zr
r  ,  (21)

,0)()(1
 rz h

c
rere

r
  (22)

  ,0)(  
 h
c

rere zr (23)

  ,0)(
)(

 z
r h

cr
rere

r
re 

 (24)

    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  , (25)

1
𝑟ℎ𝑧(𝑟) ∝‒ ℎφ(𝑟) ‒ εω

𝑐 𝑒𝑟(𝑟) ‒ 4π
𝑐 𝑗𝑟(𝑟) = 0, (26)

‒ ℎ𝑟(𝑟)χ ‒ ℎ̇𝑧(𝑟) + εω
𝑐 𝑒φ(𝑟) ‒ 4π

𝑐 𝑗φ(𝑟) = 0, (27)
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ℎφ(𝑟)
𝑟 + ℎ̇φ(𝑟) +

‒ ℎ𝑟(𝑟)
𝑟 ∝+ εω

𝑐 𝑒𝑟(𝑟) ‒ 4π
𝑐 𝑗𝑧(𝑟) = 0, (28)

Also, as in Chapter 1, the energy flux densities by coordinates are 
determined by the formula

𝑆 = [𝑆𝑟
𝑆φ
𝑆𝑧

] = η(𝐸 × 𝐻) = η[𝐸φ𝐻𝑧 ‒ 𝐸𝑧𝐻φ
𝐸𝑧𝐻𝑟 ‒ 𝐸𝑟𝐻𝑧
𝐸𝑟𝐻φ ‒ 𝐸φ𝐻𝑟

]
. (29)

or, taking into account previous formulas,
𝑆𝑟 = η(𝑒φℎ𝑧 ‒ 𝑒𝑧ℎφ)𝑐𝑜 ∙ 𝑠𝑖

(30)
𝑆φ = η(𝑒𝑧ℎ𝑟𝑐𝑜2 ‒ 𝑒𝑟ℎ𝑧𝑠𝑖2) (31)
𝑆𝑧 = η(𝑒𝑟ℎφ𝑠𝑖2 ‒ 𝑒φℎ𝑟𝑐𝑜2) (32)

It will be shown below that these energy flux densities satisfy the 
energy conservation law, if

ℎ𝑟 = 𝑘𝑒𝑟, (33)
ℎφ =‒ 𝑘𝑒φ. (34)
ℎ𝑧 =‒ 𝑘𝑒𝑧.

(35)
It follows from (30, 34, 35) that

𝑆𝑟 = η( ‒ 𝑒φ𝑘𝑒𝑧 + 𝑘𝑒𝑧𝑒φ)𝑐𝑜 ∙ 𝑠𝑖 = 0, (36)
i.e. there is no radial energy flow.

It follows from (31, 33, 15) that
𝑆φ = η(𝑒𝑧𝑘𝑒𝑟𝑐𝑜2 + 𝑘𝑒𝑟𝑒𝑧𝑠𝑖2) = η𝑘𝑒𝑟𝑒𝑧, (37)

i.e. the energy flux density along the circumference at a given radius does 
not depend on time and other coordinates.

It follows from (32, 33, 34) that
𝑆𝑧 = η𝑘𝑒𝑟ℎφ(𝑠𝑖2 + 𝑐𝑜2) = η𝑘𝑒𝑟ℎφ, (38)

i.e. the energy flux density along the vertical for a given radius is 
independent of time and other coordinates. These statements were the 
purpose of the assumptions (12-14).

We replace the variables with respect to (33-35) in equations (21-
28) and rewrite them without changing the numbering:

𝑒𝑟
𝑟 + 𝑒̇𝑟 ‒

𝑒φ
𝑟 α ‒ χ𝑒𝑧 = 0

, (41)
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‒
𝑒𝑧
𝑟 α + 𝑒φχ ‒ μω

𝑐 𝑘𝑒𝑟 = 0
,  (42)

‒ 𝑒̇𝑧 + 𝑒𝑟χ ‒ 𝑘μω
𝑐 𝑒φ = 0

,   (43)

𝑒φ
𝑟 + 𝑒̇φ ‒

𝑒𝑟
𝑟 α ‒ 𝑘μω

𝑐 𝑒𝑧 = 0
, (44)

𝑘
𝑒𝑟
𝑟 + 𝑘𝑒̇𝑟 ‒ 𝑘

𝑒φ
𝑟 α ‒ 𝑘χ𝑒𝑧 = 0

, (45)

‒ 𝑘
𝑒𝑧
𝑟 α + 𝑘𝑒φχ ‒ εω

𝑐 𝑒𝑟 ‒ 4π
𝑐 𝑗𝑟 = 0

, (46)

𝑘𝑒̇𝑧 ‒ 𝑘𝑒𝑟χ + εω
𝑐 𝑒φ ‒ 4π

𝑐 𝑗φ = 0
.  (47)

‒ 𝑘
𝑒φ
𝑟 ‒ 𝑘𝑒̇φ + 𝑘

𝑒𝑟
𝑟 α + εω

𝑐 𝑒𝑧 ‒ 4π
𝑐 𝑗𝑧 = 0

, (48)

It can be seen that equations (41) and (45) coincide and therefore 
equation (45) can be removed from the system of equations. The 
remaining 7 equations (41-44, 46-48) are a system of differential 
equations with 7 unknowns

𝑒𝑟,𝑒φ,𝑒𝑧, 𝑗𝑟,𝑗φ,𝑗𝑧,𝑘.
In Appendix 1 we consider the solution of this system of 

equations. It shows that all the functions of the stresses and displacement 
currents can be found from the Maxwell equations system if we 
determine the parameters ∝ ,χ,ω and the amplitude of the time function

Е𝑧 = 𝑒𝑧(𝑟)𝑐𝑜𝑠( ∝ φ + χ𝑧 + ω𝑡) (49)

at the point 𝑟 = 0; i.e. if we determine the quantities 𝑒𝑧(0) = 𝐴, ∝ ,χ,ω.
The function (29) at the point (𝑟 = 0,φ = 0,𝑧 = 0) has the form

Е𝑧о = 𝐴𝑐𝑜𝑠(ω𝑡). (50)
Thus, the function (50) determines a monochromatic solution of 

the system of Maxwell equations.
We shall also find the values of the other intensities at the point.

(𝑟 = 0,φ = 0,𝑧 = 0). It follows from (1, p1.40) that

𝐸φ𝑜 = α
𝑚𝐴𝑐𝑜𝑠(ω𝑡).

 (51)
It follows from (1, p1.41) that 
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𝐸𝑟𝑜 = 1
𝑚𝐴𝑠𝑖𝑛(ω𝑡).

(52)
It follows from (15, 35) that 

𝐻𝑧𝑜 =‒ 𝑘𝐴𝑠𝑖𝑛(ω𝑡).
(53)

It follows from (2, 14, 34) that 
𝐻φ𝑜 =‒ 𝑘𝐴𝑠𝑖𝑛(ω𝑡).

(54)
It follows from (3, 13, 33) that 

𝐻𝑟𝑜 = 𝑘𝐴𝑐𝑜𝑠(ω𝑡).
(55)

2a UHP-theorem
Regardless of the wire parameters, there is an unambiguous 
relationship between the electrical voltage 𝑈 on the wire, the 

longitudinal magnetic intensity 𝐻𝑧 in the wire, and the active 
power 𝑃 transmitted through the wire.

It was shown above that all functions of the intensities and 
currents are determined by the value of the parameters: 𝐴, ∝ ,χ,ω. The 
value ω is determined from the outside, and the parameter χ depends on 
ω:

χ = ω
𝑐 με

. (1)
Consequently, all functions of intensities and currents are 

determined by the value of two parameters: 𝐴, ∝ .  The value of these two 
parameters also determines the energy fluxes (2.36–2.37), which depend 
on the intensities. Therefore, if we set the value of the two quantities 
from the set

𝐸𝑟,𝐸φ,𝐸𝑧, 𝐻𝑟,𝐻φ,𝐻𝑧,𝑆𝑟,𝑆φ,𝑆𝑧, (2)
then from the given equations, one can find the value of the parameters 
A, ∝, and then find the value of the other quantities from the set (2).

Let, for example, in the set (2) the quantities 𝐸𝑧,  𝑆𝑧 is defined. 
This determines the voltage on the wire with a length L

𝑈 = 𝐸𝑧𝐿
(3)

and active power transmitted over the wire,
𝑃 = 𝑆𝑧.

(4)
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Then, with known 𝑈,𝑃 one can find 𝐸𝑧,  𝑆𝑧, from the given 
equations one can find the value of the parameters 𝐴, ∝ , and then find 
the value of the other quantities from the set (2).

Similarly, with the known longitudinal magnetic intensity in the 

wire 𝐻𝑧  and active power (4), it is possible to find the value of the other 
quantities from the set (2).

From this, in particular, it follows that regardless of the wire 
parameters, there is an unambiguous dependence

𝑈 = 𝑓(𝐻,𝑃). (5)
In chapter 4c, an experiment will be described that proves the 

validity of this theorem.

3. Invertibility of the solution
By virtue of the symmetry of the solution obtained, there is 

another solution, where instead of the longitudinal electric intensity 
function (2.49), the function of the longitudinal magnetic intensity is 
defined as the value of the amplitude of the time function

Н𝑧 = ℎ𝑧(𝑟)𝑠𝑖𝑛( ∝ φ + χ𝑧 + ω𝑡) (1)
at the point 𝑟 = 0; i.e. if we determine the quantities ℎ𝑧(0) = 𝐴, ∝ ,χ,ω.

Find the voltage on the wire with a length 𝐿 from (2.18):

𝑈 =
𝐿

∫
0

𝐸𝑧𝑑𝑧 = 𝑒𝑧

𝐿

∫
0

𝑐𝑜 ∙ 𝑑𝑧
. (2)

Find the magnetomotive force on the wire with a length 𝐿 from (2.15):

𝐹 =
𝐿

∫
0

𝐻𝑧𝑑𝑧 = ℎ𝑧

𝐿

∫
0

𝑠𝑖 ∙ 𝑑𝑧 = ‒ 𝑘𝑒𝑧

𝐿

∫
0

𝑠𝑖 ∙ 𝑑𝑧
, (3)

With a large 𝐿 we have:
𝐿

∫
0

𝑐𝑜 ∙ 𝑑𝑧 =
𝐿

∫
0

𝑠𝑖 ∙ 𝑑𝑧 = 𝑄
. (4)

From (2-4) we find:
𝑈 = 𝑒𝑧𝑄, (5)
𝐹 = ‒ 𝑘𝑒𝑧𝑄 = ‒ 𝑘𝑈. (6)
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Formula (6) shows the relationship between the external voltage 
and the external magnetomotive force, which create equal currents in the 
wire.

4. Polychromatic solution of the system of 
equations
Obviously, if the function (2.50) determines a monochromatic 

solution of the system of Maxwell equations, then the function
Е𝑧𝑜 = ∑

𝑏
(𝐴𝑏𝑐𝑜𝑠(ω𝑏𝑡)).

(1)
determines a polychromatic solution of the system of Maxwell's 
equations. We denote this function by

𝑓(𝑡) = ∑
𝑏

(𝐴𝑏𝑐𝑜𝑠(ω𝑏𝑡)).
(2)

A reversible polychromatic solution defines a function
𝐻𝑧𝑜 = ∑

𝑏
(𝐴𝑏𝑠𝑖𝑛(ω𝑏𝑡)).

(3)
We denote this function by

𝑦(𝑡) = ∑
𝑏

(𝐴𝑏𝑠𝑖𝑛(ω𝑏𝑡))
 , (4)

The coefficients of the functions (2) and (3) coincide.
By analogy with (2.51-2.55), we find the values of the other 

intensities at the point (𝑟 = 0,φ = 0,𝑧 = 0):

𝐸φ𝑜 = α
𝑚𝐴𝑐𝑜𝑠(ω𝑡),

(5)

𝐸𝑟𝑜 = 1
𝑚𝐴𝑠𝑖𝑛(ω𝑡),

(6)
𝐻𝑧𝑜 =‒ 𝑘𝐴𝑠𝑖𝑛(ω𝑡),

(7)
𝐻φ𝑜 =‒ 𝑘𝐴𝑠𝑖𝑛(ω𝑡),

(8)
𝐻𝑟𝑜 = 𝑘𝐴𝑐𝑜𝑠(ω𝑡).

(9)

Appendix 1.
The solution of the equations (2.41-2.44, 2.46-2.48) is considered:

𝑒𝑟
𝑟 + 𝑒̇𝑟 ‒

𝑒φ
𝑟 α ‒ χ𝑒𝑧 = 0

, (21)
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‒
𝑒𝑧
𝑟 α + 𝑒φχ ‒ μω

𝑐 𝑘𝑒𝑟 = 0
,  (22)

‒ 𝑒̇𝑧 + 𝑒𝑟χ ‒ 𝑘μω
𝑐 𝑒φ = 0

,   (23)

𝑒φ
𝑟 + 𝑒̇φ ‒

𝑒𝑟
𝑟 α ‒ 𝑘μω

𝑐 𝑒𝑧 = 0
, (24)

‒ 𝑘
𝑒𝑧
𝑟 α + 𝑘𝑒φχ ‒ εω

𝑐 𝑒𝑟 ‒ 4π
𝑐 𝑗𝑟 = 0

, (26)

𝑘𝑒̇𝑧 ‒ 𝑘𝑒𝑟χ + εω
𝑐 𝑒φ ‒ 4π

𝑐 𝑗φ = 0
,  (27)

‒ 𝑘
𝑒φ
𝑟 ‒ 𝑘𝑒̇φ + 𝑘

𝑒𝑟
𝑟 α + εω

𝑐 𝑒𝑧 ‒ 4π
𝑐 𝑗𝑧 = 0

,  (28)

In Appendix 2 we give a solution of the system of equations (21-
23). It has the following form:

𝑒̈𝑧 +
𝑒̇𝑧
𝑟 ‒ 𝑒𝑧(χ2 ‒ (𝑘μω 𝑐)2) ‒

𝑒𝑧
𝑟2α2 = 0.

(29)

In Appendix 3 we give a solution of the system of equations (22-
24). It has the following form:

В приложении 3 приведено решение системы уравнений (22-
24). Оно имеет следующий вид:

𝑒̈𝑧 +
𝑒̇𝑧
𝑟 (1 + α(2𝑘μω

𝑐χ ‒ 𝑐χ
𝑘μω)) ‒

 
𝑒𝑧(χ2 ‒ (𝑘μω 𝑐)2) ‒

𝑒𝑧
𝑟2α2 = 0.

(30)
Both these solutions must coincide, because they must be a general 

solution for the system of equations (21-24). Consequently, must be 
fulfilled the condition

(1 + α(2𝑘μω
𝑐χ ‒ 𝑐χ

𝑘μω)) = 1
(31)

or

2𝑘μω
𝑐χ ‒ 𝑐χ

𝑘μω = 0
, 

where do we find
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𝑘 = 𝑐χ
μω

1
2. (32)

Если 
χ =± ω

𝑐 με
, то 

𝑘 = ω
𝑐

ε
2μ. (33)

So, the function 𝑒𝑧 is defined by the equations (29, 32):

𝑒̈𝑧 +
𝑒̇𝑧
𝑟 ‒ 𝑒𝑧(χ2 ‒ ( 1

2
𝑐χ
μωμω 𝑐)2) ‒

𝑒𝑧
𝑟2α2 = 0

or

𝑒̈𝑧 +
𝑒̇𝑧
𝑟 ‒ 𝑒𝑧(χ2

2 + α2

𝑟2) = 0
. (34)

This equation is a modified Bessel equation and its solution 𝑒𝑧 is 

considered in Appendix 4. The function 𝑒̇𝑧 is also considered ibid.

For known 𝑒𝑧, 𝑒̇𝑧, 𝑘 one can find 𝑒𝑟,𝑒φ by (22, 23). Adding (22, 
23), we find:

‒
𝑒𝑧
𝑟 α ‒ 𝑒̇𝑧 + (𝑒φ + 𝑒𝑟)(χ ‒ 𝑘μω

𝑐 ) = 0
,  (35)

Subtracting (23) from (22), we find:

‒
𝑒𝑧
𝑟 α + 𝑒̇𝑧 + (𝑒φ ‒ 𝑒𝑟)(χ + 𝑘μω

𝑐 ) = 0
,  (36)

Substituting (32) into (35, 36), we obtain:

‒
𝑒𝑧
𝑟 α ‒ 𝑒̇𝑧 + 𝑚(𝑒φ + 𝑒𝑟) = 0

, (37)

‒
𝑒𝑧
𝑟 α + 𝑒̇𝑧 + 𝑚(𝑒φ ‒ 𝑒𝑟) = 0

, (38)

where
𝑚 = χ(1 ‒ 1

2). (39)
From (37, 38) we find:

𝑒φ =
𝑒𝑧
𝑟

α
𝑚, (40)
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𝑒𝑟 =
𝑒̇𝑧
𝑚,

 (41)

from which follows:

𝑒̇φ = α
𝑚(𝑒̇𝑧

𝑟 ‒
𝑒𝑧
𝑟2), (42)

𝑒̇𝑟 =
𝑒̈𝑧
𝑚,

 (43)

With known 𝑒𝑟,𝑒φ,𝑒𝑧, 𝑘 displacement currents can be found from 
(26-28):

𝑗𝑟 = с
4π( ‒ 𝑘

𝑒𝑧
𝑟 α + 𝑘𝑒φχ ‒ εω

𝑐 𝑒𝑟), (42)

𝑗φ = с
4π(𝑘𝑒̇𝑧 ‒ 𝑘𝑒𝑟χ + εω

𝑐 𝑒φ),  (43)

𝑗𝑧 = с
4π( ‒ 𝑘

𝑒φ
𝑟 ‒ 𝑘𝑒̇φ + 𝑘

𝑒𝑟
𝑟 α + εω

𝑐 𝑒𝑧).
(44)

Substituting here (40-43), we obtain:

𝑗𝑟 = с
4π(𝑒𝑧

𝑟 𝑘α( χ
𝑚 ‒ 1) ‒ εω

𝑐𝑚𝑒̇𝑧), (45)

𝑗φ = с
4π(𝑘𝑒̇𝑧(1 ‒ χ

𝑚) +
𝑒𝑧
𝑟

εωα
𝑐𝑚 ),  (46)

𝑗𝑧 = с
4π( ‒ 𝑘

𝑒𝑧
𝑟2

α
𝑚 ‒ 𝑘 α

𝑚(𝑒̇𝑧
𝑟 ‒

𝑒𝑧
𝑟2) + 𝑘

𝑒̇𝑧
𝑟

α
𝑚 + εω

𝑐 𝑒𝑧) 
or

𝑗𝑧 = εω
4π𝑒𝑧. (47)

Appendix 2.
We consider the solution of the system of equations (21, 22, 23) 

from Appendix 1:
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𝑒𝑟
𝑟 + 𝑒̇𝑟 ‒

𝑒φ
𝑟 α ‒ χ𝑒𝑧 = 0

, (21)

‒
𝑒𝑧
𝑟 α + 𝑒φχ ‒ μω

𝑐 𝑘𝑒𝑟 = 0
,  (22)

‒ 𝑒̇𝑧 + 𝑒𝑟χ ‒ 𝑘μω
𝑐 𝑒φ = 0.

  (23)

The solution will be considered in detail so that the reader can easily 
verify it. From (23) we find:

𝑒φ = 𝑐
𝑘μω(𝑒𝑟χ ‒ 𝑒̇𝑧)

,   (31)

Combining (21, 31), we find:
𝑒𝑟
𝑟 + 𝑒̇𝑟 ‒ 𝑐

𝑘μω
α
𝑟(𝑒𝑟χ ‒ 𝑒̇𝑧) ‒ χ𝑒𝑧 = 0

,
or

𝑒𝑟
𝑟 (1 ‒ 𝑐αχ

𝑘μω) + 𝑒̇𝑟 ‒ χ𝑒𝑧 + 𝑐
𝑘μω

α
𝑟𝑒̇𝑧 = 0

, (32)

Combining (22, 31), we find:

‒
𝑒𝑧
𝑟 α + 𝑐χ

𝑘μω(𝑒𝑟χ ‒ 𝑒̇𝑧) ‒ μω
𝑐 𝑘𝑒𝑟 = 0

,
or

‒
𝑒𝑧
𝑟 α ‒ 𝑐χ

𝑘μω𝑒̇𝑧 + 𝑒𝑟( 𝑐χ2

𝑘μω ‒ 𝑘μω
𝑐 ) = 0

,
or

𝑒𝑟 = (𝑒𝑧
𝑟 α + 𝑐χ

𝑘μω𝑒̇𝑧) ( 𝑐χ2

𝑘μω ‒ 𝑘μω
𝑐 ).

(33)

From (33) we find:

𝑒̇𝑟 = ( ‒
𝑒𝑧
𝑟2α +

𝑒̇𝑧
𝑟 α + 𝑐χ

𝑘μω𝑒̈𝑧) ( 𝑐χ2

𝑘μω ‒ 𝑘μω
𝑐 )

, (34)

Combining (32, 33, 34), we find:
1
𝑟(1 ‒ 𝑐αχ

𝑘μω)(𝑒𝑧
𝑟 α + 𝑐χ

𝑘μω𝑒̇𝑧) ( 𝑐χ2

𝑘μω ‒ 𝑘μω
𝑐 ) +
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( ‒
𝑒𝑧
𝑟2α +

𝑒̇𝑧
𝑟 α + 𝑐χ

𝑘μω𝑒̈𝑧) ( 𝑐χ2

𝑘μω ‒ 𝑘μω
𝑐 ) ‒ χ𝑒𝑧 +

 
𝑐

𝑘μω
α
𝑟𝑒̇𝑧 = 0

or
1
𝑟(1 ‒ 𝑐αχ

𝑘μω)(𝑒𝑧
𝑟 α + 𝑐χ

𝑘μω𝑒̇𝑧) + ( ‒
𝑒𝑧
𝑟2α +

𝑒̇𝑧
𝑟 α + 𝑐χ

𝑘μω𝑒̈𝑧) +
 

( 𝑐
𝑘μω

α
𝑟𝑒̇𝑧 ‒ χ𝑒𝑧)( 𝑐χ2

𝑘μω ‒ 𝑘μω
𝑐 ) = 0

or
𝑐χ

𝑘μω𝑒̈𝑧 +
𝑒̇𝑧
𝑟 ((1 ‒ 𝑐αχ

𝑘μω) 𝑐χ
𝑘μω + α + 𝑐α

𝑘μω( 𝑐χ2

𝑘μω ‒ 𝑘μω
𝑐 )) ‒

 

𝑒𝑧( 𝑐χ2

𝑘μω ‒ 𝑘μω
𝑐 )χ +

𝑒𝑧
𝑟2((1 ‒ 𝑐αχ

𝑘μω)α ‒ α) = 0

or
𝑐χ

𝑘μω𝑒̈𝑧 +
𝑒̇𝑧
𝑟 ( 𝑐χ

𝑘μω ‒ α( 𝑐χ
𝑘μω)2 + α + ( 𝑐α

𝑘μω
𝑐χ2

𝑘μω ‒ α)) ‒
 

𝑒𝑧( 𝑐χ2

𝑘μω ‒ 𝑘μω
𝑐 )χ ‒

𝑒𝑧
𝑟2

𝑐α2χ
𝑘μω = 0

or
𝑐χ

𝑘μω𝑒̈𝑧 +
𝑒̇𝑧
𝑟

𝑐χ
𝑘μω ‒ 𝑒𝑧( 𝑐χ2

𝑘μω ‒ 𝑘μω
𝑐 )χ ‒

𝑒𝑧
𝑟2

𝑐α2χ
𝑘μω = 0

or

𝑐χ𝑒̈𝑧 +
𝑒̇𝑧
𝑟 𝑐χ ‒ 𝑒𝑧(𝑐χ2 ‒ (𝑘μω)2

𝑐 )χ ‒
𝑒𝑧
𝑟2𝑐α2χ = 0

or

𝑒̈𝑧 +
𝑒̇𝑧
𝑟 ‒ 𝑒𝑧(χ2 ‒ (𝑘μω 𝑐)2) ‒

𝑒𝑧
𝑟2α2 = 0.

(35)

Appendix 3.
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We consider the solution of the system of equations (22, 23, 24) 
from Appendix 1:

‒
𝑒𝑧
𝑟 α + 𝑒φχ ‒ μω

𝑐 𝑘𝑒𝑟 = 0
,  (22)

‒ 𝑒̇𝑧 + 𝑒𝑟χ ‒ 𝑘μω
𝑐 𝑒φ = 0

,   (23)

𝑒φ
𝑟 + 𝑒̇φ ‒

𝑒𝑟
𝑟 α ‒ 𝑘μω

𝑐 𝑒𝑧 = 0
, (24)

The solution will be considered in detail so that the reader can easily 
verify it. From (23) we find:

𝑒𝑟 = 1
χ(𝑒̇𝑧 + 𝑘μω

𝑐 𝑒φ)   (31)

Combining (24, 31), we find:
𝑒φ
𝑟 + 𝑒̇φ ‒ 1

χ(𝑒̇𝑧 + 𝑘μω
𝑐 𝑒φ)α

𝑟 ‒ 𝑘μω
𝑐 𝑒𝑧 = 0

,
or

𝑒φ
𝑟 (1 ‒ 𝑘αμω

𝑐χ ) + 𝑒̇φ ‒ 𝑘μω
𝑐 𝑒𝑧 ‒ 1

χ
α
𝑟𝑒̇𝑧 = 0.

(32)

Combining (22, 31), we find:
‒

𝑒𝑧
𝑟 α + 𝑒φχ ‒ 𝑘μω

𝑐
1
χ(𝑒̇𝑧 + 𝑘μω

𝑐 𝑒φ) = 0

or
‒

𝑒𝑧
𝑟 α ‒ 𝑘μω

𝑐χ 𝑒̇𝑧 + 𝑒φ(χ ‒ 1
χ(𝑘μω

𝑐 )2) = 0

or

𝑒φ = (𝑒𝑧
𝑟 α + 𝑘μω

𝑐χ 𝑒̇𝑧) (χ ‒ 1
χ(𝑘μω

𝑐 )2).
(33)

From (33) we find:

𝑒̇φ = ( ‒
𝑒𝑧
𝑟2α +

𝑒̇𝑧
𝑟 α + 𝑘μω

𝑐χ 𝑒̈𝑧) (χ ‒ 1
χ(𝑘μω

𝑐 )2).
(34)

Combining (32, 33, 34), we find:
1
𝑟(1 ‒ 𝑘αμω

𝑐χ )(𝑒𝑧
𝑟 α + 𝑘μω

𝑐χ 𝑒̇𝑧) (χ ‒ 1
χ(𝑘μω

𝑐 )2) +
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( ‒
𝑒𝑧
𝑟2α +

𝑒̇𝑧
𝑟 α + 𝑘μω

𝑐χ 𝑒̈𝑧) (χ ‒ 1
χ(𝑘μω

𝑐 )2) ‒

𝑘μω
𝑐 𝑒𝑧 ‒ 1

χ
α
𝑟𝑒̇𝑧 = 0

or
1
𝑟(1 ‒ 𝑘αμω

𝑐χ )(𝑒𝑧
𝑟 α + 𝑘μω

𝑐χ 𝑒̇𝑧) + ( ‒
𝑒𝑧
𝑟2α +

𝑒̇𝑧
𝑟 α + 𝑘μω

𝑐χ 𝑒̈𝑧) ‒

(𝑘μω
𝑐 𝑒𝑧 + 1

χ
α
𝑟𝑒̇𝑧)(χ ‒ 1

χ(𝑘μω
𝑐 )2) = 0

or
𝑘μω

𝑐χ 𝑒̈𝑧 +
𝑒̇𝑧
𝑟 ((1 ‒ 𝑘αμω

𝑐χ )𝑘μω
𝑐χ + α

χ(χ ‒ 1
χ(𝑘μω

𝑐 )2)) ‒

(𝑘μω
𝑐 𝑒𝑧)(χ ‒ 1

χ(𝑘μω
𝑐 )2) +

𝑒𝑧
𝑟2((1 ‒ 𝑘αμω

𝑐χ )α ‒ α) = 0

or
𝑘μω

𝑐χ 𝑒̈𝑧 +
𝑒̇𝑧
𝑟 (𝑘μω

𝑐χ ‒ α(𝑘μω
𝑐χ )2 + α ‒ α

χ2(𝑘μω
𝑐 )2) ‒

𝑒𝑧(χ𝑘μω
𝑐 ‒ 1

χ(𝑘μω
𝑐 )3) ‒

𝑒𝑧
𝑟2

𝑘α2μω
𝑐χ = 0

 
or

𝑒̈𝑧 +
𝑒̇𝑧
𝑟 (1 ‒ 2α𝑘μω

𝑐χ + α 𝑐χ
𝑘μω) ‒ 𝑒𝑧(χ2 ‒ (𝑘μω

𝑐 )2) ‒

𝑒𝑧
𝑟2α2 = 0

or

𝑒̈𝑧 +
𝑒̇𝑧
𝑟 (1 + α(2𝑘μω

𝑐χ ‒ 𝑐χ
𝑘μω)) ‒ 𝑒𝑧(χ2 ‒ (𝑘μω 𝑐)2) ‒

𝑒𝑧
𝑟2α2 = 0.

(35)

Appendix 4.
We know a modified Bessel equation, which has the following 

form:
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𝑦̈ + 𝑦̇
𝑥 ‒ 𝑦(1 + ν2

𝑥2) = 0
, (1)

where   is the order of the equation. With a real argument, it has a real 
solution. This solution and its derivative can be found by a numerical 
method.

Equation (34)

𝑒̈𝑧 +
𝑒̇𝑧
𝑟 ‒ 𝑒𝑧(χ2

2 + α2

𝑟2) = 0
. (2)

in Appendix 1 like equation (1) and its solution and its derivative can also 
be found by a numerical method.

When 𝑟→0, equation (2) takes the form:

𝑒̈𝑧 +
𝑒̇𝑧
𝑟 ‒ 𝑒𝑧

α2

𝑟2 = 0
. (3)

Its solution has the form:
𝑒𝑧 = 𝐴𝑟β

, (4)

where A is a constant, and β is determined from equation
β2 + β ‒ α2 = 0, (5)

i.e. 

β = 1
2( ‒ 1 ± 1 + 4α2),   β < 0

. (6)

Thus, on the first iterations it is possible to search for the function 
𝑒𝑧 in the form (4), and then calculate it by (2). The value of A is the 
amplitude of the function Е𝑧 at the point 𝑟 = 0, varying in time according 
to (2.18, 2.11):

Е𝑧 = 𝑒𝑧(𝑟)𝑐𝑜𝑠( ∝ φ + χ𝑧 + ω𝑡).
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Chapter 2а. Solution of Maxwell's 
equations for capacitor with 

alternating voltage
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1. Introduction
In Chapter 2 a new solution of the Maxwell equations is obtained 

for a monochromatic wave in a dielectric medium with definite  , - 

dielectric and magnetic permeabilities. The main feature of this solution 
is that the field has a nonzero longitudinal electric intensities created by 
an external source. When considering the electromagnetic field in 
vacuum, the absence of an external source was postulated.

