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Annotation
A new solution of Maxwell equations for a vacuum, for wire with
constant and alternating curtent, for the capacitor, for the sphere, etc. 1s
presented. First it must be noted that the proof of the solution's
uniqueness is based on the Law of energy conservation which is
not observed (for instantaneous values) in the known solution.
The solution offered:

e Complies with the energy conservation law in each moment
of time, i.e. sets constant density of electromagnetic energy
flux;

e Reveals phase shifting between electrical and magnetic
intensities;

e Explains existence of energy flux along the wire that is equal
to the power consumed.

A detailed proof is given for interested readers.

Experimental proofs of the theory are considered.

Explanation is proposed for the experiments, which have
not yet been explained.

The work offers some technical applications of the
solution obtained.
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1. Introduction

Maxwell's system of equations is one of the greatest discoveries of
the human mind. At the same time, the known solutions of this system
of equations have a number of disadvantages. Suffice it to say that these
solutions do not satisfy the law of conservation of energy. Such solutions
allow some authors to doubt the reliability of the Maxwell equations
themselves. We emphasize, however, that these dubious results follow
only from a known decision. But the solution of Maxwell's equations can
be different (partial differential equations, as a rule, have several
solutions). And it is necessary to find a solution that does not contradict
the physical laws and empirically established facts.

The author has found a new solution to the Maxwell system of
equations, free from the indicated disadvantages. This solution is found
for the Maxwell equations, written in the coordinate form, and cannot be
obtained in vector form from Maxwell's equations, written in vector
form. This, apparently, was the reason that the proposed solution has not
yet been received.

Based on the new solution of Maxwell's equations, the spiral
structure of electromagnetic waves and stationary electromagnetic fields
was theoretically predicted and experimentally confirmed, and it was also
shown that spiral structures exist in all waves and technical devices
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Chapter 0. Preface

without exception. The spiral nature of the structures is expressed in the
fact that coordinate-wise electric and magnetic intensities of waves and
field vary with coordinates and time (for waves) in terms of sinusoidal
functions.

Below, the following theoretical predictions are justified by the fact
that these functions are such that

* does not contradict the law of conservation of energy at each
moment in time (and not on average), i.e. establishes the constancy of the
flux density of electromagnetic energy in time,

* reveals a phase shift between electrical and magnetic intensities
not only in technical devices but also in waves,

* explains the existence of a flow of energy along and inside (and
not outside) the wire, equal to the power consumption.

Below, theoretical predictions are confirmed by experimental
observations and explanations of experiments that have not yet been
substantiated. Among them

* existence of energy transfer devices due to the appearance of emf,
unexplained by electromagnetic induction,

* measurements of the energy stored in the dielectric of a capacitor
released from the plates,

* measurements of energy stored in a closed magnetic circuit,

* Milroy engine

* single wire power transmission,

* restoration of magnet energy,

* plasma crystal.

“To date, whatsoever effect that would request a modification of
Maxwell’s equations escaped detection” [36]. Nevertheless, recently
criticism of validity of Maxwell equations is heard from all sides. Have a
look at the Fig.1 that shows a wave being a known solution of Maxwell’s
equations. The confidence of critics is created first of all by the violation
of the Law of energy conservation. And certainly "#he density of
electromagnetic - energy  flow (the module of Umov-Pointing  vector) pulsates
harmonically. Doesn't it violate the Law of energy conservation?" [1]. Certainly, it is
violated, if the electromagnetic wave satisfies the known solution of
Maxwell equations. But there is no other solution: "The proof of solution's
uniqueness in general is as follows. If there are two different solutions, then their
difference due to the system's linearity, will also be a solution, but for zero charges and
currents and for gero initial conditions. Hence, using the expression for electromagnetic
feld energy we must conclude that the difference between solutions is equal to zero,
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Chapter 0. Preface

which means that the solutions are identical. Thus the uniqueness of Maxwell
equations solution is proved”  |2]. So, the uniqueness of solution is being
proved on the base of using the law which is violated in this solution.

Another result following from the existing solution of Maxwell
equations is phase synchronism of electrical and magnetic components of
intensities in an electromagnetic wave. This is contrary to the idea of
constant transformation of electrical and magnetic components of energy
in an electromagnetic wave. In [1[, for example, this fact is called "one of
the vices of the classical electrodynamics".

Puc. 1.

Such results following from the known solution of Maxwell
equations allow doubting the authenticity of Maxwell equations.
However, we must stress that these results follow only from the found
solution. But this solution, as has been stated above, can be different (in
their partial derivatives, equations generally have several solutions).

For convenience of the reader Annex 4 states the method of
obtaining of a known solution. Further we shall deduct another solution
of Maxwell equation, in which the density of electromagnetic energy flow
remains constant in time, and electrical and magnetic components of
intensities in the electromagnetic wave are shifted in in phase.

In addition, consider an electromagnetic wave in wire. With an
assumed negligibly low voltage, Maxwell’s equations for this wave literally
coincide with those for the wave in vacuum. Yet, electrical engineering
eludes any known solution and employs the one that connects an
intensity of the circular magnetic field with the current in the wire (for
brevity, it will be referred to as “electrical engineering solution”). This
solution, too, satisfies the Maxwell’s equations. However, firstly, it is one
more solution of those equations (which invalidates the theorem of the
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Chapter 0. Preface

only solution known). Secondly, and the most important, electrical
engineering solution does not explain the famous experimental fact.

The case in point is skin-effect. Solution to explain skin-effect
should contain a non-linear radius-to-displacement current (flowing
along the wire) dependence. According to Maxwell’s equations, such
dependence should fit with radial and circular electrical and magnetic
intensities that have non-linear dependence from the radius. Electrical
engineering solution offers none of these. Explanation of skin-effect
bases on the Maxwell’s equations, yet it does not follow from electrical
engineering solution. It allows the statement that electrical engineering
solution does not explain the famous experimental fact.

At last, the existing solution denies the existence of so called
twisted light [65].

2. On Energy Flux in Wire

Now, refer to energy flux in wire. The existing idea of energy
transfer through the wires is that the energy in a certain way is spreading
outside the wire [13]: "... 50 our “cragy’ theory says that the electrons are getting
their energy to generate heat because of the energy flowing into the wire from the field
outside. Intuition woula seem to tell us that the electrons get their energy from being
pushea along the wire, so the energy shoula be flowing down (or up) along the wire. But
the theory says that the electrons are really being pushea by an electric field, which has
come from some charges very far away, ana that the electrons get their energy for
generating heat from these fields. The energy somehow flows from the distant charges
into a wide area 0] space ana then inwara to the wire."

Such theory contradicts the Law of energy conservation. Indeed,
the energy flow, travelling in the space must lose some part of the energy.
But this fact was found neither experimentally, nor theoretically. But,
most important, this theory contradicts the following experiment. Let us
assume that through the central wire of coaxial cable runs constant
current. This wire is isolated from the external energy flow. Then whence
the energy flow compensating the heat losses in the wire comes? With
the exception of loss in wire, the flux should penetrate into a load, e.g.
winding of electrical motors covered with steel shrouds of the stator.
This matter is omitted in the discussions of the existing theory.

So, the existing theory claims that the incoming (perpendicularly to
the wire) electromagnetic flow permits the current to overcome the
resistance to movement and performs work that turns into heat. This
known conclusion veils the natural question: how can the current attract
the flow, if the current appears due to the flow? It is natural to assume
that the flow creates a certain emf which "moves the current". Meanwhile,
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energy flux of the electromagnetic wave exists in the wave itself and does
not use space exterior towards the wave.
Solution of Maxwell’s equations should model a structure of the
electromagnetic wave with electromagnetic flux energy presenting in it.
The intuition Feynman speaks of has been well founded. The
author proves it further while restricted himself to Maxwell’s equations.

3. Requirements for Consistent Solution of

Maxwell’s Equations
Thus, the solution of Maxwell’s equations must:

e describe wave in vacuum and wave in wire;

e comply with the energy conservation law in each moment of time,
L.e. set constant density of electromagnetic energy flux;

e reveal phase shifting between electrical and magnetic intensities;

e explain existence of energy flux along the wire that is equal to
power consumed.
What follows is an appropriate derivation of Maxwell’s equations.

4. Variants of Maxwell’s Equations
Further, we separate different special cases (alternatives) of
Maxwell’s equations system numbered for convenience of presentation.

Variant 1.

Maxwell's equations in the general case in the GHS system are of
the form [3]:

rot(E )+ g%—il =0, (1)

rot(H)-£9E _47 1, @)
c o ¢

div(E)=0, ©)

div(H)=0, )

I=oF, )

where
I, H, E -conduction current, magnetic and electric intensities

respectively,
g, W, o -dielectric constant, magnetic permeability, conductivity

wire of medium.
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Variant 2.

For the vacuum must be taken ¢=1, g=1, c=0. When the

system of equations (1-5) takes the form:

1 6H
t(E)+——=0,
rot (. )+C =

1 0
t(H)-——=0,
ro( ) c ot
div(E)=0,
div(#)=0.

The solution to this system is offered in the Chapter 1.

Variant 3.
Consider the case 1 in the complex presentation:

rot(E)+ia)ﬁH =0,
C

rot(H )— il E - il (real(7)+i-imag(l))=0,
c c

div(E)=0,

div(H )=0,

real(7)= o - abs(E).

©)

)

(®)
©)

(10)

1D
(12)
(13)
(14)

It should be noted that instead of showing the whole current, (14)
shows only its real component, i.e. conductivity current. Imaginary
component formed by a displacement current does not depend on

electrical charges.

The solution to this system is offered in the Chapter 4.

Variant 4.

For the wire with ginusoidal current 1 flowing out of an external
source, real(7) may at times be excluded from equations (11-14). It is

possible for a low-resistance wire and for a dielectric wire (for more
details, refer to Chapter 2). As this takes place, the system (11-14) takes

the form of

y7aels
t(E)+—=—=0
rot( )+C o
e OF 4r
t(H)-———-——1=0,
( ) c ot ¢
div(E)=0,
div(H )=0

(15)

(16)

17)
(18)
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It is significant that current [ is not a conductivity current even
when it flows along the conductor.
The solution for this system will be considered in the Chapter 2.

Variant 5.
For a constant current wire, system in alternative 1 simplifies due
to lack of time derivative and takes the form of:

rot(E)=0, (21)

rot(H )— iy 0, (22)
C

div(E)=0, (24)

div(H )=0, (25)

I =0E (26)

or
Variant 6.

rot(7)=0, @7)

rot(H )— Ly 0, (28)
C

div(7)=0, (29)

div(H )=0. (30)

The solution for this system will be considered in the Chapter 5.

We will be searching a monochromatic solution of the systems
mentioned. A transition to polychromatic solution can be accomplished
via Fourier transformation.

Apppendix 0. Cartesian Coordinates
As it is known to [4]
divergence of H vector, vector gradient of scalar function a(x, y,z),

in Cartesian coordinates X, y, z scalar

b

vector rotor of H vector, accordingly, take the form of

. 0H, OH, oH
le(H)Z( ﬁxx + 6yy + 622}

grad(a): |:aa oa aa:| ,

ooy’ oz

rot(H )= OH, ©OH, ,(aHx _0H, J OHy 0H, ||
oy oz 0z ox ox oy
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Electric and magnetic intensities in Cartesian coordinates, obtained
as a result of this decision, are shown are shown in the following figure.

Apppendix 1. Cylindrical Coordinates

As it is known to [4], in cylindrical coordinates 7> @ Zscalar
divergence of H vector, vector gradient of scalar function @, @,2),
vector rotor of H vector, accordingly, take the form of

oH
diV(H)=[Hr Lo 1 P, aHZJ, @

r o r O oz

oa 1 Oa oa
gradr(a)=5, gfad(p(a):;'%, gradz(a):g, (b)
oH
rotr(H): 18&_ 2 , ©
r op 0z
OH, OH
t, (H)= r—_z| d
roty (1) ( oz or J @
H oH
e ©
r or r Op
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Apppendix 2. Spherical Coordinates

Fig. 1 shows a system of spherical coordinates p,@,¢, and Table 1
contains expressions for rotor and divergence of vector E in these

coordinates [4].

Zs __
S sl
e/r
Y
X
Fig. 1.
Table 1.
1] 2 3
1l rot (E)| E, CE, OE,
+ - .
ptg(0) po0  psin(0pe
2 rote(E) OE, _E_GE(/,
psin(@Pe  p  p
3 rOtW(E) &4_%_%
p_Op pop
4\ div(E) | E, OE, E, 0E, OE,
—£ + - +—
p  dp pg@) pob  psin(@pe

Apppendix 3. Some Correlations Between GHS and

SI Systems

Further, formulas appear in GHS system, yet, for illustration, some
examples are shown in SI system. This is why, for reader’s convenience,
Table 1 contains cotrelations between some measurement units of these

systems.
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Table 1.
Name GHS SI
electric current 1 GHS 333-1010 A
voltage 1 GHS 3:-10°V
power, energy flux density 1 GHS 107 Wt
energy flux density per unit 1 GHS 10° Wt/m
length of wire
electric current density 1 GHS 3.33:10° A/m?
3.33:1012 A/mm?
electric field intensity 1 GHS 3:10*V/m
magnetic field intensity 1 GHS 80 A/m
magnetic induction 1 GHS 10T
absolute dielectric permittivity 1 GHS 8.85:1012 F/m
absolute magnetic permeability 1 GHS 1.26:10® H/m
capacitance 1 GHS 1.1-102F
inductance 1 GHS 107 H
electrical resistance 1 GHS 9-10'"' Om
electrical conductivity 1 GHS 1.1-10'2 sm
specific electrical resistance 1 GHS 9:10° Om'm
specific electrical conductivity 1 GHS 1.1-10' sm/m

Apppendix 4. Known solution of Maxwell's

equations for
vacuum

electromagnetic

fields in

Let us consider a system of Maxwell’s equations for vacuum stated

before in Section 4:

1 oH
t(E)=———,
ro( ) c ot
1 OF
t(H)=——,
ro( ) c Ot
div(E)=0,

div(H )=0.

M

©)

)
)

Taking a curl from each part of the equation (1), we obtain:

rot(rot(£))= mt[_ la_”j

®)
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or

rot(rot(E))z—%-%(rot(H)). ©)
Having combined equations (2, 6), we find out that

rot(ot(£)= L 657 ). (62
It is stated [4, p.131] that

rot(rot(E))= grad(div(E))- AE . @)

where orthogonal coordinates show that
0’E O0’E OE
- + :
ox*> oyt oz
From (3, 7) we find that
rot(rot(E )= —AE . )
Having combined equations (6a, 8, 9), we find out that
1 0’E_OE . O’E . O’E
. e
This equation has a complex solution in orthogonal coordinates of the
following kind:

E(t,x,y, Z) — ‘E‘epe(kxx+kyy+kzz—a)t+(ﬂo ) a1y

which can be verified by direct substitutions. For this purpose, the first
and second derivatives of (10) are pre-calculated. Constants

(£

(which will be not discussed here).