The dielectric of the capacitor, which is under alternating voltage, 
is also such a medium. Therefore, for him the solution obtained in 
Chapter 2 can be applied without reservations.

According to the existing concept, in the energy flow through the 
capacitor only the average (in time) value of the energy flux is conserved 
[3]. The existing solution is such that it assumes a synchronous change in 
the electric and magnetic intensities of such a field as a function of the 
radius on the Bessel function, which has zeros along the axis of the 
argument, i.e. at certain values of the radius. At these points (more 
precisely - circles of a given radius), the energy of the radial field turns 
out to be zero [13]. And then it increases with increasing radius ... This 
contradicts the law of conservation of energy (which has already been 
discussed above for a traveling wave). Therefore, we propose a new 
solution of the Maxwell equations for a capacitor in which the law of 
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conservation of energy is satisfied without exceptions and for each 
moment of time.

2. Solution of the Maxwell equations
Next we will use the cylindrical coordinates zr ,,   and the 

solution of the Maxwell equations obtained in Chapter 2. Here we only 
note the following:

1. There are electrical and magnetic stresses along all the 
coordinate axes r, φ, z. In particular, there is a longitudinal 

magnetic intensity Н𝑧 proportional to the longitudinal electric 

field intensity 𝐸𝑧.
2. The magnetic and electrical intensities on each coordinate axis 

r, φ, z are phase shifted by a quarter of a period.
3. The vectors of electric and magnetic intensities on each axis 

of coordinates r, φ, z are orthogonal.

Fig. 1.

It is important to note, in particular, that there exists a longitudinal 

magnetic intensity Н𝑧, proportional to the longitudinal electric intensity 
𝐸𝑧. This fact is known. For example, in Fig. 1 shows a capacitor 
converter of alternating voltage in an alternating magnetic intensity, 
which in a magnetic core is converted into an alternating voltage on the 
winding [117, 1992]. But, as the author of the article cautiously notes, 
"the work of an externally simple device to this day in its subtleties is not 
entirely clear."
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3. Speed of electromagnetic wave propagation
Obviously, the speed of propagation of an electromagnetic wave is 

equal to the derivative 
dt
dz

 of a function )(tz  specified implicitly in the 

form of functions (2.2.13-2.2.18). Having determined this derivative, we 
find the speed of propagation of the electromagnetic wave





dt
dzvm . (1)

In the case under consideration, no restrictions are imposed on the 
value of χ. Therefore

сvm  . (2)

Consequently, the propagation velocity of the electromagnetic 
wave in the capacitor is less than the speed of light.

4. Density of energy
The energy density is







  22

22
HEW 

(1)

or, taking into account the previous formulas of Chapter 2,
𝑊 = ε

2((𝑒𝑟𝑠𝑖)2 + (𝑒φ𝑐𝑜)2 + (𝑒𝑧𝑐𝑜)2) + μ
2((ℎ𝑟𝑐𝑜)2 + (ℎφ𝑠𝑖)2 + (ℎ𝑧𝑠𝑖)2)

or, taking into account (2.2.33-2.2.35),
Thus, the energy density of the electromagnetic wave in the 

condenser is the same at all points of the cylinder of a given radius.

5. Energy Flows
The density of the flux of electromagnetic energy by coordinates 
zr ,,   is found in Chapter 2 - see (2.2.36-2.2.38), respectively. It 

shows that
• there is no radial energy flow,
• the energy flux density along the circle at a given radius is 

independent of time and other coordinates,
• the energy flux density along the vertical for a given radius is 

independent of time and other coordinates.

The energy flow, which propagates along the axis oz through the 
cross section of the condenser, is equal to
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𝑆𝑧 =∬
𝑟,φ

(𝑆𝑧𝑑𝑟𝑑φ) =∬
𝑟,φ

(η𝑘2𝑒𝑟𝑒φ𝑑𝑟𝑑φ) = 2πη𝑘2
𝑅

∫
0
(𝑒𝑟𝑒φ𝑑𝑟).

(1)
This flow is active power

zSР  , (2)
transmitted through the capacitor. There is only one parameter, which is 
not defined in the mathematical model of the wave - it is a parameter   
and power depends on it. More precisely, on the contrary, the power 

zSР   determines the value of the parameter  . It follows from (1, 2) 
we find:

𝑘2 =
Р

2πη
𝑅

∫
0
(𝑒𝑟𝑒φ𝑑𝑟).

(3)
Further, from (3, 2p1.32) we find:

1
2( 𝑐χ

μω)2 =
Р

2πη
𝑅

∫
0
(𝑒𝑟𝑒φ𝑑𝑟),

(4)

χ= (μω
с )

2Р

πη
𝑅

∫
0
(𝑒𝑟𝑒φ𝑑𝑟).

(5)
From (5, 3.1) we can find the propagation velocity of an electromagnetic 
wave:

𝑣𝑚 =
ω
χ =

𝑐

μ
2Р

πη
𝑅

∫
0
(𝑒𝑟𝑒φ𝑑𝑟).

(6)
or

𝑣𝑚 =
𝑐
μ

πη
𝑅

∫
0
(𝑒𝑟𝑒φ𝑑𝑟)

2𝑃

.

(7)

6. Electromagnetic and mechanical 
momentum
It is known that the density of the electromagnetic momentum j  

of a monochromatic wave is related to the density of the energy flux S  
and the speed mv  of propagation of energy by a formula having the 
following form:
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2
mvSj  , (1)

Considering the momentum and energy flux densities directed 
along the axis of the capacitor, from (1) we find:

2
mzz vSj  . (2)

Full momentum
2

mzz vSJ  . (3)
or, taking into account (5.2),

2
mz vPJ  . (4)

Combining, further, (4) and (5.7), we obtain:

𝐽𝑧 =
2𝑃2μ2

𝑐2πη
𝑅

∫
0
(𝑒𝑟𝑒φ𝑑𝑟)

.

(7)
It follows that a significant electromagnetic momentum can be created in 
a cylindrical capacitor. This pulse is directed along the axis oz. According 
to the law of conservation of momentum, a mechanical momentum must 
also be created, equal and opposite to the electromagnetic momentum. 
Consequently, the capacitor can move under the action of an 
electromagnetic momentum.

7. Voltage in the capacitor
It follows from (2.2.18) that

𝐸𝑧 = 𝑒𝑧(𝑟)𝑐𝑜𝑠( ∝ φ + χ𝑧 + ω𝑡).
(1)

We assume that the potential on the lower plate is zero for 0z  
and for some oo r, , and the potential on the upper plate for dz   and 
for the same number oo r,  is numerically equal to the voltage U  across 
the capacitor. Then

𝑈 = 𝑒𝑧(𝑟𝑜)𝑐𝑜𝑠( ∝ φ𝑜 + χ𝑑 + ω𝑡).
(2)

At some intermediate value z , the voltage for the same oo r,  will 
be equal to

𝑢(𝑧) = 𝑒𝑧(𝑟𝑜)𝑐𝑜𝑠( ∝ φ𝑜 + χ𝑧 + ω𝑡), (3)
i.e. the voltage along the capacitor varies in function )cos( z .

8. Reversibility of the capacitor
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At a certain external voltage between the plates (i.e. at a given 

electrical intensity 𝐸𝑧), a magnetic intensity Н𝑧 appears in the capacitor. 
Above we consider a capacitor in which the external voltage between the 
plates is determined. Similarly, we can consider a capacitor in which a 

magnetic intensity Н𝑧 is given. In this case (due to the reversibility of the 
solution of the system of Maxwell's equations - see Chapter 2.3), the 

electric intensity 𝐸𝑧 also appears in the capacitor, i.e. on the capacitor 
plates there is a voltage. Such a capacitor can be considered as a 
converter of variable magnetic induction into an alternating electric 
voltage.

Fig. 1.

The "Mislavsky transformer" invented by a student of the 7th class 
in 1992 is known, where this conversion of electrical tension into 
magnetic induction is used explicitly in the body of the condenser - see 
Fig. 2 [117, 118]. In this transformer, the electrical intensity is 
transformed into a magnetic intensity (see the left part in Figure 1) and 
the reverse transformation of the magnetic intensity into electrical 
intensity (see the right-hand side in Figure 1).

9. Discussion
The proposed solution of Maxwell's equations for a capacitor 

under alternating voltage is interpreted as an electromagnetic wave. We 
note the following features of this wave:

1. There are electrical and magnetic intensities along all the 
coordinate axes r, φ, z. In particular, there is a longitudinal 
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magnetic intensity Н𝑧 proportional to the longitudinal electric 

intensity 𝐸𝑧.
2. The magnetic and electrical intensities on each coordinate axis r, φ, 

z are phase shifted by a quarter of a period.
3. The vectors of electric and magnetic intensities on each axis of 

coordinates r, φ, z are orthogonal.
4. The instantaneous (rather than the average over a certain period) 

energy flow through the capacitor does not change in time, which 
corresponds to the law of conservation of energy.

5. The energy flow along the axis of the capacitor is equal to the 
active power transmitted through the capacitor.

6. The speed of propagation of an electromagnetic wave is less than 
the speed of light

7. This speed decreases with increasing transmission power (in 
particular, in the absence of power, the velocity is zero and the 
wave becomes stationary).

8. The longitudinal electric intensities varies according to the 
modified Bessel function from the radius.

9. All other electric and magnetic intensities also depend on the radius 
and vary according to the modified Bessel function or its 
derivative.

10.The wave propagates also along the radii.
11.The energy flux along the radius is absent on any radius. We note 

that this conclusion contradicts the well-known assertion [13] that 
there exist radii where the flow exists.

12.There is an electromagnetic momentum proportional to the square 
of the active power transmitted through the capacitor.

13.The capacitor is reversible in the sense that at a certain external 

voltage between the plates (i.e. at a given electrical intensity 𝐸𝑧), a 

magnetic intensitiy Н𝑧 appears in the capacitor, and for a certain 
external induction between the plates (i.e., at given magnetic 

intensity Н𝑧) in capacitor there is an electric intensity 𝐸𝑧. This 
effect can be used in various designs.
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Chapter 2b. Solution of Maxwell's 
equations for a cylindrical capacitor 

with variable voltage
Contents

1. Introduction \ 1
2. Maxwell's equations \ 1
3. Energy \ 2
Appendix 1 \ 3

1. Introduction
Below we consider a capacitor in the form of a tube whose walls 

are a dielectric covered with a metal film on the inner and outer sides.

2. Maxwell's equations
As in Chapter 1a, we will use cylindrical coordinates zr ,,   and 

apply formulas of the form (1a.2.1-1a.2.8). Then the system of Maxwell's 
equations takes the form (1a.2.9-1a.2.16), where )(),( rerh  are some 
functions of coordinate r .

We will seek a solution in which
ℎ𝑧= 0, (1)

𝑒𝑧= 0. (2)

In addition, we will seek a solution for a known tube diameter R and a 
small  thickness of dielectric, when

𝑟 ≈ 𝑅, (3)
and all derivatives respect to 𝑟 are equal to zero. Then the system of 
equations (1a.2.9-1a.2.16) takes the form:

𝑒𝑟
𝑅 ‒

𝑒φ
𝑅 α+ χ𝑒𝑧= 0, (4)

𝑒φχ ‒
μω
𝑐 ℎ𝑟= 0,  (5)
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𝑒𝑟χ+
μω
𝑐 ℎφ= 0,  (6)

𝑒φ
𝑅 ‒

𝑒𝑟
𝑅α= 0, (7)

ℎ𝑟
𝑅 +

ℎφ
𝑅 α= 0

, (8)

‒ ℎφχ ‒
εω
𝑐 𝑒𝑟= 0,  (9)

‒ ℎ𝑟χ+
εω
𝑐 𝑒φ= 0,  (10)

ℎφ
𝑟 +

ℎ𝑟
𝑟 α= 0.           (10а)

In Appendix 1 it is shown that the solution of this system of equations 
has the form:

α= 1, (11)

χ=ω εμ,  (12)

𝑒φ= 𝑒𝑟, (13)

ℎφ=‒ 𝑒𝑟
ε
μ,  (14)

ℎ𝑟= 𝑒𝑟
ε
μ.  (15)

Thus, for a given 𝑒𝑟, all other intensities are defined.

3. Energy
The energy density is

𝑊= 1
8π(ε𝐻2+ μ𝐸2) (1)

Taking into account the previous formulas, we find:
𝑊= 1

8π(ε((𝑒𝑟𝑠𝑖)2 + (𝑒φ𝑐𝑜)2) + μ((ℎ𝑟𝑐𝑜)2 + (ℎφ𝑠𝑖)2)) =
= 1
8π(ε((𝑒𝑟𝑠𝑖)2 + (𝑒φ𝑐𝑜)2) + μεμ((𝑒𝑟𝑐𝑜)2 + (𝑒𝑟𝑠𝑖)2))
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or

𝑊(𝑟) = ε
4π𝑒

2
𝑟 (2)

Thus, the energy density of the electromagnetic wave in the condenser is 
the same at all points of the cylinder of a given radius.

As in Chapter 1, it can be shown that the flux of electromagnetic 
energy propagates only along the axis oz. The density of this flux is

𝑆= с
4π𝑒

2
𝑟

ε
μ (3)

and the velocity of energy in the direction of the axis of the tube

𝑣= 𝑆
𝑊= 𝑐

εμ. (4)
Together with the energy flow there is an electromagnetic pulse directed along 
the axis of the tube,

𝑝= 𝑆
𝑐2
=

𝑒2𝑟
4π𝑐

ε
μ

(5)

Appendix 1
From (2.7, 2.8) we find:

𝑒φ= 𝑒𝑟α, (1)

ℎφ=‒
ℎ𝑟
α . (2)

From (2.6, 2.10, 1) we find:

ℎφ=‒ 𝑒𝑟
χ
μω,  (3)

ℎ𝑟=
εω
χ 𝑒φ=

εω
χ α𝑒𝑟.   (4)

From (3, 4) we find:
ℎφ
ℎ𝑟
=‒

χ
μω

εω
χ α=‒ χ2

εμω2 α.
  (5)

Comparing (2, 5), we find:
χ2

εμω2 = 1
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or
χ=ω εμ  (6)

Substituting (3) into (2.9), we find:

𝑒𝑟
χ
μωχ ‒ εω𝑒𝑟= 0.  (7)

Substituting (6) in (7) then we obtain the identity. Consequently, 
equation (2.9) is also an identity.

Similarly, substituting (4, 6) in (2.5), we see that (2.5) is also an 
identity.

Substituting (2) into (2.8), we find:

‒
ℎ𝑟
α𝑅+

ℎ𝑟
𝑅α= 0 (9)

Consequently, 
α= 1. (10)

From (3, 4, 6) we find:

ℎφ=‒ 𝑒𝑟
ε
μ,  (11)

ℎ𝑟= 𝑒𝑟α
ε
μ.   (12)
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Chapter 3. Solution of Maxwell's 
Equations for Electromagnetic 

Wave in the Magnetic Circuit of 
Alternating Current 

Contents
1. Introduction \ 1
2. Solution of Maxwell's Equations \ 1
3. Intensities and Energy Flows \ 4
5. Discussion \ 5
Appendix 1 \ 5

1. Introduction
Chapter 2 deals with the electromagnetic field in an AC dielectric 

circuit. The electromagnetic filed in an AC magnetic circuit can be 
examined using the same approach. The simplest example of such a 
circuit is an AC solenoid. However, if the dielectric circuit has a 
longitudinal electrical field intensity component induced by an external 
power source, the magnetic circuit features a longitudinal magnetic field 
component induced by an external power source and transmitted to 
circuit with the solenoid coil. 

In this case, the Maxwell equations outlined in chapter 2, are also 
used - see (2.1.1-2.1.4).

2. Maxwell Equations Solution
Let us consider solution to the Maxwell equations (2.1.1-2.1.4) [37]. 

In the cylindrical coordinate system zr ,,  , these equations take the 
form:

01














z
EE

rr
E

r
E zrr


 , (1)

,1
dt
dHv

z
EE

r
rz 







 


(2)
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,
dt
dH
v

r
E

z
E zr 








(3)

,1
dt
dHvE

rr
E

r
E zr 











 (4)

01














z
HH

rr
H

r
H zrr


 , (5)

dt
dEq

z
HH

r
rz 







 


1 (6)

,
dt
dE
q

r
H

z
H zr 








(7)

dt
dEqH

rr
H

r
H zr 











 1
(8)

where 
cv  , (9)

cq  , (10)

zr EEE ,,   are the electrical intensity components,

zr HHH ,,   are the magnetic intensity components.
A solution should be found for non-zero intensity component zH  (in 
Chapter 2 this should be found at non-zero intensity zE ). 

To write the equations in a concise form, the following 
designations are used below: 

)cos( tzco   , (11)
)sin( tzsi   , (12)

where  ,,  are constants. Let us write the unknown functions in the 
following form:

 corhH rr . , (13)

sirhH )(.   , (14)

sirhH zz )(.  , (15)

 sireE rr . , (16)

coreE )(.   , (17)

coreE zz )(.  , (18)

where )(),( rerh are function of the coordinate r . 
Direct substitution enables us to ascertain that functions (13-18) 

convert the system of equations (1-8) with four arguments tzr ,,,   in 
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a system of equations with one argument r  and unknown functions 
)(),( rerh .

Table 1.
Chapter 1 Chapter 2 Chapter 3

re 1Ar  r,,khA  )(rh
c 




e 1Ar  )()(1 rerre 
 )(rh

c r


ze 0

qrerA )( 0

rh )(re  re
c

A 
  )()(1 rhrrh 



h )(rhr  re
c

A r


  r,,kh 

zh 0 0  /)( qrhr 

Appendix 1 proves that such a solution does exist. It takes the 
following form:

0)( rez , (20)

 rrh ,,kh)(   , (21)

   )()(1 rhrrhrhr 
 , (22)

 /)()( qrhrrhz  , (23)

)()( rh
c

re r


  , (24)

  )(rh
c

rer 


 , (25)

where kh()  – is the function determined in Appendix 2 of Chapter 2,












 2

2

c
q . (26)

Let us compare this solution with the solutions, obtained in 
chapters 1 and 2 - see Table 1. Similarity of these equations is illustrated 
in Chapters 2 and 3. 
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3. Intensity and Energy Flows
Also, as in Chapter 1, the energy flow density along the coordinates 

is calculated by the formula

 












































 
,

2

r
z

r

z

r

ddr
cosis
cosis

sis

S

S

S

S . (1)

где
 
 
 rrz

zrrz

zzr

hehes
hehes
hehes













, (2)

 4c . (3)
Let us consider functions (2) and )(),(),( rerere zr  , 

)(),(),( rhrhrh zr  . Fig. 1 shows, for example, these functions plotted 

for 300,50,2,1,5.5,1  A . These parameters 
are chosen the same as in Chapter 2 - for comparison of the obtained 
results.
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4. Discussion
Further conclusions are similar to the conclusions of chapter 1 and 

2. Thus, an electromagnetic wave propagates in an AC magnetic circuit, 
and the mathematical description of this wave is a solution to the 
Maxwell equations. In this case, the field intensity and the energy Flow 
follow a helical trajectory in the considered circuit. 

Such electromagnetic wave propagates through transformer 
magnetic circuit. Magnetic flow and electromagnetic energy flow 
propagates through the magnetic circuit together with it. It is important 
to note that the magnetic flow value does not change in case of load 
change. Therefore, it is the electromagnetic energy flow that transfers 
energy from the primary winding to the secondary winding not change. 
Thus, the energy flow is not dependent on the magnetic flow. Here one 
can see an analogy with transfer of current through an electrical circuit, 
where the same current can transfer different energy. This issue is 
discussed in detail in Chapter 5. The chapter says that at given current 
density (in this case, at given magnetic flow density) transferred power 
may be of almost any value depending on the values of  , , i.e. on 
density of screw trajectory of current (in this case, at given magnetic flow 
density). Consequently, the transferred power is determined by the 
density of screw trajectory of current at a fixed value of the magnetic 
flow.

Appendix 1.
A solution to equations (2.1-2.8) is considered to be in the form of 

functions (2.13-2.18). Derivatives with respect to r  will be denoted with 
primes. Let us re-write equations (2.1-2.8) considering (2.11, 2.12) in the 
form

0)(
)(

)()(
 re

r
re

re
r
re

zr
r  ,  (1)

,0)()(1
 rz h

c
rere

r
  (2)

  ,0)(  
 h
c

rere zr (3)

  ,0)(
)(

 z
r h

cr
rere

r
re 

 (4)

    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  , (5)
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,0)()(1
 rz e

c
rhrh

r
  (6)

  ,0)(  
 e
c

rhrh zr (7)

  ,0)()(
)(

 re
cr

rhrh
r
rh

z
r 

 (8)

The correspondence between the formula numbers in Part 2 and in this 
Appendix is as follows:

Part 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
App. 1 1 5 6 7 8 6 7 8

Formulae (1 – 8) will be transformed below. In doing so, the 
formula numbering will be retained after transformation (to make easier 
to follow the sequence of transformations), and only new formulae will 
take the next number.

Assume that 
0)( rez . (9)

From (2, 3) it follows that:

)()( rh
c

re r
  (2)

  
 h
c

rer  (3)

Let us compare (4, 5):
  ,0)(

)(
 z

r h
cr

rere
r
re 

 (4)

    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  , (5)

From (2, 3) it follows that (4, 5) are identical. Then (4) can be 
deleted. Then compare (1) with (8):

0
)(

)()(
 

r
re

re
r
re

r
r ,  (1)

  ,0)(
)(

 


r
rhrh

r
rh r (8)

From (2, 3) it follows (1, 8) are identical. Hence, equation (1) can 
be deleted. The remaining equations are as follows: 

)()( rh
c

re r


  , (2)

  )(rh
c

rer 


 , (3)
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    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  , (5)

,0)()(1
 rz e

c
rhrh

r
  (6)

  ,0)(  
 e
c

rhrh zr (7)

  ,0)()(
)(

 re
cr

rhrh
r
rh

z
r 

 (8)

Substitute (2, 3) in (6, 7):

0)()()(1
 rh

cc
rhrh

r z  
 (6)

  ,0)()(  rh
cc

rhrh rzr 
 (7)

or















1)()(

cc
rhrh

r z (6)

  










 1)(
cc

rhrh rz (7)

The remaining equations are as follows:

)()( rh
c

re r


  , (2)

  )(rh
c

rer 


 , (3)

    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  , (5)















1)()(

cc
rhrh

r z (6)

  










 1)(
cc

rhrh rz (7)

  ,0)(
)(

 


r
rhrh

r
rh r (8)

Let us denote:












 1
cc

q (11)

From (5, 6, 11) it can be found that:
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    0/)(
)(

  
 qrhr
r
rh

rh
r
rh

r
r , (12)

From (8) it can be found that:

   )()(1 rhrrhrhr 
 (13)

   )()(21 rhrrhrhr 
 (14)

From (12-14) it can be found that:

  0/)(
)(

)()(21)(
)(1








  
 




 qrhr
r
rh

rhrrhrh
r
rh

, (15)

  0)(
)(

)()(21)(
)(1








  rerq
r
re

rerrere
r
re











(15)

It can be observed that this equation is the same as equation (15) in 
Appendix 1 of Chapter 2, if variable )(rh  is substituted for variable 

)(re . Therefore, the solution of the equation is a function of
 rrh ,,kh)(   , (16)

and its derivative as a function
 rrh ,,kh1)(   . (17)

With the known functions (16, 17), the remaining functions can 
also be found. Thus, all the functions can be determined from the 
following equations:

0)( rez , (9)

 rrh ,,kh)(   , (16)

 rrh ,,kh1)(   , 17)

   )()(1 rhrrhrhr 
 , (13)

   )()(21 rhrrhrhr 
 , (14)

 /)()( qrhrrhz  , (6)

 qrhrh rz  )( , (7)

)()( rh
c

re r


  , (2)

  )(rh
c

rer 


 . (3)
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Chapter 4. The solution of Maxwell's 
equations for the low-resistance Wire 

with Alternating Current
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1. Introduction
The Maxwell equations in general in GHS system have the 

following form (see option 1 in the "Preface"):

  0rot 




t
H

c
E  , (1)

  04rot 



 J
ct

E
c

H  , (2)

  0div E , (3)
  0div H , (4)

EJ

1

 , (5)

where
EHJ ,,  - conduction current, magnetic and electric intensity 
accordingly ,

 ,,  - dielectric permittivity, permeability, specific resistance of 
the wire's material

Further these equations are used for analyzing the structure of 
Alternating Current in a wire [15]. For sinusoidal current in a wire with 
specific inductance L  and specific resistance   intensity and current are 
related in the following way:
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 
E

L
LiE

Li
J 22

1



 





 .

Hence for L   we find:

E
L
iJ




 .

Therefore for analyzing the structure of sinusoidal current in the 
wire for a sufficiently high frequency the condition (5) can be neglected. 
При этом is necessary to solve the equation system (1-4), where the 
known value is the current zJ  flowing among the wire, i.e. the projection 
of vector J  on axis oz  (see option 4 in the "Preface"):

2. Solution of Maxwell's equations 
Let us consider the solution of Maxwell equations system (1.1-1.4) 

for the wire. In cylindrical coordinates system zr ,,   these equations 
look as follows [4]:

01














z
EE

rr
E

r
E zrr


 , (1)

,1
dt
dHv

z
EE

r
rz 







 


(2)

,
dt
dH
v

r
E

z
E zr 








(3)

,1
dt
dHvE

rr
E

r
E zr 











 (4)

01














z
HH

rr
H

r
H zrr


 , (5)

dt
dEq

z
HH

r
rz 







 


1 (6)

,
dt
dE
q

r
H

z
H zr 








(7)

.41
z

zr J
cdt

dEqH
rr

H
r
H 


 








 (8)

where
cv  , (9)

cq  , (10)
Further we shall consider only monochromatic solution. For the 

sake of brevity further we shall use the following notations:
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)cos( tzco   , (11)
)sin( tzsi   , (12)

where  ,,  – are certain constants. Let us present the unknown 
functions in the following form:

 corhH rr . , (13)

sirhH )(.   , (14)

sirhH zz )(.  , (15)

 sireE rr . , (16)

coreE )(.   , (17)

coreE zz )(.  , (18)

 corjJ rr . , (19)

sirjJ )(.   , (20)

sirjJ zz )(.  , (21)

where )(),(),( rjrerh  - certain function of the coordinate r . 
By direct substitution we can verify that the functions (13-21) 

transform the equations system (1-8) with four arguments tzr ,,,   
into equations system with one argument r  and unknown functions

)(),(),( rjrerh .
Further it will be assumed that there exists only the current (21), 

directed along the axis z . This current is created by an external source. 
It is shown that the presence of this current is the cause for the existence 
of electromagnetic wave in the wire.

In Appendix 1 it is shown that for system (1.1-1.4) at the 
conditions (13-21) there exists a solution of the following form:

  1 
 Arre , (22)

)()( rerer  , (23)

 rre
cM

Mrez 


 )1(ˆ)( 
 , (24)

  )(ˆ re
M

rhr 
 , (25)

)()( rhrh r , (26)
0)( rhz , (27)







 Arrerj zz 2

)(
4

)(  , (28)
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where  ,,,cA  – constants.
Let us compare this solution to the solution obtained in chapter 1 

for vacuum – see Table 1. Evidently (despite the identity of equations) 
these solutions differ greatly. These differences are caused by the 
presence of external electromotive force with 0)( rez . It causes a 
longitudinal displacement current which changes drastically the structure 
of electromagnetic wave. 

Table 1.
Vacuum Wire

 
c

ˆ 1ˆ,ˆ  M
c

zj 0 )(
4

rez


re

e
1Ar 1Ar

ze 0  rre
cM

M



 )1(ˆ 

rh )(re )(ˆ re
M 


h )(rhr )(rhr

zh 0 0

3. Intensities and currents in the wire
Further we shall consider only the functions ),(rjz  

)(),(),( rerere zr  , )(),(),( rhrhrh zr  . Fig. 1 shows, for example, the 

graphs of these functions for 300,1,1,3,1  A . The 
value )(rjz  is shown in units of (A/mm^2) - in contrast to all the other 
values shown in system SI. The increase of function )(rjz  at the radius 
increase explains the skin-effect. 
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jz
(r)

Fig.1. (SSMB)

The energy density of electromagnetic wave is determines as the 
sum of modules of vectors HE, from (2.13, 2.14, 2.16, 2.17, 2.23, 2.24) 
and is equal to

           222222 corhcorhsiresireHEW rr  
or

     22 rereW r  (1)

- see also Fig. 1. Thus, the density of electromagnetic wave energy is 
constant in all points of a circle of this radius.

In order to demonstrate phase shift between the wave components 
let's consider the functions (2.11-2.19). It can be seen, that at each point 
with coordinates zr ,,   intensities EH ,  are shifted in phase by a 
quarter-period.

Let us find the average value of current amplitude density in a wire 
of radius R:

  



 ,

2
1

r
zz ddrJ

R
J . (5)

Taking into account (2.21), we find:

   



 ,

2
1

r
zz ddrsirj

R
J (5а)

Next, we find:
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    







  

R

zz drdsirj
R

J
0

2

0
2

1 




Taking into account (2), we find:

  





 

R

zz drz
c

z
c

rj
R

J
0

2 )2cos()22cos(1 


or

  zrz J
R

J  1)2cos(1
2 


, (6)

where

 
R

zzr drrjJ
0

. (7)

Taking into account (2.28), we find:

 
R

zr drrAJ
02




 (9)

or

 
1

12



 


 RAJ zr . (10)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.5

2

2.5

3

3.5

4

4.5

Jz
r(a

lfa
)

Fig.3. (SSMB)

4-6



Chapter 4. The solution for the low-resistance Wire with Alternating Current

Fig. 3 shows the function )(zJ  (6, 10) for 1A . On this Figure 
the dotted and solid lines are related accordingly to 2R  and 75.1R . 
From (6, 8) and Fig. 3 it follows that for a certain distribution of the 
value  rjz  the average value of the  amplitude of current density zJ  
depends significantly of  .

The current is determined as

t
E

c
J





 , (11)

or, taking into account (2.13-2.21):

 core
c

J rr


. ,

sire
c

J )(. 


 ,

sijre
c

J zzz 





  )(. 

. (12)

You can talk about the lines of these currents. Thus, for instance, 
the current .zJ  flows along the straight lines parallel to the wire axis. We 
shall look now on the line of summary current. 