AE = (®)

(10)

, €, k., k ) k., o, (oo)have a certain physical significance

The obtained solution is complex. It is known that an actual part
of a complex solution is also a solution. Consequently, the following kind
of solution can be taken instead (11):

E(t,x,y,z) = |E|ep cosQ(xx +thky+k.z—ot+g, ) (12)
Similarly we obtain a solution of the following kind:
H(t,x,y,z) =|H|h, cos@xx +hky+k.z—awt+p, ) (13)

It should be stated that energy is calculated as an integral

0-14
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W :J'(iz+,uH2 Jdt =lj 8([E|ep cos(...a)t)j +
A\ 2 2 24 ,u([E|ep cos(...a)t)y

:%G{Ekp)+ILI{E|€IJ))(COSZ(...C()ZL))#: , (14
_ 8L€([E|ep7 + ,u([E|ep}1);sin(...2a)t)

[0

From (12, 13, 14) it can be clearly stated that:
1. the energy transforms in time, which contradicts the low of

energy conservation
2. vorticities E and H are cophased, which contradicts electrical

engineering.
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Chapter 1. The Second Solution of

Maxwell's Equations for vacuum

Contents
1. Introduction \ 1
2. Solution of Maxwell's Equations \ 1
3. Intensities \ 3
4. Energy Flows \ 8
5. Speed of energy movement \ 10
6. Discussion \ 11
Appendix 1\ 12

1. Introduction

In Chapter "Introduction" inconsistency of well-known solution of
Maxwell's equations was demonstrated. A new solution Maxwell's
equations for vacuum is proposed below [5].

2. Solution of Maxwell's Equations
First we shall consider the solution of Maxwell equation for vacuum,
which is shown in Chapter "Introduction" as variant 1, and takes the
following form

rot(E)+ 4 _ o, @)
c ot
£ 0E _

rot(# )-

(H)-=—"= (b)
div(E)=0, ©
div(H)=0. (d)

In cylindrical coordinates system 7, ¢, z these equations look as
follows:
OE

Er+6E,,+l' ¢,+6EZ=0, )
r or r Op Oz

OE
l . ai -7 = M,, )
r 0p Oz
OE OF

Lo —2=M ©
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Chapter 1. The Second Solution of Maxwell's Equations for vacuum

E OFE

_‘”+_‘p_l.%:Mz, 4)

r or r op

H., O0H, 1 0H, OH
+ +—- +

r or r Op Oz

= =0, 5)

-zt 6
r 0p 0Oz ' ©
OH, OoH
f-—==J_, 7
oz  or ? @
H, OH
_‘/’_{__5"_1.%:]2, 8)
r or r op
J = fa_E , )
c ot
= _ﬁa_H. (10)
c ot
For the sake of brevity further we shall use the following notations:
co =cos(ap+ yz+ wt), (11)
si =sin(a@ + yz + wt), (12)

where «, y, @ — are certain constants. Let us present the unknown

functions in the following form:

J.=j.(r)o, (13)
J,-=J,(r)st, (14)
J..=j.(r)si, (15)
H,.=h()o, (16)
H,.=h,(r)si, 17
H_.=h(r)si, (18)
E.=e(rki, (19)
E,=e,(r)co, (20
E .=e(r)co, @1)
M, =m, (r)co , (21a)
M,.=m,(r)si, (22)
M. .=m_(r)si, 23)

where j(r), h(r), e(r), m(r)- certain function of the coordinate r.

1-2



Chapter 1. The Second Solution of Maxwell's Equations for vacuum

By direct substitution we can verify that the functions (13-23)
transform the equations system (1-10) with three arguments r, @, z

into equations system with one argument r and unknown functions
J(r), h(r), e(r), m(r).
In Appendix 1 it is shown that for such a system there exists a

solution of the following form (in Appendix 1 see (24, 27, 18, 31, 33, 34,
32) respectively):

h.(r)=0,e.(r)=0, (24)
€1 =e,(r) =57, 2
&
h(r)=|—e () - (26)
7,
&
h()=— e, (r), @7
7,

;(zia),/,ug/c, (28)
where A,¢&,u,c,a, y, — constants.

Thus we have got a monochromatic solution of the equation
system (1-10). A transition to polychromatic solution can be achieved
with the aid of Fourier transform.

If it exists in cylindrical coordinate system, then it exists in any
other coordinate system. It means that we have got a common solution
of Maxwell equations in vacuum.

3. Intensities
We consider (2.25):
e, =e,=054-r"", @

where A is some constant. From (1) it follows that

€ +ef,):ATZ-r2(“'l)- @)

Fig. 1 shows, for example, the graphics functions (1, 2) for
A=-1, a=0.8.

Fig. 2 shows the vectors of intensities originating from the point

A(r,go). Let us remind that projections h(/,(r )= %er(r) and

h, (r): - ﬁew(r), - see (2.26, 2.27). The directions of vectors e, (r) and
U
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Chapter 1. The Second Solution of Maxwell's Equations for vacuum

e,(r) ate chosen as: er(r)>0,e¢(r)< 0. Note that the vectors £, H

are always orthogonal.
In order to demonstrate phase shift between the wave components
let's consider the functions (2.11, 2.12) and (2.16-2.21). It can be seen,

that at each point with coordinates r, ¢, z intensities /H, £ are

shifted in phase by a quarter-period - see Fig. 0.

0 E, H, E

A 4”‘

\

i'l‘ NN |
:ﬁhi. y L] N
LISSSSY S Y
u*»- 7Ty

1

[}

| ‘

y/

T
|
L g

Density of energy
= uE?)
Taking into account (2.17, 2.18, 2.20, 2.21, 2.26, 2.27), we find:
1 . , 1 '
W= ga(e{(ersi)” + (o)) + (o)’ + (hgsi))) = gr(w((ers)" + (eqeo)”) +

or

@

_ € 2
W(T‘) - ﬁ(er(r)) 3)
- see also Fig. 1. From (3 3.2) we find:

W(,r) AS 2(0( 1) -

Thus, electromagnetlc wave energy density is constant in time and
equal in all points of the cylinder of given radius.

14



Chapter 1. The Second Solution of Maxwell's Equations for vacuum

-0.25

-0.3

0.35
0.4 P

-0.45 /
-0.5
0

ef(r)

-0.05

-0.1

0.15 /

-0.2

-0.25 /
0 2 4 6 8 10 12 14 16 18 20
Fig.1. SecondSolMax.m

A*ef(rp

Let R be the radius of the circular wave front. Then the energy of
the electromagnetic wave, per unit wavelength,

Qa-1)
w = A& J‘( 2(a- 1))1, A:ﬁ‘ (fa ) 9)

Fig. 3.

The solution exists also for changed signs of the functions (2.11,
2.12). This case is shown on Fig 3. Fig. 2 and Fig. 3 illustrate the fact that
there are two possible type of electromagnetic wave circular
polarization.

Let's consider the functions (2.11, 2.12) and (2.28). Then, we can
find

1-5



Chapter 1. The Second Solution of Maxwell's Equations for vacuum

co = cos(ap + /e @, wt), si =sin(a@ ++/ &l @, wt). 4
c c

Let's consider a point moving along a cylinder of constant radius
7, at which the value of intensity depends on time as follows:
H,.=h (r)os(wr) ®)
Comparing this equation with (2.16) and taking (4) into account, we can
notice that equation (5) is the same as (2.10), if at any moment of time

w
ap+.Jeu—z=0 (6)
c
or
W4/ &
¢:——/JZ. (7)
a-c

Thus, at the cylinder of constant radius r a path of this point exists,
which is described by equations (4, 7), where all the intensities vary
harmonically. On the other hand, this path is a helix. Thus, the line, along
which the point moves in such a way, that its intensity /. varies in a
sinusoidal manner, is a helix. The same conclusion can be repeated for
other intensities (2.17-2.21). Thus,

the path of the point, which moves along a cylinder of given

radius in such a manner, that each intensity varies

harmonically with time, is described by a helix.

®»)

Fig. 4. 4o (TokPotok33.m)
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Chapter 1. The Second Solution of Maxwell's Equations for vacuum

Fig. 4a. " (TokPotok33.m)

For example, Fig. 4 shows a helix, for which
r=1, ¢=300000, ®=3000, a=-3, p=[0+27] Fig. 4a shows
helices in the same conditions, but for different radii, where
r= b.S, 0.6, ...1.0, I.IJ. Straight lines indicate the geometric loci of

points with equal ¢.
The last means (A) that at point T, moving along this helix the
vectors of intensities (2.16-2.21) can be written as follows:

H,.=h(r)cos(ar), H,.=h,(r) sin(wrt), H..=h_(r)sin(eot),
E..= e, (r)sin(or), E,=e,(r) cos(ar), E..=e.(r)cos(ar).
It was shown above (see 2.24-2.27), that h (r)=0, e.(r)=0,

e(r)=e,(r)=e,(r), h,(r)= £er(p(r), h(r)=— iew(r). Therefore,
H H
at each point there are only vectors
H, . =- %ew (r)cos(a)t), H, = \/%ew(r)sin(a)t),

E.=e, (r )sin(ax), E,=e,(r) cos(ar).
,=H,+H, and E =E +E  lay in

—e, ().

1-7
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Fig. 4b shows all these vectors. It can be seen, that when the point T
moves along the helix, resultant vectors H,, and E  rotate in plane

r, @. Their moduli are constant and equal one to the other. These
vectors H,, and E, are always orthogonal.

So, harmonic wave is propagating along the helix, and in this
case at each point T, which moves along this helix, projections of
vectors of magnetic and electric intensities:

° exist only in the plane which is perpendicular to the helix axis,
L.e. there only two projections of these vectors exist,
e vary in a sinusoidal manner,

e are shifted in phase by a quarter-period.
Resultant vectors:

e rotate in these plane,
e have constant moduli,
e are orthogonal to each other.

’ “Erf

Fig, 4b.

4. Energy Flows
The density of electromagnetic flow is Pointing vector
S=nExH, M
where

n=clir. )

1-8
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In the SI system 77 =1 and the last formula (1) takes the form:
S=ExH, 3)
In cylindrical coordinates r, @, z the density flow of
electromagnetic enetgy has three components S,, §,, S., directed along

BAOAB the axis accordingly. They are determined by the formula

S. E@HZ‘EZH@
S= S(p =n(ExH)=nEH -EH,
S, ETH(p—E(pHr. @

Thus, the flux density of electromagnetic energy propagating along
the radius, along the circumference, along the axis 0z is determined,
respectively, by the formulas of the following form:

e, . e, _
?+er—?a—xez—0 0

b

e. . e, Hw,

e )
- o+ erx—”Thr= 0 N

e _HOp
ex-e,~h, O, 5
hT hT
7+hr—7a+xh2=0, 5
h., h,

-—-h, +—oc+—e =0
r , )

i h O
o+ hx - Te = o
—hx-h, +& e = 0

%

The flow passing through a given section of a cylindrical wave at a
given time,

1-9
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I|
VJI

ff dr - de
©)

It is shown above that hz(r)ZO, e (r)=0. 'Therefore,
S.=0, S =0,

and is equal to

5=S —T]ff (e h siz—ecphrcoz)dr-d(p)

™)
Lack of radial energy flux indicates that area of wave existence is
NOT growing. Existence of laser provides evidence of this fact.

We'll find s, . From (2.26, 2.27, 2.25), we obtain:

eh,= \/Eef, ®
)7,
& 5
e,h, = —\/:eq], )
U

i.e. the energy flux propagates only along the axis 0z

In this way,

S, = £
- e \/:1 4n® r\/; (11)

or, taking into account (2, 2.25),

S _ A2 ECT_Z(O(—l)

l16mu 12)

Consequently, the energy flux of the electromagnetic wave is
constant in time.

It follows that the energy flux passing through the cross-sectional
area is independent of ¢, ¢, z. This value does not vary with time, and

this complies with the Law of energy conservation.

5. Speed of energy movement
First of all, we find the propagation speed of a monochromatic
electromagnetic wave. Obviously, this speed is equal to the derivative

%of the function z(¢f) given implicitly in the form (2.16-2.21).
t

Consider, for example, the function (2.16). We have:

1-10
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M: h, i(cos(ozgo + yz+ a)t)): —si-h y,
dz dz

d(H,)
dt

Then the propagation speed of a monochromatic electromagnetic wave

_ z_ d(H, )/d(H)

=h, %(cos(agp + yz+ a)t)): —si-h.o.

m

Taking (2.28) into account, we obtaln

L e () [d0)_ o N
"t dt | dz 7 !

Vauresad (2.28), moaygaem
v, == G oue fc Jom-. (1b)
T

Consequently, the propagation speed of a monochromatic
electromagnetic wave is equal to the speed of light.

Umov's concept [81] is generally accepted, according to which the
energy flux density § is a product of the energy density w and the speed
of energy movement v, :

s=w-v,. @)
N3 (4.11, 3.3) moaygaem:

DS

The speed of movement of electromagnetic energy v, is not always

equal to the speed of light. For example, in a standing wave v, =0, and
generally in a wave that is the sum of two monochromatic
electromagnetic waves of the same frequency propagating in opposite
directions, the energy transfer is weakened and v, <c.

Note that, based on the known solution and formula (18), we can
not find the speed v,. Indeed, in the SI system we find:

2 2
=S _pnf/| L o BV
w 2 2u H E

E’ H’
(i EPE then £l = 4/ u& . Then for a vacuum
Y7,

2
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1 |4
v, = Z,u/[e,u+ g,uJ =.[— =376,
\EU &

which is not true. In general, the solution obtained here can not be
found in vector form.

6. Discussion

The Fig. 8 shows the intensities in Cartesian coordinates. The
resulting solution describes a wave. The main distinctions from the
known solution are as follows:

1. Instantaneous (and not average by certain period) energy flow
does not change with time, which complies with the Law of
energy conservation.

2. 'The energy flow has a positive value

The energy flow extends along the wave.
4. Magnetic and electrical intensities on one of the coordinate

Bl

axes r, ¢, z phase-shifted by a quarter of period.

5. The solution for magnetic and electrical intensities is a real
value.

6.  The solution exists at constant speed of wave propagation.

7. The existence region of the wave does not expand, as
evidenced by the existence of laser.

8. The vectors of electrical and magnetic intensities are

orthogonal.
9. There are two possible types of electromagnetic wave circular

polarization.

10. The path of the point, which moves along a cylinder of given
radius in such a manner, that each intensity value varies
harmonically with time, is a helix.

Appendix 1

Let us consider the solution of equations (2.1-2.10) in the form of
(2.13-2.23). Further the derivatives of 7 will be designated by strokes. We
write the equations (2.1-2.10) in view of (2.11, 2.12) in the form

M+eﬁ(7’)—e(';(r)@—){‘@z(r):o’ @
7 r

—%-ez(r)ajteq,(")?(:mr(r) “

(Y —.r) = m, (1), K
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r
+ ( ) () a:mz(r), Q)
h(r) h()+ a+z h.(r)=0, ©)
;-hz(r)a—h,,,(r)z =, () ©
~h (Y~ h () =, (), @
()+h()+ ()0! J.(r)=0, ®
] ) . g . &
.]r :_er’ -](P :__e(P’ ‘]Z :__ez’ (9)
c c ¢
mr:ﬂ . mq):_ﬂhw,mzz_ﬂhz’ (10)
c c ¢

We consider travelling wave in vacuum. In this case e () =0, as
there is no external energy source.

Along with that, according to (9) we obtain j_(#)=0. Then, the
initial system (1, 5-8) will be as follows:

5£2+4@yfd9a=o, a7
h (") e )+ "t yh () =0, (18)
; h,(r)e=h,(rx = j,0) =
—h () —h.(r)=j, (), (20)
h()+h()+h() 0, (1)

Substituting (9) in (17), we get:
JAGN ()+w()
Substituting (1;, 20) in (22), we get:
= b )z RO =Bz Ch =K ) E =0

or

=0, (22)

| | ,
;;@@m—;wAnZ—%@m—@@ﬁ?=o 23)

1-13
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In this case, for calculation of three intensities we obtain three equations
(19, 21, 23). Then, we exclude A, (r) from (21, 23):

1 1 1 a o
—h.(na ——‘h¢(V)Z+(—-hw(r)+ hr(r)—j;(—hr(r 2% _ o
r v r 7 7
or __21 “h.(r)a=0 or h(r)=0. Thus, in a e (r)=0 -conditon
r

h_(r)=0 to be respected. This implies

Lemma 1. The equation system (1, 5-9) for e_(r) # 0 is compatible
only if h_(r)=0.