-1
-0.5

0
0.5

1

-1
-0.5

0

0.5
1
0

2

4

6

8

Fig.4. (SSMB)

It can be assumed that the speed of displacement current 
propagation does not depend on the current direction. In particular, for a 
fixed radius the path traversed by the current along a circle, and the path 
traversed by it along a vertical, would be equal. Consequently, for a fixed 
radius we can assume that 
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 z (13)
where   is a constant. Based on this assumption we can convert the 
functions (4b) into

  2cos co ,   2sin si (14)
and build an appropriate trajectory for the current. Fig. 4 shows two 
spiral lines of summary current described by the functions of the form

  )2(cos co ,    2sin si .
On Fig. 4 the thick line is built for 8.1 and a thin line for 5.2 . 

From (2.19-2.21, 14) follows that the currents will keep their values 
for given ,r  (independently of z ) if only the following value is 
constant

  2 . (15)
Further, based on (14, 15) we shall be using the formula 

 cosco ,  sinsi . (16)

4. Energy Flows
Electromagnetic flux density - Poynting vector in this case is determined 

in the same way as in Chapter 1, Section 4. Although here we repeat the first 6 
equations from that Section for readers' convenience. So,

HES  , (1)
where 

 4c . (2)
In cylindrical coordinates zr ,,   the density flow of 

electromagnetic energy has three components zr SSS ,,  , directed along 
вдоль the axis accordingly. They are determined by the formula

 








































rr

zrrz

zz

z

r

HEHE
HEHE
HEHE

HE
S
S
S

S





  . (4)

From (2.13-2.18) follows that the flow passing through a given section of 
the wave in a given moment, is:

 












































 
,

2

r
z

r

z

r

ddr
cosis
cosis

sis

S

S

S

S . (5)

where
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 
 
 rrz

zrrz

zzr

hehes
hehes
hehes













. (6)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5
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0
x 10-5

sz
(r)

Fig.5. (SSMB)

It is values density of the energy flux at a predetermined radius 
which extends radially, circumferentially along, the axis oz respectively. 
Fig. 5 shows the graphs of these functions depending on the radius at 

300,1,1,3,1  A .
The flow of energy along the axis oz is

  



,r

zz ddrcosisS . (7)

We shall find zs . From (6, 2.22, 2.23, 2.26), we obtain:

)(ˆ2 2 re
M

hes rz  
 (9)

or
22  Qrsz , (10)

while



M

AQ ˆ2 (11)

In Chapter 1, Appendix 2 shows that from (7) implies that

     
r

z drrscS 


4cos1
16

. (12)
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Let R  be the radius of the circular front of the wave. Then from (12) we 
obtain, as in chapter 1,

   12

0
int 12



 
  


RQdrrsS

R

r
z , (13)

  


4cos11
alfaS , (14)

int16
SScS alfa

 . (15)

Combining formulas (11-15), we get:

   122

12
ˆ

4cos11
16




 








R

M
AcS z

or
  

 
12

2

128
4cos1ˆ 




 





 R

M
cAS z . (16)

This energy flow does not depend on the coordinates, and so it 
keeps its value along all the length of wire.

Fig. 7 shows the function )(S  (16) for 
1,1,13^10,1  MA . On Fig. 7 the dotted and the solid lines 

refer respectively to 2R  and 8.1R . 

1 1.5 2 2.5 3 3.5 4 4.5 5
0

1000

2000

3000

4000
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6000

7000

S
(a

lfa
)

Fig.7. (SSMB)
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0
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Fig.8. (SSMB)

Since the energy flow and the energy are related by the expression
cWS  , then from (15) we can find the energy of a wavelength unit: 

int16
SSAW alfa

 . (17)

It follows from (7, 3.16), the energy flux density on the 
circumference of the radius defined function of the form

 2sinzrz sS  . (18)

Fig. 8 shows this function (18) for 22  rsz  - see (10). Shows two 
curves for two values at 4.1  and at two values of radius 1r  (thick 
line) and 2r  (thin line). 

Fig. 9 shows the function S  (18) on the whole plane of wire 
section for 22  rsz  and 4.1 . The upper window shows the part of 
function S  graph for which 0S  - called plusS , and the lower window 
shows the part S  graph for which 0S  - called minusS , and this part 
for clarity is shown with the opposite sign. This figure shows that

0minusplus  SSS ,
i.e. the summary vector of flow density is directed toward the increase of 
z  - toward the load. However there are two components of this vector: 
the plusS  component, directed toward the load, and minusS  
component, directed toward the source of current. These components of 
the flow transfer the active and reactive energies accordingly.

4-11



Chapter 4. The solution for the low-resistance Wire with Alternating Current

It follows that
 flux density is unevenly distributed over the flow cross section – 

there is a picture of the distribution of flow density by the cross 
section of the wave

 this picture is rotated while moving on the axis oz;
 the flow of energy (15), passing through the cross-sectional area, not 

depend on zt, ; the main thing is that the value does not change 
with time, and this complies with the Law of energy conservation.

 the energy flow has two opposite directed components, which 
transfer the active and reactive energies; thus, there is no need  in the 
presentation of an imaginary Pointing vector.

5. Current and energy flow in the wire 
One can say that the flow of mass particles (mass current) "bears" 

a flow of kinetic energy that is released in a collision with an obstacle. 
Just so the electric current "bears" a flow of electromagnetic energy 
released in the load. This assertion is discussed and substantiated in [4-9]. 
The difference between these two cases is in the fact that value of mass 
current fully determines the value of kinetic energy. But in the second 
case value of electrical current DOES NOT determine the value of 
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electromagnetic energy released in the load. Therefore the transferred 
quantity of electromagnetic energy – the energy flow, - is being 
determined by the current structure. Let us show this fact.

1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

2000

2500
J,

A
,S

Fig.10. (SSMB)

As follows from (3.10), the average value of amplitude density of 
current zJ  in a wire of radius R depends on two parameters:   and A . 
For a given density one can find the dependence between these 
parameters, as it follows from (3.10):

 
zrJRA 112 

 




. (1)

As follow from (4.16), the energy flow density along the wire also 
depends on two parameters:  and A . Fig. 10 shows the dependencies 
(1) and (4.16) for given 2,2  RJ z . Here the straight line depicts the 
constant current density (in scale 1000), solid line – the flow density, 
dotted line – parameter А in scale (in scale 1000). Here A  calculated 
according to (1), the energy flux density - to (4.16) for a given A  One 
can see that for the same current density the flow density can take 
absolutely different values. 

From equations (4.7, 3.16) above we found energy flux density on a 
circumference of given radius as a function (see. (4.18)):

 2sinzrz sS  . (2)
In a similar way from equations (3.5а, 3.16) we can find current 

density on a circumference of given radius as a function of 

4-13



Chapter 4. The solution for the low-resistance Wire with Alternating Current

 sinzrz jJ  . (3)

Function (2) was illustrated on Fig. 9. Left windows on Fig. 11 
illustrate the graph of this function rzS  (2), and the right windows, for 
comparison purpose, show graph of function rzJ  (3) drown in the same 
way for 19,6.1,4.1,1  RA  . 

From Fig. 11 it can be seen that currents and energy fluxes can 
exist in the wire, which are divided into contra-directional "streams". 

Combinations of parameters can be selected such that total 
currents of contra-directional "streams" are equal in modulus, and at the 
same time, total energy fluxes of contra-directional "streams" are also 
equal in modulus. Fig. 13 illustrates this case: If 

19,2,8.1,1  RA  , then the following integrals over wire 
cross-section area Q  are equal (it's important that   is divisible by 2):

 
QQ

dQSdQS minusplus ,  
QQ

dQJdQJ minusplus .
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6. Discussion
It was shown that an electromagnetic wave is propagating in an 

alternating current wire, and the mathematic description of this wave is 
given by the solution of Maxwell equations. 

This solution largely coincides with the solution found before for 
an electromagnetic wave propagating in vacuum – see Chapter 1. It was 
found that the current in the wire extends along a helical path, and pitch 
of the helical path depends on the density

It appears that the current propagates in the wire along a spiral 
trajectory, and the density of the spiral depends on the flow density of 
electromagnetic energy transferred along the wire to the load, i.e. on the 
transferred power. And the main flow of energy is propagated along and 
inside the wire. 

Appendix 1
Let us consider the solution of equations (2.1-2.8) in the form of 

(2.13-2.18). Further the derivatives of r  will be designated by strokes. We 
write the equations (2.1-2.8) in view of (2.11, 2.12) in the form

0)(
)(

)()(
 re

r
re

re
r
re

zr
r  ,  (1)

,0)()(1
 rz h

c
rere

r
  (2)

  ,0)(  
 h
c

rere zr (3)
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  ,0)(
)(

 z
r h

cr
rere

r
re 

 (4)

    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  , (5)

,0)()(1
 rz e

c
rhrh

r
   (6)

  ,0)(  
 e
c

rhrh zr (7)

  ),(4)()(
)(

rj
c

re
cr

rhrh
r
rh

zz
r 

  (8)

We multiply (5) on 











c

. Then we get:

    0)(
)(

 rh
cr

rh
c

rh
cr

rh
c zr

r 







  . (9)

Comparing (4) and (9), we see that they are the same, if

 

  





































),(

,)(

0

rerh
c

rerh
c

h

r

r

z








 (9а)

or, if 

 

  





































),(

,)(

,0

rerh
c

M

rerh
c

M

h

r

r

z








 (9в)

where M  - constant. Next, we use formulas

 rerh
c

M r


 )(


, (10)

  )(rerh
c

M r 





, (11)

where 1M  in the case of (9a). Rewrite (2, 3, 6, 7) in the form:
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 ,)()( rh
c

rrerre rz





  (12)

  ),()( rh
c

rere rz 
  (13)

 ,)()( re
c

rrhrrh rz








 (14)

  )()( re
c

rhrh rz 
 

 , (15)

Substituting (10, 11) in these equations (12, 13), we get:

     rer
M
Mrer

M
rez  




 1)( 







  , (16)

     re
M
Mre

M
re rrz  1)( 







  . (17)

Substituting (10, 11) in these equations (14, 15), we get:

  ),()()( 222
2 rhMc
c
rrhr

cc
Mrhz  


 






 
 (18)

     rhMc
c

rh
cc

Mrh rrz
222

2
1)( 


 









 
 . (19)

Differentiating (16) and comparing with (17), we find:

   )()1()1( re
M
Mrre

M
M

r









or
   )(rerre r 

or
     )(rererre r  . (20)

From (1, 16), we find:

  0)1()(
)()( 2 


 rer

M
M

r
re

re
r
re

r
r





 (23)

From physical considerations we must assume that
0)( rhz . (24)

Then from (18) we find 
  0222   Mc

or

1ˆ,ˆ   M
c

. (25)

From (16, 25), we find:
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   rerM
cM

MrerMrez  



 ˆ)1()1()( 



or

 rre
cM

Mrez 


 )1(ˆ)( 
             (25а)

For c  from (25) we find that
1 . (26)

Then in the equation (23) we can neglect the value 2  and obtain an 
equation of the form

)()()( rerrere rr   . (27)

From (27, 20) due to the symmetry we find:
)()( rerer  , (28)

   rerrere   )( . (29)

The solution of this equation is as follows:  
  1 

 Arre , (30)

which can be checked by substitution of (30) into (29). From (11, 25), we 
find

  )(ˆ re
M

rhr 
 , (31)

and from (10, 28), we find
)()( rhrh r . (32)

Finally, from (8, 32), we find
 







  )()()(

4
)( re

cr
rhrh

r
rhcrj z

r
r

r
z




(33)

Taking into account (30.31), we note that the sum of the first three terms 
is equal to zero, and then

)(
4

)( rerj zz 


 . (34)

So, we finally obtain:
  1 

 Arre , (30)

)()( rerer  , (28)

 rre
cM

Mrez 


 )1(ˆ)( 
 (25а)

  )(ˆ re
M

rhr 
 , (31)
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)()( rhrh r , (32)

0)( rhz , (24)

)(
4

)( rerj zz 


 . (34)

The accuracy of the solution
To analyze the accuracy of the solution may be for given values of 

all constants to find the residual equation (1-7). Fig. 0 shows the 
logarithm of the mean square residual of the parameter   - 

)(ln fN  ,  when 1,1,300,1  A .
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Fig.0. (SSMB)
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Chapter 4b. Solution of Maxwell's 
equations for tubular wire with 

alternating current

Chapter 2 dealt with the solution of Maxwell's equations for a wire 
with the sinusoidal alternating current. Below we look at the solution for 
the tubular wire. We will seek a solution with a known pipe radius R and 
its small thickness, when

𝑟 ≈ 𝑅, (0)
and all derivatives with respect to r are equal to zero. Then the system of 
equations (4a.2.41-4a.2.48) takes the form:

𝑒𝑟
𝑟 ‒

𝑒φ
𝑟 α ‒ χ𝑒𝑧= 0, (1)

‒
𝑒𝑧
𝑟 α+ 𝑒φχ ‒

μω
𝑐 𝑘𝑒𝑟= 0, (2)

𝑒𝑟χ ‒ 𝑘
μω
𝑐 𝑒φ= 0,   (3)

𝑒φ
𝑟 ‒

𝑒𝑟
𝑟 α ‒ 𝑘

μω
𝑐 𝑒𝑧= 0, (4)

𝑘
𝑒𝑟
𝑟 ‒ 𝑘

𝑒φ
𝑟 α ‒ 𝑘χ𝑒𝑧= 0, (5)

‒ 𝑘
𝑒𝑧
𝑟 α+ 𝑘𝑒φχ ‒

εω
𝑐 𝑒𝑟 ‒

4π
𝑐 𝑗𝑟= 0, (6)

‒ 𝑘𝑒𝑟χ+
εω
𝑐 𝑒φ ‒

4π
𝑐 𝑗φ= 0, (7)

‒ 𝑘
𝑒φ
𝑟 + 𝑘

𝑒𝑟
𝑟 α+

εω
𝑐 𝑒𝑧 ‒

4π
𝑐 𝑗𝑧= 0. (8)

For further it is important to note that in this solution there is 
𝑗φ ≠ 0, i.e. there is a ring current with density
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𝐽φ= 𝑗φ𝑠𝑖𝑛( ∝ φ+ χ𝑧+ω𝑡). (9)

Obviously, such a current creates in the cavity of the tubular 
conductor longitudinal magnetic intensity

𝐻𝑧= ℎ𝑧𝑠𝑖𝑛( ∝ φ+ χ𝑧+ω𝑡), (10)

where

ℎ𝑧=
𝑗φ

2(𝑅 ‒ 𝑎), (11)

𝑎 is the distance from the center of the tube to the observation point 
𝐻𝑧. It is important to note that existing representations deny such a 
phenomenon. Below in chapter 4c, we will give an experimental proof of 
the existence of this phenomenon.
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Chapter 4c. Special transformers

In Chapter 2, Section 3, it is shown that current in a wire can arise 
not only as a result of an applied alternating voltage U but as a result of 
an applied external longitudinal magnetomotive force F. For either of 
these cases, equal currents are generated in the wire if in system SI

𝐹 = ω ε
2μ𝑈

. (1)
Known transformer Zatsarinin [120]. This transformer is a 

solenoid, the axis of which is a rod of any conductive material. If the 

voltage 𝑈1 is applied to the coil of the solenoid, then the voltage 𝑈2 also 
appears on the rod. The rod can be connected to the load (for example, a 

lamp) and then the power 𝑃1 from the voltage source 𝑈1 is transferred 

to the load, which consumes power 𝑃1 < 𝑃2. Other experiments with 
the Zatsarinin transformer are also known.

This fact - the appearance of voltage in the rod is not a 
consequence of the law of electromagnetic induction. The magnetic field 
inside the solenoid does not have a longitudinal component of magnetic 
intensity, directed perpendicular to the radius. However, in the solenoid 
there is a longitudinal component of magnetic intensity and, therefore, 
there is a magnetomotive force 𝐹. Zatsarinina’s transformer proves the 
previous theoretical statement: a current can arise as a result of an applied 
external longitudinal magnetomotive force 𝐹.

Known coaxial transformer Pozynich - CTP [121]. In this 
transformer, the sheath and center wire are included as transformer 
windings. There are two possible inclusion schemes.

1. The central wire is the primary winding of the transformer 
connected to a voltage source; the shell is the secondary winding of the 
CTP.

2. The sheath is the central wire is the primary winding of the CTP 
connected to the voltage source; the central wire is the secondary 
winding of the package transformer.

In this case, the primary winding of the CTP is connected to a 
voltage source, and the secondary - to the load.
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Experiments have shown that in both modes, the transformation 

ratio was equal to 1.

CTP cannot be identified with Zatsarinin's transformer [120] 
(although the external manifestations are similar). The circuit of the CTP 
does not coincide with the diagram of the known coaxial transformer 
(since the latter is a two-pole cell, and the CTP is a four-pole cell).

As will be shown below, the operation of CTP in mode 2 cannot 
be explained by the law of electromagnetic induction.

All these features of CTP require explanation.

In mode 1, there in the center wire is a current with a density
𝐽𝑧𝑝 = 𝑗𝑧𝑝𝑠𝑖𝑛( ∝ φ + χ𝑧 + ω𝑡)

(1)
- see chapter 4a. In accordance with the law of electromagnetic induction, 
this current creates a magnetic intensity in the shell

𝐻φ𝑜 =
𝑑𝐽𝑧𝑝
𝑑𝑡 = ω𝑗𝑧𝑝𝑐𝑜𝑠( ∝ φ + χ𝑧 + ω𝑡).

(2)
This intensity creates (as shown in Chapter 4b) a longitudinal wave in the 
shell and, in particular, a current

𝐽𝑧𝑜 = 𝑗𝑧𝑜𝑐𝑜𝑠( ∝ φ + χ𝑧 + ω𝑡).
(3)

Thus, current (1) is transformed into a current (3).

In mode 2, the cable jacket is under alternating voltage, i.e. this 
shell is a tubular wire. The current of the shell as a whole should not 
create magnetic intensity in the center of the pipe, since the elementary 
currents in all cylinder create intensities that, due to symmetry, cancel 
each other out. However, as the experiment shows, the current through 
the central wire flows. It can only be caused by magnetic intensity. So, 
“according to Faraday” there is no magnetic intensity, but “according to 
Pozynich” there is magnetic intensity. This requires an explanation.

In mode 2 in the shell, as in a tubular wire, there is a current with a 
density

𝐽𝑧о = 𝑗𝑧о𝑠𝑖𝑛( ∝ φ + χ𝑧 + ω𝑡)
(4)

- see chapter 4b. At the same time (as shown in chapter 4b) in the cavity 
of the tubular wire creates a longitudinal magnetic intensity

𝐻𝑧р = ℎ𝑧р𝑠𝑖𝑛( ∝ φ + χ𝑧 + ω𝑡),
(5)
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The central wire is in the area of existence of this intensity. This intensity 
(5) creates (as shown in chapter 4) in the wire a longitudinal wave and, in 
particular, the current

𝐽𝑧р = 𝑗𝑧р𝑐𝑜𝑠( ∝ φ + χ𝑧 + ω𝑡).
(6)

Thus, current (4) is transformed into current (6).
This fact (as shown) is not a consequence of the law of 

electromagnetic induction. In this regard, it should be noted that the 
Maxwell equations were a generalization of this and some other particular 
laws. This generalization covers an area of phenomena that is larger than 
the areas related to each particular law. Therefore, the consequence of 
Maxwell's equations can describe a phenomenon that is not subject to the 
law of electromagnetic induction (but cannot contradict this law where it 
operates).

Consider the mathematical model of CTP in more detail. Maxwell's 
equations for the center conductor are described in chapter 2. We will 

denote the solution of these equations as (𝐸𝑝, 𝐻𝑝,𝐽𝑝). Maxwell's 
equations for the shell are described in Chapter 4c. We will denote the 

solution of these equations as (𝐸о, 𝐻о,𝐽о). The sheath and wire are in a 
common cylindrical area. Therefore, the longitudinal magnetic intensities 

in the solutions (𝐸𝑝, 𝐻𝑝,𝐽𝑝) and (𝐸о, 𝐻о,𝐽о) coincide, i.e.
𝐻𝑝𝑧 = 𝐻о𝑧 = 𝐻𝑧. (7)

Chapter 2 proved the UHP-theorem, which states that regardless 
of the wire parameters, there is a one-to-one relationship between the 
electrical voltage U on the wire, the longitudinal magnetic strength in the 
wire H, and the active power P transmitted over the wire,

𝑈 = 𝑓(𝐻,𝑃). (8)
In our case, there is a common tension H on the shell and the 

central wire, and the power P is transmitted between the shell and the 
central wire in any switching mode of the CTP. Consequently, the voltage 
U on the shell and the center wire must be the same in any switching 
mode CTP.

That is what is observed in the experiments.

Thus, CTP is described by 16 equations with 16 unknowns of the 
form

𝐸𝑝𝑟, 𝐻𝑝𝑟,𝐽𝑝𝑟,𝐸𝑝φ, 𝐻𝑝φ,𝐽𝑝φ,𝐽𝑝𝑧,
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𝐸𝑜𝑟, 𝐻𝑜𝑟,𝐽𝑜𝑟,𝐸𝑜φ, 𝐻𝑜φ,𝐽𝑜φ,𝐽𝑜𝑧,,𝐸𝑧, 𝐻𝑧. (9)

Such a system of equations has a unique solution. This system is a system 
of differential equations (since these are the equations for the wire in 
Chapter 2). Therefore, the solution depends on the initial conditions.

According to the obtained solution (9), the energy flow passing 
through the CTP can be determined, i.e. power transmitted through the 
CTP or load power equal to the generator power. Therefore, the initial 
conditions determine the power of the load.

Physically, of course, everything happens the other way round: the 
power of the generator determines the initial conditions, and the initial 
conditions determine the type of solution.

Thus, the existence of a coaxial Pozynich transformer is another 
experimental confirmation of the theory developed in this book.
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Chapter 5. Solution of Maxwell's 
Equations for Wire with Constant Current
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1. Introduction
In [7, 9-11] based on the Law of impulse conservation it is shown 

that constant current in a conductor must have a complex structure. Let 
us consider first a conductor with constant current. The current J  in the 
wire creates in the body magnetic induction B , which acts on the 
electrons with charge eq , moving with average speed  in the direction 
opposite the current J , with Lorentz force F , making them move to 
the center of the wire – see Fig. A. 

JF
F

v

v

q

q

B

Fig. А.

Due to the known distribution of induction B  on the wire's cross 
section the force F  decreases from the wire surface to its center – see 
Fig. В, showing the change of F  depending on radius r , on which the 
electron is located.
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F

F

r1

q

q

r2

Fig. В.

Thus, it may be assumed that in the wire's body there exist 
elementary currents I , beginning on the axis and directed by certain 
angle   to the wire axis – see Fig. С.

J

alfa

I

I

Fig. С.

In [7, 9-11] was also shown that the flow of electromagnetic energy 
is spreading inside the wire. Also the electromagnetic flow

 directed along the wire axis,
 spreads along the wire axis,
 spreads inside the wire, 
 compensates the heat losses of the axis component of the 

current. 

Rn

A B C

D

J

J
Fig. 1.

In [9-11] a mathematical model of the current and the flow has 
been. The model was built exclusively on base of Maxwell equations. 
Only one question remained unclear. The electric current J ток and the 
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flow of electromagnetic energy S are spreading inside the wire ABCD 
and it is passing through the load Rn. In this load a certain amount of 
strength P is spent. Therefore the energy flow on the segment AB should 
be larger than the energy flow on the segment CD. More accurate, 
Sab=Scd+P. But the current strength after passing the load did not 
change. How must the current structure change so that еhe 
electromagnetic energy decreased correspondingly? This issue was 
considered in [7].

Below we shall consider a mathematical model more general than 
the model (compared to [7, 9-11]) and allowing to clear also this 
question. This mathematical model is also built solely on the base of 
Maxwell equations. In [12] describes an experiment which was carried 
out in 2008. In [17] it is shown that this experiment can be explained on 
the basis of non-linear structure of constant current in the wire and can 
serve as an experimental proof of the existence of such a structure. 

2. Mathematical Model
Maxwell's equations for direct current wire are shown Chapter 

"Introduction" - see variant 6:
  0rot J , (а)

  0rot  oJJH , (b)

  0div J , (с)

  0div H . (d)
In building this model we shall be using the cylindrical coordinates 
zr ,,   considering 

 the main current oJ  and intensity oH  produced by it,
 the additional currents zr JJJ ,,  ,
 magnetic intensities zr HHH ,,  ,
 electrical intensities E ,
 electrical resistivity  .

Here, in these equations we included a given value of density oJ  of 
the current passing through the wire as a load. We know, that rJH z . 

As the definition of curl includes derivatives rH   and oJrH   , 
then equation (b) can be simplified as follows

  0rot  JH . (b1)
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The solution of equations (a, b1, c, d) is assumed to be zero. However, 
below we will demonstrate that in the presence of current oJ  there shall 
be non-zero solution of these equations.

JE   . (0)
The equations (a-d) for cylindrical coordinates have the following 

form:

01














z
HH

rr
H

r
H zrr


 , (1)

,1
r

z J
z
HH

r









 


(2)

,Jr
H

z
H zr 








(3)

,1
oz

r JJH
rr

H
r
H












 (4)

01














z
JJ

rr
J

r
J zrr


 , (5)

01










z
JJ

r
z 


, (6)

0







r
J

z
J zr , (7)

01












 rJ
rr

J
r
J

. (8)

The model is based on the following facts: 
1. the main electric intensities oE  is directed along the wire axis ,
2. it creates the main electric current oJ  – the vertical flow of 

charges,
3. vertical current oJ  forms an annular magnetic field with intensity 

H  and radial magnetic field rH  - see (4),
4. magnetic field H  deflects by the Lorentz forces charges vertical 

flow in the radial direction, creating a radial flow of charges - 
radial current rJ ,

5. magnetic field H  deflects by the Lorentz forces the charges of 
radial flow perpendicularly to the radii, thus creating an vertical 
current zJ  (in addition to current oJ ), 
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6. magnetic field rH  by the aid of the Lorentz forces deflects the 
charges of vertical flow perpendicularly to the radii, thus creating 
an annular current J ,

7. magnetic field rH  by the aid of the Lorentz forces deflects the 
charges of annular flow along radii, thus creating vertical current 
zJ  (in addition to current oJ ),

8. current rJ  forms a vertical magnetic field zH  and annular 
magnetic field H  - see (2),

9. current J  form a vertical magnetic field zH  and radial magnetic 
field rH  - see (3),

10. current zJ  form a annular magnetic field H  and radial magnetic 
field rH  - see (6),

Thus, the main electric current oJ  creates additional currents 

zr JJJ ,,   and magnetic fields zr HHH ,,  . They should satisfy the 
Maxwell equations. 

In addition, electromagnetic fluxes shall be such that
A. Energy flux in vertical direction was equal to transmitted 

power,
B. The sum of energy fluxes is to equal to transmitted power plus 

the power of thermal losses in the wire.
Thus, currents and intensities shall confirm Maxwell's equations 

and conditions А and В. In order to find a solution we part this problem 
into two following tasks (that is true, because Maxwell's equations are 
linear):

a) to find solution of equations (1-8) without current oJ ; this 
solution occurs to be multi-valued;

b) to find additional limitations on initial solution posed by 
conditions А and В; here we take into account current oJ  and 
intensity oH  produced by it.

First of all, we shall prove that a solution of system (1-8) is exist 
with non-zero currents .,, zr JJJ 

For the sake of brevity further we shall use the following notations:  
)cos( zco   , (10)

)sin( zsi   , (11)
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where  ,  – are certain constants. In the Appendix 1 it is shown that 
there exists a solution of the following form: 

  co.  rjJ rr , (12)

si)(.  rjJ  , (13)

si)(.  rjJ zz , (14)

  co.  rhH rr , (15)

si)(.  rhH  , (16)

si)(.  rhH zz , (17)

where )(),( rhrj - certain function of the coordinate r . 
It can be assumed that the average speed of electrical charges 

doesn't depend on the current direction. In particular, for a fixed radius 
the way passed by the charge around a circle and the way passed by it 
along a vertical will be equal. Consequently, for a fixed radius it can be 
assumed that

z . (18)
Thus, there on cylinder of constant radius is trajectory of point, 

which described by the formulas (10, 11, 18). This trajectory is a helix. 
On the other hand, in accordance with (12-17) on this trajectory all 
intensities and current densities varies harmonically as a function of  . 
Consequently,

line on a cylinder of constant radius r , at which point moves so 
that all the intensities and current densities therein varies 
harmonically depending of  , is helical line. 

Based on this assumption we can build the trajectory of the charge 
motion according to the functions (10, 11).

-1
-0.5

0
0.5

1

-1
-0.5

0

0.5
1
0

2

4

6

8

(TokPotok33.m)Fig. 2.
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The Fig. 2 shows three spiral lines for z , described by 
functions (10, 11) of the current: the thick line for 8.0,2   , the 
average line for 2,5.0    and a thin line for 6.1,2   . 

In Appendix 1 it is shown that there exists a definite Bessel 
function, denoted as  rF , on which the functions of the intensities 
 rh  and current density  rj  depend, viz

   rFrj   , (25)

    )()( rjrrjrjr  , (26)

)()( rjrrjz 


 , (27)

0)( rhz , (28)
  ,/)(  rjrh r (29)

   /)(rjrhr  . (30)

Appendix 3 shows that for small r, function (25) takes the form
𝑦 = 𝐴𝑥β

, (30а)

where A is a constant, and

β = 1
2( ‒ 3 ± 3 + 4χ2),   β < 0. (30в)

5-7



Chapter 5. Solution for Wire with Constant Current

At the same time, the values 𝐴, ∝ , χ should be known for the calculation 
using equations (25-30). Below it will be shown that the functions (25, 26, 
29, 30) determine the amount of power P entering the wire. Thus, the 
values 𝐴, ∝ , χ determine the amount of power P.

Function (25) has a variety of options defined by constants 𝐴, ∝ , χ. 
It is important to notice that in the graph of function  rjr  there is a 
point where   0rjr . Location of this point Rr   when modeling 
depends on selection of specified parameters. Physically, this means that 

in the area Rr   there are radial currents  rJ r  directed outward from 
the center. There are no currents  rJ r in point Rr  . Therefore, the 
value R  is the radius of wire.

Fig. 3.2 illustrates functions (12-14), when constz  . The fourth 
window shows function












.0),(if,0

,0),(if),,(
),(






rJ
rJrJ

rJp
z

zz
z

Let's determine current density in the wire of radius R:

  



 ,

2

1

r
zz ddrJ

R
J . (31)

Taking into account (14), we find 

       







  

R

z
r

zz drdsirj
R

ddrsirj
R

J
0

2

0
2

,
2

11 









(32)

Taking into account (11), we find 

  





 

R

zz drz
c

z
c

rj
R

J
0

2 )2cos()22cos(1 


. (33)

From here it follows that total current zJ  is changed depending on z  
coordinate. However, total given current with density oJ  remains 
constant.

3. Energy Flows
The density of electromagnetic flow is Pointing vector 

HES  . (1)
The currents are being corresponded by eponymous electrical intensities, 
i.e.

JE   , (2)
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where   is electrical resistivity. Combining (1, 2), we get:

BJHJS 

 . (3)

Magnetic Lorentz force, acting on all the charges of the conductor 
per unit volume - the bulk density of magnetic Lorentz forces is equal to

BJF  . (4)
From (3, 4), we find:

 SF  . (5)
Therefore, in wire with constant current magnetic Lorentz force density 
is proportional to Poynting vector.

Example 1 To examine the dimension checking of the quantities 
in the above formulas - see Table 1 in system SI.

Table 1
Parameter Dimension

Energy flux density S kg·s−3

Current density J A·m−2

Induction B kg·s−2·A
Bulk density of magnetic Lorentz 
forces

F N·m-3=kg·s−3·m-2

Permeability  kg·s−2·m·A−2

Resistivity  kg·s−3·m3·A−2

  s·m-2

So, current with density J  and magnetic field is generated energy 
flux with density S , which is identical with the magnetic Lorentz force 
density F  - see (5). This Lorentz force acts on the charges moving in a 
current J , in a direction perpendicular to this current. So, it's fair to say 
that the Poynting vector produces an emf in the conductor. Another 
aspects of this problem are considered in work [19], where this emf is 
called the fourth type of electromagnetic induction.

In cylindrical coordinates zr ,,   the density flow of 

electromagnetic energy has three components zr SSS ,,  , directed along 
вдоль the axis accordingly.

3.1. In each point of a cylinder surface there are two 
electromagnetic fluxes directed radially to the center with densities

  HJSHJS zrzr  21 ,  (6)
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- see Fig. 5. Total radially-directed flux density in each point of the 
cylinder surface,

  HJHJSSS zzrrr  21  (7)

zJ
JH

2Sr

zH

1Sr

Fig. 5.

3.2. In each point of a cylinder surface there are two 
electromagnetic fluxes directed vertically with densities

  HJSHJS rzrz  21 ,  (8)

- see Fig. 6. Total vertically-directed flux density in each point of the 
cylinder surface,

 rrzzz HJHJSSS   21  (9)

rJ

J
H 2S z

rH

1S z

Fig. 6.

3.3. In each point of a cylinder surface there are two 
electromagnetic fluxes circumferentially directed with densities

,, 21 zrrz HJSHJS     (10)

- see Fig. 7. Total circumferentially directed flux density in each point of 
the cylinder surface,

 zrrz HJHJSSS   21  (11)

rJ

2S

rH

1SzH zJ

Fig. 7.
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In view of the above, we can write the equation for 
electromagnetic flux density in a direct current wire:

 
  



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
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





















 

orrr

rozrrz

oozz

z

r

HJHJHJ
HJHJHJ

HHJJHJ
HJ

S
S
S

S . (12)

Additional components in (12) appears due to the fact that energy fluxes 
are influenced by current density oJ  and intensity

rJH oo  (13)

- see (2.4). We substitute (13) into (12):

 
  








































rJJHJHJ

HJHJHJ
rJHJJHJ

HJ
S
S
S

S

orrr

rozrrz

oozz

z

r





  . (14)

Formula evaluation is very cumbersome and goes beyond the scope of 
this book. From this formula, we will select only a part of the form

 








































rr

zrrz

zz

z

r

HJHJ
HJHJ
HJHJ

HJ
S
S
S

S





  . (15)

We denote by:
 
 
 

 
 
 









































rr

zrrz

zz

z

r

hjhj
hjhj
hjhj

rS

rS

rS






. (16)
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It follows from (2.12-2.17, 15, 16) that
 
 
 

dzddr

cosirS

cosirS

sirS

S
S
S

S
zr

z

r

z

r












































  



,,

2

. (17)

In Fig. 3.3 shows the functions (17) with constz  . The fourth window 
shows the function












.0),(if,0

,0),(if),,(
),(






rS
rSrS

rSp
z

zz
z

So, fluxes (23) circulate in the wire. They are internal fluxes. They 
are produced by currents and magnetic intensities created by these 
currents. In turn, these fluxes act on currents as Lorentz forces. In this 
case total energy of these fluxes is partially spent on thermal losses, but 
mainly goes to load.

4. Speed of energy motion
Let us consider the speed of energy motion in a constant current 

wire. Just as in Chapter 1, we will use the concept of Umov [81], 
according to which the energy flux density s  is a product of the energy 
density w  and the velocity ev  of energy movement:

evws  . (1)

We will only consider the flow of energy along the wire. This flux 
is equal to the power P  transmitted over the wire to the load:

2RPs  , (2)
where R  is the radius of the wire. The internal energy of the wire is the 
energy of the magnetic field of the main current oI . This energy is

2
W

2
oi

m
LIL

 , (3)

where L  is the length of the wire, iL  the inductance of a unit of the wire 
length, and [83]

R
1

2
lnL o

i 


 . (4)

Wire volume
2V RLπ  . (5)

From (3-5), we find the energy density in the wire
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2

2

2
Ww

R
IL

V
oim


 . (6)

From (1, 2, 6) we find the velocity of the energy motion

22

2

2
2

2
sv

oi

oi

IL
P

R
IL

R
P

w











 . (7)

Load resistance

2HR
oI
P

 (8)

Consequently,

iL
R2v  . (9)

For example, if 310R  and 1R H  , we have: 71ln 
r

, 

71071ln
2


r

L o
i 

 , 6103v  . This speed is much less than the 

speed of light in a vacuum. With this speed, energy flows into the wire 
and out of it flows into the load. We do not take into account the energy 
of heat losses, since it is not transferred to the load.

When the load is switched on, the current in the wire increases 
according to the function


















texp

RН

1UIо , (10)

where is the input voltage and

Н

i

R
LL

 . (11)

From (9, 10) we find:

































texp

L
texp

R
U

LILIL
P

iioioi

1R21U2U22v 2
. (12)

Thus, the speed of energy moving in the transient process decreases from 
infinity (the speed of light in a vacuum) to the value (9).

5. The speed of energy from the batter
The characteristics of the "average battery" are presented below [92]:

Em - battery capacity 60 Ah
P is the density of the electrolyte 1250 kg / m ^ 3
G - weight of electrolyte 1.5 kg
V = G/p is the volume of the electrolyte 0.0012 m ^ 3
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R - load resistance 0.047 Ohm
U - voltage on the load 12.8 V
I - load current (starting) 270 A
P = U * I = U ^ 2 / R - load power 3456 W
W = 3600 * Em * U - energy of the condenser 

(electrolyte)   2764800J
w = W / V is the energy density 2.3 * 10 ^ 9 J \ m ^ 3
S = P - energy flow 3456 W
b - wire cross-section 100 mm ^ 2
s = S / (b * 10 ^ -6) - energy flux density 3.5 * 10 ^ 7 Wt

s
v w

 - speed of energy movement 100 m / s

c is the speed of light 300 * 10 ^ 6 m / s

Thus, the speed of energy movement on the wire from the battery 
is much less than the speed of light.

6. Discussion
So, the complete solution of Maxwell's Equations for a wire with 

direct current consists of two parts:
1) known equation (3.13) in the following form: rJH oo  , and 
2) equations (2.10-2.17, 2.25-2.30) obtained above.
The energy flow along the wire's axis zS  is created by the currents 

and intensities directed along the radius and the circles. This energy flow 
is equal to the power released in the load HR  and in the wire resistance. 
The currents flowing along the radius and the circle are also creating heat 
losses. Their powers are equal to the energy flows SSr , , directed along 
radius and circle.

The question of the way by in which the electromagnetic energy 
creates current is considered in [19]. There it is shown that there exists a 
fourth electromagnetic induction created by a change in electromagnetic 
energy flow. Further we must find the dependence of emf of this 
induction from the electromagnetic flow density and from the wire 
parameters. There is a well-known experiment which can provide 
evidence for existence of this type of induction [17].

It is shown that direct current has a complex structure and extends 
inside the wire along a helical trajectory. In the case of constant current 
the density of helical trajectory decreases with the decrease of the 
remaining load resistance. There are two components of the current. The 
density of the first component oJ is permanent of the whole wire section. 
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The density of the second component is changing along the wire section 
so that the current is spreading n a spiral. In cylindrical coordinates 

zr ,,  this second component has coordinates zr JJJ ,,  . They can 
be found as the solution of Maxwell equations.  

With invariable density of the main current in a wire the power 
transmitted by it depends on the structure parameters ( ,  ) which 
influence the density of the turns of helical trajectory. Thus, the same 
current in a wire can transmit various values of power (depending on the 
load).

Let us again look at the Fig 1. On segment AB the wire transmits 
the load energy P. It is corresponded by a certain values of ( ,  ) and 
the density of coils of the current's helical path. On the segment CD the 
wire transmits only small amount of energy. It corresponds to small value 
of   and small density of the coils of current's helical path. 

Naturally, the resistivity of the wire itself is also a load. Thus, as the 
current flows within the wire, the helix of the current's path straightens.

Thus, it is shown that there exists such a solution of Maxwell 
equations for a wire with constant current which corresponds to the idea of

 law of energy preservation
 helical path of constant current in the wire, 
 energy transmission along and inside the wire, 
 the dependence of helical path density on the transmitted 

strength.

Appendix 1 
Let us consider the solution of equations (2.5-2.9) in the form of 

(2.12-2.17). Further the derivatives of r  will be designated by strokes. In 
this case, we rewrite the equations (2.1-2.8) in the following order (2.5, 
2.1, 2.2, 2.3, 2.4, 2.6, 2.7, 2.8) and renumber them:

0)(
)(

)()(
 rj

r
rj

rj
r
rj

zr
r  ,  (1)

    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  ,  (2)

 ,)()(1 rjrhrh
r rz    (3)

  ),()( rjrhrh zr    (4)

  ,0)()(
)(

 rj
r
rhrh

r
rh

z
r 

  (5)
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0)()(1
   rjrj

r z , (6)

  0)(  rjrj zr  , (7)

  0)(
)(

 


r
rjrj

r
rj r . (8)

First, we will solve the group of 4 equations (1, 6, 7, 8) with respect to 3 
unknown functions  rj . From (6) we find:

)()( rjrrjz 


 , (11)

 )()()( rjrrjrjz 
  . (12)

From (7, 12) we find: 

    0)()(  rjrrjrjr 
 ,

or
  0)(

)(
 



r
rjrj

r
rj r . (13)

However, equation (13) is the same as (8). Consequently, equation 
(7) can be excluded from the system of equations (1, 6, 7, 8). The 
solution of the system of equations (1, 6, 8) is given in Appendix 2 and 
has the form of the function  rF  defined therein:

   rFrj   . (14)

)()( rjrrjz 


 , (15)

   )()(1 rjrrjrjr 
 . (16)

Having functions  rj  known we solve the system of 4 equations (2-5) 
with respect to 3 unknown functions  rh . From (3, 4) we find:

  ,)(1)( 





  rjrh
r

rh rz


 (17)

   )()(1 rhrjrh zr  
. (18)

Let us use (17, 18) in (2). So we will find

      0)()()(1)()(1







 

 rjrh
rr

rhrjrhrj
r rzzz





 

or
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   0)()()()()(
2









 rjrrjrjrhrrhrh

r rzzz  . (19)

We substitute (17, 18) into (5). Then we find

   

  0)()()(

)()(1)(1
2


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
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
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

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 
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r
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r
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r

rjrh
rr

zz

rzzrz










or

   

  0)()()(

)()()( 2









 






 

rjrrhrj

rjrh
r

rh
r

rrjrh
r

zz

rzzrz







or

     0)()(

)(2)(11









 

rjrrjrjrrj

rhrh
rr

zrr

zz







. (20)

The right sides (in parentheses) in equations (19) and (20) are zero, since 
they coincide with equations (8) and (1), respectively. Consequently, 
equations (19) and (20) are simultaneously equal to zero only if

0)( rhz . (21)

Thus the required functions )(),(),(),(),(),( rhrhrhrjrjrj zrzr   shall 
be determined by (14, 16, 15, 18, 17, 21), respectively. 

Appendix 2. 
Let us consider equations (1, 6, 8) from Appendix 1 and enumerate 

them:

0)(
)(

)()(
 rj

r
rj

rj
r
rj

zr
r  ,  (1)

0)()(1
   rjrj

r z , (2)

  0)(
)(

 


r
rjrj

r
rj r . (3)

From (2) we find: 

zjr
j 




 . (3a)

From (1, 3a) we find: 
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 
0)()()( 2

 rjr
r
rj

rj
r
rj

r
r





 . (4)

From (3) we find: 

   )()(1 rjrrjrjr 
 , (5)

   )()(21 rjrrjrjr 
 . (6)

From (4-6) we find: 

   
0)()()(21)(

)(1 2








  rjr
r
rj

rjrrjrj
r
rj











. (7)

Simplifying (7) we obtain:

‒ (𝑗φ(𝑟)
𝑟 +

∂𝑗φ(𝑟)
∂𝑟 ) ‒ (2

∂𝑗φ(𝑟)
∂𝑟 + 𝑟

∂2𝑗φ(𝑟)
∂𝑟2 ) + α2𝑗φ(𝑟)

𝑟 + χ2𝑟𝑗φ(𝑟) = 0

or

𝑗φ(𝑟)(α2 ‒ 1
𝑟 + χ2𝑟) ‒ 3

∂𝑗φ(𝑟)
∂𝑟 ‒ 𝑟

∂2𝑗φ(𝑟)
∂𝑟2 = 0

(8)
or

∂2𝑗φ(𝑟)
∂𝑟2 + 3

𝑟
∂𝑗φ(𝑟)

∂𝑟 ‒  𝑗φ(𝑟)(α2 ‒ 1
𝑟 + χ2) = 0

(9)
Equation (9) is the modified Bessel equation - see Appendix 3. In what 
follows we will denote its solution as  rF . So,

   rFrj   , (10)

 rF
dr
drj   )( , (11)

Appendix 3.
Equation (9) from Appendix 2 is a modified Bessel equation, which 

has the following form:
𝑦̈ + 3𝑦̇

𝑥 ‒ 𝑦(α2 ‒ 1
𝑥2 + χ2) = 0

, (1)
When 𝑥→0 equation (1) takes the form:

𝑦̈ + 3𝑦̇
𝑥 ‒ 𝑦χ2 = 0. (2)

His solution is:
𝑦 = 𝐴𝑥β

, (3)

where A is a constant, and β is determined from the equation
β2 + 3β ‒ χ2 = 0, (4)
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i.е. 
β = 1

2( ‒ 3 ± 3 + 4χ2),   β < 0. (5)

Thus, at the first iterations, you can search for a function y in the form 
(3), and then calculate it by (2). Therefore, to calculate by (1, 3), the 
values 𝐴, ∝ , χ must be known.
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1. Introduction
The Milroy Engine (ME) [67] is well known. In "youtube" you can 

view experiments with ME [68-73]. There are attempts to theoretically 
explain the functioning of ME [74-77, 80]. In [80] the functioning of this 
engine is explained by the action of non-potential lateral Lorentz forces. 
In [74] the functioning of this engine is explained by the interaction of 
magnetic flow created by current spiral I in the shaft and modulated 
variable reluctance of the gap between the holders of the bearing with the 
currents inducted in the inner holder of the bearing. Without discussing 
the validity of these theories, it should be noted that they were not 
brought to the stage when they could be used to calculate ME technical 
parameters. But such calculations are necessary before mass production 
begins.

The photographs at the end of the chapter show the various ME 
constructions. Conductive shaft with flywheels can rotate in two 
bearings. Through the outer rings of the bearing and through the shaft an 
electric current is passed. The shift begins to spin up to any side after the 
first jot.

Along with a very simple design, ME has two considerable 
disadvantages: 

1. Low efficiency 
2. Initial acceleration of ME with other engine / motor (in the 

process ME continues rotation in the direction it was jerked for 
starting and increases the speed).
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It should be noted that the latter disadvantage often has no importance. 
For example, ME installed on a bicycle could be accelerated by the 
bicyclist. 

The engine ME presented by English physicist R. Milroy in the 
year 1967 [67]. V.V. Kosyrev, V.D. Ryabkov and N.N. Velman before 
Milroy in 1963 presented an engine of different construction [82]. Their 
engine differs fundamentally from the Milroy engine by the absence of 
one of bearings. The conductive shaft is pressed into the inner ring of the 
horizontal bearing. So the shaft is hanging on the bearing. The electrical 
circuit is closed through the outer ring of the bearing and the brush 
touching the lower face of the shaft. The authors see the cause of 
rotation in the fact that the shaft "rotates as a result of elastic 
deformation of the engine's parts when they are heated by electric current 
flowing through them".

Finally, often the functioning of this engine is explained by the 
Hoover's effect [77, 84]. 

Below we are giving another explanation of this engine's operating 
principle. We show that inside the conductor with current there appears 
a torque. It seems to the author that the Kosyrev's engine cannot be 
explained in another way.

2. Mathematical model
In Chapter 5, we considered solutions of Maxwell equations for 

wire with direct current with density ozJ . The density of this current is the 
same over the entire section of the wire. Maxwell equations in this case 
have the following form:

  0rot J , (а)

  0rot  JH , (b)

  0div J , (с)

  0div H , (d)

and current density ozJ  is not included in equations (а, d) since all 
derivatives of this current are equal to zero.

It was shown that the complete solution of Maxwell equations in 
this case consists of two parts:

1) known equation of the form
rJH ozo  , (1)

2) equations of the form (5.2.10-5.2.17) and (5.2.25-5.2.30) 
obtained in Chapter 5; these equations combine magnetic 
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intensities and current densities with known constants ),(   
and wire radius R .

The currents and intensities determined by these equations are 
formally independent of the given current ozJ . However, they define the 
flow of energy transmitted through the wire, i.e. that capacity which is 
produced by load current.

Below we consider the case when there is DC current directed 
along the circumference, ring current. For example, the coil of the 
solenoid can be represented as a solid ring cylinder with direct current 
around its circumference. We denote the density of this given current as 

oJ . Just as in the case of the given current ozJ  the complete solution of 
Maxwell equations (a-d) in this case consists of two parts:

1) known equation of the form

,o
o

z J
r
H





 (17)

2) equations (5.2.10-5.2.17) and (5.2.25-5.2.30).

Let us consider the source of current oJ . If there is no rotation of 
the rod, the direct current with density ozJ flows through it. Free electrons 
of this current move with some velocity along the rod. When the rod 
rotates, free electrons of this current also acquire the circumferential 
velocity. Thus, there is so called convection current, which is the current 
with density oJ . Aikhenvald has shown [86] that the convection current 
creates also the magnetic intensity. Therefore, the current with density 

oJ  creates the magnetic intensity (17).
Thus, the charges with density q  and velocity v  (velocity of electrons in 

the wire) move along the wire in the current oJ , where
qvJo  . (18)

If the rod rotates with angular rotation , then
rqJ o   (19)

or, with consideration of (4),
vrJrJ oo   )( . (20)

Consequently, in the rotating rod of the Milroy engine the direct 
convection current with density (20) flows along the wire circumference 
together with axial current oJ .

From (17, 20) we find:
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v
rJH o

zo 2

2



. (21)

Further, it will be shown that the solution of equations (1-16) 
implies the existence of driving moment M in the rod. This driving 
moment increases the rotation speed, thereby increasing the convection 
current oJ . Balance occurs when the specified driving moment and the 
braking moment on the engine shaft are equal (at given current ozJ ). This 
phenomenon is analogous to the fact that the currents flowing along the 
wire, under the influence of Ampere force, shift the wire as a whole (in 
ordinary electric motors).

Finally, it is possible to imagine a design where an additional radial 
magnetic intensities orН  is created in the rod.
One can also imagine a design where an additional axial magnetic 
intensities ozН2  is created in the rod.

3. Electromagnetic energy flux
Section 3 of Chapter 5 shows that the electromagnetic flux density 

and Lorentz magnetic force density in DC wire are connected by the 
following relationships:

HES  , (1)

BJHJS 

 , (3)

BJF  , (4)

 SF  , (5)

where ,  - electrical resistivity and magnetic permeability. 
Consequently, in a wire with direct current the density of Lorentz 
magnetic force is proportional to Poynting vector. 

In cylindrical coordinates, the densities of these flows of energy by 
coordinates are expressed by the formula of the form – see (5.3.12):

 
  













































 

orrr

rozrrz

oozz

z

r

HJHJHJ
HJHJHJ

HHJJHJ
HJ

S
S
S

S . (6)

For Milroy engine, this formula is amended due to values оzo JH ,  
and takes the following form:
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 
     
   

    







































roor

zozrroz

oozzozo

z

r

HJJHHJ
HHJHJJ

HHJJHHJJ
HJ

S
S
S

S





  . (7)

According to (5) we can find Lorentz forces acting on volume unit,




































z

r

z

r

S
S
S

F
F
F

F  
 . (8)

3а. Torque
In (3.8), in particular, F  is the rotational force acting on the shaft 

in the volume unit of layer with radius r . Therefore, density of driving 
moment acting on the shaft in the layer with radius r is equal to:

Frr )(M . (9)

From (7, 8) we can find:
    zozozrroz HHHJHJJS 2  , (11)

  
 











zozozr

rоroz

HHHJ
HHJJ

SF
2





 . (12)

From (9, 12) we can find:
  

 











zozozr

rоroz

HHHJ
HHJJ

rFrrM
2

)( 

or, with consideration of (2.21),
  
























 






v
rJHHJ

HHJJ
rrM

o
zozr

rоroz

2
)( 2

2
 . (13)

In Chapter 5 it is shown that 0zH . Then 
  
























 






v
rJHJ

HHJJ
rrM

o
zor

rоroz

2
)( 2

2
 . (14)

Formula (14) determines the density of the torque acting on the 
shaft in a layer with a radius r . Recall from Chapter 5 that

  )cos(. zrjJ rr   , (15)

  )sin(. zrjJ zz   , (16)
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  )cos(. zrhH rr   , (17)
where

   rFrj   , (18)

    )()( rjrrjrjr  , (19)

)()( rjrrjz 


 , (20)

   /)(rjrhr  , (21)

Here the constants  ,  and the Bessel function  rF  are defined in 
Chapter 5. Combining (14-17), we get:

  
  

 
 












































)cos(
2

)cos(
)cos(

)sin(

)(
2

2

z
v

rjrJ
zrjH
Hzrh
Jzrj

rrM

ro

rzo

rоr

oz








 (22)

The total torque is calculated as an integral of the form
dzdrdrMM

zr





,,

)( . (23)

This integral can be represented as the sum of integrals:

654321 MMMMMMM  , (24)

where the summands are defined in Appendix 1.
These relationships allow calculation of the mechanical torque in 

the Milroy engine.
In Appendix 1 it is shown that in the ordinary Milroy engine the 

magnitude of the moment (21) is negligible, if 0 , i.e. there is no 
starting torque. However, when 0roH  and\or 02 zoH  there is a 
significant starting torque.

4. An Additional Experiment
We may propose an experiment in which the previously suggested 

explanations of the reasons for the rotation of Milroy engine are not 
acceptable (in the author's view). We should give the opportunity to a rod 
with current to rotate freely. This can be realized in the following way – 
see Fig. 2. A copper roll with pointed ends is clamped between two 
carbon brushes so that it could rotate. The carbon brushes are needed in 
order that the contacts would not be welded at strong currents. In 
accordance with the theory contained in this paper, in such a structure 
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the shaft must rotate. This will permit to refrain from the consideration 
of several hypothesis for the explanation of Milroy engine functioning.

flywheel

+ -carbon 
brushes copper roll

carbon 
brushes

Fig. 2.

5. About the Law of Impulse Conservation
We need to pay attention to the fact that in the Milroy engine the 

Law of mechanical impulse conservation is clearly violated. This is due to 
the fact that in the rod there exist an electromagnetic impulse with a flow 
of electromagnetic energy. And this once more confirms that the torque 
exists inside the wire.

Appendix 1. Calculation of the torque
We transform (3a.22). Then we get:

   
 

     








































 







)cos(
2

)sin(
)cos()sin(

)(

2

2

zrjH
v
rjrrhJ

HJHzrj
zzrhrj

rrM

rzо
r

ro

rоorоz

rz






 .(1)

The total torque is calculated as an integral of the form

   
 

     

dzdrd

rjH
v
rjrrhJ

HJHrj
rhrj

rM
zr

rzо
r

ro

rоorоz

rz

















































 






,,

2

2

cos(...)
2

sin(...)
cos(...)sin(...)

. (2)

This integral can be represented as the sum of integrals:
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  dzdrdHJrM
zr

rоo 

 

,,
1 , (3)

     dzdrdrhrjrM
zr

rz 

 

,,
2 cos(...)sin(...) , (4)

   dzdrdHrjrM
zr

rоz 

 

,,
3 sin(...) , (5)

  dzdrdrrhJM
zr

ro 

 

,,
4 cos(...) , (6)

  dzdrd
v
rjrrJM

zr

r
o 


 







 


,,

2

5 cos(...)
2

, (7)

  dzdrdrjrHM
zr

rzо 

 

,,
26 cos(...) (8)

or
LRHJdzdrdrHJM rоo

zr
rоo

2

,,
1 



  , (9)

222 )( S
r

r MdrrMM 







  , (10)

333 )( S
r

rrо MdrrMHM 







  , (11)

444 )( S
r

ro MdrrMJM 







  , (12)

455 )(
2 S

r
ro MdrrMJ

v
M 








 


, (13)

4626 )( S
r

rzо MdrrMHM 







  . (14)

where

  









  dzdM

z
S 

 ,
2 cos(...)sin(...) , (15)











  dzdrM

z
S 

 ,
3 sin(...))( , (16)
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









  dzdM

z
S 

 ,
4 cos(...) , (17)

   rhrjrrM rzr )(2 , (18)

 rjrrM zr )(3 , (19)

 rhrrM rr )(4 , (20)

 rjrrM rr
3

5 )(  , (21)

 rjrrM rr )(6 . (22)

The integrals (10-14) include the 
            rhrjrfrjrjrh rzzrr ,,, , (18-22).

It is important to note the following. In the usual Milroye engine 
there is no intensities zoro HH 2, . Moreover, the terms (9, 11, 14) are 
equal to zero, i.e. in a conventional Milrow motor torque

542 MMMM  . (23)

At 0  with only the torque remaining

42 MMM  , (24)
This moment is a starting in the usual Milroy engine and its magnitude is 
negligible. However, when 0roH  and\or 02 zoH , the torque exists, 
even at 0 . Consequently, when 0roH  и\или 02 zoH  there is 
a significant starting torque. 

Photos
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Chapter 5c. Magnetoresistance 

The magnetoresistive effect is known, which consists in the fact 
that the electrical resistance of a material depends on the magnetic 
induction of the magnetic field in which the material is локатед, the so-
called magnetoresistance [114]. Below, we consider a conductor with 
direct current in a magnetic field and show that the existence of 
magnetoresistance directly follows from the solution of Maxwell's 
equations.

Chapter 5 dealt with the solution of Maxwell's equations for a wire 
with direct current. It shows that in a wire with direct current the density 
of the Lorentz magnetic force acting along the wire axis is proportional 
to the Poynting vector - the energy flux density. This force drives 
electrical charges. It is this force that overcomes the resistance of the 
material of the wire to the movement of charges.

Chapter 5a shows the calculation of this force. It is shown that it 
also depends on the intensity of the external magnetic field. 
Consequently, the effect of an external magnetic field manifests itself as a 
change in the resistance of the wire.
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Chapter 5d. The Solution of Maxwell's 
equations for a wire with a constant 

current in a magnetic field

Contents
1. Introduction \ 1
2. Wire with direct current \ 2
3. Wire in a longitudinal magnetic field \ 3
4. Wire in a circular magnetic field \ 4
5. Wire in a transverse magnetic field \ 5
6. Summary \ 7

1. Introduction
Here we look at the wire, which is in a constant magnetic field.

2. Wire with direct current
Chapter 5 deals with Maxwell’s equations for a wire through which 

direct current flows with a density of 𝐽𝑜. The solution obtained there can 
be used without change in this case. It has the following form:

  co.  rjJ rr , (2)

si)(.  rjJ  , (3)

si)(.  rjJ zz , (4)
  co.  rhH rr , (5)

si)(.  rhH  , (6)

si)(.  rhH zz , (7)
)cos(co z  , (8)

)sin(si z  , (9)

where  ,  are some constants, )(),( rhrj  are some functions of the 
coordinate r, namely

   rFrj   , (10)

    )()( rjrrjrjr  , (11)
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)()( rjrrjz 


 , (12)

0)( rhz , (13)
  ,/)(  rjrh r (14)

   /)(rjrhr  , (15)

moreover, the function 𝐹 ∝ (𝑟) is a solution of the modified Bessel 
equation. For small r, this function takes the form

𝑦 = 𝐴𝑥β
, (16)

where A is a constant, and
β = 1

2( ‒ 3 ± 3 + 4χ2),   β < 0. (17)

To calculate using these equations, the quantities 𝐴, ∝ , χ should be 
known. The resulting solution determines the value of energy flux 𝑆 
entering the wire, i.e. power 𝑃 which enters the wire. Thus, the values of 
𝐴, ∝ , χ determine the magnitude of the power 𝑃.

The value of 𝐽𝑜 is determined by the magnitude of the power 𝑃 and 
the load resistance. The existence of a non-zero current density 𝐽𝑜ensures 
the existence of a non-zero solution of the system of Maxwell equations, 
which follows from the equation

,1
z

r JH
rr

H
r
H












 (18)

Indeed, if 𝐽𝑧 exists, then magnetic intensities 𝐻𝑟 and \ or 𝐻φ must 
also exist. At the same time, the Maxwell system of equations must have 
a nonzero solution. However, the constant 𝐽𝑜 is not formally included in 
the solution of these equations. This is explained by the fact that 
𝐽𝑜 creates tension 𝐻φо = 𝐽𝑜𝑟  and both of these values - 𝐻φо,  𝐽𝑜  can be 
excluded from equation (18).

Chapter 5 shows that the density of this energy flow is determined 
(in the SI system) by the formula:

𝑆(𝑟) = ρ(𝑗𝑟(𝑟)ℎφ(𝑟) ‒ 𝑗φ(𝑟)ℎ𝑟(𝑟)), (19)

where ρ is the resistivity of the wire. So, the solution of Maxwell's 
equations in the form of functions 𝑗(𝑟), ℎ(𝑟) determines the energy 
flux density 𝑆(𝑟). Obviously, there is an inverse relationship: 
𝑆(𝑟) defines the functions 𝑗(𝑟), ℎ(𝑟). This inverse problem is a 
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mathematically considered solution, but it is important for us to further 
emphasize that Nature solves this inverse problem.