If e(r)=0 and h (r)=0, then equations (1, 5-9) will be as
follows — equations (1, 5, 8) can be simplified, and equations (6, 7) taking
(9) into account, can be substituted for the following equations (1.3, 1.4):

CA GG (1)
r r

h"—(r)+h;(r)+wa:0, (1.2)
r r

74

—hy(r)=e,() (1)

— L ()=e,(r), (1.4)
cw

h

—‘”(r) +h;(r)+—hr(r)-a =0. (1.5)
r r

In a similar way we can prove

Lemma 2. If e_(7) =0, system of equations (1-5, 10) has a solution
only in that case, when h_(r)=0.

In this case, similar to equations (24, 28), we can obtain equations

(A0 +e (r)— &) a=0, @1
r r

ew(r)lz—'u?a)hr(r) 2.2)

w

e, (r)y = %hw(”’ 2.3)

L(F)Jre;,(r)—e’—(r)azo, 24
r r

LAQN B ()+ LA 2.5)
r r
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From Lemmas 1 and 2 follows
Lemma 3. System of equations (1-10) has a solution only if
h(r)=0,e(r)=0. 3.1)
Therefore, initial system of equations (1-10) can be written in the
form of equations shown in lemmas 1 and 2. We combined them for
readers' convenience.

ﬂ+e:(r)—Lma=O, (24)

r r
e, (r)y= —ﬂTwhr () (25)

@

e, (r);( = %hw(r), (26)
&) +e,(r) - 0] a=0, @7)

r r
) (r)+ B (r)+ R 0, (28)

r r
h,(r)y= %er(r) (29)
Ew
~h @) =="=e,(r), (30)
()+h()+ (r) a=0. 31
r

We multiply equations (26, 29). Then we get:

—e, (', ("N y’ =—w[§j e, (), (r)
or

z=%oue/c. (32)

Substituting (32) in (26, 29), we get:
&
h,(r)= o ) (33)

Thus, with condition (32) equation (26, 29) are equivalent to a
single equation (33). A similar equation follows from (25, 30):

()=~ |%e,(r) (34)
y7,
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Chapter 2. Solution of Maxwell's
Equations for Electromagnetic Wave in the
Dielectric Circuit of Alternating Current
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1. Introduction

An electromagnetic field in vacuum is considered in chapter 1. The
evident solution obtained there is extended to a non-conducting
dielectric medium with certain dielectric and magnetic permeability e and
u, respectively. Therefore, the electromagnetic field does also exist in a
capacitor as well. However, a considerable difference of the capacitor is
that its field has a non-zero electrical intensity along on of the
coordinates induced by an external source. The electromagnetic field in
vacuum was examined on the basis of an assumption that an external
source was absent.

The same can be said about an alternating current dielectric circuit.
The system of Maxwell equations is applied to such a circuit. It is shown
that an electromagnetic wave is also formed in this circuit. An important
difference between this wave and the wave in vacuum is that the former
has a longitudinal electrical intensity induced by an external power
source.

Below are considered the Maxwell equations of the following form
written in the GHS system (as in chapter 1, but with e and p which are
not equal to 1 and taking into account displacement currents):

L OH

I'Ot(E)'F;E =0, (1)

2-1
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rot(H) - 295 4 — ¢ o
div(E)=0, )
div(H )=0, Q)

where H, E are the magnetic intensity and the electrical intensity,

respectively, J - displacement currents.

2. Maxwell Equations Solution
Let us consider solution to the Maxwell equations (1.1-1.4) [37]. In
the cylindrical coordinate system r, @, z, these equations take the

form:
oF
Er+8Er+l. ¢,+8EZ:0’ 0
r or r Op Oz
OE
1 _ (/,:VdH,’ ©)
r Op Oz dt
OE. OE, dH,
- =V 5 (3)
oz or dt
E, OE, 1 OE, dH
—+ - =V , )
r or r O dt
OH
H, 8Hr+l‘ ¢+6HZ:0’ )
r or r Op Oz
H .
1od, OH,  dE g, ©
r op oz dt
dE
aH’_aHz:q (p’_}_g.](p (7)
0z or dt
H, OH
oy fﬂ_l.aHr=quz +9°1; ®)
r or r O dt
where
v=—yujc, )
q=¢/c, (10)
g= 41T/CJ (102)

E., E,, E._ are the electrical intensity components,

H,, H,, H, arethe magnetic intensity components.

A solution should be found for non-zero intensity component ~~ Z.

2-2
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To write the equations in a concise form, the following
designations are used below:

co=cos(ap+ yz+ at), 11)
si =sin(a@ + yz + wt), (12)
where @, y, @ are constants. Let us write the unknown functions in the

following form:

H,.=h(r)o, 13)
H,.=h,(r)si, (14)
H_.=h_(r)si, (15)
E.=e(rki, (16)
E,. =e,(r)co, A7)
E .=e(r)co, (18)
Jr =0 (18a)
Jo=JgSt (18b)
J,=J,St (18¢)

where h(r), e(r), J() are function of the coordinate r.

Direct substitution enables us to ascertain that functions (13-18)
convert the system of equations (1-8) with four arguments r, ¢, z, ¢ in

a system of equations with one argument r and unknown functions

h(r), e(r),] (7). This system of equations has the following form:

e,,(r)+e;( )— e,(r )a 7-e.()=0, @1
r
_l.ez(r)a+e(p(r)l——hr :0, (22)
7 C
e () —e'(r) +ﬂ_a’h¢ -0, 23)
e,(r) r
¢,r rel( ( ) ; h =0, 24
h (”) 2D ok yon =0, .
In (r) o (1) —@e ) -4,0r) = (26)
R X - () + E2e, () -2 ) =0 @7
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ho(1) —h(r)
T

EW 41, _
= <+ Ter(r) - L) =0

+ h(p(r) + s

Also, as in Chapter 1, the energy flux densities by coordinates are
determined by the formula

S. E(PHZ—E'ZH(p
S= S(P =n(E X H)=n EZHT'_ET'HZ
S, E.Hy-EH, . 29)

ot, taking into account previous formulas,

S, =n(eyh,-eh,)cosi

(30)
_ 2 2
StP = n(ezhrco -e h s ) o)
_ 2 2
S,= n(erh(pSL - ecphrco ) 32

It will be shown below that these enerov flux densities satisfy the
energy conservation law, if

h,.= ker’ 53
hy=-ke, (34)
h,=-ke,. 65)

It follows from (30, 34, 35) that
S. = rl( — e(pkez + keze(p)co -si= 0’ a6

i.e. there is no radial energy flow.

It follows from (31, 33, 15) that

S(P - n(ezkerco2 + kerezSiz) - nkerez, 37

i.e. the energy flux density along the circumference at a given radius does
not depend on time and other coordinates.
It follows from (32, 33, 34) that

S, =nke,h(si*+co®) = nkerh(p, .

ie. the energy flux density along the vertical for a given radius is
independent of time and other coordinates. These statements were the
purpose of the assumptions (12-14).

We replace the variables with respect to (33-35) in equations (21-
28) and rewrite them without changing the numbering:
e e
Tre —Pu- =
- +e, 0= Xe, 0’ a
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€, Hw,
_7a+e(px—Tker—O, w
_ Hw, _
e,+ex- kc 0 0’ “
e e
TPy — To— kMR —
r+e<P - kCeZ O’ "
kL + ke —k—2a-kye =0
r , (43)
4.
_k—oc+ke(px—Te ‘Tfr—O, »
EW 4.
ke,-kex+ e, ="Jp=0 “
e
_ ke Cro 4 E®, _AT, _
k ke(p+kroc+ AL 0’(48)

It can be seen that equations (41) and (45) coincide and therefore
equation (45) can be removed from the system of equations. The
remaining 7 equations (41-44, 46-48) are a system of differential
equations with 7 unknowns

r) (P) Z}]r}](pljzlk
In Appendix 1 we consider the solution of this system of

equations. It shows that all the functions of the stresses and displacement
currents can be found from the Maxwell equations system if we

determine the parameters XMW and the amplitude of the time function
E,=e,(rcos(x @ +xzZ + wt) 49)

at the point " = 0; i.e. if we determine the quantities e,(0) =4, X,
The functlon (29) at the point (" =0, = 0,2=0) has the form
E,, = Acos(wt). 50)
Thus, the function (50) determines a monochromatic solution of
the system of Maxwell equations.

We shall also find the values of the other intensities at the point.
(r=0,0=0z=0), Tt follows from (1, p1.40) that

(04
E@O=ﬁfam@oﬂ.

It follows from (1, p1.41) that

€Ly
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E, o= - Asin(wt).

ro

(52)
It follows from (15, 35) that
H, =-kAsin(wt). 63
It follows from (2, 14, 34) that
Hp=- kAsin(wt). 5
It follows from (3, 13, 33) that
H,_ = kAcos(wt). 55)

2a UHP-theorem

Regardless of the wire parameters, there is an unambiguous

relationship between the electrical voltage U on the wire, the

longitudinal magnetic intensity = Z in the wire, and the active

power P transmitted through the wire.

It was shown above that all functions of the intensities and
currents are determined by the value of the parameters: A, X, The

value @ is determined from the outside, and the parameter X depends on

(L):
w
X= ?\/E "

Consequently, all functions of intensities and currents are
determined by the value of two parameters: 4 X. The value of these two
parameters also determines the energy fluxes (2.36-2.37), which depend
on the intensities. Therefore, if we set the value of the two quantities
from the set

E,E By HyH o H 8,50, 2

then from the given equations, one can find the value of the parameters
A, &, and then find the value of the other quantities from the set (2).

Let, for example, in the set (2) the quantities E, SZ is defined.
This determines the voltage on the wire with a length L

U=EL
G
and active power transmitted over the wire,
P=S,
)
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Then, with known u,p one can find EZ’ Z, from the given

equations one can find the value of the parameters 4 % and then find
the value of the other quantities from the set (2).
Similarly, with the known longitudinal magnetic intensity in the

wire * Z and active power (4), it is possible to find the value of the other
quantities from the set (2).

From this, in particular, it follows that regardless of the wire
parameters, there is an unambiguous dependence

U=f(HPp). ©)
In chapter 4c, an experiment will be described that proves the
validity of this theorem.

3. Invertibility of the solution
By virtue of the symmetry of the solution obtained, there is
another solution, where instead of the longitudinal electric intensity
function (2.49), the function of the longitudinal magnetic intensity is
defined as the value of the amplitude of the time function
H,= hz(r)sin( < +XZ + (Dt) )

at the point " = 0; i.e. if we determine the quantities h,(0) = 4, % xw,

Find the voltage on the wire with a length L from (2.18):

L
U=fEZdz=eZ co-dz
0 0 ) 2)
Find the magnetomotive force on the wire with a length L trom (2.15):
L L
F=fHZdz=hZfsi-dz= ~ke, | si-dz
0 0 0 , 3)
With a large L we have:
L L
fco-dz=fsi-dz=Q
0 0 - @
From (2-4) we find:
U=e,Q

®)

F=-keQ= —kU. ©




Chapter 2. Solution for Electromagnetic Wave in the Dielectric Circuit of Alternating Current

Formula (6) shows the relationship between the external voltage
and the external magnetomotive force, which create equal currents in the
wire.

4. Polychromatic solution of the system of

equations

Obviously, if the function (2.50) determines a monochromatic
solution of the system of Maxwell equations, then the function

E, = g(flbcos(wbt)). "

determines a polychromatic solution of the system of Maxwell's
equations. We denote this function by

fl = g (Abcos((obt)).

@
A reversible polychromatic solution defines a function
H, = Z (Absin(wbt)).
b ©)
We denote this function by
y(© =Y (4sin(w,t))
b s “

The coefficients of the functions (2) and (3) coincide.
By analogy with (2.51-2.55), we find the values of the other
intensities at the point (" = 0,¢ =0,2=0);

E = gAcos((,ot),
m

e ©
1, .
Ero = mAsm((;)t), o
H, =-kAsin(wt), o
H(po =- kAsin(wt), ®
H, = kAcos(wt). o
Appendix 1.
The solution of the equations (2.41-2.44, 2.46-2.48) is considered:
e, . e(p 0
—+e —-—La-xe =
R @
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- %a tepX - %ker = O, -

—e,+ex- k”é‘) 0= 0’ o

e—‘p+e(p—% —k%ezzo, »

- k%a + keq)x - %er - 4Tnjr = O, 2

ke, - ke x + ETwe(P - 4Tnjq) = 0, -
—k——ke +k—a+—e —4—1T] =0

)

In Appendix 2 we give a solution of the system of equations (21-
23). It has the following form:

e e
. z 2 2 zZ 2 _
e, +-2-e,(x" - (knw/c)”) - —a” = 0.
r 29
In Appendix 3 we give a solution of the system of equations (22-
24). It has the following form:

B mpuaoxernn 3 mpuBEAEHO peIleHne CUCTEMBI YpaBHEHHH (22-
24). Ono umMeer CAEAYFOIIIHI BUA!

kuoo cX
et (Ha( cX kuw))

e, (x* - (kpw/c)®) - ;éoc = 0.
(30)

Both these solutions must coincide, because they must be a general
solution for the system of equations (21-24). Consequently, must be
tulfilled the condition

(1o i) =1 o
or

kpo — cx _

where do we find
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=X 1
HwA2 (32)
W w | €
:i —_ € k - — (5
Ecan cVH , TO C 21, (33)
So, the function €z is defined by the equations (29 32):
e
- z 2 1 (69'¢ €, 2
ez+7—ez( —(f uo)/c)) —20( =0
or
e 2 2
o 7 X (0 4 _
ez+?—ez(7+;z) =0
: (34)

This equation is a modified Bessel equation and its solution ~Z is

considered in Appendix 4. The function €, is also considered ibid.

For known €2 €2 K e can find €€0 by (22, 23). Adding (22,

23), we find:
e, .
-a-e,+ (ep + er)(x—ku—w) 0

) (35)
Subtracting (23) from (22), we find:
€, . kp.(x)
-—a+te,+(e,—e (+ )=O
T e+ (el , (36)
Substituting (32) into (35, 36), we obtain:
e, . —0
-o-e,+ m(e(p +e,)= | -
e, . —0
- o+ e,+m(e,-e,)= | -

where

"= X(l B \/%) (39)

From (37, 38) we find:




Chapter 2. Solution for Electromagnetic Wave in the Dielectric Circuit of Alternating Current

(41)

“42)
. e
e, =
m 43)
With known €r€@€z k displacement currents can be found from
(26-28):
C €,
== —=a+ ke x - —e )
4“( r o , &
=i ke, - ke x +=-e )
4T ¢) 43)
=4L( k2@ e +k—a+—e)
L r (44)
Substituting here (40-43), we obtain:
C [~z EW:
== ka ) -—e€ )
4T ( cm”z 45)
_ C _X zEWA
Jo = Im keZ(l m) T cm) (46)
_C ez (04 (04 éz e zQ EW
fz—ﬁ( ke Tm "m(r ‘72) krm+Tez)
ot
] = &e
z T 2 )
Appendix 2.