3. Wire in a longitudinal magnetic field
In Section 2, it was assumed that there is a direct current with a 

density 𝐽𝑜  in the wire. This current is created by the flow of energy 
entering the wire from the end. Suppose now that there is a 
longitudinal magnetic intensity 𝐻𝑧. The existence of a non-uniform and 
non-uniformly distributed along the radius of the longitudinal 
magnetic intensity 𝐻𝑧 ensures the existence of a non-zero solution of the 
system of Maxwell equations, which follows from the equation

,Jr
H

z
H zr 








(1)

Indeed, if there is 
∂𝐻𝑧
∂𝑟 , (since there is a magnetic intensity 𝐻𝑧 

unevenly distributed along the radius), then there must be a magnetic 
intensity 𝐻𝑟 and current density 𝐽φ. Moreover, the Maxwell system of 
equations must have a nonzero solution. It still has the form given in 
section 2.

It follows that in a wire that is in a non-uniform longitudinal 
magnetic field, there is a solution to the Maxwell equations in the form 
given in Section 2. Therefore, there is an energy flow in this wire, the 
density of which is determined by (2.19) The source of this energy flow 
obviously, is the source of magnetic intensity 𝐻𝑧.

This energy flow generates a longitudinal constant current in the 
wire. Thus, there is a conversion of the energy of the longitudinal 
constant magnetic field in the wire into electrical energy, which is 
transferred by direct current along the wire.

Example 1
Consider a solenoid, a metal rod located along the axis of the 

solenoid and closed outside the solenoid. The current in the coil of the 
solenoid creates magnetic intensity in the rod. In accordance with the 
above, a current should appear in the rod.

4. Wire in a circular magnetic field
Now suppose that there is a circular magnetic intensity 𝐻φ 

unevenly distributed along the radius. The existence of such intensity 
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ensures the existence of a non-zero solution of the system of Maxwell 
equations, which follows from the equation

,1
z

r JH
rr

H
r
H












 (1)

Indeed, if there is 
∂𝐻φ
∂𝑟  (since there is a magnetic intensity 𝐻φ 

unevenly distributed along the radius), then there must be a magnetic 
intensity 𝐻𝑟 and \ or current density 𝐽𝑧. Moreover, the Maxwell system of 
equations must have a nonzero solution.

Similarly to the previous one, it follows that in a wire that is in an 
inhomogeneous circular magnetic field, there is a solution to Maxwell's 
equations in the form given in Section 2. Consequently, there is an energy 
flow in this wire, the density of which is determined by (2.19). Energy 
flow, obviously, is the source of magnetic intensity 𝐻φ.

This energy flow generates a longitudinal constant current in the 
wire. Thus, there is a conversion of the energy of the ring constant 
magnetic field in the wire into electrical energy, which is transferred by 
direct current along the wire.

Example 1
In fig. 1 shows a tubular wire 1 inside which a wire 2 passes, 

insulated from wire 1 by a dielectric 3. If current 𝐽2 flows through wire 2, 
then a ring magnetic field 𝐻φ appears in the body of wire 1. In 
accordance with the above, a circular ring magnetic field in wire 1 creates 
a constant current 𝐽1 in this wire. The effect should be stronger if wire 1 
is ferromagnetic.
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J1
Hf

J2

1

23
F

ig. 1.
5. Wire in a transverse magnetic field
Now suppose that there is a transverse magnetic intensity 𝐻𝑟. The 

existence of such a strength ensures the existence of a nonzero solution 
of the system of Maxwell equations, which follows from the equation

,1
z

r JH
rr

H
r
H














Indeed, if 𝐻𝑟 exists, then magnetic intensity 𝐻φ and \ or current 
density 𝐽𝑧 must exist. Moreover, the Maxwell system of equations must 
have a nonzero solution.

Similarly to the previous one, it follows that in a wire that is in a 
circular magnetic field, there is a solution to Maxwell's equations in the 
form given in Section 2. Therefore, there is an energy flow in this wire, 
the density of which is determined by (2.19). The source of this energy 
flow, obviously, is the source of magnetic intensity 𝐻𝑟.

This energy flow generates a longitudinal constant current in the 
wire. Thus, there is a conversion of the energy of the radial constant 
magnetic field in the wire into electrical energy transferred by direct 
current along the wire.

Example 1
In fig. 1 shows an annular wire 1 located in the gap of two 

permanent magnets 2. The magnetic intensity in this gap is the intensity 
𝐻𝑟, which penetrates the wire 1 along the radius. In accordance with the 
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above, the radial magnetic field in wire 1 creates a constant current 𝐽 in 
this wire. The effect should be stronger if wire 1 is ferromagnetic.

Hr

1

2

Hr

J

J

J

Fig. 1.
Example 2
The magnetic intensity 𝐻𝑟 can be created by a permanent ring 

magnet in the wire - the winding of this permanent magnet - see fig. 1 
and fig. 2

Fig. 1 from https://www.youtube.com/watch?v=sPH1WNXMlow.
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Fig. 2 from http://www.inventedelectricity.com/free-energy-generator-
magnet-coil-100-real-new-technology-new-idea-project/

6. Summary
The above shows that
1. a stream of electromagnetic energy is transmitted from a source 

of magnetic field to a wire in a magnetic field,
2. a flow of electromagnetic energy circulates in a magnetic field 

with a magnetic flux - see Chapter 5e.
3. the flow of electromagnetic energy creates an electromotive 

force that moves the charges in the wire [19],
4. while in the wire there is a longitudinal constant current.

The experiments shown in section 5 are often viewed as generators 
of unlimited energy stored in permanent magnets. However, in fact, they 
demonstrate the exact opposite - the limited energy of the permanent 
magnet: the light bulbs gradually go out.
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Chapter 5e. Solving Maxwell's 
equations for a permanent magnet. 

Recovery of magnet energy.

Contents
1. Permanent conductive magnet \ 1
2. Stationary flow of electromagnetic energy \ 2

1. Permanent conductive magnet
Chapter 5d shows that in a wire that is in a longitudinal magnetic 

field, there is an electromagnetic field and streams of electromagnetic 
energy.

Consider a permanent conductive magnet. Obviously, it can be 
identified with a wire in a longitudinal magnetic field. Consequently, in 
such a magnet there is a longitudinal flow of electromagnetic energy. 
Thus, in a permanent magnet, in addition to the magnetic flow, there is 
an electromagnetic flow.

This flow closes through the air and partially disperses. The 
scattering would have led to the loss of energy and the demagnetization 
of the permanent magnet. Why does he save his energy indefinitely?

To answer this question, we recall that the flow of electromagnetic 
energy is an electromagnetic wave, and the stationary flow of 
electromagnetic energy is a standing electromagnetic wave. Consequently, 
a standing electromagnetic wave exists inside and around the permanent 
magnet. In [124], it was shown that a standing electromagnetic wave 
cools the air and thereby attracts heat flux into its area, which increases 
the energy of this wave. Thus, the flow of electromagnetic energy is 
constantly replenished by heat flow.

The heat flow energy may exceed the energy loss due to 
dissipation, but the energy of the permanent magnet cannot exceed the 
energy of the saturated state. The energy of the heat flux at a lower 
temperature may be less than the energy loss due to dissipation and then 
the magnet is demagnetized. The last statement corresponds to reality.

As for the basic assumption about the effect of heat flux on the 
conservation of energy of a permanent magnet, it can be checked with a 
simple (but inaccessible for the author) experiment: we place a 
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permanent magnet with an internal heater in a vacuum chamber and 
make sure that it demagnetizes.

2. Stationary flow of electromagnetic energy
If the magnetic circuit of a permanent magnet is closed with a 

ferrite jumper, then magnetic flux and electromagnetic flux will circulate 
in this circuit. In this case, the term “flow” for a stationary magnetic field 
can only be conditionally used, since the magnetic flux does not have a 
moving speed.

The stationary electromagnetic energy flow is also retained. Its 
existence does not contradict our physical understanding [3]. The 
presence of this flow in a static system was studied by Feynman [13]. He 
provides an example of an energy flow in a system consisting of an 
electric charge and a permanent magnet which are fixed and closely 
spaced. 

Рис. 2. Рис. 3.

Other experiments [38] demonstrating this effect are also available. 
Fig. 2 shows an electromagnet which retains its attractive force after the 
current is switched off. Edward Leedskalnin is assumed to use such 
electromagnets in constructing the famous Coral Castle, see Fig. 3 [38]. 
In these electromagnets (or solenoids), the electromagnetic energy in not 
zero at the instant the current is switched off. This energy can be 
dissipated by radiation and heat loss. However, if these factors are not 
significant (at least at the initial phase), the electromagnetic energy must 
be conserved. With electromagnetic oscillations, the electromagnetic 
energy flow must be induced and propagate WITHIN the solenoid 
structure. This flow can be interrupted by destructing the structure. In 
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this case, according to the energy conservation law, the work should be 
done equal to the electromagnetic energy which dissipates on destruction 
of the solenoid structure. This means that a "destructor" should 
overcome a force. It is this fact that is demonstrated in the above-
specified experiments. 

Mathematical models of similar solenoid structures based on the 
Maxwell equations are examined in [39]. The conditions are identified 
which are to be met to maintain the electromagnetic energy flow for an 
unlimited time period. 
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Chapter 6. Single-Wire Energy 
Emission and Transmission

Contents
1. Wire Emission \ 1
2. Single-Wire Transmission of Energy \ 3
3. Experiments Review \ 5

1. Wire Emission
Once again (as in Chapter 2), we deal with an AC low-resistance 

wire. It incurs radiation loss, though loses no heat. Emission comes from 
the side surface of the wire. Vector of emission energy flux density is 
directed along the wire radius and has S value, see 2.4.4 – 2.4.6 in 
Chapter 2. So,

  



,

2

r
rr ddrsisS , (1)

where
  hehes zzr  (2)

or, with regard to formulas given in the Table 1 of Chapter 2,

  22
2

2 22)()(  
 









 RRAReRRhRes zr , (3)

where R means a wire radius. In addition, consider formula (see (32) in 
the Appendix 1 of Chapter 2).


c

  или 
c

sign  )( , где 1)( sign . (4)

Thus, we obtain:
12

22)(  


 R
c

Asignsr , (5)

From (1,5) we obtain:






 



 12
2

212
2 2)(2)(    R

c
AsigndsiR

c
AsignSr .

With additional (1.4.2), we finally obtain:
12

2

2
)(  


 RAsignSr . (6)
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Obviously, the value must be positive, as emission does exist. By 
the way, this fact disproves a well-known theory of an energy flux 
propagating beyond the wire and entering it from the outside.

As value (6) is positive, condition
1)()(   signsign , (7)

must assert, i.e. values  ,  must be of opposite sign. In this 
connection, for later use we take formula of the type

12
2

2
 


 RASr . (8)

The formula calculates the amount of energy flux emitted by the wire of 
unit length. Correlate this formula with the one (2.4.15) for the density of 
energy flux flowing along the wire: 

  
 

12
2

128
4cos1 




 




R
cA

S z . (9)

Consequently, 
 

  



4cos1

124




cS

S

z

r . (10)

So, the wire emits a portion of a longitudinal energy flux of

zr SS   . (11)

Let energy flux is zoS  in the beginning of wire. Energy flux the 
wire emits along the L length, can be obtained from the following 
formula

 LzorL SS  1 . (12)

Energy flux remaining in the wire
  LzorLzozL SSSS  11 . (13)

Thus, we can calculate the length of wire where the flux remains 

zozL SS   . (14)

The length can be found from the expression
  L  11 ,

i.e.
     1ln1lnL . (15)

Example 1. With 1,1,2.1   , we obtain c 10 . If 
3103   so will 6103 1010310103  . The length of wire that 

keeps 1% of initial flux makes 
    99501ln01.01ln  L  sm.
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2. Single-Wire Transmission of Energy
A body of convincing experiments show the transmission of 

energy along one wire.
1. [29] analyses a transmitting antenna of long wire type that finds 

its use in amateur short-wave communication. The author says the 
antenna has “an adequate circular pattern that allows the communication to be 
established almost in all directions”, whereas in the direction of wire axis “a 
considerable amplification develops and grows as antenna length increases… As the 
length of the increases, the main lobe of the pattern tends to approach antenna axis as 
close as possible. In the process, emission directed towards the main lobe gets stronger”. 
Both from the fact that long wire emits in all directions and from the 
previous part it follows that energy flux flows along the wire. It is 
significant that energy flux exists without any external electrical voltage at 
the wire tips.

1

3

4

2

2

3

4

5

5

6

7

Рис. 1. 

2. S.V. Avramenko’s long-known experiment in single-wire 
transmission of electrical energy, also named Avramenko’s fork. First, it 
was described in [30] and then in [31] -see Fig.1. [30] reported that the 
experimental arrangement included a generator 2 up to 100 kWt of 
power to generate 8 kHz voltage that went to Tesla’s transformer. One 
tip of the secondary winding was loose, while the other end connected 
Avramenko’s fork. Avramenko’s fork was a closed circuit that included 
two series diodes 3 and 4 , whose common point was connected to the 
wire 1, and a load, with capacitor 5 connected in parallel to it. Several 
incandescent lamps – resistance 6 (alternative 1) or discharger (alternative 
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2) formed the load. Open circuit allowed Avramenko to transmit about 
1300 Wt of power between the generator and the load. Electrical bulbs 
glowed brightly. Wire current was very weak, and a thin tungsten wire in 
the line 1 did not even run hot. That was the main reason why the 
findings of the Avramenko’s experiment were difficult to explain.

On the one hand, the structure offers quite an attractive method of 
electrical energy transmission, whereas, on the other hand, it apparently 
violates laws of electrical engineering. Since then, many authors 
experimented with that structure and offered theories to explain 
phenomena observed – see e.g. [32-34]. However, no theory has been 
universally accepted. the wire tips. Here also energy flux exists without 
any external electrical voltage at the wire tips. 

3. Laser beam should also be included in this list. Laser obviously 
directs energy flux into the laser beam. The energy, that may be rather 
considerable, incurs almost no loss when transmitted along the laser 
beam and, on its exit, is converted into the heat energy. 

4. Known are experiments by Kosinov [35] that showed the 
glowing of the burned incandescent lamps. It was reported that 
“incandescent lamps burned most often in more than two places, with not only spiral, 
but current conductors of the lamp burning. With the first circuit break took place, 
over some time lamps light was even brighter than one produced before burning. The 
lamps kept glowing until burning of the next portion of the circuit. In this experiment, 
inner circuit of one lamp burned in as many as four places! Spiral burned in two 
places, as well as both lead electrodes in the lamp. The lamp went off no sooner than 
the fourth leg of the circuit burned, i.e. the electrode where the spiral is attached”. 
Here, too, energy flux exists with no external electrical voltage at the wire 
tips. It is significant that burned lamp consumes even more power 
sufficient to burn the next leg of the spiral.

5. There is an experiment known for charging a capacitor through 
the Avramenko’s plug [66]. In this experiment, the circuit diagram shown 
in Figure 1 above is used but there is no resistor 6. The author of the 
experiment notes that the capacitor is charged from zero through the 
Avramenko’s plug slowly (3 volts per 2 hours) but faster than without 
this plug (charge without plug is the charge of the capacitor together with 
the capacitance between the ground and one of the capacitor plates). 
Increasing the length of the wire up to 30 m does not affect the result. 
This experiment indicates that direct current of the charge flows along 
one wire.
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Consideration of equation for the electromagnetic wave in the wire 
cannot reveal physical nature of the wave existence: any component of 
intensity, current and density of energy flux can be seen as an exposure 
governing all the rest. A longitudinal electrical intensity is accepted to be 
such an exposure. Facts reported earlier testify possible exceptions, e.g. 
when exposure is an energy flux at the wire inlet. In [19, 17] show that 
energy flux can be viewed as fourth electromagnetic induction. 

Thus, inlet energy flux propagates along the wire, and, (almost with 
no loss, see pp. 2, 3, 4 above) reaches its distant end. Current can 
propagate alongside with the energy flux. Yet, this correlation does not 
need to be (see pp. 2, 3 above). It is significant output energy flux can be 
rather considerable and make a part of the load. The lack of energy flux –
to-current correlation was approached and explained in the Section 2.5.

3. Experiments Review
Return to "long-wire" antenna. It emits in all directions. As is 

obvious from the Section 1, rS energy flux emitted makes a part of a 
longitudinal zS  energy flux, see (1.11). Their coefficient of 
proportionality  relies, in its turn, on frequency  - see Example 1. 
Because of this, reduction of frequency  drops emission of energy flux 

rS .
Section 2.5. considered and correlated currents and energy fluxes in 

the wire. It showed that, generally, currents and energy fluxes inside the 
wire exist as "jets" of opposite direction. This fits with the existence of 
active and re-active energy fluxes.
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Formation of such "jets" may be assumed in the “long wire”. If 
“long wire” emits all the incoming energy, then one of the fluxes (active 
power flux) prevails, and the generator wastes its energy to support it. If 
“long wire” does NOT emit, energy flux flowing in one direction returns 
the opposite way, the generator SAVES the energy (re-active power flux 
circulates), and no current forms in the wire. Clearly, there are some 
intermediate cases when “long wire” emits only a part of energy it 
receives.

With some combinations of parameters, total currents in opposing 
jets have are equal in absolute value, and, as well as total energy fluxes of 
opposing jets. For the sake of reader’s convenience, Fig.9 from the 
Section 4 is replicated above. It shows the functions of the opposing jets:

plusS - energy flux jet directed from the energy source;
minusS  - energy flux jet directed to the energy flux;

For illustration, functions plots are shown with the opposite sign. They 
obey the following relationships between integrals of sectional area, Q, of 
the wire:

 
QQ

dQSdQS minusplus ,

 
QQ

dQJdQJ minusplus .

As follows from experiments (рассмотренных above), currents 
and jets can complete at the broken wire – see Fig.3, where 1 means a 
wire, 2 means a direct “jet”, 3 means a reverse “jet”, and 4 means a 
closing circuit. In this case, there arises the question of the nature of 
electromotive force that makes the current to overcome the spark gap. 
[19, 17] show that energy flux can be viewed as fourth electromagnetic 
induction. 

1 2

3 4
Рис. 3.
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Prominent experiments by Kosinov [35] evidently prove the 
hypothesis offered: the arch that forms at the broken spiral is to have a 
beginning and an end. Electromotive force should be applied between 
them. When expanding arch reaches the next leg of the spiral, this leg, 
together with connecting arch, joins a long line etc. Kosinov observed as 
many as eight such legs. 

Avramenko’s fork is a circuit that includes two series diodes and a 
load – see Fig.1. The circuit forms the arch shown in Fig.3. An air gap of 
discharger 7 can serve as a load, an equivalent of arch from Kosinov’s 
experiments. Resistor 6 – energy receiver in single-wire energy 
transmission system – can, too, serve as a load. Wire 1 of this structure 
can be identified with “long wire”. In this case (at low frequency of 8 
kHz) the wire 1 does not emit. Consequently, it carries two opposing 
energy fluxes but no current. 

Which means single-wire energy transmission follows from 
Maxwell’s equations without any contradiction. 

6-7



Chapter 7. The solution for the capacitor in the constant circuit.

Chapter 7. The solution of Maxwell's 
equations for the capacitor in the 

constant circuit. The nature of the 
potential energy of the capacitor.

Оглавление
1. Introduction \ 1
2. The flow of energy \ 2
3. Intensities \ 4
4. Discharge of capacitor \ 5
Appendix 1 \ 6
Appendix 2 \ 6

1. Introduction
A charged capacitor always discharges after some resistance R, 

even if there is no shunt resistance. Even in vacuum, the capacitor is 
discharged due to the fact that it radiates energy, which can also be 
considered as the existence of some leakage resistance. In this case, a 
stream of electromagnetic energy propagates along the capacitor, which is 
equal to the power of thermal losses in the resistance R. Therefore, an 
electromagnetic field must exist in the capacitor, in which there is a 
longitudinal electric intensity and currents. Next is the solution of the 
Maxwell equations that satisfies these conditions.

If there are energy flows in a capacitor, magnetic intensities must 
exist. In this case, Maxwell's equations for a charged capacitor in the 
system of cylindrical coordinates zr ,,   have the following form:

01














z
EE

rr
E

r
E zrr


 , (1)

1
𝑟

∂𝐸𝑧
∂φ ‒

∂𝐸φ
∂𝑧 = 0

,  (2)

7-1



Chapter 7. The solution for the capacitor in the constant circuit.

∂𝐸𝑟
∂𝑧 ‒

∂𝐸𝑧
∂𝑟 = 0

, (3)
𝐸φ
𝑟 +

∂𝐸φ
∂𝑟 ‒ 1

𝑟
∂𝐸𝑟
∂φ = 0

, (4)

01














z
HH

rr
H

r
H zrr


 , (5)

1
𝑟

∂𝐻𝑧
∂φ ‒

∂𝐻φ
∂𝑧 = 0

, (6)
∂𝐻𝑟
∂𝑧 ‒

∂𝐻𝑧
∂𝑟 = 0

, (7)
𝐻φ
𝑟 +

∂𝐻φ
∂𝑟 ‒ 1

𝑟
∂𝐻𝑟
∂φ = 0

. (8)
We will look for unknown functions in the form

 corhH rr . , (9)

sirhH )(.   , (10)

sirhH zz )(.  , (11)

 sireE rr . , (12)

coreE )(.   , (13)

coreE zz )(.  , (14)

where )(),( rerh  are some functions of coordinate r ,
)cos( zco   , (15)

)sin( zsi   , (16)

where, in turn,  ,,  are some constants. 

2. The flow of energy
Also, as in Chapter 1, the energy flux densities by coordinates are 

determined by the formula

𝑆 = [𝑆𝑟
𝑆φ
𝑆𝑧

] = η(𝐸 × 𝐻) = η[𝐸φ𝐻𝑧 ‒ 𝐸𝑧𝐻φ
𝐸𝑧𝐻𝑟 ‒ 𝐸𝑟𝐻𝑧
𝐸𝑟𝐻φ ‒ 𝐸φ𝐻𝑟

]
(1)

or, taking into account the previous formulas,
𝑆𝑟 = η(𝑒φℎ𝑧 ‒ 𝑒𝑧ℎφ)𝑐𝑜 ∙ 𝑠𝑖

(2)
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𝑆φ = η(𝑒𝑧ℎ𝑟𝑐𝑜2 ‒ 𝑒𝑟ℎ𝑧𝑠𝑖2) (3)
𝑆𝑧 = η(𝑒𝑟ℎφ𝑠𝑖2 ‒ 𝑒φℎ𝑟𝑐𝑜2) (4)

Further, it will be shown that these densities of energy flow to 
satisfy the law of energy conservation, if

ℎ𝑟 = 𝑘𝑒𝑟, (5)
ℎφ =‒ 𝑘𝑒φ, (6)
ℎ𝑧 =‒ 𝑘𝑒𝑧.

(7)
From (2, 6, 7) it follows that

𝑆𝑟 = η( ‒ 𝑒φ𝑘𝑒𝑧 + 𝑘𝑒𝑧𝑒φ)𝑐𝑜 ∙ 𝑠𝑖 = 0, (8)
i.e. no radial flow of energy. From (3, 5, 7) it follows that

𝑆φ = η(𝑒𝑧𝑘𝑒𝑟𝑐𝑜2 + 𝑘𝑒𝑟𝑒𝑧𝑠𝑖2) = η𝑘𝑒𝑟𝑒𝑧, (9)
i.e. the density of the energy flux along a circle at a given radius does not 
depend on time and other coordinates. From (5-7) it follows that

𝑆𝑧 = η𝑘𝑒𝑟ℎφ(𝑠𝑖2 + 𝑐𝑜2) = η𝑘𝑒𝑟ℎφ, (10)
i.e. the vertical energy flux density at a given radius does not depend on 
time and other coordinates. These statements were the purpose of 
assumptions (5-7).

Thus, in a charged capacitor
1. There is no radial flow of energy.
2. The flow of energy along the axis of the capacitor is equal to the 

active power consumed during the discharge of the capacitor.
3. There is a flow of energy around the circumference.

Consequently, in a charged capacitor there is a stationary flow of 
electromagnetic energy, and that energy that is contained in a capacitor 
and which is generally considered to be electrical potential energy is 
electromagnetic energy stored in a capacitor in the form of a stationary 
flow. It is in this flow that the electromagnetic energy stored in the 
condenser circulates. Consequently, the energy that is contained in the 
capacitor and which is commonly thought of as electric potential energy 
is electromagnetic energy stored in the condenser as a steady flow.

The experiment is known, which is (in our opinion) the 
indisputable proof that the energy of a capacitor is stored in a dielectric 
[122]. For experiments, the installation was made of two capacitors, 
between which the dielectric moves. As a result, in one capacitor the 
dielectric is charged with energy from a high-voltage source, and from 
the other capacitor this energy is extracted - the capacitor discharges 
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through the discharger. The author of the experiment explains this 
phenomenon by charge transfer in a dielectric. This is not surprising: the 
question of where the charge is stored is still being debated. Similar, but 
much less spectacular experiments, have so far been explained by the fact 
that a film of moisture retains charge on the surface of the dielectric after 
the removal of the metal plate [123]. But how this film manages to arise 
and how water manages to charge - this issue is not considered.

3. Intensities
Equations (1.1-1.16) and (2.5-2.7) take the form:

𝑒𝑟
𝑟 + 𝑒̇𝑟 ‒

𝑒φ
𝑟 α ‒ χ𝑒𝑧 = 0

, (1)

‒
𝑒𝑧
𝑟 α + 𝑒φχ = 0

,  (2)
‒ 𝑒̇𝑧 + 𝑒𝑟χ = 0, (3)

𝑒φ
𝑟 + 𝑒̇φ ‒

𝑒𝑟
𝑟 α = 0

, (4)

𝑘
𝑒𝑟
𝑟 + 𝑘𝑒̇𝑟 ‒ 𝑘

𝑒φ
𝑟 α ‒ 𝑘χ𝑒𝑧 = 0

, (5)

‒ 𝑘
𝑒𝑧
𝑟 α + 𝑘𝑒φχ = 0

, (6)
𝑘𝑒̇𝑧 ‒ 𝑘𝑒𝑟χ = 0, (7)

‒ 𝑘
𝑒φ
𝑟 ‒ 𝑘𝑒̇φ + 𝑘

𝑒𝑟
𝑟 α = 0

. (8)
It can be seen that equations (1-4) and (5-8) coincide. Therefore, it 

suffices to solve equations (1-4). Appendix 1 shows the solution of the 
system of equations (1-4). It has the following form:

𝑒̈𝑧 +
𝑒̇𝑧
𝑟 ‒ 𝑒𝑧χ2 ‒

𝑒𝑧
𝑟2α2 = 0.

(9)

This equation is a modified Bessel equation and its solution 𝑒𝑧 is 

considered in Appendix 2. The function 𝑒̇𝑧 is also considered there

If 𝑒𝑧, 𝑒̇𝑧 are known, you can find 𝑒𝑟,𝑒φφ by (2, 3). Folding (2, 3), 
we find
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При известных 𝑒𝑧, 𝑒̇𝑧 можно найти 𝑒𝑟,𝑒φ по (2, 3). Складывая 
(2, 3), находим:

‒
𝑒𝑧
𝑟 α ‒ 𝑒̇𝑧 + (𝑒φ + 𝑒𝑟)χ = 0

, (10)
Subtracting (3) from (2), we find:

‒
𝑒𝑧
𝑟 α + 𝑒̇𝑧 + (𝑒φ ‒ 𝑒𝑟)χ = 0

, (11)
Adding and subtracting (10, 11), we find:

𝑒φ =
𝑒𝑧
𝑟

α
χ, (12)

𝑒𝑟 =
𝑒̇𝑧
χ .

 (13)
The equations (9, 12, 13, 2.5-2.7) define functions )(),( rerh , and 

these functions, together with constants  ,, , determine electrical 
and magnetic intensities (1.9-1.14)

It follows that in a charged capacitor there are electrical and 
magnetic intensities. Therefore, it can be argued that there is an 
electromagnetic field in a charged capacitor, and the mathematical 
description of this field is a solution to Maxwell's equations.

Experiments on the detection of a magnetic field between the 
plates of a charged capacitor using a compass [49, 50] are known. In 
accordance with the above, only the location of the compass needle 
perpendicular to the radius of the circular capacitor should be observed 
in the circular capacitor. The deviation of the arrow observed in these 
experiments from the axis of the capacitor can be explained by the 
nonuniformity of the charge distribution over the square plate.

4. Discharge of capacitor
As before, in chapters 1 and 5 we consider the velocity of the 

energy. The concept of Umov [81] is generally accepted, according to 
which the energy flux density s  is the product of energy density w  and 
energy velocity ev :

evws  . (6)

The energy of the capacitor

2
W

2CU
e  , (7)
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and energy density

bd
eWw e  . (8)

where С,U,b,d  is capacity capacitor voltage, plate area and dielectric 
thickness, respectively, and capacity of condenser

dbС   . (9)
When the capacitor is discharged to the resistor R , the energy flow 

to the resistor is equal to the power released in the resistor, i.e.

R
UUIPS

2

 . (10)

If the capacitor is connected to the load by the entire surface of the 
plates, then the energy flux density

bR
U

b
S 2

s  , (11)

and power of the source
sbP  . (12)

Then the velocity of moving of energy (7) through the capacitor

CR
d

bd
CU

bR
U

bdbR
U

w
e 2

2
Wsv

222

e

 . (13)

or, taking into account (9),

𝑣φ = 2𝑑2

ε𝑏𝑅,
(14)

i.e. this speed does not depend on voltage! It can have a value that is 
substantially less than the velocity of light.

Appendix 1
Consider the solution of the system of equations (3.1, 3.2, 3.3) 

from section 3. After substituting 𝑒φ from (3.2) and 𝑒𝑟 from (3.3) into 
(3.1), we find:

𝑒̈𝑧 +
𝑒̇𝑧
𝑟 ‒ 𝑒𝑧χ2 ‒

𝑒𝑧
𝑟2α2 = 0.

(1)
Now we consider the solution of the system of equations (3.2, 3.3, 

3.4) from section 3. After substituting 𝑒φ from (3.2) and 𝑒𝑟 from (3.3) 
into (3.4), we again find (1). Consequently, the solution of the four 
equations (3.1-3.4) has the form (1).
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Appendix 2.
Known modified Bessel equation, which has the following form:

𝑦̈ + 𝑦̇
𝑥 ‒ 𝑦(1 + ν2

𝑥2) = 0
, (1)

where   is the order of the equation. With a valid argument, it has a 
valid solution. This solution and its derivative can be found numerically.

Equation (3.9)

𝑒̈𝑧 +
𝑒̇𝑧
𝑟 ‒ 𝑒𝑧(χ2

2 + α2

𝑟2) = 0
(2)

in section 2 similar to equation (1), its solution and its derivative can also 
be found numerically.

When 𝑟→0 equation (2) takes the form:

𝑒̈𝑧 +
𝑒̇𝑧
𝑟 ‒ 𝑒𝑧

α2

𝑟2 = 0
. (3)

His solution is:
𝑒𝑧 = 𝐴𝑟β

, (4)

where A is a constant, and β is determined from the equation
β2 + β ‒ α2 = 0, (5)

i.е. 

β = 1
2( ‒ 1 ± 1 + 4α2),   β < 0

. (6)

Thus, at the first iterations, you can search for a function 𝑒𝑧  in the 
form (4), and then calculate it by (2). 
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Chapter 7a. Electrically conductive 
dielectric capacitor

Contents
1. Introduction \ 1
2. Condenser charge by longitudinal magnetic field \ 1
3. Condenser charge by circular magnetic field \ 3
4. The density of electrical energy \ 4
Appendix 1 \ 5

1. Introduction
Here (unlike Chapter 7), consider a capacitor with a conductive 

dielectric.

2. Condenser charge by longitudinal magnetic 
field
Chapter 5d shows that in a wire that is in a non-uniform 

longitudinal magnetic field, a longitudinal direct current is created. 
Consequently, a constant current is also generated in a capacitor with a 
conductive dielectric. This current charges the capacitor. In other words, 
the capacitor is charged in an external inhomogeneous magnetic 
field.

Fig. 1.
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This phenomenon is detected experimentally. In [116] describes 
the construction shown in Fig. 1, which shows one of the options for the 
practical implementation of this phenomenon. Two insulating spacers 2 
and metal foil 3 are placed in the inhomogeneous magnetic field of 
conductive magnets 1. Magnets 1 and foil 3 act as electrodes A, B and C. 
A constant potential difference that arises at the time of creation of this 
structure is fixed between electrodes AB and CB.

Fig. 2.

In [125] an experiment is described (see Fig. 2), where its author 
checks the voltage on several structures:

1) single disk neodymium magnet (NM)
2) several NM,
3) ferrite disk (FD),
4) ferrite disc magnet (FD-magnet),
5) a stack of blocks FD-magnets.
In these constructions, ferrite FD is a conductive dielectric. The 

author notes that
1. in 1) there is no voltage
2. in 2)-4) there is a voltage
3. in 4) the voltage is greater than in 3),
4. in 5) the voltage is greater than in 4),
5. The voltage decreases with time, but is restored in the next 

experiment.
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Such a scheme operates as follows. At some point in time, the 
capacitor under the influence of magnets accumulates magnetic energy 
𝑊𝑚 and charges up to voltage 𝑈, i.e. acquires electrical energy 𝑊𝑐. Next, 
the capacitor is discharged through its own internal resistance R. In this 
case, the voltage on the plates decreases. However, from the magnetic 
energy, it is again charged to the voltage U. Thus, this process can be 
considered as a constant discharge of a capacitor, the voltage on which is 
maintained by an external source of energy.

Formal relations are discussed in Appendix 1.

3. Condenser charge by circular magnetic 
field
Chapter 5d shows that a longitudinal constant current is created in 

a wire that is in a circular magnetic field. Consequently, a constant 
current is also generated in a capacitor with a conductive dielectric. This 
current charges the capacitor. In other words, the capacitor is charged 
in an external circular magnetic field.

Thus, if a conductor with a constant current passes through a 
capacitor, a longitudinal intensity arises in the capacitor.

Example 1
Consider the construction shown in fig. 3, which shows a capacitor 

with a conductive dielectric 1 and plates 2. This capacitor has a hole 
through which the wire 3 passes. If a current 𝐽 passes through the wire, a 
circular magnetic field with an intensity of 𝐻φφ is created in the capacitor. 
In accordance with the above, a longitudinal constant current (directed 
parallel to the current in the wire) is created in the conductive dielectric. 
This current passes through an external resistance 𝑅.

Such a scheme operates as follows. At some point in time, the 
capacitor under the influence of current 𝐼 accumulates magnetic energy 
𝑊𝑚 and charges up to voltage 𝑈, i.e. acquires electrical energy 𝑊𝑐. Next, 
the capacitor is discharged through its own internal resistance R. In this 
case, the voltage on the plates decreases. However, from the magnetic 
energy, it is again charged to the voltage 𝑈. Thus, this process can be 
considered as a constant discharge of a capacitor, the voltage on which is 
maintained by an external source of energy.

Formal relations are discussed in Appendix 1.
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1

R
2

J

Hf
3

Рис. 3.

4. The density of electrical energy
It is known that oxide-semiconductor and electrolytic capacitors 

have a very large specific capacity. The electrolyte or semiconductor 
serves as a dielectric in such capacitors. Such a dielectric is electrically 
conductive. The dielectric constant of such dielectrics is about 3 times 
greater than the dielectric constant of ordinary (non-conductive) 
dielectrics. However, this is impossible to explain a very large increase in 
specific capacity. It is also known that the specific capacitance increases 
with decreasing resistance. Previous results allow us to explain why 
conduction increases the capacitance of a capacitor.

Chapter 5 shows that at a constant density of the main current in 
the wire, the power transmitted through it depends on the structure 
parameters ( ,  ), i.e. from the density of the screw path of current: as 
the parameter   decreases, the power increases and the density of the 
screw path of current increases. In this case, the total length of the 
trajectory increases. Likewise, the length of the line on which the electric 
intensity is proportional to this current increases. But capacitance is 
proportional to the square of the length at which the electric intensity 
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exists. Consequently, the capacity of the wire increases with increasing 
density of the screw current path, i.e. with increasing transmit power. 
Exact relationships between electrical energy and heat power can be 
found from the relationships found in Chapter 5 - see (2.25-2.30, 3.14) 
and Appendix 3. Since electrical energy is proportional to capacitance, 
then the capacitance of the wire can be found from these relationships.

In a conductive capacitor equivalent to a wire, all thermal power is 
released in the capacitor itself. Consequently, the heat output from the 
condenser substantially enhances the capacitance of the capacitor.

Appendix 1.
Consider the formal relations for sections 2 and 3. Denote:

P is the power consumed by the capacitor load,
𝑃1 is the power of the current source I,
ρ is the resistance of the wire (in section 2) or the windings of 

electromagnets (in section 3),
L is the inductance of the capacitor,
𝑊𝑐, 𝑊𝑚 is electric and magnetic energy of the capacitor,
𝑃2  is power loss in the wire,
𝑟 is the apparent resistance of the wire (in section 2) or the 

windings of electromagnets (in section 3) are the load 
resistance for the current source I.

We have:
𝑃2 = 𝐼2ρ, (1)
𝑃 = 𝑈2𝑅, (2)
𝑊𝑚 = 𝐿𝐼2 2, (3)
𝑊𝑐 = 𝐶𝑈2 2, (4)

𝑃1 = 𝐼2𝑟 = 𝑃 + 𝑃2 = 𝑈2𝑅 + 𝐼2ρ, (5)
Then

𝑟 = 𝐼2

𝑃1
= 𝑈2𝑅

𝐼2 + ρ
. (6)

Obviously, for consistent work, the time constants of inductance 
charge circuit and capacitor discharge circuit must coincide, i.e.

𝐿 ρ = 𝑅𝐶. (7)
Then

𝑅 = 𝐿
ρ𝐶 (8)

It is known that for the torus
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𝐿 = μ𝑞
𝑙 (9)

where
μ is the absolute magnetic permeability of the torus,
𝑞 is the cross-sectional area of the core,
𝑙 is the length of the average magnetic field line of the torus.

Obviously
𝑞 = 𝐷𝑑 2, (10)

𝑙 = π𝐷, (11)
where D is the diameter of the torus, d is the height of the torus. Then 
from (9-11) we find:

𝐿 = μ𝑑
2π (13)

Capacitor capacitance
𝐶 = επ𝐷2

4𝑑 (14)
Then from 8, 13, 14 we find:

𝑅 = ( μ𝑑
2πρ) (επ𝐷2

4𝑑 ) = 2μ𝑑2

π2ε𝐷2ρ (15)
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The first solution. Maxwell's equations in 
spherical coordinates in the absence of 
charges and currents.

1. Solution of the Maxwell equations
Fig. 1 shows the spherical coordinate system (  ,, ). Expressions 

for the rotor and the divergence of vector Е in these coordinates are 
given in Table 1 [4]. The following notation is used:

E - electrical intensities, 
H - magnetic intensities, 
  - absolute magnetic permeability,
  - absolute dielectric constant. 

The Maxwell’s equations in spherical coordinates in the absence of 
charges and currents have the form given in Table. 2. Next, we will seek a 
solution for 0,0   HE  and in the form of the functions 

HE, presented in Table 3, where the function  g  and functions of 

the species  E  are to be calculated. We assume that the intensities 

HE,  do not depend on the argument  . Under these conditions, we 
transform Table 1 in Table 3a. Further we substitute functions from 
Table 3 in Table 3a. Then we get Table 4.

Substituting the expressions for the rotors and divergences from 
Table 4 into the Maxwell's equations (see Table 2), differentiating with 
respect to time and reducing the common factors, we obtain a new form 
of the Maxwell's equations - see Table 5.

Consider the Table 5. From line 2 it follows:

0





 HH

, (2)

0 
 E
c

H . (3)

Consequently,






h
H  , (4)
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 
 E
c

H  , (5)

where h  is some constant. Likewise, from lines 3, 5, 5 should be 
correspondingly:






h
H  , (6)

 
 E
c

H  , (7)






e
Е  , (8)

 
 Н
c

Е  , (9)






e
Е  , (10)

 
 Н
c

Е  . (11)

It follows from (5) that

 
 HcE  , (12)

and from a comparison of (11) and (12) it follows that





 c
c


or


c

 . (13)

The same formula follows from a comparison of (7) and (9).
It follows from (5, 13) that

 
 EH  , (14)

and it follows from (14, 4, 11, 12) that




 eh  , (15)

Similarly, it follows from (7, 13) that
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 
 EH  , (16)

and it follows from (16, 6, 8, 12) that




 eh  . (17)

From a comparison of (15) and (17) it follows that

q
e
e

h
h









, (18)










 
e
h

e
h

. (19)

Further we notice that lines 1, 4, 7 and 8 coincide, from which it 
follows that the function  g  is a solution of the differential equation

 
 

   0
tg











 gg

. (20)

In Appendix 1 it is shown that the solution of this equation is the 
function

   
sin
1



А

g , (20а)

where A is a constant. We note that in the well-known solution 
    sing . It is easy to see that such a function does not satisfy 

equation (20). Consequently,
in the known solution 4 Maxwell's equations with 
expressions  Erot ,  Нrot ,  Ediv ,  Нdiv  are not 
satisfied.

Thus, the solution of the Maxwell's equations for a spherical wave 
in the far zone has the form of the intensities presented in Table 3, where






h
H  , 






h
H  , 






e
Е  , 






e
Е  (21)


c

    (см. 13),      
sin
1



А

g    (см. 20а)

and the constants  eehh ,,,
 
satisfy conditions
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q
e
e

h
h









   (см. 18),   










 
e
h

e
h

.   (см. 19)

From Table. 3 it follows that
the same (with respect to the coordinates   and  ) 
electric and magnetic intensities are shifted in phase by a 
quarter of the period.

This corresponds to experimental electrical engineering. In Fig. 2 shows 
the intensities vectors in a spherical coordinate system.





E H

H

E


Fig. 2.

3. Energy Flows
Also, as in [1], the flow density of electromagnetic energy - the Poynting 

vector is
HES  , (1)

where 
 4c . (2)

In spherical coordinates  ,,  the flow density of 
electromagnetic energy has three components  SSS ,,

 
directed along 

the radius, along the circumference, along the axis, respectively. They are 
determined by the formula

 























































HEHE
HEHE
HEHE

HE
S
S
S

S . (4)

From here and from Table 3 it follows that
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  
   























2

2

)cos(

)sin(

0
0

tgHE

tgHE
S

S
S















. (5)

It follows from (1.9, 1.11) that

 2 
 Н
c

НЕ  , (6)

 2 
 Н
c

НЕ  . (7)

It follows from (6, 7, 1.4, 1.6) that

  2
2 1



 h

c
НЕ  , (8)

  2
2 1



 h

c
НЕ  . (9)

From (5, 8, 9) we obtain:

 
   
    



















22

22

2
2

)cos(

)sin(1
th

th
c

gS










 . (9)

Further from (9, 1.13, 1.18) it follows that

 
   
    



















22

22

2
2

)cos(

)sin(1
tqh

th
gS











 , (10)

where q is a previously undefined constant. If we take
1q , (10a)

then we get

  2

2
2


 



h
gS  . (11)

We also note that the surface area of a sphere with a radius   is equal to 
24 . Then the flow of energy passing through a sphere with a radius   

is

𝑆̿ρ = ∫
θ

4πρ2𝑆ρ𝑑θ = 4πρ2ηω
ℎ 2

θρ
ρ2

2π

∫
θ

𝑔2(θ)𝑑θ

Because the
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2π

∫
0

𝑔2(θ)𝑑θ = С,
 

where C is a constant, then
𝑆̿ρ = 4πСηωℎ 2

θρ. (12)
It follows from (12) that

in a spherical electromagnetic wave, the energy flux 
passing through the spheres along the radius remains 
constant with increasing radius and does not change with 
time. 

This strictly corresponds to the law of conservation of energy.
It follows from (12) that the energy flow density varies along the 

meridian in accordance with the law  2g .

4. Conclusion
An exact solution of the Maxwell equations for the far zone, which 

is presented in the table 3 is obtained, where
 H ,   H ,   Е ,   Е  are functions defined 
by (1.21, 1.18, 1.19),

 g  is a function defined by (1.20а),
  is the constant determined by (1.13).
• The electric and magnetic intensities of the same name (with 

respect to the coordinates   and  ) are phase shifted by a 
quarter of a period.

• In a spherical electromagnetic wave, the energy flux passing 
through the spheres along the radius remains constant with 
increasing radius and does NOT change with time and this 
strictly corresponds to the law of conservation of energy.

• The energy density varies along the meridian according to the law 
 2g .

Appendix 1
We consider (1.20):

 
 

   0
tg











 gg

 (1)

or
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      

 gg




 ctg  (2)

We have:

      
 


 g
gg 



 ln . (3)

From (2, 3) we find:
     



 ctgln g . (4)

It is known that
    



sinlnctg  А . (5)

where А  is a constant. From (4, 5) we obtain:
      sinlnln  Аg  (6)

or

   
sin
1



А

g . (8)

Tables
Table 1.

1 2 3
1  Erot

    










sintg
EEE

2  Erot
  









 EEE
sin

3  Erot











EEE

4  Ediv
    















sintg
EEEEE
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Table 2.
1 2
1.

0rot 




t
E

c
H 




2.
0rot 





t
E

c
H 




3.
0rot 





t
E

c
H 




4.
0rot 





t
H

c
E 




5.
0rot 





t
H

c
E 




6.
0rot 





t
H

c
E 




7.   0div E
8.   0div H

Table 3.
1 2

    )cos( tgEE  

    )sin( tgEE  

0E

    )sin( tgHH  

    )cos( tgHH  

0Н
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Table 3а.
1 2 3
1  Erot

  






EE

tg
2  Erot








EE

3  Erot







EE

4  Ediv
  







EE

tg

Table 4.
1 2 3
1  Erot

  






EE

tg
2  Erot

)(cos(...)sin(...)sin(...) 
 
 gE
EE














  

3  Erot
)(sin(...)cos(...)cos(...) 

 
 gE
EE
















4  Ediv
  







EE

tg
5  Hrot

  






НН

tg
6  Hrot

)(sin(...)cos(...)cos(...) 
 
 gH
HH














  

7 Hrot
)(cos(...)sin(...)sin(...) 

 
 gH
HH
















8  Hdiv
  







НН

tg
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Table 5.
1 2
1.  

 
   0

tg










 gg

2.
0sin(...)sin(...)cos(...)cos(...) 




 
 


E
c

H
HH

3.
0cos(...)cos(...)sin(...)sin(...) 




 
 


E
c

H
HH

4.  
 

   0
tg











 gg

5.
0sin(...)cos(...)sin(...)sin(...) 




 
 


H
c

E
EE

6.
0sin(...)sin(...)cos(...)cos(...) 




 
 


H
c

E
EE

7.  
 

   0
tg











 gg

8.  
 

   0
tg











 gg
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The second solution. The Maxwell 
equations in spherical coordinates in the 
general case

1. Introduction
Above in «The first solution» a solution of the Maxwell equations 

for a spherical wave in the far field was proposed. Next, we consider the 
solution of Maxwell's equations for a spherical wave in the entire region 
of existence of a wave (without splitting into bands).

2. Solution of the Maxwell’s equations
So, we will use spherical coordinates (  ,, ). Next, we will place 

the formulas in tables and use the following notation:
T (table_number) - (column_number) - (line_number)
Table T1-3 lists the expressions for the rotor and the divergence 

of the vector E in these coordinates [4]. Here and below
E is electrical intensities, 
H is magnetic intensities, 
J  is the density of the electric displacement current,
M is the density of the magnetic displacement current,
  is absolute magnetic permeability,
  is absolute dielectric constant. 

We establish the following notation:

Ψ(𝐸ρ) =
𝐸ρ
ρ +

∂𝐸ρ
∂ρ (1)

𝑇(𝐸φ) = ( 𝐸φ
𝑡𝑔(θ) +

∂(𝐸φ)
∂(θ) ) (2)

With these designations taken into account, the formulas in Table 
T1-3 take the form given in Table T1-4. In the table T1A-2 we write the 
Maxwell equations.

Thus, there are eight Maxwell equations with six unknowns. This 
system is overdetermined. It is generally accepted that there are no radial 
tensions in the spherical wave (although this has not been proved). In 
this case, a system of eight Maxwell equations with four unknowns 
appears. A solution of this problem was found in «The first solution». In 
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essence, there is a solution of 4 equations (see T1A-2.2, 3, 6, 7). In this 
solution, the intensities functions have the same factor for all functions - 
the function 𝑔(θ) of the argument θ. The remaining 4 equations are 
satisfied for a certain choice of this function. This solution turns out to 
be such that it 

We have to admit that in a spherical wave there are radial 
intensities. However, even so, the system of Maxwell's equations remains 
redefined. Let us also assume that there are radial electric currents of 
displacement. This assumption does not remove the problem of over 
determination, but adds one more problem. The point is that the sphere 
has an ideal symmetry and the solution must obviously be symmetrical.

It is suggested that there are also radial magnetic displacement 
currents. Such an assumption does not require the existence of magnetic 
monopoles just like as the existence of electric bias currents does not 
follow from the existence of electric charges.

Next, we will look for the solution in the form of the functions E, 
H, J, M, presented in Table T2-2, where the actual functions of the form 
 g  and 𝑒(ρ),  ℎ(ρ), 𝑗(ρ), 𝑚(ρ) are to be calculated, and the coefficients 

∝ , ω
 are known. 
Under these conditions, we transform the formulas T1-3 into T1-4, 

where the following notations are adopted:

𝑒φ =
∂(𝑒φ(ρ))

∂(ρ) ,
(3)

𝑞 = χρ + ω𝑡 (4)
From (2, 4) we find:

With these designations taken into account, the formulas in Table 
T1-3 take the form given in Table T1-4.

Further, using the above formulas and using the formulas from 
Table T2, we construct the tables T2i, T2ρ, T2Ψ.

In Table T3-2 we write the Maxwell equations taking into account 
the radial displacement currents. Further, we take condition

0 (9)
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We substitute the rotors and divergences from Table T1-4 into 
T1A-2 equations, take into account condition (9), shorten the obtained 
expressions on the functions of argument θ and write the result in Table 
T1A-3. Then substitute the functions from the tables 𝑇2𝑖,𝑇2ρ,𝑇2Ψ in the 
function T1A-3 and write the result in Table T4-2. In this table, we use 
the notation of the form

Further, each equation in Table T4-2 is replaced by two equations, 
one of which contains terms with a factor 𝑠𝑖 and the other with a factor 
𝑐𝑜. The result will be written in Table T5-2. 

Equations T5-2-2, 6, 3, 7 have a solution, found in «The first 
solution» and having the following form (which can be verified by direct 
substitution):

Consider the equations T5-2.4, T5-2.8. Their solution is 
considered in Appendix 1, where functions 𝑒ρ(ρ),  𝑒̿ρ(ρ), ℎρ(ρ),  𝑒̿ρ(ρ) are 
found. After this, the functions 𝑗ρ(ρ),  𝑗̿ρ(ρ), 𝑚ρ(ρ),  𝑚̿ρ(ρ) can be found 
using the equations T5-2.1, T5-2.5.

This completes the task.
In particular, for A=B and a small value of χ, these functions take 

the following form:
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Here G is a constant that can take different values for the functions 𝑒ρ 
and ℎρ, D is a constant that can take different values for the functions 𝑒̿ρ 
and ℎ̿ρ.

3. Energy Flows
Density of electromagnetic energy flow - Poynting vector

HES  , (1)
where

 4c . (2)
In the SI system formula (1) takes the form:

HES  . (3)
In spherical coordinates  ,,  the flux density of electromagnetic 
energy has three components  SSS ,, , directed along the radius, 
along the circumference, along the axis, respectively. It was shown in [4] 
that they are determined by the formula

 























































HEHE
HEHE
HEHE

HE
S
S
S

S . (4)

We first find a radial flux of energy. Substituting in here the formulas 
from Table T2 and (1.4, 2.13, 2.14), we find:
𝑆ρ = 𝐴

ρ𝑠𝑖𝑛(θ)𝑠𝑖𝑛(𝑞)𝐵
ρ𝑠𝑖𝑛(θ)𝑠𝑖𝑛(𝑞) ‒ 𝐴

ρ𝑠𝑖𝑛(θ)𝑐𝑜𝑠(𝑞) ‒ 𝐵
ρ 𝑠𝑖𝑛(θ)𝑐𝑜𝑠(𝑞) = 𝐴𝐵

ρ2 𝑠𝑖𝑛2(θ)(𝑠𝑖𝑛2(𝑞)

(4а)
or, taking into account (2.15),

𝑆ρ = 𝐴2

ρ2
ε
μ𝑠𝑖𝑛2(θ)

 (5)
Note that the surface area of a sphere with a radius   is 24 . Then the 
flow of energy passing through a sphere with a radius   is

𝑆̿ρ = ∫
θ

4πρ2𝑆ρ𝑑θ =‒ 4πρ2η𝐴2

ρ2
ε
μ∫

θ

𝑠𝑖𝑛2(θ)𝑑θ

or

𝑆̿ρ =‒ 4πη𝐴2 ε
μ

2π

∫
0

𝑠𝑖𝑛2(θ)𝑑θ

or

𝑆̿ρ =‒ 4π2η𝐴2 ε
μ (6)
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Thus, the energy flux density passing through the sphere does not 
depend on the radius and does not depend on time, i.e. this flux has the 
same value on a spherical surface of any radius at any instant of time. In 
other words, the energy flux directed along the radius retains its value 
with increasing radius and does not depend on time, which corresponds 
to the law of conservation of energy.

Let us now find the energy flux
𝑆φ = η(𝐸θ𝐻ρ ‒ 𝐸ρ𝐻θ), (7)

Substituting here the formulas from Table T2 and (2.13, 2.14, 2.16, 2.17), 
we find:

Let us now find the energy flux 
𝑆θ = η(𝐸ρ𝐻φ ‒ 𝐸φ𝐻ρ). (8)

Similarly to the previous one, we find:
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In particular, for ε = μ, for example, for a vacuum, we find from (2.15) 
that A = B, and from (7, 9) we obtain:

From (12, 13) we find the density of the total energy flux directed along 
the tangent to a sphere of a given radius,

This means that standing waves exist on the circles of the sphere.

4. Conclusion
1. A solution of Maxwell's equations, free from the above 

disadvantages, is presented in Table Т2.
2. The solution is monochromatic.
3. There are electrical and magnetic intensities along all axes of 

coordinates.
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4. The amplitudes of the transverse wave intensities are 
proportional to ρ ‒ 1.

5. The electric and magnetic intensities of the same name 
(according to coordinates  ,  ,  ) are phase shifted by a quarter of a 
period.

6. There is a longitudinal electromagnetic wave having electric and 
magnetic components, there is a longitudinal electromagnetic wave 
component of the electric and magnetic components, i.e. there are radial 
electrical and magnetic intensities.

7. The energy flux directed along the radius retains its value with 
increasing radius and does not depend on time, which corresponds to the 
law of conservation of energy.

8. There are radial electric and magnetic intensities.
9. There are radial electric and magnetic displacement currents.





HE


 EE ,

 НН ,

Appendix 1.
From T5-4.1 and (2.13) we:

𝑒̿ρ =‒ 1
χ𝑒ρ ‒ 1

χρ𝑒ρ ‒ 2𝐴
χρ2. (1)

Differentiating (1), we obtain:
𝑒̿ρ =‒ 1

χ𝑒ρ ‒ 1
χρ𝑒ρ + 1

χρ2𝑒ρ + 4𝐴
χρ3. (2)

We substitute (2) in T5-4.2 and find:

( ‒ 1
χρ𝑒ρ ‒ 1

χρ2𝑒ρ ‒ 2𝐴
χρ3 ‒ χ𝑒ρ ‒ 1

χ𝑒ρ ‒ 1
χρ𝑒ρ + 1

χρ2𝑒ρ + 4𝐴
χρ3) = 0

 
or

𝑒ρ + 2
ρ𝑒ρ + χ2𝑒ρ ‒ 2𝐴

ρ3 = 0.
(3)
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From this differential equation one can find the function 𝑒ρ(ρ), and from 
this known function and the differential equation T5-4.2, find the 
function 𝑒̿ρ(ρ).

From T5-8.1 and (2.14) we:
ℎ̿ρ = 1

χℎρ + 1
χρℎρ + 2𝐵

χρ2. (4)
Differentiating (4), we obtain:

ℎ̿ρ = 1
χℎρ + 1

χρℎρ ‒ 1
χρ2ℎρ ‒ 4𝐵

χρ3. (5)
We substitute (5) in T5-8.2 and find:

( 1
χρℎρ + 1

χρ2ℎρ + 2𝐵
χρ3 + χℎρ + 1

χℎρ + 1
χρℎρ ‒ 1

χρ2ℎρ ‒ 4𝐵
χρ3) = 0

 
or

ℎρ + 2
ρℎρ + χ2ℎρ ‒ 2𝐵

ρ3 = 0
(6)

From this differential equation one can find the function ℎρ(ρ), and from 
this known function and the differential equation T5-8.2, find the 
function ℎ̿ρ(ρ).

In particular, for ε = μ, for example, for a vacuum, we find from 
(2.15) that A=B and, comparing (3) and (6), we find that

ℎρ = 𝑒ρ. (7)
If A=B and the value of χ is small, the equations T5-4.1 and T5-

8.1 coincide and take the form
𝑦̇ + 2

ρ𝑦 ‒ 2𝐴
ρ3 = 0,

(8)
where

𝑦 = ℎρ = 𝑒ρ. (9)
The method for solving such an equation is given in [9, p. 50]. 

Following this method, we find

𝑦 = С + 2𝐴𝑙𝑛(ρ)
ρ2

(10)
where С is a constant that can take different values for the functions 𝑒ρ 
and ℎρ. From (9, 10) we find:

ℎρ = 𝑒ρ =‒ С
ρ ‒ 2𝐴(1 + 𝑙𝑛(ρ)

ρ ) =  ‒ 1
ρ(𝐺 + 2𝐴 ∙ 𝑙𝑛(ρ))

(11)
where 𝐺 is a constant that can take different values for the functions 𝑒ρ 
and ℎρ.

For a small value of χ, the equations T5-4.1 and T5-8.1 coincide 
and take the form
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𝑧̇ + 1
ρ𝑧 = 0,       (12)

where 
𝑧 = ℎ̿ρ = 𝑒̿ρ.       (13)

The solution of this equation has the form:

ℎ̿ρ = 𝑒̿ρ = 𝐷
ρ ,

(14)
wher D is a constant that can take different values for the functions 𝑒̿ρ 
and ℎ̿ρ.