We consider the solution of the system of equations (21, 22, 23)
from Appendix 1:
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e e
Tre - Py- =
- +e, -0 —Xe, 0’ o

€, Hw,

- ategx- Tker = 0’ -
. W,

-e,tex- k“c o= =0. -

The solution will be considered in detail so that the reader can easily
verify it. From (23) we find:

__C _
e(p = k_uoo(erx ez)
Combining (21, 31), we find:
e, . c o . .
—+ er—m(erx—ez) -xe,=0

3

; 31)

or

e, cay )
—(1- +e, - + = O
r ( kpo e =X, k re (32)

Combining (22, 31), we find:
e
N MW,
——a+k—( X-e,) - ke, =0

or

€, cx - cx? kuw) _
" Rie® +e(ku—u)_7)_0’

or

e, 2
€z cx - cx”  kpw
Cr ( a+kuw Z)/(kuu) c )
From (33) we find:
e, ¢ 2
€ cx - cx”  kpw
( 7a+ o+ kuw~ Z)/(kuw c )
Combining (32, 33, 34), we find:

Lo - 00 ot e, ) (0 - )

(33)

e,
SNED)
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e, € cxX - ox?  kpw
k—uwrez =0

CXe

X X ot ot
ku_ M Bl b A v g
( c

2
cx”  kpw) _
XeZ)(Euw c )_ 0

X)X cx” kpw
k_ (( k_)k_+ +kuu)(kuu) c ))_

(- (-0

: 2
z[ cxX cx \2 ca cx” _
k_e T (kuoo a(kuoo) +0(+( Hwkpw (x))

cx”  kpw zcax
eZ(kuw c )X rekpw )

y 2
X LCzcex (Xt kuw e,ca’y _
kuoo°2+ r kpw ez(kuw c )X rekpw 0

. e
cxez+?zcx—ez(x (uw)) rcax 0

. e e
e, +-2-e,(x* - (knw/c)?) - —5a* = 0.
r r (35)

Appendix 3.
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We consider the solution of the system of equations (22, 23, 24)
from Appendix 1:

€, Hw _
_ ?(X + e(pX — Tker = 0’ -

—e+e KHPe =0
XTI : 23)

e e
Pre —To-kHPe =
—te,-ra-ki—e, 0’ 2

The solution will be considered in detail so that the reader can easily
verify it. From (23) we find:

1 kuw
e, X(e + (p)

(1)
Combining (24 31), we find:
1 kpw
cp KH® _Hw,
+e X(e+ (p)? ke, = ’
of
e kopwY , .k la
_(P _—u — p'(1)0 — an e
Combining (22, 31), we find:
—%a+e¢x—k‘éw>1((e +k“Twe(p)=0
of
I I
or
e kuw ) 1 kpw
e —( ‘o + e /(X ( ))
o \r cx z x\ ¢ -
From (33) we find:
. €, kuw /( 1(kuw)2)
e,= O(+—O(+ -=l—")
¢ ( r? X ) x\e (34)

Combining (32, 33, 34), we find:

1,  kapw\(€z , kpw: _ 1 kpw)2
H1-7% )(?‘”Wez)/ (- 222) +
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e, kuw 1(kpw)2
( 7‘”—“* cx Z)/(X'X(T) )-
kpw  la- ~0

c z xrz_

or

T cx cx X
kpow | la _1(kpw\2\ _
(e 3l (2)) =0
or

kpo, +ez(( kauw)kuw _(
cx z'r cx

() S 50 e

kum-ez + %(kuw _ a(kuoo)z 4o _az(kuoo)z) B

e e,
l(1 - —ka“w)(fa + kpo, ) + ( 70‘ + —oc + ko, Z) -

cx cx cx Y\ ¢
o kpw  1kpw)3) e ka’pw _ 0
2\ X ¢ x\ ¢ 2 cx

or

Lo e 5 kpw cx ) _ 2 (kpw\2
ez+71 20 ox +akuw) ez(x —(—C ))—

or

e, + 87(1 + a(zk“—‘” - 7\%)) —e,(x* - (knw/c)®) -

(35)

Appendix 4.
We know a modified Bessel equation, which has the following
form:

2-15



Chapter 2. Solution for Electromagnetic Wave in the Dielectric Circuit of Alternating Current

: 2
'51+X—y(1+" )=0
A 0
where Vv is the order of the equation. With a real argument, it has a real
solution. This solution and its derivative can be found by a numerical
method.
Equation (34)
.o .eZ XZ (xz
ez+?—ez(7+?2') =0
. )
in Appendix 1 like equation (1) and its solution and its derivative can also
be found by a numerical method.
When 720, equation (2) takes the form:
e 2
. 7 o
e,+ -~ ez;z =0
6)

Its solution has the form:

— A8
eZ—Ar , @

where A is a constant, and B is determined from equation

2 2 _

B=%(—1J_rq/1+4a2), B<O o

Thus, on the first iterations it is possible to search for the function

1.e.

€Zin the form (4), and then calculate it by (2). The value of A is the
amplitude of the function E. at the point =0, varying in time according
to (2.18, 2.11):

E,=e,(rcos(x @ +xZ + wt).
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Chapter 2a. Solution of Maxwell's
equations for capacitor with
alternating voltage
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1. Introduction
In Chapter 2 a new solution of the Maxwell equations is obtained
for a monochromatic wave in a dielectric medium with definite &, u -

dielectric and magnetic permeabilities. The main feature of this solution
is that the field has a nonzero longitudinal electric intensities created by
an external source. When considering the electromagnetic field in
vacuum, the absence of an external source was postulated.

The dielectric of the capacitor, which is under alternating voltage,
is also such a medium. Therefore, for him the solution obtained in
Chapter 2 can be applied without reservations.

According to the existing concept, in the energy flow through the
capacitor only the average (in time) value of the energy flux is conserved
[3]. The existing solution is such that it assumes a synchronous change in
the electric and magnetic intensities of such a field as a function of the
radius on the Bessel function, which has zeros along the axis of the
argument, ie. at certain values of the radius. At these points (more
precisely - circles of a given radius), the energy of the radial field turns
out to be zero [13]. And then it increases with increasing radius ... This
contradicts the law of conservation of energy (which has already been
discussed above for a traveling wave). Therefore, we propose a new
solution of the Maxwell equations for a capacitor in which the law of
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Chapter 2a. Maxwell's equations for capacitor with alternating voltage

conservation of energy is satisfied without exceptions and for each
moment of time.

2. Solution of the Maxwell equations
Next we will use the cylindrical coordinates r, ¢, z and the

solution of the Maxwell equations obtained in Chapter 2. Here we only
note the following:

1. There are electrical and magnetic stresses along all the

coordinate axes r, @, z. In particular, there is a longitudinal

magnetic intensity £ proportional to the longitudinal electric

field intensity 2.

2. The magnetic and electrical intensities on each coordinate axis
1, ¢, z are phase shifted by a quarter of a period.

3. The vectors of electric and magnetic intensities on each axis
of coordinates r, ¢, z are orthogonal.

Fig. 1.

It is important to note, in particular, that there exists a longitudinal

magnetic intensity £, proportional to the longitudinal electric intensity

Z, This fact is known. For example, in Fig. 1 shows a capacitor
converter of alternating voltage in an alternating magnetic intensity,
which in a magnetic core is converted into an alternating voltage on the
winding [117, 1992]. But, as the author of the article cautiously notes,
"the work of an externally simple device to this day in its subtleties is not
entirely clear."
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3. Speed of electromagnetic wave propagation
Obviously, the speed of propagation of an electromagnetic wave is

d.
equal to the detivative jj of a function z(¢) specified implicitly in the

form of functions (2.2.13-2.2.18). Having determined this derivative, we
find the speed of propagation of the electromagnetic wave
dz @
Vpy =——=——- ©)
dt ¥4
In the case under consideration, no restrictions are imposed on the
value of y. Therefore
v, <c. )
Consequently, the propagation velocity of the electromagnetic
wave in the capacitor is less than the speed of light.

4. Density of energy
The energy density is

W=(£E2+£H2j (1)
2 2

or, taking into account the previous formulas of Chapter 2,

W= %((ersi)2 + (e(pco)2 + (ezco)z) + %((hrco)2 + (h(psi)2 + (hzsi)z)

ot, taking into account (2.2.33-2.2.35),
Thus, the energy density of the electromagnetic wave in the
condenser is the same at all points of the cylinder of a given radius.

5. Energy Flows
The density of the flux of electromagnetic energy by coordinates
r, @, z is found in Chapter 2 - see (2.2.36-2.2.38), respectively. It

shows that

e there is no radial energy flow,

* the energy flux density along the circle at a given radius is
independent of time and other coordinates,

* the energy flux density along the vertical for a given radius is
independent of time and other coordinates.

The energy flow, which propagates along the axis 0z through the
cross section of the condenser, is equal to
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S,= ff (S,drde) = ff (nkzere(pdrdcp) = 21mk2j(ere(pdr).
[0} ¢ 0 (1)
This flow is active power
P=S_, )

transmitted through the capacitor. There is only one parameter, which is
not defined in the mathematical model of the wave - it is a parameter ¥

and power depends on it. More precisely, on the contrary, the power
P =S, determines the value of the parameter y. It follows from (1, 2)

P
K2 = /Znn](ere(pdr).
0

we find:

C)
Further, from (3, 2p1.32) we find:
P
1 ﬁ)z = quj-(e e,dr),
®)

From (5, 3.1) we can find the propagation velocity of an electromagnetic
wave:

©)

or

()

6. Electromagnetic and mechanical

momentum

It is known that the density of the electromagnetic momentum j
of a monochromatic wave is related to the density of the energy flux §
and the speed v, of propagation of energy by a formula having the

following form:
2a-4
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. 2
Jj=S/v,, ™)
Considering the momentum and energy flux densities directed
along the axis of the capacitor, from (1) we find:

Jo=S./v, ©
Full momentum
J.=S./v,. ®
ot, taking into account (5.2),
J =P @
Combining, further, (4) and (5.7), we obtain:
/= 2P%2 |
¢ ]. (e,e,dr)
0 ()

It follows that a significant electromagnetic momentum can be created in
a cylindrical capacitor. This pulse is directed along the axis 0z. According
to the law of conservation of momentum, a mechanical momentum must
also be created, equal and opposite to the electromagnetic momentum.
Consequently, the capacitor can move under the action of an
electromagnetic momentum.

7. Voltage in the capacitor
It follows from (2.2.18) that

We assume that the potential on the lower plate is zero for z =0
and for some @,, 7,,and the potential on the upper plate for z=d and

for the same number ¢, 7, is numerically equal to the voltage U across

the capacitor. Then

U = eZ(rO)COS( « @, + Xd + (Dt) (2)

At some intermediate value z, the voltage for the same ¢, r, will

be equal to

u(z) = e,(r,)cos(= 9, +xz + wt) 5

i.e. the voltage along the capacitor varies in function cos(z).

8. Reversibility of the capacitor
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At a certain external voltage between the plates (i.e. at a given

electrical intensity %), a magnetic intensity £ appears in the capacitor.
Above we consider a capacitor in which the external voltage between the
plates is determined. Similarly, we can consider a capacitor in which a

magnetic intensity = Z is given. In this case (due to the reversibility of the
solution of the system of Maxwell's equations - see Chapter 2.3), the

electric intensity ~ Z also appears in the capacitor, i.e. on the capacitor
plates there is a voltage. Such a capacitor can be considered as a
converter of variable magnetic induction into an alternating electric

voltage.

Fig. 1.

The "Mislavsky transformet" invented by a student of the 7th class
in 1992 is known, where this conversion of electrical tension into
magnetic induction is used explicitly in the body of the condenser - see
Fig. 2 [117, 118]. In this transformer, the electrical intensity is
transformed into a magnetic intensity (see the left part in Figure 1) and
the reverse transformation of the magnetic intensity into electrical
intensity (see the right-hand side in Figure 1).

9. Discussion
The proposed solution of Maxwell's equations for a capacitor
under alternating voltage is interpreted as an electromagnetic wave. We
note the following features of this wave:
1. There are electrical and magnetic intensities along all the
coordinate axes r, ¢, z. In particular, there is a longitudinal
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magnetic_intensity = Z proportional to the longitudinal electric

intensity = Z.

2. The magnetic and electrical intensities on each coordinate axis f, @,
7z are phase shifted by a quarter of a period.

3. The vectors of electric and magnetic intensities on each axis of
coordinates t, ¢, z are orthogonal.

4. The instantaneous (rather than the average over a certain period)
energy flow through the capacitor does not change in time, which
corresponds to the law of conservation of energy.

5. The energy flow along the axis of the capacitor is equal to the
active power transmitted through the capacitor.

6. The speed of propagation of an electromagnetic wave is less than
the speed of light

7. This speed decreases with increasing transmission power (in
particular, in the absence of power, the velocity is zero and the
wave becomes stationary).

8. The longitudinal electric intensities varies according to the
modified Bessel function from the radius.

9. All other electric and magnetic intensities also depend on the radius
and vary according to the modified Bessel function or its
derivative.

10.The wave propagates also along the radii.

11.The energy flux along the radius is absent on any radius. We note
that this conclusion contradicts the well-known assertion [13] that
there exist radii where the flow exists.

12. There is an electromagnetic momentum proportional to the square
of the active power transmitted through the capacitor.

13.The capacitor is reversible in the sense that at a certain external

voltage between the plates (i.e. at a given electrical intensity = Z), a

magnetic intensitiy £ appears in the capacitor, and for a certain
external induction between the plates (i.e., at given magnetic

intensity = Z) in capacitor there is an electric intensity ~ Z. This
effect can be used in various designs.
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Chapter 2b. Solution of Maxwell's
equations for a cylindrical capacitor
with variable voltage

Contents
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Appendix 1\ 3

1. Introduction

Below we consider a capacitor in the form of a tube whose walls
are a dielectric covered with a metal film on the inner and outer sides.

2. Maxwell's equations
As in Chapter 1a, we will use cylindrical coordinates r, @, z and

apply formulas of the form (1a.2.1-1a.2.8). Then the system of Maxwell's
equations takes the form (1a.2.9-1a2.2.16), where h(r), e(r) ate some

functions of coordinate r.
We will seek a solution in which
h,=0, 0
e,=0. o
In addition, we will seek a solution for a known tube diameter R and a
small thickness of dielectric, when
r=R €
and all derivatives respect to 7 are equal to zero. Then the system of
equations (1a.2.9-1a.2.16) takes the form:
e e
T__9 =
R~ R¢ + xe, O’ “
)
epX =2 h., O’ 5
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e.x+ Thcp = | o

h. h

Fr + 7“)0( = 0’ o

— h(px - %er = 0, o
h.x + %e(p = 0, "

h, h

Tq) + Tra - 0_ (10a)

In Appendix 1 it is shown that the solution of this system of equations
has the form:

a=1, 11)
X = WVER, (12)
e(P = & (13)

h =—e\/E
¢ R (14)
h =e\/E
AN (15)

. e . ..
Thus, for a given 7, all other intensities are defined.

3. Energy

The energy density is
W——(EHZ + uEZ)
Taking into account the previous formulas, we find:
= 8—( ((e 51)2 + (e co) ) + u((h co)2 + (h si) ))
1
=g-¢ (erSl) + (e(pco) ) + uﬁ((erco)z + (e,si) ))
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or

AT
Thus, the energy density of the electromagnetic wave in the condenser is
the same at all points of the cylinder of a given radius.

As in Chapter 1, it can be shown that the flux of electromagnetic

energy propagates only along the axis 0z. The density of this flux is

C €
s=Le? [
AT R o)
and the velocity of energy in the direction of the axis of the tube

U:iz ¢
W \en @

Together with the energy flow there is an electromagnetic pulse directed along
the axis of the tube,

2

er

_ S _
P=2%Zmc

=|m

®)

Appendix 1

From (2.7, 2.8) we find:
ep =€,
-

M

From (2.0, 2.10, 1) we find:

h = X

rox e xor )

From (3, 4) we find:

X /ew 2
Qo __ A —_ X
71—r— H(D/Xa_ ~/ Q.

EHw ©)
Comparing (2, 5), we find:
2
X" _q
suu)2
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X = on/ep ©)

Substituting (3) into (2.9), we find:

or

e X -twe, =0

"Hw @)

Substituting (6) in (7) then we obtain the identity. Consequently,
equation (2.9) is also an identity.

Similarly, substituting (4, 6) in (2.5), we see that (2.5) is also an
identity.

Substituting (2) into (2.8), we find:

r r.o_
"R TR*=Y 0
Consequently,
From (3, 4, 6) we find:
h =—e. |E
® i K 1n
h.=ea |t
r r u (12)
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1. Introduction

Chapter 2 deals with the electromagnetic field in an AC dielectric
circuit. The electromagnetic filed in an AC magnetic circuit can be
examined using the same approach. The simplest example of such a
circuit is an AC solenoid. However, if the dielectric circuit has a
longitudinal electrical field intensity component induced by an external
power source, the magnetic circuit features a longitudinal magnetic field
component induced by an external power source and transmitted to
circuit with the solenoid coil.

In this case, the Maxwell equations outlined in chapter 2, are also
used - see (2.1.1-2.1.4).

2. Maxwell Equations Solution
Let us consider solution to the Maxwell equations (2.1.1-2.1.4) [37].
In the cylindrical coordinate system r, @, z, these equations take the

form:

I

OE
E OB 1% [ OE (n
r Or r Op 0Oz

S sy @
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0E, OE,  dH

=y—2, €)
oz oOr dt
E, OE, 1 ©E, dH
—t - =v ) Q)
r or r O dt
H
H’+6H’+l-a ¢’+6H2=0, ®)
r or r Op Oz
1 oH. OH dE.
. z _ [4 — q 7 (())
r op oz dt
OH, OH, dE,
- =q ) (7)
0z or dt
H, OH, 1 oH dE
—£+ -t =q— ®)
r or r O dt
where
V= —/L[/C 5 (9)
q=¢fc, (10)

E,., E,, E. are the electrical intensity components,
H,, H,, H, arethe magnetic intensity components.

A solution should be found for non-zero intensity component H_ (in

Chapter 2 this should be found at non-zero intensity E.).
To write the equations in a concise form, the following
designations are used below:
co =cos(ap + yz+wt), 11)
si =sin(a@ + yz + wt), (12)
where @, y, @ are constants. Let us write the unknown functions in the

following form:

H,.=h()o, (13)
H,.=h,(r)si, (14)
H_.=h_(r)si, (15)
E.=e(rki, (16)
E,=e,(r)co, (17)
E_.=e(r)co, (18)

where h(r), e(r)are function of the coordinate r.

Direct substitution enables us to ascertain that functions (13-18)
convert the system of equations (1-8) with four arguments r, ¢, z, ¢ in
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a system of equations with one argument r and unknown functions

h(r), e(r).
Table 1.
Chapter 1 Chapter 2 Chapter 3
e. | ar A-kn, 7, r) ~ 2, )
xc
1 , w
e, Ar™! - ,(r)+r-e, ) ;—Ch (r)
q
e, 0 A-r-e,(r)= 0
a
1 '
P 4226 () =, () + -1 (1)
cy a
hy | =h() —4%2¢,() khle, 7. r)
X
n 0 0 roh (gl a

Appendix 1 proves that such a solution does exist. It takes the
following form:

e.(r)=0, (20)
hy(r)=khla, z, r), )
1 :
h,(r): —;(h¢(r)+r-h¢(r)), (22)
h(r)y=r-h,(r)qlea, (23)
e, (r) =220, (r). (24)
xc
@
e, (r)= —'u—h(/) (r)., (25)
xc
where kh() —is the function determined in Appendix 2 of Chapter 2,
2
q=(x—”gf’} 6)
cx

Let us compare this solution with the solutions, obtained in
chapters 1 and 2 - see Table 1. Similarity of these equations is illustrated
in Chapters 2 and 3.
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x 10°
2000 | 1 0
N 1000 ‘ N O o2 |
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Fig.1. (SSB6.703)

3. Intensity and Energy Flows
Also, as in Chapter 1, the energy flow density along the coordinates

is calculated

TAC

Let

by the formula

S_, s, - si°
S = S_(p :77” s, si-coldr-do. 1)
s | "s.-si-co

z

s, = (e(phz - ezhw)

S, = (ezhr - erhz), @
s, = (erh(p - ewhr)
n=clir. ?3)

us consider functions (2) and e(r), e,(r), e.(r),

h.(r), h,(r), h.(r). Fig. 1 shows, for example, these functions plotted

for A=1, =55, u=1, ¢=2, y=50, ®=300. These parameters

are chosen the same as in Chapter 2 - for comparison of the obtained

results.
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4. Discussion

Further conclusions are similar to the conclusions of chapter 1 and
2. Thus, an electromagnetic wave propagates in an AC magnetic circuit,
and the mathematical description of this wave is a solution to the
Maxwell equations. In this case, the field intensity and the energy Flow
follow a helical trajectory in the considered circuit.

Such electromagnetic wave propagates through transformer
magnetic circuit. Magnetic flow and electromagnetic energy flow
propagates through the magnetic circuit together with it. It is important
to note that the magnetic flow value does not change in case of load
change. Therefore, it is the electromagnetic energy flow that transfers
energy from the primary winding to the secondary winding not change.
Thus, the energy flow is not dependent on the magnetic flow. Here one
can see an analogy with transfer of current through an electrical circuit,
where the same current can transfer different energy. This issue is
discussed in detail in Chapter 5. The chapter says that at given current
density (in this case, at given magnetic flow density) transferred power

may be of almost any value depending on the values of ¥, «, ie. on

density of screw trajectory of current (in this case, at given magnetic flow
density). Consequently, the transferred power is determined by the
density of screw trajectory of current at a fixed value of the magnetic
flow.

Appendix 1.

A solution to equations (2.1-2.8) is considered to be in the form of
functions (2.13-2.18). Derivatives with respect to » will be denoted with
primes. Let us re-write equations (2.1-2.8) considering (2.11, 2.12) in the
form

“O -y e =0, W
7 r

—l-ez(”)a"‘ew(r)}(—ﬂ_whr =0, @
r C

er(l”)}(—e;(’”)"‘ﬂhw =0, ©)

ew(r_) +e(r) -2 (r) HOh ~o, )

ETNC I :
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Loha-hny-22e =0, ©

r C

—h,.(r);(—h;(r)+%e =0, ™

h

() h(>+h(r) +524 (1) =0, ®
C

The correspondence between the formula numbers in Part 2 and in this
Appendix is as follows:

Part 2 21 122 |23 |24 |25 [26 |27 |28
App. 1 1 5 6 7 8 6 7 8

Formulae (1 — 8) will be transformed below. In doing so, the
formula numbering will be retained after transformation (to make easier
to follow the sequence of transformations), and only new formulae will
take the next number.

Assume that

ez (7") = 0 * (9)
From (2, 3) it follows that:
e, (N =ﬂh,. (r) @
e, (r)y=—"— 3)
Let us compare (4, 5).
()+ L) - () a+2h =0, @
h(r) h()+ 05+;( h(r)=0, 5)

From (2, 3) it fo]lows that (4, 5) are identical. Then (4) can be
deleted. Then compare (1) with (8):

e(”)+ - g0, (1
M+h;,(r)+ir)-oz=0, ©)
r r

From (2, 3) it follows (1, 8) are identical. Hence, equation (1) can
be deleted. The remaining equations are as follows:

e, (=221 (). @
xc

e, (r)= —ﬂ—a)h¢(r), €)
xc
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hr(”)+h'( )+ ¢( LA (1) =0, 5)
—.hz(r)a—h¢(r);(——‘”e,=o, ©)
r C
—h (r);(—h'(r)+ﬂe =0, @)
h
( ) L)+ (’") +%%e (r) =0, ®
C
Substitute (2, 3) in (6, 7):
- h (Na—h (r);g+‘9‘“ 'L;)h r)=0 ©)
—h ()~ <r>+g—”7“’h (r) =0, )
or
ﬁ-hxr):h(,,(r)(z—ﬂg—‘“l} ©
r c ¢y
B(r)=—h, (r{z—ﬂ@i] )
c c gy
The remaining equations are as follows:
e, (r) =22 h (), @
xc
e, (r): —’u—wh(p (r), 3
h(r) h’()+ LI h(r)=0, 5)
—-hz(r)=hq,(r)(z—“—"’@% ©
r c ¢y
B(r)=—h, (r{z—ﬂ@i] )
c cy
h(r) h
¢T+h¢(r)+%r)'a: , ®)
Let us denote:
q:(l_ﬂ_w@l] (1
c cy

From (5, 6, 11) it can be found that:
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h(r)+h'( )+ ()a+l”'h¢(’”)q/a:0’ (12)
r
From (8) it can be found that:
1 :
h ()= —;(hw(r)+r~h(p(r)) (13)
! 1 ! 14
()= —E(2h(p(r)+r-h¢(r)) (14

From (12-14) it can be found that:

h,(r)
—;( h()j

(e (r) (r)]+ (Ze (ry+r- e”(r))— a 9z, .. ,(1)=0 (15
a a

"

=0,(15

It can be observed that this equation is the same as equation (15) in
Appendix 1 of Chapter 2, if variable s, (r) is substituted for variable

e,(r). Therefore, the solution of the equation is a function of

h(r)=kha, z, r), (16)
and its derivative as a function
n(r=khile, z, r) (17

With the known functions (16, 17), the remaining functions can
also be found. Thus, all the functions can be determined from the
following equations:

e.(r)=0, ®

h(r)=kh(e, z, 1), (16)

n(r)=khile, z, r), 17)
1 ,

hr(r)z —;(hw(r)+r-h(p(r)), (13)

’ 1 ! 14

()= —;(21% () +r-h(r)), (14)

h(r)y=r-h,(r)q/ea, ©)

H.(r)==h(). )

e, =22 h.(r), @

xc

e, (r)=—E2n,(r). ®

xc
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Chapter 4. The solution of Maxwell's
equations for the low-resistance Wire
with Alternating Current

Contents
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Appendix 1\ 15

1. Introduction
The Maxwell equations in general in GHS system have the
following form (see option 1 in the "Preface"):

rot(E )+ ﬁaa_’;’ _o0, M

rot(H)-£9E 37 5o, 2)
cot ¢

div(E)=0, €)

div(H)=0, )

J=E, ©

where
J, H, E - conduction current, magnetic and electric intensity

accordingly ,
g, U, p - dielectric permittivity, permeability, specific resistance of
the wire's material
Further these equations are used for analyzing the structure of
Alternating Current in a wire [15]. For sinusoidal current in a wire with
specific inductance L and specific resistance p intensity and current are
related in the following way:
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1 p—iol
. E = 2
priol  p*+(wLy
Hence for p << wL we find:

J= E.

Jz_—lE.
oL

Therefore for analyzing the structure of sinusoidal current in the
wire for a sufficiently high frequency the condition (5) can be neglected.
IIpu stom is necessary to solve the equation system (1-4), where the
known value is the current J_ flowing among the wire, i.e. the projection

of vector J on axis oz (see option 4 in the "Preface"):

2. Solution of Maxwell's equations
Let us consider the solution of Maxwell equations system (1.1-1.4)
for the wire. In cylindrical coordinates system r, ¢, z these equations

look as follows [4]:
E. ©OE 1 OE, OFE.
+ +—- +

”

=0, @
r or r Op Oz

O
1 0B, &, _dH, @
r 0p oz dt

OE  OF, dH
- =V ) 3
oz or dt
E, OE, 1 OE, dH .
—+ - =V ) O
r or r o0p dt

H,  oH, 1 0H, 0H.
+—- +

r

=0, ®)

r or r Op Oz

1 0H, O©OH dE
. z _ P _ q r (6)
r 8¢ oz dt

OH, OH, _ dE, -
0z or 1 dt ’

H, OH, 1 oH dE. Ar
—+ -t =q—+—J_. ©)
r or r O dt c

where
v=—yujc, 9)
qg=¢&lc, (10)
Further we shall consider only monochromatic solution. For the
sake of brevity further we shall use the following notations:
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co=cos(ap+ yz+ wt), (11)
si =sin(ap+ yz + wt), (12)
where a, y, @ — are certain constants. Let us present the unknown

functions in the following form:

H.=h()o, 13)
H,.=h,(r)si, (14)
H_.=h_(r)si, (15)
E.=e(rki, (16)
E,=e,(r)o, 17)
E .=e(r)co, (18)
J,.=j.(r)o. 19)
J = J,(r)si, (20)
J.= j.(r)si, e

where h(r), e(r), j(r) - certain function of the coordinate r.

By direct substitution we can verify that the functions (13-21)
transform the equations system (1-8) with four arguments r, @, z, ¢

into equations system with one argument r and unknown functions
h(r), e(r), j(r).

Further it will be assumed that there exists only the current (21),
directed along the axis Z . This current is created by an external source.
It is shown that the presence of this current is the cause for the existence
of electromagnetic wave in the wire.

In Appendix 1 it is shown that for system (1.1-1.4) at the
conditions (13-21) there exists a solution of the following form:

e,(r)=Ar"", 22)
e(r)=e,(r), 23)
e.(r) =2”§——A;””if_“ re, (), (24)
h(r)=% Miﬂe,,,(r) : 25)
hy(r)=~h,(r), (26)
h.(r)=0, 27)
Jn= e (=" Ar, (28)
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where 4,c,a,® — constants.

Let us compare this solution to the solution obtained in chapter 1
for vacuum — see Table 1. Evidently (despite the identity of equations)
these solutions differ greatly. These differences are caused by the
presence of external electromotive force withe (#)#0. It causes a
longitudinal displacement current which changes drastically the structure
of electromagnetic wave.

Table 1.
Vacuum Wire
x| 22\ eu 72 Meu, 7=+1
c c
J. 0 e (r)
A
er
Are? Ar®™!
e

o 0 (Ajﬁl)w@ )

he |  —e,r) z/Miﬂeq,(r)

—h,(r) —h.(r)
0 0

3. Intensities and currents in the wire
Further we shall consider only the functions j_(7),

e.(r), e, (r), e.(r), h.(r), h,(r), h.(r).Fig. 1 shows, for example, the
graphs of these functions for A=1, =3, u=1, ¢=1, ®=300. The

value j_(7) is shown in units of (A/mm”2) - in contrast to all the other

values shown in system SI. The increase of function j (r) at the radius

increase explains the skin-effect.
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-6
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Fig.1. (SSMB)

The energy density of electromagnetic wave is determines as the
sum of modules of vectors E, H from (2.13, 2.14, 2.16, 2.17, 2.23, 2.24)

and is equal to

W=E+H"= (er (r)vi)z + (e(ﬂ (r}i)Z + (hr (r)co)z + (h(p(r)co)
=0 +6,0) 0

- see also Fig. 1. Thus, the_density of electromagnetic wave energy is
constant in all points of a circle of this radius.

In order to demonstrate phase shift between the wave components
let's consider the functions (2.11-2.19). It can be seen, that at each point

with coordinates r, ¢, z intensities H, E are shifted in phase by a

or

quarter-period.
Let us find the average value of current amplitude density in a wire

of radius R:
1
= [[V.Yr-do. ©
.