From T5-2.1 and (2.13, 14, 11) we:
𝑗ρ = 2

ρ𝑒φ ‒ μ
𝑐ωℎ̿ρ = 2𝐴

ρ2 ‒ μω
𝑐 ∙ 𝐷

ρ  
, (15)

𝑗̿ρ = μ
𝑐ωℎρ =‒ μω

𝑐 ∙ 1
ρ(𝐺 + 2𝐴 ∙ 𝑙𝑛(ρ))

. (16
From T5-2.2 and (2.14, 14, 11) we:

𝑚ρ = 2
ρℎφ + ε

𝑐ω𝑒̿ρ =‒ 2𝐵
ρ2 + εω

𝑐 ∙ 𝐷
ρ , (17)

𝑚̿ρ =  ε𝑐ω𝑒ρ =‒ εω ∙
𝑐

1
ρ(𝐺 + 2𝐴 ∙ 𝑙𝑛(ρ))

. (18)

Tables
Table 1. 
1 2 3 4
1  Erot

    










sintg
EEE  

 





sin
EiET



5  Hrot

    










sintg
HHH  

 





sin
HiHT



2  Erot
  









 EEE
sin     




E
Ei


sin

3  Erot












EEE  




 


Ei
E 

6  Hrot
  









 HHH
sin     




H
Hi


sin

7 Hrot












HHH  




 


Hi
H 
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4  Ediv
 

  






















sin

tg
EE

EEE    
 




 
 sin

EiETE 

8  Hdiv
 

  






















sin

tg
HH

HHH    
 




 
 sin

HiHTH 

Table 1A. 
1 2 3
1. 𝑟𝑜𝑡ρ(𝐸) + μ

𝑐
∂𝐻ρ
∂𝑡 ‒ 𝑀ρ = 0

𝑇(𝐸φ)
ρ +

𝑖ωμ𝐻ρ
𝑐 ‒ 𝑀ρ = 0

5. 𝑟𝑜𝑡ρ(𝐻) ‒ ε
𝑐

∂𝐸ρ
∂𝑡 ‒ 𝐽ρ = 0

𝑇(𝐻φ)
ρ ‒

𝑖ωε𝐸ρ
𝑐 ‒ 𝐽ρ = 0

2. 𝑟𝑜𝑡θ(𝐸) + μ
𝑐

∂𝐻θ
∂𝑡 = 0 ‒ Ψ(𝐸φ) +

𝑖ωμ𝐻θ
𝑐 = 0

3. 𝑟𝑜𝑡φ(𝐸) + μ
𝑐

∂𝐻φ
∂𝑡 = 0 Ψ(𝐸θ) +

𝑖ωμ𝐻φ
𝑐 = 0

6. 𝑟𝑜𝑡θ(𝐻) ‒ ε
𝑐

∂𝐸θ
∂𝑡 = 0 ‒ Ψ(𝐻φ) ‒

𝑖ωε𝐸θ
𝑐 = 0

7. 𝑟𝑜𝑡φ(𝐻) ‒ ε
𝑐

∂𝐸φ
∂𝑡 = 0 Ψ(𝐻θ) ‒

𝑖ωε𝐸φ
𝑐 = 0

4.   0div E Ψ(𝐸ρ) +
𝑇(𝐸θ)

ϱ = 0

8.   0div H Ψ(𝐻ρ) +
𝑇(𝐻θ)

ϱ = 0

Table 2.
1 2

𝐸θ = 𝑒θ𝑠𝑖𝑛(θ)𝑐𝑜𝑠(χρ + ω𝑡)
𝐸φ = 𝑒φ𝑠𝑖𝑛(θ)𝑠𝑖𝑛(χρ + ω𝑡)
𝐸ρ = 𝑐𝑜𝑠(θ)(𝑒ρ𝑐𝑜𝑠(χρ + ω𝑡) + 𝑒̿ρ𝑠𝑖𝑛(χρ + ω𝑡))
𝐽ρ = 𝑐𝑜𝑠(θ)(𝑗ρ𝑠𝑖𝑛(χρ + ω𝑡) + 𝑗̿ρ𝑐𝑜𝑠(χρ + ω𝑡))
𝐻θ = ℎθ𝑠𝑖𝑛(θ)𝑠𝑖𝑛(χρ + ω𝑡)
𝐻φ = ℎφ𝑠𝑖𝑛(θ)𝑐𝑜𝑠(χρ + ω𝑡)
𝐻ρ = 𝑐𝑜𝑠(θ)(ℎρ𝑠𝑖𝑛(χρ + ω𝑡) + ℎ̿ρ𝑐𝑜𝑠(χρ + ω𝑡))
𝑀ρ = 𝑐𝑜𝑠(θ)(𝑚ρ𝑐𝑜𝑠(χρ + ω𝑡) + 𝑚̿ρ𝑠𝑖𝑛(χρ + ω𝑡))
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Table 2i.
1 2

𝑖ω𝐸θ = ω𝑠𝑖𝑛(θ)( ‒ 𝑒θ𝑠𝑖𝑛(χρ + ω𝑡))
𝑖ω𝐸φ = ω𝑠𝑖𝑛(θ)(𝑒φ𝑐𝑜𝑠(χρ + ω𝑡))
𝑖ω𝐸ρ = ω𝑐𝑜𝑠(θ)( ‒ 𝑒ρ𝑠𝑖𝑛(χρ + ω𝑡) + 𝑒̿ρ𝑐𝑜𝑠(χρ + ω𝑡))
𝑖ω𝐻θ = ω𝑠𝑖𝑛(θ)(ℎθ𝑐𝑜𝑠(χρ + ω𝑡))
𝑖ω𝐻φ = ω𝑠𝑖𝑛(θ)( ‒ ℎφ𝑠𝑖𝑛(χρ + ω𝑡))
𝑖ω𝐻ρ = ω𝑐𝑜𝑠(θ)(ℎρ𝑐𝑜𝑠(χρ + ω𝑡) ‒ ℎ̿ρ𝑠𝑖𝑛(χρ + ω𝑡))

Table 2ρ.
1 2

∂𝐸θ
∂ρ = χ𝑠𝑖𝑛(θ)( ‒ 𝑒θ𝑠𝑖𝑛(χρ + ω𝑡))

∂𝐸φ
∂ρ = χ𝑠𝑖𝑛(θ)(𝑒φ𝑐𝑜𝑠(χρ + ω𝑡))

∂𝐸ρ
∂ρ = χ𝑐𝑜𝑠(θ)( ‒ 𝑒ρ𝑠𝑖𝑛(χρ + ω𝑡) + 𝑒̿ρ𝑐𝑜𝑠(χρ + ω𝑡))

∂𝐻θ
∂ρ = χ𝑠𝑖𝑛(θ)( ‒ ℎφ𝑠𝑖𝑛(χρ + ω𝑡))

∂𝐻φ
∂ρ = χ𝑠𝑖𝑛(θ)( ‒ ℎφ𝑠𝑖𝑛(χρ + ω𝑡))

∂𝐻ρ
∂ρ = χ𝑐𝑜𝑠(θ)(ℎρ𝑐𝑜𝑠(χρ + ω𝑡) ‒ ℎ̿ρ𝑠𝑖𝑛(χρ + ω𝑡))
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Table 2Ψ.
2

Ψ(𝐸θ) =
𝐸θ
ρ +

∂𝐸θ
∂ρ = 𝑠𝑖𝑛(θ)(1

ρ(𝑒θ𝑐𝑜) + χ( ‒ 𝑒θ𝑠𝑖) + (𝑒θ𝑐𝑜))
Ψ(𝐸φ) =

𝐸φ
ρ +

∂𝐸φ
∂ρ = 𝑠𝑖𝑛(θ)(1

ρ(𝑒φ𝑠𝑖) + χ(𝑒φ𝑐𝑜) + (𝑒φ𝑠𝑖))
Ψ(𝐸ρ) =

𝐸ρ
ρ +

∂𝐸ρ
∂ρ = 𝑐𝑜𝑠(θ)(1

ρ(𝑒ρ𝑐𝑜) + 1
ρ(𝑒̿ρ𝑠𝑖) + χ(𝑒̿ρ𝑐𝑜) ‒ χ(𝑒ρ𝑠𝑖) + (𝑒ρ𝑐𝑜) + (𝑒̿ρ𝑠𝑖))

Ψ(𝐻θ) =
𝐻θ
ρ +

∂𝐻θ
∂ρ = 𝑠𝑖𝑛(θ)(1

ρ(ℎθ𝑠𝑖) + χ(ℎθ𝑐𝑜) + (ℎθ𝑠𝑖))
Ψ(𝐻φ) =

𝐻φ
ρ +

∂𝐻φ
∂ρ = 𝑠𝑖𝑛(θ)(1

ρ(ℎφ𝑐𝑜) + χ( ‒ ℎφ𝑠𝑖) + (ℎφ𝑐𝑜))
Ψ(𝐻ρ) =

𝐻ρ
ρ +

∂𝐻ρ
∂ρ = 𝑐𝑜𝑠(θ)(1

ρ(ℎρ𝑠𝑖) + 1
ρ(ℎ̿ρ𝑐𝑜) ‒ χ(ℎ̿ρ𝑠𝑖) + χ(ℎρ𝑐𝑜) + (ℎρ𝑠𝑖) + (ℎ̿ρ𝑐𝑜))

Table 4.
1 2
1. 2

ρ(𝑒φ𝑠𝑖) ‒ μ
𝑐ω(ℎ̿ρ𝑠𝑖) = 𝑗ρ𝑠𝑖

μ
𝑐ω(ℎρ𝑐𝑜) = 𝑗̿ρ𝑐𝑜

5. 2
ρ(ℎφ𝑐𝑜) + ε

𝑐ω(𝑒̿ρ𝑐𝑜) = 𝑚ρ𝑐𝑜
ε
𝑐ω(𝑒ρ𝑠𝑖) = 𝑚̿ρ𝑠𝑖

2. ‒ (1
ρ(𝑒φ𝑠𝑖) + χ(𝑒φ𝑐𝑜) + (𝑒φ𝑠𝑖)) + μ

𝑐ω(ℎθ𝑐𝑜) = 0

3. (1
ρ(𝑒θ𝑐𝑜) + χ( ‒ 𝑒θ𝑠𝑖) + (𝑒θ𝑐𝑜)) + μ

𝑐ω( ‒ ℎφ𝑠𝑖) = 0

6. ‒ (1
ρ(ℎφ𝑐𝑜) + χ( ‒ ℎφ𝑠𝑖) + (ℎφ𝑐𝑜)) ‒ ε

𝑐ω( ‒ 𝑒θ𝑠𝑖) = 0

7. (1
ρ(ℎθ𝑠𝑖) + χ(ℎθ𝑐𝑜) + (ℎθ𝑠𝑖)) ‒ ε

𝑐ω(𝑒φ𝑐𝑜) = 0

4. (1
ρ(𝑒ρ𝑐𝑜) + χ(𝑒̿ρ𝑐𝑜) + (𝑒ρ𝑐𝑜)) + 2

ρ(𝑒θ𝑐𝑜) = 0

(1
ρ(𝑒̿ρ𝑠𝑖) ‒ χ(𝑒ρ𝑠𝑖) + (𝑒̿ρ𝑠𝑖)) = 0

8. (1
ρ(ℎρ𝑠𝑖) ‒ χ(ℎ̿ρ𝑠𝑖) + (ℎρ𝑠𝑖)) + 2

ρ(ℎθ𝑠𝑖) = 0

(1
ρ(ℎ̿ρ𝑐𝑜) + χ(ℎρ𝑐𝑜) + (ℎ̿ρ𝑐𝑜)) = 0

Table 5
1 2
1. 2

ρ𝑒φ ‒ μ
𝑐ωℎ̿ρ = 𝑗ρ; μ𝑐ωℎρ = 𝑗̿ρ

5. 2
ρℎφ + ε

𝑐ω𝑒̿ρ = 𝑚ρ; ε𝑐ω𝑒ρ = 𝑚̿ρ

2. 𝑒φ =‒ 1
ρ𝑒φ; ‒ χ𝑒φ + μω

𝑐 ℎθ = 0
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6. ℎφ =‒ 1
ρℎφ; χℎφ + εω

𝑐 𝑒θ 

3. 𝑒θ =‒ 1
ρ𝑒θ; ‒ χ𝑒θ ‒ μω

𝑐 ℎφ = 0

7. ℎθ =‒ 1
ρℎθ; χℎθ ‒ εω

𝑐 𝑒φ

2. 𝑒φ =‒ χ𝑒φ ‒ 1
ρ𝑒φ + μω

𝑐 ℎφ

6. ℎφ = χℎφ ‒ 1
ρℎφ ‒ εω

𝑐 𝑒θ

3. 𝑒θ = χ𝑒θ ‒ 1
ρ𝑒θ ‒ μω

𝑐 ℎφ

7. ℎθ =‒ χℎθ ‒ 1
ρℎθ + εω

𝑐 𝑒φ

1 (1
ρ𝑒ρ + χ𝑒̿ρ + 𝑒ρ) + 2

ρ𝑒θ = 04.

2 (1
ρ𝑒̿ρ ‒ χ𝑒ρ + 𝑒̿ρ) = 0

1 (1
ρℎρ ‒ χℎ̿ρ + ℎρ) + 2

ρℎθ = 08.

2 (1
ρℎ̿ρ + χℎρ + ℎ̿ρ) = 0

The third solution. Maxwell's equations in 
spherical coordinates for an electrically 
conductive medium.

1. An approximate solution
Above in the "The second solution" we considered the solution of 

the Maxwell equations for a sphere in a medium that has ε nd μ different 
from unity. Further, suppose that the medium has some electrical 
conductivity  . In this case an equation of the form

0rot 




t
E

c
H 

(1)

is replaced by an equation of the form

0rot 



 E
t
E

c
H 

(2)

We will seek a solution in the form of the functions E, H, J, M presented 
in Table T2-2 (see “The second solution") and rewrite it in a complex 
form as T1-2. Then equation (2) takes the form:

𝑟𝑜𝑡(𝐻) ‒ 𝑖ωε
𝑐 𝐸 ‒ σ𝐸 = 0 (3)

or
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𝑟𝑜𝑡(𝐻) ‒ 𝑤𝐸 = 0, (4)
where the complex number

𝑤 = 𝑖ωε
𝑐 + σ. (5)

We now rewrite Table T1A (see “The second solution") in a 
complex form in Table T2, taking into account formula (4). We assume 
that the conduction currents are substantially larger than the 
displacement currents on the circles of the sphere, i.e. on the circles one 
can take into account only the conduction currents. In Table T2-3, we 
obtain a system of 8 algebraic equations with 8 complex unknowns E, H, 
𝐽ρ, 𝑀ρ.

The solution can be performed in the following order.
1. The systems of two equations T2-2 and T2-7 with respect to 

the unknowns 𝐸φ and 𝐻θ are solved.
2. The systems of two equations T2-3 and T2-6 with respect to 

the unknowns 𝐸θ and  𝐻φ are solved.  
3. With the data 𝐸θ and 𝐻θ the equations T2-4 and T2-8 are solved 

and the unknowns 𝐸ρ and 𝐻ρ, respectively, are determined.
4. For the data 𝐸φ and 𝐻ρ, the equations T2-1 are solved and the 

unknown 𝑀ρ is determined. 
5. For the data 𝐻φ and 𝐸ρ, the equations T2-1 are solved and the 

unknown 𝐽ρ is determined.

2. The exact solution
We now consider the table T2, in which all 6 displacement currents 

are indicated. This table contains 8 algebraic equations with 12 complex 
unknowns E, H, J, M and is overdetermined.

Consider the equations of energy fluxes (3.4) from the section 
"The second solution":

𝑆φ = η(𝐸θ𝐻ρ ‒ 𝐸ρ𝐻θ), (1)
𝑆θ = η(𝐸ρ𝐻φ ‒ 𝐸φ𝐻ρ), (2)
𝑆ρ = η(𝐸φ𝐻θ ‒ 𝐸θ𝐻φ). (3)
From the law of conservation of energy it follows that the 

flow of energy can not change in time. This means that the quantities (1-
3) must be real. Consequently,

𝐼𝑚(𝐸θ𝐻ρ ‒ 𝐸ρ𝐻θ) = 0, (4)
𝐼𝑚(𝐸ρ𝐻φ ‒ 𝐸φ𝐻ρ) = 0, (5)
𝐼𝑚(𝐸φ𝐻θ ‒ 𝐸θ𝐻φ) = 0. (6)

We also assume that one of the intensities is known, for example, 
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𝑒φ = 𝐴 ρ, (7)

where A is a constant. In this case, we have a system of 12 nonlinear 
equations T3-3 and (4-7) with 12 complex unknowns E, H, J, M. 
Methods for solving such systems are known.
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Tables
Table 1.

1 2
𝐸θ = 𝑒θ𝑠𝑖𝑛(θ)
𝐸φ = 𝑖𝑒φ𝑠𝑖𝑛(θ)
𝐸ρ = 𝑐𝑜𝑠(θ)(𝑒ρ + 𝑖𝑒̿ρ)
𝐽ρ = 𝑐𝑜𝑠(θ)(𝑖𝑗ρ + 𝑗̿ρ)
𝐻θ = 𝑖ℎθ𝑠𝑖𝑛(θ)
𝐻φ = ℎφ𝑠𝑖𝑛(θ)
𝐻ρ = 𝑐𝑜𝑠(θ)(𝑖ℎρ + ℎ̿ρ)
𝑀ρ = 𝑐𝑜𝑠(θ)(𝑚ρ + 𝑖𝑚̿ρ)

Table 2.
1 2 3
1. 𝑟𝑜𝑡ρ(𝐸) ‒ 𝑖ωμ

𝑐 𝐻ρ ‒ 𝑀ρ = 0 𝑇(𝐸φ)
ρ +

𝑖ωμ𝐻ρ
𝑐 ‒ 𝑀ρ = 0

5. 𝑟𝑜𝑡ρ(𝐻) ‒ 𝑤𝐸ρ ‒ 𝐽ρ = 0 𝑇(𝐻φ)
ρ ‒ 𝑤𝐸ρ ‒ 𝐽ρ = 0

2. 𝑟𝑜𝑡θ(𝐸) ‒ 𝑖ωμ
𝑐 𝐻θ = 0 ‒ Ψ(𝐸φ) +

𝑖ωμ𝐻θ
𝑐 = 0

7. 𝑟𝑜𝑡φ(𝐻) ‒ 𝑤𝐸φ = 0 Ψ(𝐻θ) ‒ 𝑤𝐸φ = 0
3. 𝑟𝑜𝑡φ(𝐸) ‒ 𝑖ωμ

𝑐 𝐻φ = 0 Ψ(𝐸θ) +
𝑖ωμ𝐻φ

𝑐 = 0

6. 𝑟𝑜𝑡θ(𝐻) ‒ 𝑤𝐸θ = 0 ‒ Ψ(𝐻φ) ‒ 𝑤𝐸θ = 0
4.   0div E Ψ(𝐸ρ) +

𝑇(𝐸θ)
ρ = 0

8.   0div H Ψ(𝐻ρ) +
𝑇(𝐻θ)

ρ = 0
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Table 3.
1 2 3
1. 𝑟𝑜𝑡ρ(𝐸) ‒ 𝑖ωμ

𝑐 𝐻ρ ‒ 𝑀ρ = 0 𝑇(𝐸φ)
ρ +

𝑖ωμ𝐻ρ
𝑐 ‒ 𝑀ρ = 0

5. 𝑟𝑜𝑡ρ(𝐻) ‒ 𝑤𝐸ρ ‒ 𝐽ρ = 0 𝑇(𝐻φ)
ρ ‒ 𝑤𝐸ρ ‒ 𝐽ρ = 0

2. 𝑟𝑜𝑡θ(𝐸) ‒ 𝑖ωμ
𝑐 𝐻θ ‒ 𝑀θ = 0 ‒ Ψ(𝐸φ) +

𝑖ωμ𝐻θ
𝑐 ‒ 𝑀θ = 0

7. 𝑟𝑜𝑡φ(𝐻) ‒ 𝑤𝐸φ ‒ 𝐽φ = 0 Ψ(𝐻θ) ‒ 𝑤𝐸φ = 0
3. 𝑟𝑜𝑡φ(𝐸) ‒ 𝑖ωμ

𝑐 𝐻φ ‒ 𝑀φ = 0 Ψ(𝐸θ) +
𝑖ωμ𝐻φ

𝑐 ‒ 𝑀φ = 0

6. 𝑟𝑜𝑡θ(𝐻) ‒ 𝑤𝐸θ ‒ 𝐽θ = 0 ‒ Ψ(𝐻φ) ‒ 𝑤𝐸θ ‒ 𝐽θ = 0
4.   0div E Ψ(𝐸ρ) +

𝑇(𝐸θ)
ρ = 0

8.   0div H Ψ(𝐻ρ) +
𝑇(𝐻θ)

ρ = 0
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Chapter 8а. Solution of Maxwell's 
Equations for Spherical Capacitor

Contents
1. Introduction \ 1
2. Solution of the Maxwell Equations in the Spherical Coordinate 

System \ 2
3. Electric and magnetic intensities \ 4
4. Electromagnetic Wave in a Charged Spherical Capacitor \ 6

1. Introduction
The electromagnetic wave in a capacitor in an alternating current or 

constant current circuit is investigated in главах 2 и 7. In this paper, a 
spherical capacitor in a sinusoidal current circuit or an constant current 
circuit is considered. The capacitor electrodes are two spheres having the 
same center and radii 12 RR  . 

2. Solution of the Maxwell Equations in the 
Spherical Coordinate System
The solution of the Maxwell equations in spherical coordinates was 

obtained in Chapter 8 (second solution). 
The radial coordinate changes within

𝑅1 < ρ < 𝑅2. (1)
For a bounded ρ and a small value χ, Table 2 in Chapter 8 (second 

solution) takes the form of Table 1.
Next, we rewrite this table in a complex form - see T2-2 and T2-3, 

where |𝐸ρ| is the strength module of intensities 𝐸ρ (which includes the 
dependence on θ), ψ is the argument of intensities 𝐸ρ, and so on.
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Table 1.
1 2

𝐸θ = 𝑒θ𝑠𝑖𝑛(θ)𝑐𝑜𝑠(ω𝑡)
𝐸φ = 𝑒φ𝑠𝑖𝑛(θ)𝑠𝑖𝑛(ω𝑡)
𝐸ρ = 𝑐𝑜𝑠(θ)(𝑒ρ𝑐𝑜𝑠(ω𝑡) + 𝑒̿ρ𝑠𝑖𝑛(ω𝑡))
𝐽ρ = 𝑐𝑜𝑠(θ)(𝑗ρ𝑠𝑖𝑛(ω𝑡) + 𝑗̿ρ𝑐𝑜𝑠(ω𝑡))
𝐻θ = ℎθ𝑠𝑖𝑛(θ)𝑠𝑖𝑛(ω𝑡)
𝐻φ = ℎφ𝑠𝑖𝑛(θ)𝑐𝑜𝑠(ω𝑡)
𝐻ρ = 𝑐𝑜𝑠(θ)(ℎρ𝑠𝑖𝑛(ω𝑡) + ℎ̿ρ𝑐𝑜𝑠(ω𝑡))
𝑀ρ = 𝑐𝑜𝑠(θ)(𝑚ρ𝑐𝑜𝑠(ω𝑡) + 𝑚̿ρ𝑠𝑖𝑛(ω𝑡))

Table 2.
1 2

𝐸θ = 𝑒θ𝑠𝑖𝑛(θ) 𝐸θ = |𝐸θ|
𝐸φ = 𝑖𝑒φ𝑠𝑖𝑛(θ) 𝐸φ = 𝑖|𝐸φ|
𝐸ρ = 𝑐𝑜𝑠(θ)(𝑒ρ + 𝑖𝑒̿ρ) 𝐸ρ = |𝐸ρ|𝑐𝑜𝑠(ψ)
𝐽ρ = 𝑐𝑜𝑠(θ)(𝑖𝑗ρ + 𝑗̿ρ) 𝐽ρ = |𝐽ρ|𝑐𝑜𝑠(ψ)
𝐻θ = 𝑖ℎθ𝑠𝑖𝑛(θ) 𝐻θ = 𝑖|𝐻θ|
𝐻φ = ℎφ𝑠𝑖𝑛(θ) 𝐻φ = |𝐻φ|
𝐻ρ = 𝑐𝑜𝑠(θ)(𝑖ℎρ + ℎ̿ρ) 𝐻ρ = |𝐻ρ|𝑐𝑜𝑠(ψ)
𝑀ρ = 𝑐𝑜𝑠(θ)(𝑚ρ + 𝑖𝑚̿ρ) 𝑀ρ = |𝑀ρ|𝑐𝑜𝑠(ψ)

It is important to note that at the moment the potential on the 
sphere of a given radius changes as a function of 𝑠𝑖𝑛(θ). The outer and 
inner metal surfaces are on a constant radius. Consequently, the potential 
on the metal plate of the spherical radius is different at different points of 
the sphere. Consequently, further, currents flow on the plates of the 
spherical capacitor.

An additional argument in favor of the existence of such currents is 
the existence of telluric currents [53]. There is no generally accepted 
explanation of their cause.

Next, we will refer to the formulas of Chapter 8 (second solution) 
in the form: (8. "room_ of the". "Formula_number").

From (8.2.16, 8.2.17) we find:
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Completely analogous formulas exist for 𝐻ρ, but for ψℎρ the formula has 
the form

𝑡𝑔(ψℎρ) =
ℎρ
ℎ̿ρ

= (𝐺 + 2𝐴 ∙ 𝑙𝑛(ρ)) 𝐷
, (6)

which follows from Table T2-2. Consequently,,
𝑡𝑔(ψℎρ) = 1 𝑡𝑔(ψ𝑒ρ). (7)

Further from (8.2.18, 8.2.19) we find::
|𝐽ρ| = (𝑗ρ)2 + (𝑗̿ρ)2 =

(2𝐴
ρ2 ‒ μω

𝑐 ∙ 𝐷
ρ)2 + (μω

𝑐 ∙ 1
ρ(𝐺 + 2𝐴 ∙ 𝑙𝑛(ρ)))2

, (8)
𝑡𝑔(ψ𝑗ρ) =

𝑗ρ
𝑗̿ = (2𝐴

ρ2 ‒ μω
𝑐 ∙ 𝐷

ρ) ( ‒ μω
𝑐 ∙ 1

ρ(𝐺 + 2𝐴 ∙ 𝑙𝑛(ρ))). (9)
Finally, from (8.2.20, 8.2.21) we find:

|𝑀ρ| = (𝑚ρ)2 + (𝑚̿ρ)2 =

( ‒ 2𝐵
ρ2 + εω

𝑐 ∙ 𝐷
ρ)2 + (εω ∙

𝑐
1
ρ(𝐺 + 2𝐴 ∙ 𝑙𝑛(ρ)))2

, (10)

𝑡𝑔(ψ𝑚ρ) =
𝑚̿ρ
𝑚ρ

= ( ‒ εω ∙
𝑐

1
ρ(𝐺 + 2𝐴 ∙ 𝑙𝑛(ρ))) ( ‒ 2𝐵

ρ2 + εω
𝑐 ∙ 𝐷

ρ). (11)

From the formulas obtained it follows that the spherical capacitor 
must have magnetic properties similar to its electrical properties.

With the known voltage with the rms value U on the capacitor 
from (2), we find:

𝑈 = |𝐸ρ(𝑅2)| ‒ |𝐸ρ(𝑅1)| = 1
𝑅2

(𝐺 + 2𝐴 ∙ 𝑙𝑛(𝑅2))2 + 𝐷2 ‒

1
𝑅1

(𝐺 + 2𝐴 ∙ 𝑙𝑛(𝑅1))2 + 𝐷2

(12)
In particular, with 𝑙𝑛(𝑅2) ≈ 𝑙𝑛(𝑅1) we get:

𝑈 = 𝐾( 1
𝑅2

‒ 1
𝑅1) (13)
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where K is a constant. Consequently, the amplitude of the potential on 
the outer sphere of the capacitor is smaller than the amplitude of the 
potential on the inner sphere of the capacitor.

3. Electric and magnetic intensities
Let us consider a point T with coordinates ,  on a sphere of 

radius   .Vectors H  and H , going from this point are in plane P, 
tangent to this sphere at point  ,T  - see Fig. 2. These vectors are 
perpendicular to each other. Hence, at each point  ,  the sum vector 

𝐻φθ = 𝐻φ + 𝐻θ (1)
is in plane Р and has an angle of   to a parallel line. As it follows from 
the Table 2 and (8.2.14), the module of this vector H  and the angle 
  defined by the following formulas:

𝐻φθ = |𝐻φθ|𝑐𝑜𝑠(ψ) (2)
|𝐻φθ| = 𝐵

ρ𝑠𝑖𝑛(θ)
(3)

ψ = 𝑎𝑟𝑐𝑐𝑡𝑔(χρ + ω𝑡) (4)

 ,T





E

E

H

H

H


E




e

Fig. 2.

We find the intensities H  at the poles of the sphere, where
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  R,   1sin ,
2

. (5)

It follows from (2-4) that at the poles
|𝐻φθ| =± 𝐵

𝑅 (6)
and there is a magnetic intensities between the poles

𝐻𝑝𝑝 = 2𝐵
𝑅 𝑐𝑜𝑠(χ𝑅 + ω𝑡) (7)

Similarly, the same relationships exist for the vectors E  and E . 
At each point  ,  the total vector 

 EEE   (8)

lies in the plane P and is directed at an angle e  to a line parallel (along 
the coordinate θ). It follows from Table 3 and (8.2.13), the module of 
this vector and the angle e  defined by the following formulas:

𝐸φθ = |𝐸φθ|𝑐𝑜𝑠(ψ𝑒) (9)
|𝐸φθ| = 𝐴

ρ𝑠𝑖𝑛(θ)
(10)

ψ𝑒 = 𝑎𝑟𝑐𝑡𝑔(χρ + ω𝑡) (11)
The angle between H  и E  in the plane P is straight.
Therefore, in a spherical capacitor we can consider only one vector 

of the electrical field intensities E  and only one vector of the magnetic 
field intensities H . As these vectors lie on the sphere, they will be 
called spherical vectors. 

Angle   (30) is constant for all vectors H  for a given radius  . 
This means that the directions of all vectors H  constitute the same 
angle   with all parallels on a sphere with a radius of  . This implies in 
turn that there are the magnetic equatorial plane inclined to the 
mathematical equatorial plane at angle  , magnetic axis, magnetic poles, 
and magnetic meridians, along which vectors H  are directed – see Fig. 
4, where thin lines mark the mathematical meridional grid, thick lines 
mark the magnetic meridional grid, the mathematical axis mm, and 
magnetic axis aa and electric axis bb are shown. It is important to note 
that the magnetic axis aa, electric axis bb and all vectors E  и H  are 
perpendicular. 

When 0
c
  the magnetic axis coincides with the mathematical axis.
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
m

m

a

a

b

b

Fig. 4.

Spherical vectors depend on  sin . Radial vectors depend on 
 cos  – see Table 2. Therefore, there are the radial intensities only in 

locations where the spherical intensity is zero. 

4. Electromagnetic Wave in a Charged 
Spherical Capacitor 
A solution of the Maxwell equations for a parallel-plate capacitor 

being charged (see chapter 7) systems from a solution of these equations 
for a parallel-plate capacitor in a sinusoidal current circuit (see chapter 3). 
In this paper the method described in chapter 7 will be used in solving 
the Maxwell equations for a spherical capacitor being charged. 

For a charged spherical capacitor, the system of Maxwell's 
equations presented in Tables 1A-2 of Chapter 8 (“The second solution”) 
must be changed, namely, instead of equation (4) the following equation 
is used:

  )(div tQE  , (1)
where )(tQ  - charge on capacitor plate, which appears and accumulates 
during charging. The system of partial differential equations obtained in 
such a way has a solution represented by the sum of a particular solution 
of this system and a general solution of the corresponding homogeneous 
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system of equations. Homogeneous system is shown in specified table, 
i.e. it only differs from this new system by the absence of term )(tQ . 
Particular solution with given t  is a solution, which associates electric 
intensity )(tE  between the capacitor plates with electric charge )(tQ . If 

)(tE  varies with time, then a solution of the system of equations from 

specified table shall exist at given 𝐸ρ(𝑡). Exactly this solution we're going 
to seek further on.