J_z -
7R

Taking into account (2.21), we find:
-— 1 . .
J. :Wg[/z(”)fl}#'d(ﬁ (59)

Next, we find:

4.5
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<~

- 1 R {27[
el Jao)lr

w0

Taking into account (2) we find:

(r cos(2a7r+2—z) cos(—z)
C

<

z

aer

or

>

le (cosaz)-1)-J., .

where

R
er = J-jz(r)dr :
0
Taking into account (2.28), we find:

J. A;(gcoj-( )j

2ra
or
—_ AZ&‘&) Ra+l
" 27a(a+1)
45
-
L4
.i
4 >
L 4
L4
'D
3.5 -
‘0
*
’0
g ° K
s K
N . g
> 251-% +*
“ 1“
*e o’
2 0‘ "‘
\ ......l--““-
1.5 /
\ /
1

1 1.5 2 25 3 3.5 4 4.5 5 5.5 6

Fig.3. (SSMB)

©)

)

©)

(10)
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Fig. 3 shows the function J_Z(a) (6, 10) for 4 =1. On this Figure

the dotted and solid lines atre related accordingly to R=2 andR=1.75.
From (6, 8) and Fig. 3 it follows that for a certain distribution of the

value j, (r) the average value of the amplitude of current density J,

depends significantly of « .
The current is determined as

J= fa_E, (11)
c Ot
ot, taking into account (2.13-2.21):
J,.= @er r)co,
c
EQ@ .
J, = Te¢(r)sz ,
JZ.:[@ez(r)+jZ)si. (12)
c

You can talk about the lines of these currents. Thus, for instance,
the current J,. flows along the straight lines parallel to the wire axis. We
shall look now on the line of summary current.

-1 -1

Fig.4. (SSMB)

It can be assumed that the speed of displacement current
propagation does not depend on the current direction. In particular, for a
fixed radius the path traversed by the current along a circle, and the path
traversed by it along a vertical, would be equal. Consequently, for a fixed
radius we can assume that
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z=y-@ (13)
where y is a constant. Based on this assumption we can convert the
functions (4b) into
co = cos(ago + 2;(7(0), Si = sin(a(p + 2;(;/(/)) (14)
and build an appropriate trajectory for the current. Fig. 4 shows two
spiral lines of summary current described by the functions of the form

co =cos((a +2)p). si=sin((@+2)p).
On Fig. 4 the thick line is built for & =1.8and a thin line fora =2.5.
From (2.19-2.21, 14) follows that the currents will keep their values
for given r, ¢ (independently ofz) if only the following value is

constant

B=(a+2yr). (15)
Further, based on (14, 15) we shall be using the formula

co= cos(ﬂgo), si =sin(Bp). (16)

4. Energy Flows

Electromagnetic flux density - Poynting vector in this case is determined
in the same way as in Chapter 1, Section 4. Although here we repeat the first 6
equations from that Section for readers' convenience. So,

S=nExH (1)
where
n=clar. @)
In cylindrical coordinates r, @, z the density flow of
electromagnetic energy has three componentsS,, S,, S., directed along

BAOAB the axis accordingly. They are determined by the formula

S E,H —E.H,
S=|S,|=nExH)=n E.H -EH, | @
S. EH,-EH,

From (2.13-2.18) follows that the flow passing through a given section of
the wave in a given moment, is:

.2

%)

, S, - Si
S = S_(p :77” s, si-co|dr-de. (5)
s | "s.-si-co

where
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s, = (6th - ezh(o)

S, = (ezhr —erhz). ©)
s, = (erhw - e(phr)
x 107
1 /
€ os P
g
0
0 02 04 06 08 1 12 14 16 18 2
x 107
< os S
1) /
—-//
0
0 02 04 06 08 1 12 14 16 18 2
x 10°
= \\
5y 05 \\
1
0 02 04 06 08 1 12 14 16 18 2
Fig.5. (SSMB)

It is values density of the energy flux at a predetermined radius
which extends radially, circumferentially along, the axis 0z respectively.
Fig. 5 shows the graphs of these functions depending on the radius at

A=1, a=3, u=1, ¢=1, @=300.
The flow of energy along the axis 0z is
S_z=77”[s2 -si'co]dr-dqo. ©)
r,Q

We shall find s, . From (6, 2.22, 2.23, 2.26), we obtain:

5. =2e,h, =7, /Miﬂej,(r) o)

s, = Qrza_z, (10)

or

while
O=AF |— (11)

In Chapter 1, Appendix 2 shows that from (7) implies that
§=—°— (1 - cos(4a7z))j (sz (r)dr). (12)
l6ar "
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Let R be the radius of the circular front of the wave. Then from (12) we
obtain, as in chapter 1,

i 0
S = I(SZ(V)CZV)ZﬁRZH, (13)

alfa (1 cos(4a7z)) (14)

S - 16 Salqumt (15>

Combining formulas (11-15), we get:

S_Z:——(l cos(4a7z))A2/ —&— R
2a 1

T JA%c(1—cos(dar)) | & Ra-
’ 8zaa 1) Mu '
This energy flow does not depend on the coordinates, and so it
keeps its value along all the length of wire.

Fig. 7  shows  the  function S(a) (16)  for
A=1, M =10"3, u=1, £=1. On Fig. 7 the dotted and the solid lines
refer respectively to R=2 and R=1.8.

or

(16)
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0
Fig.8. (SSMB)

Since the energy flow and the energy are related by the expression
S =W -c, then from (15) we can find the energy of a wavelength unit:

A

W=—""8,.Su
1672' alfa™ int

)
It follows from (7, 3.16), the energy flux density on the
circumference of the radius defined function of the form

S, =s.sin(2fp). (18)

Fig. 8 shows this function (18) for s_ =7*" - see (10). Shows two

curves for two values at & =1.4 and at two values of radius =1 (thick
line) and 7 =2 (thin line).

Fig. 9 shows the function § (18) on the whole plane of wire

a-2

section for s, =7°*? and @ =1.4. The upper window shows the part of

function S graph for which § >0 - called Splus, and the lower window
shows the part § graph for which § <0 - called Sminus, and this part
for clarity is shown with the opposite sign. This figure shows that
S = Splus + Sminus > 0,

L.e. the summary vector of flow density is directed toward the increase of
z - toward the load. However there are two components of this vector:
the Splus component, directed toward the load, and Sminus
component, directed toward the source of current. These components of
the flow transfer the active and reactive energies accordingly.
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Sminus Fig.9. (SSMB)

It follows that
e flux density is unevenly distributed over the flow cross section —
there is a picture of the distribution of flow density by the cross
section of the wave

e this picture is rotated while moving on the axis 0z;

e the flow of energy (15), passing through the cross-sectional area, not
depend on ¢, z; the main thing is that the value does not change

with time, and this complies with the Law of energy conservation.

e the energy flow has two opposite directed components, which
transfer the active and reactive energies; thus, there is no need in the
presentation of an imaginary Pointing vector.

5. Current and energy flow in the wire

One can say that the flow of mass particles (mass current) "bears"
a flow of kinetic energy that is released in a collision with an obstacle.

Just so the electric current "bears” a flow of electromagnetic energy
released in the load. This assertion is discussed and substantiated in [4-9].
The difference between these two cases is in the fact that value of mass
current fully determines the value of kinetic energy. But in the second
case value of electrical current DOES NOT determine the value of

4-12



Chapter 4. The solution for the low-resistance Wire with Alternating Current

electromagnetic energy released in the load. Therefore the transferred
quantity of electromagnetic energy — the energy flow, - is being
determined by the current structure. Let us show this fact.

2500

2000

1500

vl
NVVVV

3 3.5 4

>

I...

Fig.10. (SSMB)
As follows from (3.10), the average value of amplitude density of

current J_Z in a wire of radius R depends on two parameters: & and 4.
For a given density one can find the dependence between these
parameters, as it follows from (3.10):
4 2ra(o + I)R,HJZF . 0
YED
As follow from (4.106), the energy flow density along the wire also
depends on two parameters: @ and 4. Fig. 10 shows the dependencies

(1) and (4.106) for given J_Z =2, R=2. Here the straight line depicts the

constant current density (in scale 1000), solid line — the flow density,
dotted line — parameter A in scale (in scale 1000). Here A4 calculated
according to (1), the energy flux density - to (4.16) for a given 4 One
can see that for the same current density the flow density can take
absolutely different values.

From equations (4.7, 3.16) above we found energy flux density on a
circumference of given radius as a function (see. (4.18)):

S, = S, sin(2 ,B(p). ©)
In a similar way from equations (3.5a, 3.16) we can find current
density on a circumference of given radius as a function of
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J = j.sin(Bp). 3)

0 :
Sminus 20

-20

Function (2) was illustrated on Fig. 9. Left windows on Fig. 11
illustrate the graph of this function S (2), and the right windows, for

comparison purpose, show graph of function J (3) drown in the same
way for A=1, a=14, =16, R=19.

From Fig. 11 it can be seen that currents and energy fluxes can
exist in the wire, which are divided into contra-directional "streams".

Combinations of parameters can be selected such that total
currents of contra-directional "streams" are equal in modulus, and at the
same time, total eneroy fluxes of contra-directional "streams" are also
equal in  modulus.  Fig. 13 illustrates  this  case: If

A=1, a=18, =2, R=19, then the following integrals over wire

cross-section area O are equal (it's important that £ is divisible by 2):
ISplus dQ = —J. Sminus-dQ > IJplus dQ = —I Jminus - dQ -
0 0 0 0
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Splus 20 - Jplus

Jminus - Fig.13. (SSMB.93)

6. Discussion

It was shown that an electromagnetic wave is propagating in an
alternating current wire, and the mathematic description of this wave is
given by the solution of Maxwell equations.

This solution largely coincides with the solution found before for
an electromagnetic wave propagating in vacuum — see Chapter 1. It was
found that the current in the wire extends along a helical path, and pitch
of the helical path depends on the density

It appears that the current propagates in the wire along a spiral
trajectory, and the density of the spiral depends on the flow density of
electromagnetic energy transferred along the wire to the load, i.e. on the
transferred power. And the main flow of energy is propagated along and
inside the wire.

Appendix 1

Let us consider the solution of equations (2.1-2.8) in the form of
(2.13-2.18). Further the derivatives of r will be designated by strokes. We
write the equations (2.1-2.8) in view of (2.11, 2.12) in the form

M+e;(r)—e";(r)a—;(‘ez(r)zo, 1)
r r
—l-ez(r)a+e¢(r);(—'u—wh,=0, @
r C
e, (Y —e(r+22h, =0, )
C
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L“’)+e;,(r)—e"—(”)-a+ﬂ—whz=0’ !
RO,y g s )=, ®
_.hz(r)a—hw(r))(——wer =0, o
7 C
—hr(r)z—h;<r>+@e =0, K
By 20 (r) ar®em="Tj0  ®
C C

We multiply (5) on (— ﬂ} . Then we get:
cx

h

_ya)h(r)_ya)h() ) (r) #whz(r)zo. o)
cy r cy cy r c

Comparing (4) and (9), we see that they are the same, if

h. #0

B2 h ) =e () o
x

B2, ()=, (),
cx

or, if

h, =0,

-M ﬂ—whq) (r=e, (r) Os)
cx

w
ﬂ—hr (r)z e,(r),
y4

where M - constant. Next, we use formulas

—Mﬂhw (r)y=e, (r) (10)
cx
MLa)h,(r)= e,(r), (11
4

where M =1 in the case of (9a). Rewrite (2, 3, 6, 7) in the form:
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e (r) =£e¢(r)—iﬂhr(r) (12)
a a ¢

el(r)=e, (r);( + ’uTwhw (r), (13)

h(r) =2 n, )+ =52 e () (14)
a a c

H(r)=~h g+ e, (). ®

Substituting (10, 11) in these equations (12, 13), we get:

en=(r-2)Le,0-YDE () 0
e(r)= (z——) (r)z—( )ze (). a7

Substituting (10, 11) in these equations (14 15), we get:

hz(r>=(z— gca’“c;’Ja ()= Z(czzz —Meua? o (r),  (19)

h.(r)= ( ;(+Mg QK a)jh()— (02;(2 Meuw® )r (r (19)

Differentiating (16) and comparing with (1 7), we find:

M -1 M -
( )z( )= )Ze(r)
or
(e, () = ae, ()
or
(e¢ (r)+ r-e, (r))z ae, (r). (20)
From (1, 16), we find:
e (r) e (7’) M-D L
+e,(r) - i 7 —e, (r)=0 23)
From physical con51derat10ns we must assume that
h(r)=0. 249
Then from (18) we find
(02;(2 — Mesuw’ } 0
or
~ N
}(=,’{?1/M8ﬂ, 7 =71 (25)

From (16, 25), we find:
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e (= DL e ()= P20 52 it e )

or
e (r)= (M D w@ (25a)
\/_
For w << ¢ from (25) we find that
7] <<1. 26)

Then in the equation (23) we can neglect the value y° and obtain an
equation of the form

a-e,(r)y=e.(r)+r-e.(r). 27)
From (27, 20) due to the symmetry we find:

e.(r)=e,(r), 28)

a-e,(r)=e, )+ 7 e, ) (29)
The solution of this equation is as follows:

e, (r)z Are?, (30)

which can be checked by substitution of (30) into (29). From (11, 25), we

find
N &
h(r)= zw/—Mﬂew(r), (1)

and from (10, 28), we find
h,(r)==h.(r). (32)
Finally, from (8, 32), we find

J;(r)=i(—m—h:(r)+hf—(”)-a+@ez(r)] o
47 r v c

Taking into account (30.31), we note that the sum of the first three terms
is equal to zero, and then

J.()=2e (). 649
4r
So, we finally obtain:
e, (r)z Are™, 30)
e (r)=e,(r), (28)
e.(nN=yx ;M D) w@ (253)
NI

h,(r)= fw/Miﬂ%(V), 31
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hy(r) = —h,(r),
h(r)=0,

(=52
J1=52e.(r).

(32)
24

(39

The accuracy of the solution

To analyze the accuracy of the solution may be for given values of
all constants to find the residual equation (1-7). Fig. 0 shows the
logarithm of the mean square residual of the parameter «a -

InN = f(a), when A=1, =300, u=1, e=1.

-5

-10

-15

-20

-25

log(N(alfa))

-30

-35

-40

-45

AN

/
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Chapter 4b. Solution of Maxwell's
equations for tubular wire with
alternating current

Chapter 2 dealt with the solution of Maxwell's equations for a wite
with the sinusoidal alternating current. Below we look at the solution for
the tubular wire. We will seek a solution with a known pipe radius R and
its small thickness, when

r=R ©)
and all derivatives with respect to r are equal to zero. Then the system of
equations (4a.2.41-4a.2.48) takes the form:

> @

; )

r c o)
e e
—‘P—la—k&ez=
ror ¢ : 4
k-L - k-2a-kye, =
ror A ©)

¢ : ©
—kex+£—we 4—ﬂj =0
r c ¢ cle 7 o
e
0 pire 4 EW, AT
k +kra+cez ~Jz 0‘ o

For further it is important to note that in this solution there is
Jo# 0 ic. thete is a ring current with density
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Jo =j(psin(oup + Xz + wt).

&)
Obviously, such a current creates in the cavity of the tubular
conductor longitudinal magnetic intensity

H,=h,;sin(x ¢ + xz + wt), 0,
where
J g

Q is the distance from the center of the tube to the observation point

h,=

Z" It is important to note that existing representations deny such a
phenomenon. Below in chapter 4c, we will give an experimental proof of
the existence of this phenomenon.
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Chapter 4c. Special transformers

In Chapter 2, Section 3, it is shown that current in a wire can arise
not only as a result of an applied alternating voltage U but as a result of
an applied external longitudinal magnetomotive force F. For either of
these cases, equal currents are generated in the wire if in system SI

F=w \/ZEU
o (1)

Known transformer Zatsarinin [120]. This transformer is a

solenoid, the axis of which is a rod of any conductive material. If the

voltage U1 is applied to the coil of the solenoid, then the voltage Uz also
appears on the rod. The rod can be connected to the load (for example, a

lamp) and then the power P1 from the voltage source ~ 1 is transferred

to the load, which consumes power Pl < PZ. Other experiments with
the Zatsarinin transformer are also known.

This fact - the appearance of voltage in the rod is not a
consequence of the law of electromagnetic induction. The magnetic field
inside the solenoid does not have a longitudinal component of magnetic
intensity, directed perpendicular to the radius. However, in the solenoid
there is a longitudinal component of magnetic intensity and, therefore,

there is a magnetomotive force F . Zatsarinina’s transformer proves the
previous theoretical statement: a current can arise as a result of an applied

external longitudinal magnetomotive force F .

Known coaxial transformer Pozynich - CTP [121]. In this
transformer, the sheath and center wire are included as transformer
windings. There are two possible inclusion schemes.

1. The central wire is the primary winding of the transformer
connected to a voltage source; the shell is the secondary winding of the
CTP.

2. The sheath is the central wire is the primary winding of the CTP
connected to the voltage source; the central wire is the secondary
winding of the package transformer.

In this case, the primary winding of the CTP is connected to a
voltage source, and the secondary - to the load.
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Experiments have shown that in both modes, the transformation
ratio was equal to 1.

CTP cannot be identified with Zatsarinin's transformer [120]
(although the external manifestations are similar). The circuit of the CTP
does not coincide with the diagram of the known coaxial transformer
(since the latter is a two-pole cell, and the CTP is a four-pole cell).

As will be shown below, the operation of CTP in mode 2 cannot
be explained by the law of electromagnetic induction.

All these features of CTP require explanation.

In mode 1, there in the center wire is a current with a density
=J,,Sin( & zZ+ wt
Jzp = JzpSin(x @ + Xz + wt) 0
- see chapter 4a. In accordance with the law of electromagnetic induction,
this current creates a magnetic intensity in the shell

d,,
H,, =7t—=w1zpcos(°“¥’ + xz + wt). o

This intensity creates (as shown in Chapter 4b) a longitudinal wave in the
shell and, in particular, a current

1,0 =J,,€08(X @ + Xz + wt). 5

Thus, current (1) is transformed into a current (3).

In mode 2, the cable jacket is under alternating voltage, i.e. this
shell is a tubular wire. The current of the shell as a whole should not
create magnetic intensity in the center of the pipe, since the elementary
currents in all cylinder create intensities that, due to symmetry, cancel
each other out. However, as the experiment shows, the current through
the central wire flows. It can only be caused by magnetic intensity. So,
“according to Faraday” there is no magnetic intensity, but “according to
Pozynich” there is magnetic intensity. This requires an explanation.

In mode 2 in the shell, as in a tubular wire, there is a current with a
density
] 0 = JoSin( X @ + xz + wt) "
- see chapter 4b. At the same time (as shown in chapter 4b) in the cavity
of the tubular wire creates a longitudinal magnetic intensity

H,,= thsin( X P + xZ + wt), (5)
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The central wire is in the area of existence of this intensity. This intensity
(5) creates (as shown in chapter 4) in the wire a longitudinal wave and, in
particular, the current
Jzp =]chos( X @ + xz + wt).

Thus, current (4) is transformed into current (6).

This fact (as shown) is not a consequence of the law of
electromagnetic induction. In this regard, it should be noted that the
Maxwell equations were a generalization of this and some other particular
laws. This generalization covers an area of phenomena that is larger than
the areas related to each particular law. Therefore, the consequence of
Maxwell's equations can describe a phenomenon that is not subject to the
law of electromagnetic induction (but cannot contradict this law where it
operates).

©)

Consider the mathematical model of CTP in more detail. Maxwell's
equations for the center conductor are described in chapter 2. We will

denote the solution of these equations as (EP' HP’] P). Maxwell's
equations for the shell are described in Chapter 4c. We will denote the

| | E,H,J,) o
solution of these equations as ( o’ 0'] 0/. The sheath and wire are in a
common cylindrical area. Therefore, the longitudinal magnetic intensities

in the solutions (Ep’ HP'] P) and (EO' HO'] 0) coincide, i.e.
szzHozsz ™

Chapter 2 proved the UHP-theorem, which states that regardless
of the wire parameters, there is a one-to-one relationship between the
electrical voltage U on the wire, the longitudinal magnetic strength in the
wire H, and the active power P transmitted over the wire,

U=f(HP). ®)

In our case, there is 2 common tension H on the shell and the
central wire, and the power P is transmitted between the shell and the
central wire in any switching mode of the CTP. Consequently, the voltage
U on the shell and the center wire must be the same in any switching
mode CTP.

That is what is observed in the experiments.

Thus, CTP is described by 16 equations with 16 unknowns of the

EPT' HPT”’] PT'EP‘P’ HP‘P’] P(P’] pz’

form
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Eor' Hor'jor'Eocp' Hocp’]ocp']oz"Ez' HZ_ ©9)

Such a system of equations has a unique solution. This system is a system
of differential equations (since these are the equations for the wire in
Chapter 2). Therefore, the solution depends on the initial conditions.

According to the obtained solution (9), the energy flow passing
through the CTP can be determined, i.e. power transmitted through the
CTP or load power equal to the generator power. Therefore, the initial
conditions determine the power of the load.

Physically, of course, everything happens the other way round: the
power of the generator determines the initial conditions, and the initial
conditions determine the type of solution.

Thus, the existence of a coaxial Pozynich transformer is another
experimental confirmation of the theory developed in this book.
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Chapter 5. Solution of Maxwell's
Equations for Wire with Constant Current

Contents
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1. Introduction

In [7, 9-11] based on the Law of impulse conservation it is shown
that constant current in a conductor must have a complex structure. Let
us consider first a conductor with constant current. The current J in the
wire creates in the body magnetic induction B, which acts on the
electrons with charge ¢g,, moving with average speed V in the direction

opposite the current J, with Lorentz force F', making them move to
the center of the wire — see Fig. A.

<---34)(

Vv - J
\Y

<*---~) (

Fig. A.

Due to the known distribution of induction B on the wire's cross
section the force F' decreases from the wire surface to its center — see
Fig. B, showing the change of F' depending on radius 7, on which the
electron is located.
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Fig. B.

Thus, it may be assumed that in the wire's body there exist
elementary currents [/, beginning on the axis and directed by certain
angle a to the wire axis — see Fig. C.

Fig. C.

In [7, 9-11] was also shown that the flow of electromagnetic energy
is spreading inside the wire. Also the electromagnetic flow

e directed along the wire axis,

e spreads along the wire axis,

e spreads inside the wire,

e compensates the heat losses of the axis component of the

current.
A J B C
—)
Rn
D
(——

J
Fig. 1.
In [9-11] a mathematical model of the current and the flow has

been. The model was built exclusively on base of Maxwell equations.
Only one question remained unclear. The electric current J Tok and the
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flow of electromagnetic energy S are spreading inside the wire ABCD
and it is passing through the load Rn. In this load a certain amount of
strength P is spent. Therefore the energy flow on the segment AB should
be larger than the energy flow on the segment CD. More accurate,
Sab=Scd+P. But the current strength after passing the load did not
change. How must the current structure change so that che
electromagnetic eneroy decreased correspondingly? This issue was
considered in [7].

Below we shall consider a mathematical model more general than
the model (compared to [7, 9-11]) and allowing to clear also this
question. This mathematical model is also built solely on the base of
Maxwell equations. In [12] describes an experiment which was carried
out in 2008. In [17] it is shown that this experiment can be explained on
the basis of non-linear structure of constant current in the wire and can
serve as an experimental proof of the existence of such a structure.

2. Mathematical Model

Maxwell's equations for direct current wire are shown Chapter
"Introduction" - see variant 6:

rot(J)=0, @
rot(H )~J - J, =0, ®)
div(J)=0, ©
div(H)=0. ()

In building this model we shall be using the cylindrical coordinates
r, ¢, z considering
e the main current J, and intensity H , produced by it,
e the additional currents J,, J,, J_,
® magnetic intensities 4,, H,, H_,
e clectrical intensities £,
e clectrical resistivity 0.
Here, in these equations we included a given value of density J, of
the current passing through the wire as a load. We know, that H, =J_r.
As the definition of curl includes derivatives 0H/0r and 0H 0 / or=J,,

then equation (b) can be simplified as follows
rot(H)—J =0. (b1)
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The solution of equations (a, b1, ¢, d) is assumed to be zero. However,
below we will demonstrate that in the presence of current J, there shall

be non-zero solution of these equations.

form:

E=p-J. ©)
The equations (a-d) for cylindrical coordinates have the following
H
H’+8H"+l-a “’+6HZ=O, )
r or r Op 0z
OH
l.%__‘/’ =J, )
r Oop oz
OH, OH.
oz o Tor ©
H, OH
_‘”+_’ﬂ_l.ai:']z+.]o’ @
r or r Op
J W 1Y, W ©)
r or r O0p 0Oz
1o, o, =0, ©)
r O0p Oz
oJ, aoJ,
-, <7>
0z oOr
ﬁ &]_‘/’_l.%:(). ®)
r or r 0@

The model is based on the following facts:
the main electric intensities E, is directed along the wire axis ,

it creates the main electric current J, — the vertical flow of

charges,
vertical current J, forms an annular magnetic field with intensity

H , and radial magnetic field H, - see (4),
magnetic field H, deflects by the Lorentz forces charges vertical

flow in the radial direction, creating a radial flow of charges -
radial current J

magnetic field H, deflects by the Lotrentz forces the charges of

radial flow perpendicularly to the radii, thus creating an vertical
current J_ (in addition to current J ),
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6. magnetic field H, by the aid of the Lorentz forces deflects the
charges of vertical flow perpendicularly to the radii, thus creating
an annular current J ,

7. magnetic field H, by the aid of the Lorentz forces deflects the
charges of annular flow along radii, thus creating vertical current
J. (in addition to current J ),

8. current J, forms a vertical magnetic field H_ and annular
magnetic field H, - see (2),

9. current J, form a vertical magnetic field H, and radial magnetic

field H, - see (3),
10. current J, form a annular magnetic field H, and radial magnetic

field H, - see (6),

Thus, the main electric current J, creates additional currents
J,» J,, J. and magnetic fields H,, H,, H_. They should satisty the

Maxwell equations.

In addition, electromagnetic fluxes shall be such that

A. Energy flux in vertical direction was equal to transmitted

powet,

B. The sum of energy fluxes is to equal to transmitted power plus

the power of thermal losses in the wire.

Thus, currents and intensities shall confirm Maxwell's equations
and conditions A and B. In order to find a solution we part this problem
into two following tasks (that is true, because Maxwell's equations ate
linear):

a) to find solution of equations (1-8) without current J, ; this
solution occurs to be multi-valued;

b) to find additional limitations on initial solution posed by
conditions A and B; here we take into account current J, and

intensity H,, produced by it.

First of all, we shall prove that a solution of system (1-8) is exist

z

with non-zero cutrents J,, J, i J..

For the sake of brevity further we shall use the following notations:
co=—cos(ap+ yz), (10)

si =sin(ag + yz), (11
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where a, y — are certain constants. In the Appendix 1 it is shown that

there exists a solution of the following form:

J.=j.(r)co, (12)
J o ==J,(r)-si, (13)
J..=j.(r)-si, (14)
H,.=—h(r)co, (15)
H,.=-h,(r)si, (16)
H._.=h(r)si, a7

where j(7), h(r)- certain function of the coordinater.

It can be assumed that the average speed of electrical charges
doesn't depend on the current direction. In particulat, for a fixed radius
the way passed by the charge around a circle and the way passed by it
along a vertical will be equal. Consequently, for a fixed radius it can be
assumed that

Ap=Az. (18)

Thus, there on cylinder of constant radius is trajectory of point,
which described by the formulas (10, 11, 18). This trajectory is a helix.
On the other hand, in accordance with (12-17) on this trajectory all
intensities and current densities varies harmonically as a function of ¢.
Consequently,

line on a cylinder of constant radius r, at which point moves so
that all the intensities and current densities therein varies
harmonically depending of ¢, is helical line.

Based on this assumption we can build the trajectory of the charge
motion according to the functions (10, 11).

Fig. 2. oA (TokPotok33.m)
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The Fig. 2 shows three spiral lines forA¢ = Az, described by
functions (10, 11) of the current: the thick line for ¢ =2, y =0.8, the
average line for ¢ =0.5, y =2 and a thin line for « =2, y=1.6.

In Appendix 1 it is shown that there exists a definite Bessel
function, denoted as F), (r), on which the functions of the intensities

h(r) and current density j (r) depend, viz

Jj,)=F, ), 25)

5.0)=G,) +r o Ye, 6)

Jr)y==Erj (), @
(04

hz (l’) =0, (28)

h,(r)=j. () 7, 29)

h(r)=j, (") x. (30)

-30 50 (forFigaz.m)

Appendix 3 shows that for small 7, function (25) takes the form
y= AxB, (30)

where 4 is a constant, and

1 ——>
sz(_3i 3+4X2)’ B<O. (30B)
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At the same time, the values A, x,x should be known for the calculation
using equations (25-30). Below it will be shown that the functions (25, 26,
29, 30) determine the amount of power P entering the wire. Thus, the

values 4 /X determine the amount of power P.

Function (25) has a variety of options defined by constants A, x,
It is important to notice that in the graph of function j, (r) there is a
point where j, (r): 0. Location of this point =R when modeling
depends on selection of specified parameters. Physically, this means that

in the area 7 <R there are radial currents J, (r ) directed outward from
the center. There are no currentsJ, (r)in pointr = R . Therefore, the

value R is the radius of wire.
Fig. 3.2 illustrates functions (12-14), when z =const. The fourth
window shows function

Jp.(r,p)= {

J. (r,p), if J (r,p)>0,
0, if J (r,p)<0.

Let's determine current density in the wire of radius R:

7z11€2 '[;[[J Vir-do. 31)

Taking into account (14), we find

J, =

N BT AN P
e [0 do ] feanr
Taking into account (11), we find
R
J_Z = ! 5 Ijz (r{cos(2a7z +2—a)z) — cos(2—a) z))dr . (33)
ank” c c

From here it follows that total current J_z is changed depending on z

coordinate. However, total given current with density J, remains

constant.

3. Energy Flows
The density of electromagnetic flow is Pointing vector
S=ExH. @
The currents are being corresponded by eponymous electrical intensities,
ie.

E=p-J, @
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where O is electrical resistivity. Combining (1, 2), we get:

S:,a]xH:EJxB, 3)
U
Magnetic Lorentz force, acting on all the charges of the conductor
per unit volume - the bulk density of magnetic Lorentz forces is equal to

F=JxB. )
From (3, 4), we find:
F=uS/p. ®)

Therefore, in wire with constant current magnetic Lorentz force density
is proportional to Poynting vectot.

Example 1 To examine the dimension checking of the quantities
in the above formulas - see Table 1 in system SI.