Table 6.
1 2

𝐸θ = 𝑒θ𝑠𝑖𝑛(θ)(1 ‒ 𝑒𝑥𝑝(ω𝑡))
𝐸φ = 𝑒φ𝑠𝑖𝑛(θ)(𝑒𝑥𝑝(ω𝑡) ‒ 1)
𝐸ρ = 𝑐𝑜𝑠(θ)(𝑒ρ(1 ‒ 𝑒𝑥𝑝(ω𝑡)) + 𝑒̿ρ(𝑒𝑥𝑝(ω𝑡) ‒ 1))
𝐽ρ = 𝑐𝑜𝑠(θ)(𝑗ρ(𝑒𝑥𝑝(ω𝑡) ‒ 1) + 𝑗̿ρ(1 ‒ 𝑒𝑥𝑝(ω𝑡)))
𝐻θ = ℎθ𝑠𝑖𝑛(θ)(𝑒𝑥𝑝(ω𝑡) ‒ 1)
𝐻φ = ℎφ𝑠𝑖𝑛(θ)(1 ‒ 𝑒𝑥𝑝(ω𝑡))
𝐻ρ = 𝑐𝑜𝑠(θ)(ℎρ(𝑒𝑥𝑝(ω𝑡) ‒ 1) + ℎ̿ρ(1 ‒ 𝑒𝑥𝑝(ω𝑡)))
𝑀ρ = 𝑐𝑜𝑠(θ)(𝑚ρ(1 ‒ 𝑒𝑥𝑝(ω𝑡)) + 𝑚̿ρ(𝑒𝑥𝑝(ω𝑡) ‒ 1))

Let us consider the field intensities in the form of functions 
presented in Table 6. These functions differ from functions of Table 1 
only by the type of time dependence: in Table 3, E and H functions 
depend on time as )cos(),sin( tt  , respectively, while in Table 6, E 
and H functions depend on time as (𝑒𝑥𝑝(ω𝑡) ‒ 1), (1 ‒ 𝑒𝑥𝑝(ω𝑡)), 
respectively. Although the indicated substitution, the solution of 
Maxwell's equations remain unchanged. Here the constant ω =‒ 1/τ, 
where   is the time constant in the capacitor charge circuit.

Fig. 6 presents intensities components and their time derivatives as 
well as the bias current as a function of time for 300 : H  is shown 
with a solid line, with a dashed line, and J  with dotted line. It is evident 
that with t  the amplitudes of all intensities components tend to a 
constant together, while the current amplitude approaches zero. This 
corresponds to the capacitor charging via a fixed resistor. 
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Fig.6. (SSMB6.1)

Thus, it's fare to say, that spherical capacitor is a device which is 
equivalent to both - magnet and, at the same time, electret which axes are 
perpendicular.

By analogy with Section 3 in Chapter 8 (“second solution”), we 
consider the flux of radial energy in a charged spherical capacitor. For 
this, in the formula (8.3.4a) it is necessary to make the following change 
of functions:

Thus, the solution of the Maxwell equations for a capacitor being 
charged and for a capacitor in a sinusoidal current circuit differs only in 
that the former includes exponential functions of time and the latter 
contains sinusoidal time-functions. 

So, It was shown that electromagnetic wave propagation in 
charging spherical capacitor , and mathematical description of this wave 
is proved to be a solution of Maxwell's equations. It was shown that a 
charged spherical capacitor accommodates a stationary flux of 
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electromagnetic energy, and the energy contained in the capacitor, which 
was considered to be electric potential energy, is, indeed, electromagnetic 
energy stored in the capacitor in the form of the stationary flux.

8a-9



Chapter 8b. A new approach to antenna design

Chapter 8b. A new approach to 
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1. On the shortcomings of existing methods
The solution of the Maxwell equations for a spherical wave is 

necessary for the design of antennas. Such a problem arises in the 
solution of the equations of electrodynamics for an elementary electric 
dipole - a vibrator. The solution of this problem is known and it is on the 
basis of this solution that the antennas are constructed. At the same time, 
this solution has a number of shortcomings, in particular [107-110].

1. The energy conservation law is satisfied only on the average,
2. The solution is inhomogeneous and it is practically necessary to 

divide it into separate zones (as a rule, near, middle and far), 
in which the solutions turn out to be completely different,

3. In the near zone there is no flow of energy with the real value
4. The magnetic and electrical components are in phase,
5. In the near zone, the solution is not wave (i.s. the distance is not 

an argument of the trigonometric function),
6. The known solution does not satisfy Maxwell's system of 

equations (a solution that satisfies a single equation of the 
system can not be considered a solution of the system of 
equations).

In Fig. 1 [110] shows the picture of the lines of force of the electric 
field, constructed on the basis of the known solution. Obviously, such a 
picture can not exist in a spherical wave.

Far from the vibrator - in the so-called the far zone, where 
longitudinal (directed along the radius) the electric and magnetic 
intensities can be neglected by , the solution of the problem is simplified. 
But even there the well-known solution has a number of shortcomings 
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[107-110]. The main disadvantages of this solution (see Appendix 1) are 
that

1. the law of conservation of energy is fulfilled only on the average 
(in time),

2. the magnetic and electrical components are in phase,
3. in the Maxwell equations system, in the known solution, only 

one equation of eight is satisfied.

Fig. 1.

2. A new approach
These shortcomings are a consequence of the fact that until now 

Maxwell's equations for spherical coordinates could not be solved. A 
well-known solution is obtained after dividing the entire domain into so-
called near, middle and far zones and after applying a variety of 
assumptions, different for each of these zones.

In practice, specified drawbacks of the known solution mean that 
they (mathematical solutions) do not strictly describe the real 
characteristics of technical devices. A more rigorous solution (see 
Chapter 8), when applied in the design systems of such devices, must 
certainly improve their quality.
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Appendix 1
The known solution has the form [107, 108]:

  )sin(sin1 
  teE , (1)

  )sin(sin1 
  thH , (2)

o
e

lIk



 4

2

 , 



 4
lIkh  , where l , I  - length and current of the 

vibrator. We notice, that






 
h
e

(3)
It should be noted that these tensions are in phase, which 

contradicts practical electrical engineering.

Table 2.
1 2
1.

0rot 




t
E

c
H 




2.
0rot 





t
E

c
H 




3.
0rot 





t
E

c
H 




4.
0rot 





t
H

c
E 




5.
0rot 





t
H

c
E 




6.
0rot 





t
H

c
E 




7.   0div E
8.   0div H

Let us consider how equations (1, 2) relate to Maxwell's system of 
equations - see Table 2 (rewritten from Chapter 8, first solution). The 
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intensities (1, 2) enter only in equation (6) from Table 2, which has the 
form

0rot 




t
H

c
E 




(4)

or

0








t
H

c
EE  


. (5)

We substitute (1, 2) into (5) and obtain:

 

  0)cos(sin

)cos(sin

















t
c

h

te
(6)

or

0
ch

e 



 . (7)

From a comparison of (3) and (7) it follows that the intensities (1, 2) 
satisfy equation (4). The remaining 7 Maxwell equations are violated. In 
the equations (2, 3, 5) from Table 2 one of the terms differs from zero, 
and the other is equal to zero. The violation of equations (1, 4, 7, 8) from 
Table. 2 is shown – see Chapter 8, first solution, formula (2.20). So,

the known solution does not satisfy Maxwell's 
system of equations.
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Chapter 9. The Nature of Earth's 
Magnetism

It is known that the Earth electrical field can be considered as a 
field "between spherical capacitor electrodes" [51]. These electrodes are 
the Earth surface having a negative charge and the ionosphere having a 
positive charge. The charge of these electrodes is maintained by 
continuous atmospheric thunderstorm activities. 

It is also known that there is the Earth magnetic field. However, in 
this case no generally accepted explanation of the source of this field is 
available. "The problem of the origin and retaining of the field has not 
been solved as yet." [52].

Next, we will consider the hypothesis that the Earth's magnetic 
field is a consequence of the existence of the Earth's electric field.

In Chapter 8a, a spherical capacitor is considered in a DC circuit 
and it is shown that after a capacitor charge, when the current practically 
ceases, the stationary flux of electromagnetic energy remains in the 
capacitor, and with it an electromagnetic wave is conserved. A magnetic 
field is present in the capacitor.

In Chapter 8a it was shown that in a spherical condenser are are 
the magnetic equatorial plane, magnetic axis, magnetic poles and 
magnetic meridians, along which vectors H  are directed – see Fig. 4 in 
chapter 8. The angle between the magnetic axis and the axis of the 
mathematical model can not be determined from the mathematical 
model. Moreover, not determined angle between the magnetic axis and 
the Earth's physical axis of rotation.

Spherical vectors depend on  sin . Radial vectors depend on 
 cos  – see table 6 in chapter 8. Therefore, there are the radial 

intensities only in locations where the spherical intensity is zero. 
It flows from the above mentioned that the Earth electrical field 

is responsible for the Earth magnetic field. 
Let us consider this problem in more details. 
The vector field H  in a diametral plane passing through the 

magnetic axis is shown in Fig. 8. Here, .1;7.0H    The vector 
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field H  in a diametral plane passing through the magnetic axis is shown 

in Fig. 9. Here, .1;4.0H    The vector field  HHH   in a 
diametral plane passing through the magnetic axis is shown in Fig. 10. 
Here, .1;2.0H;3.0H  
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Similarly, can be described the electric field of the Earth. 
Importantly, the electric field and the magnetic field are perpendicularly.

Once again, the very existence of the electric field is not in doubt, 
and the charge of “Earth's spherical capacitor” is supported by the 
thunderstorm activity [51, 52].

Also consider the comparative quantitative estimates of magnetic 
and electric intensity of the Earth's field.

In a vacuum, where 1  , there is a relation between the 
magnetic and electric intensity in any direction in the GHS system [51]

HE  . (9)
This relation is true if these intensities are measured in the GHS system 
at a given point in the same direction. To go to the SI system, one shall 
take into account that 

for Н: 1 GHS unit = 80 A/m
for Е: 1 GHS unit = 30,000 B/m

Hence, the equation (9) takes the following form in the SI system:
HE 803000  (10)

or
HE 03.0 . (11)

or
)(tg30  EH . (12)
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An additional argument in favor of the existence of the electric 
field of the structure specified is the existence of the telluric currents [53]. 
There is no generally accepted explanation of their causes. On the basis 
of the foregoing, it shall be assumed that these currents must have the 
largest value in the direction of the parallels.

It is possible that the electric field of the Earth can be detected 
using a freely suspended electric dipole, made in the form of a long 
isolated rod with metal balls at the ends. It is also possible that 
oscillations of the rod will be recorded at the low frequency of changing 
in dipole charges.

Based on the hypothesis suggested, it can be assumed that the 
magnetic field shall be observed among planets with an atmosphere. 
Indeed, the Moon and Mars, free of the atmosphere, lack the magnetic 
field. However, there is no magnetic field at Venus. This may be due to 
the high density and conductivity of the atmosphere – it cannot be 
considered as an insulating layer of the spherical capacitor.
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Chapter 10. Solution of Maxwell's 
Equations for Ball Lightning

Contents
1. Introduction \ 1
2. The solution of Maxwell equations in spherical 

coordinates \ 2
3. Energy \ 3
4. About Ball Lightning Stability \ 3
5. About Luminescence of the Ball Lightning \ 3
6. About the Time of Ball Lightning Existence \ 4
7. About a Possible Mechanism of Ball Lightning 

Formation \ 5

1. Introduction
The hypotheses that were made about the nature of ball lightning are 
unacceptable because they are contrary to the law of energy 
conservation. This occurs because the luminescence of ball lightning is 
usually attributed to the energy released in any molecular or chemical 
transformation, and so it is suggested source of energy, due to which 
the ball lightning glows is located in it.

Kapitsa P.L. 1955 [41]

This assertion (as far as the author knows) is true also today. It is 
reinforced by the fact that the currently estimated typical ball lightning 
contains tens of kilojoules [42], released during its explosion.

It is generally accepted that ball lightning is somehow connected 
with the electromagnetic phenomena, but there is no rigorous description 
of these processes.

A mathematical model of a globe lightning based on the Maxwell 
equations, which enabled us to explain many properties of the globe 
lightning, is proposed in [55]. However, this model turned out be quite 
intricate as to the used mathematical description. Another model of the 
ball lightning which is substantiated to a greater extent and make is 
possible to obtain less intricate mathematical description is outlined 
below [56]. Moreover, this model agrees with the model of a spherical 
capacitor – see chapter 8.
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When constructing the mathematical model, it will be assumed that 
the globe lighting is plasma, i.e. gas consisting of charged particles – 
electrons, and positive charged ions, i.e. the globe lightning plasma is 
fully ionized. In addition, it is assumed that the number of positive 
charges equal to the number of negative charges, and, hence, the total 
charge of the globe lightning is equal to zero. For the plasma, we usually 
consider charge and current densities averaged over an elementary 
volume. Electric and magnetic fields created by the average “charge” 
density and the “average” current density in the plasma obey the Maxwell 
equations [62]. The effect of particles collision in the plasma is usually 
described by the function of particle distribution in the plasma. These 
effects will be accounted for the Maxwell equations assuming that the 
plasma possesses some electric resistance or conductivity. 

And so on based on the Maxwell's equations and on the 
understanding of the electrical conductivity of the body of ball lightning, 
a mathematical model of ball lightning is built; the structure of the 
electromagnetic field and of electric current in it is shown. Next it is 
shown (as a consequence of this model) that in a ball lightning the flow 
of electromagnetic energy can circulate and thus the energy obtained by a 
ball lightning when it occurs can be saved. Sustainability, luminescence, 
charge, time being, the mechanism of formation of ball lightning are 
briefly discussed.

2. The solution of Maxwell equations in 
spherical coordinates 
In Chapter 8, third solution, a solution is obtained for Maxwell's 

equations for a sphere whose material has dielectric and magnetic 
permeability, and also has conductivity. This solution has been obtained 
under the following assumptions: the sphere is conductive and neutral 
(does not have any uncompensated charges). Its existence means only 
that in a conductive and neutral sphere, an electromagnetic wave can 
exist, and currents can circulate. 

3. Energy
From the resulting solution follows that lightning contains the 

following energy components 
 Active loss energy aW  – see the second term in the expression for 

the electric strength:
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 Reactive electric energy eW  – see the first term in the expression 
for the electric strength:

 Reactive magnetic energy hW  – see the expression for the 
magnetic strength

4. About Ball Lightning Stability
The question of stability for bodies, in which a flow of 

electromagnetic energy is circulating, has been treated in [43]. Here we 
shall consider only such force that acts along the diameter and breaks the 
ball lightning along diameter plane perpendicular to this diameter. In the 
first moment it must perform work 

dt
dRFA  . (1)

This work changes the internal energy of the ball lightning, i.e.

dt
dWA  . (2)

Considering (1, 2) together, we find: 

dt
dR

dt
dWF  . (3)

If the energy of the global lightning is proportional to the volume, i.e. 
3aRW  . (4)

where a – is the coefficient of proportionality, then

dt
dRaR

dt
dW 23 . (5)

Thus,

R
WaR

dt
dR

dt
dWF 33 2  . (6)

Thus, the internal energy of  a ball lightning is equivalent to the 
force creating the stability of ball lightning. 

5. About Luminescence of the Ball Lightning
The problem was solved above considering the electric resistance 

of the globe lightning. Naturally, it is nor zero, and when current flows 
through it, thermal energy is released. 
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6. About the Time of Ball Lightning 
Existence 
The energy of the ball lightning W and the power of the heat losses 

P can be found with the solution obtained above. 
The existence time of the globe lightning is equal to the time the 

electrical energy transforms into the heat losses, i.e.
τ=𝑊/𝑃 (1)

7. About a Possible Mechanism of Ball 
Lightning Formation 
The leader of a linear lightning, meeting a certain obstacle, may 

alter the motion trajectory from linear to circular. This may become the 
cause of the emergence of the described above electromagnetic fields and 
currents. 

In [44] this process was described as follows:
Another strong bolt of lightning, simultaneous with a bang, illuminated the 

entire space. I can see how a long and dazzling beam in the color of sun beam 
approaches to me right in the solar plexus.  The end of it is sharp as a razor, but 
further it becomes thicker and thicker, and reaches something like 0,5 meter. Further I 
can't see, as I am staring at a downward angle. 

Instant thought that it is the end. I see how the tip of the beam approaches. 
Suddenly it stopped and between the tip and the body began to swell a ball the size of a 
large grapefruit. There was   a thump as if a cork popped from a bottle of champagne. 
The beam flew into a ball. I see the blindingly bright ball, color of the sun, which 
rotates at a breakneck pace, grinding the beam inside. But I do not feel any touch, any 
heat.

The ball grinds the ray and increases in size. ... The ball does not issue any 
sounds. At first it was bright and opaque, but then begins to fade, and I see that it is 
empty. Its shell has changed and it became like a soap bubble. The shell rotates, its 
diameter remained stable, but the surface was with metallic sheen.
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Chapter 11. Mathematical model of 
a plasma crystal

Contents
1. Problem statement \ 1
2. System of equations \ 4
3. The first mathematical model \ 5
4. The second mathematical model \ 7
5. The plasma crystal energy \ 9

1. Problem statement
Dusty plasma (see the [87]) is a set of charged particles. These 

“particles can arrange in space in a certain way and form the so-called 
plasma crystal” [88]. The mechanism of formation, behavior and form of 
such crystals is difficult to predict. Observation of these processes and 
forms under low gravity conditions sets at the gaze – see illustration (Fig 
1.) of the experiments in space in the [89]. 

Therefore, they were simulated on computer in 2007. The results 
surprised even greater, which was reflected in the name of a 
corresponding article [90]: “From plasma crystals and helical structures 
towards inorganic living matter”. The [91] gives a summary and 
discussion of the simulation results. 

I like such comparisons too. But, nevertheless, it should be noted 
that the method used by the authors of the molecular dynamics 
simulations does not fully take into account all the features of the dusty 
plasma. To describe the motion of the particles this method uses classical 
mechanics and considers only electrostatic forces between the charged 
particles. In fact, the charged particles motion causes occurrence of 
charge currents – electrical currents and electromagnetic fields as a 
consequence. They should be considered during simulation.
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Fig. 1.

In absence of gravity the plasma particles are not affected by 
gravitational forces. If we exclude radiation energy, then it can be said 
that the dusty plasma is electric charges, electric currents and 
electromagnetic fields. Moreover, at its formation (filling a vessel with a 
set of charged particles) the plasma receives some energy. This energy 
may be only electromagnetic and kinetic energy of the particles, since 
there is no mechanical interaction between the particles: they are charged 
with like charges. Thus, the dusty plasma should meet the following 
conditions:

 to meet the Maxwell’s equations,
 to maintain the total energy as a sum of electromagnetic and 

kinetic energy of the particles,
 to become stable in terms of the particles structure and motion in 

some time; it follows, for example, from the said experiments in 
space – see fig. 1.

The charged particles obviously push off from each other by 
Coulomb forces. However, the experiments show that these forces do 
not act on the periphery of a particles cloud. Consequently, they are 
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compensated by other forces. It will be shown below that these forces 
are Lorentz forces arising during charged particles motion (although it 
seems strange at first sight that these forces direct into the cloud, 
opposing the Coulomb forces). The particles cannot be fixed, since then 
the Coulomb forces will prevail. But then these forces will move the 
particles, which causes the Lorentz forces, etc.

In the mathematical model shown below we will not take into 
account the Coulomb forces, believing that their role is only to ensure 
that the particles are isolated from each other (just as these forces are not 
considered in electrical engineering problems). 

Thus, we will consider the dusty plasma as an area with flowing 
electrical currents and analyze it using the Maxwell’s equations. Since the 
particles are in vacuum and are always isolated from each other, there is 
no ohmic resistance and no electrical voltage proportional to the current 
– it should not be taken into account in the Maxwell’s equations. In 
addition, in the first stage, we will assume that the currents change slowly 
– they are constant currents. Considering these remarks, the Maxwell’s 
equations are as follows:

  0rot  JH , (1)
  0div J , (2)
  0div H , (3)

where the HJ ,  is the current and magnetic intensity, respectively. In 
addition, we need to add to these equations an equation uniting the 
plasma energy W  with the HJ , :

 HJfW , . (4)
In this equation, the energy W  is known since the plasma receives this 
energy at its formation.

In scalar form, the system of equations (1-4) is a system of 6 
equations with 6 unknowns and should have only one solution. However, 
there is no regular algorithm for solving such a system. Therefore, below 
we propose another approach: 

1. Search for analytical solutions of underdetermined system of 
equations (1-3) with this plasma cloud form. There can be 
multiple solutions.

2. Calculation of energy W  using the (4). If the solution of the 
system (1-4) is the only one then this solves the system (1-4) 
with the data of the W  and cloud form.
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2. System of equations
In the cylindrical coordinates zr ,,  , as is well-known [4], the 

divergence and curl of the vector H are as follows: 

  




















z
HH

rr
H

r
HH zrr


1div , (a)

  ,1rot 
















z
HH

r
H z

r



(b)

  ,rot 















r
H

z
HH zr

 (c)

  .1rot 

















 r

z
H

rr
H

r
H

H (d)

Considering the equations (a-d) we rewrite the equations (1.1-1.3) 
as follows:

01














z
HH

rr
H

r
H zrr


 , (1)

,1
r

z J
z
HH

r








 


(2)

,Jr
H

z
H zr 








(3)

,1
z

r JH
rr

H
r
H












 (4)

01














z
JJ

rr
J

r
J zrr


 (5)

The system of 5 equations (1-5) with respect to the 6 unknowns 
 zrzr JJJHHH ,,,,,   is overdetermined and may have multiple 
solutions. It is shown below that such solutions exist and for different 
cases some of possible solutions can be identified.

We will first look for a solution for this system of equations (1-5) 
as functions separable relative to the coordinates. These functions are as 
follows:

)cos()(. zrhH rr  , (6)

)sin()(. zrhH   , (7)

)sin()(. zrhH zz  , (8)
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)cos()(. zrjJ rr  , (9)

)sin()(. zrjJ   , (10)

)sin()( zrjJ zz  , (11)
where the   is a constant, while the 

)(),(),(),(),(),( rjrjrjrhrhrh zrzr   are the functions of the 
coordinate r ; derivatives of these functions will be denoted by strokes.

By putting the (6-11) into the (1-5) we get:

0 zr
r hh
r
h  , (12)

,rjh   (13)

 jhh zr  (14)

zjh
r
h

 
 , (15)

0 zr
r jj
r
j  . (16)

Let’s put the (13) and (15) into the (16). Then we get:

0






 






 


h

r
h

h
r
h

. (17)

The expression (17) is an identity 0=0. Therefore, the (16) follows 
from the (13, 15) and can be excluded from the system of equations (12-
16). The rest of the equations can be rewritten as:







  r

r
z h

r
hh


1 , (18)


 h
r
h

jz  , (19)

hjr  , (20)

zr hhj   (21)

3. The first mathematical model 
In this system of 4 differential equations (18-21) with 6 unknown 

functions we can define two functions arbitrarily. For further study we 
define the following two functions:

  rrqh  sin , (22)

  rrhhr  sin , (23)

where the hq,  are some constants. Then using the (18-23) we find:
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   










 





rrrhhz cossin2 , (24)

   










 


 rrrqjz cossin2 , (25)

  rrqjr  sin (26)

   









 rhrr
R

hj 
















 cos2sin2

2

. (27)

Thus, the functions )(),(),(),(),(),( rhrhrhrjrjrj zrzr   can be 
defined using the (26, 27, 25, 23, 22, 24), respectively.
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Example 1.
Fig. 2 shows function graphs 

)(),(),(),(),(),( rhrhrhrjrjrj zrzr  . These functions can be 
calculated with data 1,1,2  qh . The first column shows the 
functions )(),(),( rhrhrh zr  , the second column shows the functions 

)(),(),( rjrjrj zr  .
It is important to note that there is a point in the function graph 

   rjrjr ,  where   0rjr  and   0rj . Physically, this means that 
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there are radial currents  rJ r  in the area r  directed from the center 
(with 0q ). There are no currents    ,, rJrJ r   in the point r . 
Therefore, the value R  is the radius of a crystal. The specks of dust 
outside this radius experience radial currents  rJ r  directed towards the 
center. This creates a stable boundary of the crystal.

The built model describes a cylindrical crystal of infinite length, 
which, of course, is inconsistent with reality. Let’s now consider a more 
complex model.

4. The second mathematical model
The root of the equation   0rjr  determines the value R  of 

the cylindrical crystal radius. Let’s now change the value  . If the value 
  is dependent on the z , then the radius R  will depend on the z . But 
this very dependence is observed in the experiments – see, for example, 
the first fragment in Fig. 1. 

With this in mind, let’s consider the mathematical model which 
differs from the above used by the fact that the function )(z  is used 
instead of the constant  . Let’s rewrite the (6-11) with this in mind:

  zrhH rr cos)(.  , (28)

  zrhH  sin)(.  , (29)

  zrhH zz sin)(.  , (30)

  zrjJ rr cos)(.  , (31)

  zrjJ  sin)(.  , (32)

  zrjJ zz sin)(  . (33)
The system of equations (1-6) differs from the system (2.9-2.14) 

only by the fact that instead of the constant   we use the derivative 
)(z   along the z  of the function )(z . Consequently, the solution of 

the system (28-33) will be different from that of the previous system only 
by using the derivative )(z   in instead of the constant  . Thus, the 
solution in this case will be as follows:

 )(sin)( zrrqzjr   , (34)

 

  

















































)(cos
)z(

2
)(

)(sin)(
)( 2

2

zr
z
h

zrrz
Rz

h
j











 , (35)
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   





 


 )(cos)(sin2 zr
R
rzrqjz  , (36)

 )(sin zrrhhr   , (37)

 )(sin zrrqh   , (38)

   





 





 )(cos)(sin2

)(
zr

R
rzr

z
hhz 


. (39)

The said functions will depend on the )(z  . With the zz  )(  the 
equations (34-39) are transformed into the equations (22-27).

For example, Fig. 3 shows the functions )(z  and )(z   where 
the )(z   is an equation of ellipse.
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We can suggest that the current of the specks of dust is such that 
their average speed does not depend on the current direction. In 
particular, the path covered by a speck of dust per a unit of time in a 
circumferential direction and the path covered by it in a vertical direction 
are equal with a fixed radius. Consequently, in this case with a fixed 
radius we may assume that 

z . (40)
The dust trajectory in the above considered system is described by 

the following formulas 
 )cos( zco  , (41)

 )sin( zsi  . (42)
Thus, there is a point trajectory described by the formulas (40-42) 

in such system on the rotation figure with a radius of )(r z  . This 
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trajectory is a helix. All the tensions and densities of currents do not 
depend on the   in this trajectory. 

Based on this assumption, we can construct a movement trajectory 
for specks of dust in accordance with the functions (1-3). Fig. 4 shows 
the two helices described by the current functions  rjr  and )(rjz : with 

)(r1 z   with )(5.0r2 z  , where the )(z   is defined in Fig. 3.

-1
-0.5

0
0.5

1

-1
-0.5

0

0.5
1

-2

-1

0

1

2

(Plazma4.m)Fig 4

5. The plasma crystal energy
Under certain magnetic strengths and current densities we can find 

the plasma crystal energy. The magnetic field energy density

 222
H 2

W zr HHH  


. (43)

The specks of dust kinetic energy density JW  can be found in the 
assumption that all the specks of dust have equal mass m . Then 

 2221
 JJJ

m
WJ  . (44)

To determine the full crystal energy we need to integrate the (43, 
44) by the volume of the crystal, which form is defined. Thus, with a 
defined form of the crystal and assumed mathematical model we can find 
all the characteristics of the crystal.
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Chapter 12. Work of Lorentz force

It is proved that the Lorentz force does the work, and the relations 
that determine the magnitude of this work are derived.

The magnetic Lorentz force is determined by a formula of the 
form

 BVqQF  , (1)
where

q  - the density of electric charge,
Q  - the volume of a charged body,
V  - velocity of the charged body (vector),
B  - magnetic induction (vector).

The work of the Lorentz force is zero, since the force and velocity 
vectors are always orthogonal.

The Ampere force is determined by a formula of the form
 BjQA  , (2)

where j
 
is the electric current density (vector). Because the

qVj  , (3)
then formula (2) can be written in the form

 BVqQA  . (4)
It can be seen that formulas (1, 4) coincide. Meanwhile, the work of the 
Ampère force is NOT zero, as evidenced by the existence of electric 
motors. Consequently, the work of the Lorentz force is NOT zero. 
Thus, the definition of mechanical force through work can not be 
extended to the Lorentz force.

Let us consider how the Lorentz force performs its work.
The density of the flow of electromagnetic energy - the Poynting 

vector is determined by the formula:
HES  , (5)

where
E  - electric field intensities (vector),
H  - magnetic field intensities (vector).

The currents densities correspond to electrical intensities, i.e.
jE  , (6)
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where   is the electrical resistance. Combining (5, 6), as in Chapter 5, 
we obtain:

BjHjS 

 . (7)

where   is absolute magnetic permeability. The magnetic Lorentz force 
acting on all charges of the conductor in a unit volume - the volume 
density of the Lorentz force is (as follows from (1))

BqVf  . (8)
From (3, 8) we find:

BjBqVf  . (9)
From (7, 9) we find:

 Sf  . (10)
The density of the magnetic force of Lorentz is proportional to the 

density of electromagnetic energy - the Poynting vector.

The energy flux with density S  is equivalent to the power density 
p , i.e.

Sp  . (11)
Consequently, the density of the magnetic force of Lorentz is 

proportional to the power density p .

Example 1. For verification, let us consider the dimensions of the 
quantities in the above formulas in the SI system - see Table. 1.

Table 1.
Parameter Dimension

Energy kg m2·sec −2

Density of energy kg m-1·sec −2

Power P kg m2·sec −3

Density of energy flow, power density S kg sec −3

Current density j А·m−2

Induction B kg sec −2·А
The volume density of the Lorentz 
force

f kg sec −3·m-2

Magnetic permeability  kg sec −2·m·А−2

Resistivity  kg·sec −3·m3·А−2

  sec·m-2
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So, a current with density j  and a magnetic field with induction 
B  create an energy flow with density S  (or power with density p ), 
which is identical to the magnetic force of Lorentz with density f  - see 
(11) or

 рf  . (12)

Thus, the Lorentz force with density f  through energy flux with 
density S  (or power with density p ), acts on charges moving in a 
current J  in a direction perpendicular to this current. Consequently, it 
can be argued that the Poynting vector (or power with density p ) creates 
an emf in the conductor. This question, on the other hand, was 
considered in [19, 17], where such an emf is called the fourth kind of 
electromagnetic induction.

Consider the emf created by the Lorentz force. The intensity, 
equivalent to the Lorentz force acting on a unit charge, is



q
p

q
fe f  , (13)

and the current produced by the Lorentz force in the direction of this 
force has a density

q
pei f
  . (14)

If the current I  produced by the Lorentz force in resistance R  is 
known, then







 

s
lRIeU f  , (15)

where sl,  is the length and cross-section of the conductor in which the 
Lorentz force acts. From (15) we find:
















 

s
lRe

s
lReI ff 

 . (16)

Full power
plsP  . (17)

Finally, from (13, 16, 17) we obtain:

 lsR
ql
P

s
lR

qls
PI 







  , (18)
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 lsRql
I
PU 


 . (19)

From these formulas, according to the measurement U  and I  
results, the density of charges under the action of the Lorentz force can 
be found.
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