Table 1
Parameter Dimension

Energy flux density S kg s~
Cutrent density J Am™?
Induction B kg's™2-A
Bulk density of magnetic Lorentz | F N'm'3=kg's_3'm'2
forces
Permeability 7 kg s 2m- A2
Resistivity ) ko's 3 m3 A2
H/p plp |sm*

So, current with density J and magnetic field is generated energy
flux with density S, which is identical with the magnetic Lorentz force
density F' - see (5). This Lorentz force acts on the charges moving in a

current J , in a direction perpendicular to this current. So, it's fair to say
that the Poynting vector produces an emf in the conductor. Another
aspects of this problem are considered in work [19], where this emf is
called the fourth type of electromagnetic induction.

In cylindrical coordinates 7, ¢, z the density flow of

electromagnetic enetgy has three components S,, S,, S_, directed along

BAOAB the axis accordingly.
3.1. In each point of a cylinder surface there are two
electromagnetic fluxes directed radially to the center with densities

Srlzp](sz’ SVZZ_NZH(p (6)
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- see Fig. 5. Total radially-directed flux density in each point of the
cylinder surface,

Sr = Srl + Sr2 = p(J(sz - Jqua) (7)
J H

m Srl

Fig. 5.

3.2. In each point of a cylinder surface there are two
electromagnetic fluxes directed vertically with densities

Szlz_lo‘](pHr’ SZZZNrH(p (8)

- see Fig. 6. Total vertically-directed flux density in each point of the
cylinder surface,

S.=8,+8.,=pU,H,-J,H,) ©)

J
/i{(p\ISzz 0

()~

U\m

z1

Fig. 6.

3.3. In each point of a cylinder surface there are two
electromagnetic fluxes circumferentially directed with densities

S(plzla]zHrﬁ S(pZ:_la]erf' OO)

- see Fig. 7. Total circumferentially directed flux density in each point of
the cylinder surface,

S¢:S¢J1+S(p2:p(‘]zHr_Jer) (11>
s, H s, 7/

(]

J, H

Fig. 7.
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In view of the above, we can write the equation for
electromagnetic flux density in a direct current wire:

S JH, -, +J NH,+H,,
S = S¢ = p(JXH): p JZHV _J}“HZ +JOH}’ ’ (12)
S. J.H,~J,H, +J.H,

Additional components in (12) appears due to the fact that energy fluxes
are influenced by current density J, and intensity

H,=Jr (13)
- see (2.4). We substitute (13) into (12):
S JH, ~(. +J NH, +J,r
S=|S,|=p(UxH)=p|J.H ~J H +J,H, : (14)
S, JH,~J H, +J.J,r

Formula evaluation is very cumbersome and goes beyond the scope of
this book. From this formula, we will select only a part of the form

S, J,H. ~J.H,
S=|S,|=pUxH)=p J.H -JH, | (15)
S. J.H,~J,H,
We denote by:
SO [Gh -,
S, )| =| Gk = j,h) | (16)
o) LGA-ih)

x10°

0 0
S0 80 (orFigaz.m) 0 50 Fig 33
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It follows from (2.12-2.17, 15, 16) that
S S_r(r) i’
S = S, zp.[” S_q)(r)-si-co dr-deo-dz. 17)
S. NS () si-co

In Fig. 3.3 shows the functions (17) with z = const. The fourth window
shows the function
S.(r,¢), if S.(r,0) >0,
Sp.(r.9) ={ :
0, if S_(r,p)<0.

So, fluxes (23) circulate in the wire. They are internal fluxes. They
are produced by currents and magnetic intensities created by these
currents. In turn, these fluxes act on currents as Lorentz forces. In this
case total energy of these fluxes is partially spent on thermal losses, but
mainly goes to load.

4. Speed of energy motion

Let us consider the speed of energy motion in a constant current
wire. Just as in Chapter 1, we will use the concept of Umov [81],
according to which the energy flux density s is a product of the energy

density w and the velocity v, of energy movement:
s=w-v,. (1)
We will only consider the flow of energy along the wire. This flux
is equal to the power P transmitted over the wire to the load:

s = P/aR*, )
where R is the radius of the wire. The internal energy of the wire is the
energy of the magnetic field of the main current /. This energy is

2
W, B 0

where L is the length of the wire, L, the inductance of a unit of the wire
length, and [83]

[ ~teml )
2r R

Wire volume
V=Lx-R*. 5)
From (3-5), we find the energy density in the wire
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W, LI
=—m_ o 6
V 27R? ©
From (1, 2, 6) we find the velocity of the energy motion
s P J(LI}) 2P
Vo=—=2 Il R o @
w R 27R LI
Load resistance
P
Ry =7 ®)
Consequently,
2R

1

1
For example, if R=10" and R, =1, we have In—=7,
r

L~ Hogd g 7-107, v, =3-10°. This speed is much less than the
T r
speed of light in a vacuum. With this speed, energy flows into the wire
and out of it flows into the load. We do not take into account the energy
of heat losses, since it is not transferred to the load.
When the load is switched on, the current in the wire increases
according to the function

U t
I = | 1—exp = L] 10
° RH( exp( Tj} o

where is the input voltage and

r=td ay
RH
From (9, 10) we find:

v, = 2P _2U _2U U 1-ex, [—t) _2R 1-ex, (—tj (12)
¢ LI1* LI, L/ R P e L P77))

Thus, the speed of energy moving in the transient process decreases from
infinity (the speed of light in a vacuum) to the value (9).

5. The speed of energy from the batter

The characteristics of the "average battery" are presented below [92]:

Em - battery capacity 60 Ah
P is the density of the electrolyte 1250 kg / m* 3
G - weight of electrolyte 1.5 kg

V = G/p is the volume of the electrolyte  0.0012 m ™ 3
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R - load resistance 0.047 Ohm

U - voltage on the load 128V

I - load current (starting) 270 A

P=U*I=U"2/R-load power 3456 W

W = 3600 * Em * U - energy of the condenser
(electrolyte) 2764800]

w =W / Vis the energy density 23*¥1079J\m "3

S =P - energy flow 3456 W

b - wire cross-section 100 mm * 2

s =S8/ (b*10" -6) - energy flux density 3.5* 10" 7 Wt

v, = %— speed of energy movement 100m /s
c is the speed of light 30010~ 6m /s

Thus, the speed of energy movement on the wire from the battery
is much less than the speed of light.

6. Discussion

So, the complete solution of Maxwell's Equations for a wire with
direct current consists of two parts:

1) known equation (3.13) in the following form: H,, =J, r, and

2) equations (2.10-2.17, 2.25-2.30) obtained above.

The energy flow along the wire's axis S, is created by the currents
and intensities directed along the radius and the circles. This energy flow
is equal to the power released in the load R, and in the wire resistance.
The currents flowing along the radius and the circle are also creating heat
losses. Their powers are equal to the energy flows S,, S, directed along

radius and circle.

The question of the way by in which the electromagnetic energy
creates current is considered in [19]. There it is shown that there exists a
fourth electromagnetic induction created by a change in electromagnetic
energy flow. Further we must find the dependence of emf of this
induction from the electromagnetic flow density and from the wire
parameters. There is a well-known experiment which can provide
evidence for existence of this type of induction [17].

It is shown that direct current has a complex structure and extends
inside the wire along a helical trajectory. In the case of constant current
the density of helical trajectory decreases with the decrease of the
remaining load resistance. There are two components of the current. The
density of the first component J, is permanent of the whole wire section.
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The density of the second component is changing along the wire section
so that the current is spreading n a spiral. In cylindrical coordinates

r, @, zthis second component has coordinates J,, J,, J_. They can

be found as the solution of Maxwell equations.

With invariable density of the main current in a wire the power
transmitted by it depends on the structure parameters (& ,y) which
influence the density of the turns of helical trajectory. Thus, the same
current in a wire can transmit various values of power (depending on the
load).

Let us again look at the Fig 1. On segment AB the wire transmits
the load energy P. It is corresponded by a certain values of (a, ¥ ) and
the density of coils of the current's helical path. On the segment CD the
wire transmits only small amount of energy. It corresponds to small value
of y and small density of the coils of current's helical path.

Naturally, the resistivity of the wire itself is also a load. Thus, as the
current flows within the wire, the helix of the current's path straightens.

Thus, it is shown that there exists such a solution of Maxwell
equations for a wire with constant current which corresponds to the idea of

e law of energy preservation

e helical path of constant current in the wire,

e cnergy transmission along and inside the wire,

e the dependence of helical path density on the transmitted

strength.

Appendix 1
Let us consider the solution of equations (2.5-2.9) in the form of
(2.12-2.17). Further the derivatives of r will be designated by strokes. In

this case, we rewrite the equations (2.1-2.8) in the following order (2.5,
2.1,2.2,23,24,2.6,2.7,2.8) and renumber them:

2D 4 - ’w()aw J.(r)=0, 0
h(r) h() a+y-h(r)=0, @
}-hz<r)a+h¢,<r)z=jr(r) o
h Gy —H.(r) = j, (), )
sz;(r h(’”)a j.(r) =0, )

5-15



Chapter 5. Solution for Wire with Constant Current

1

;'jz(r)aJrjq,(r)z:O» ©)

-G - ji(r) =0, ™
J,(r ’

—¢T—]¢(V)+‘]T(r)-a=0. ®)

First, we will solve the group of 4 equations (1, 6, 7, 8) with respect to 3
unknown functions j(r) From (6) we find:

J.r==Erj (), (1)
a

Jir==2G, )47y r). 12)
From (7, 12) we find:
5O+ E G+ g n)-0.
or
j“’—(r)+j;,(r)—j’—(r)-a:0. (13)
However’: equation (1 3)’;5 the same as (8). Consequently, equation

(7) can be excluded from the system of equations (1, 6, 7, 8). The
solution of the system of equations (1, 6, 8) is given in Appendix 2 and

has the form of the function F), (r) defined therein:

J,)=F,(). (14)
Jry==£rj (), (15)
(04
1
jr(r)ZE(iw(r)H-j;(r)). (16)

Having functions ](r) known we solve the system of 4 equations (2-5)
with respect to 3 unknown functions h(r). From (3, 4) we find:

h,(r) = —l(z-hz(r)—jr(r)} (17)
X\r
1

hr(V)ZE(iq,(V)ﬂ“h;(l’))- (18)

Let us use (17, 18) in (2). So we will find
-1 . ’ 1 . " a(a . _
a(/(p(r) * hz(r)};(/(,,(r) * hz<r))+a[7 h.(r) —J,.(r)j =0

or
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("’— YXGEYAGE rhi(r)] ~ i, ), (=0 9
We substitute (17, 18) into (5). Then we find
i(ﬁhz(r)—j,(r)jﬁ(%-h;(r)—%hz<r>—j;(r))+

ry\r r

# G+ 0)- .07 =0

[ﬂ-hxr)—j,(r)}r(ﬂ-h;<r)—%-hz<r>—f£(r)j+
r r r

+a(j, () +H() - r.(r) =0
or
ﬁ(l—lj-hz(r)+2ah;(r)+
r r
85O O a o) =11 () =0
The right sides (in parentheses) in equations (19) and (20) are zero, since
they coincide with equations (8) and (1), respectively. Consequently,

equations (19) and (20) are simultaneously equal to zero only if
h(r)=0. @1)

Thus the required functions j,(r), j,(r), j.(r), h.(r), h,(r), h.(r) shall
be determined by (14, 16, 15, 18, 17, 21), respectively.

(20)

Appendix 2.

Let us consider equations (1, 6, 8) from Appendix 1 and enumerate
them:

jrf—r)+j;(r>-]"’T(r)a+z-jz(r)=0, 2
1
;'jz(r)a+j¢,(”))(=0’ ?
_—]“’(r)—j;(r)+—]’(r)-a:0. )
}/‘ r
From (2) we find:
a
L 3a
i = i (3)

From (1, 3a) we find:
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2O jiy-a Ly )0, e
r
From (3) we find:
j,(r)=i(i¢(r)+r'j;,(r)), ©)
Jir)=— (2]¢,(V)+r Jo (r)) ©)

From (4-6) we find:
a(w) . w} @/ )+ js))-a J“’() Lrjn=0. o

r
Simplifying (7) we obtain:

a a %j
(Jq,ir) ]gﬁr)) (2 ]gﬁr) ({;ﬁgr)) zlq,( )+x (1) =0
or
N s U () 8%,
j qj(r)( — X r) -3 a‘i =0 .
or

9% dj 2_
s T () =0 o)

Equation (9) is the modified Bessel equation - see Appendix 3. In what
follows we will denote its solution as F/, (r) So,

Jj,r)=F,(r). (10)
Jo(r) = diFa ). (1)
r
Appendix 3.

Equation (9) from Appendix 2 is a modified Bessel equation, which
has the following form:

y+3X—y( 1+x) 0

, M

When *¥0 equation (1) takes the form:

. X _ 2 _

y+ 3x x° = 0. ©
His solution is:

y=Ax" ®
where A is a constant, and B is determined from the equation

B*+3p-x"=0, )
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ie.
B=3(-3\3+40), B<O 5

Thus, at the first iterations, you can search for a function ) in the form
(3), and then calculate it by (2). Therefore, to calculate by (1, 3), the

values A, x must be known.
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Chapter 5a. Milroy Engine

Contents
1. Introduction \ 1
2. Mathematical model \ 2
3. Electromagnetic energy flux \ 4
3a. Torque \ 5
4. An Additional Experiment \ 6
5. About the Law of Impulse Conservation \ 7
Appendix 1. Calculation of the torque \ 7
Photos \ 9

1. Introduction

The Milroy Engine (ME) [67] is well known. In "youtube" you can
view experiments with ME [68-73]. There are attempts to theoretically
explain the functioning of ME [74-77, 80]. In [80] the functioning of this
engine is explained by the action of non-potential lateral Lorentz forces.
In [74] the functioning of this engine is explained by the interaction of
magnetic flow created by current spiral I in the shaft and modulated
variable reluctance of the gap between the holders of the bearing with the
currents inducted in the inner holder of the bearing. Without discussing
the validity of these theories, it should be noted that they were not
brought to the stage when they could be used to calculate ME technical
parameters. But such calculations are necessary before mass production
begins.

The photographs at the end of the chapter show the various ME
constructions. Conductive shaft with flywheels can rotate in two
bearings. Through the outer rings of the bearing and through the shaft an
electric current is passed. The shift begins to spin up to any side after the
first jot.

Along with a very simple design, ME has two considerable
disadvantages:

1. Low efficiency

2. Initial acceleration of ME with other engine / motor (in the

process ME continues rotation in the direction it was jerked for
starting and increases the speed).
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It should be noted that the latter disadvantage often has no importance.
For example, ME installed on a bicycle could be accelerated by the
bicyclist.

The engine ME presented by English physicist R. Milroy in the
year 1967 [67]. V.V. Kosyrev, V.D. Ryabkov and N.N. Velman before
Milroy in 1963 presented an engine of different construction [82]. Their
engine differs fundamentally from the Milroy engine by the absence of
one of bearings. The conductive shaft is pressed into the inner ring of the
horizontal bearing. So the shaft is hanging on the bearing. The electrical
circuit is closed through the outer ring of the bearing and the brush
touching the lower face of the shaft. The authors see the cause of
rotation in the fact that the shaft "rotates as a result of elastic
deformation of the engine's parts when they are heated by electric current
flowing through them".

Finally, often the functioning of this engine is explained by the
Hoovet's effect [77, 84].

Below we are giving another explanation of this engine's operating
principle. We show that inside the conductor with current there appears
a torque. It seems to the author that the Kosyrev's engine cannot be
explained in another way.

2. Mathematical model
In Chapter 5, we considered solutions of Maxwell equations for
wire with direct current with densityJ,_. The density of this current is the

same over the entire section of the wire. Maxwell equations in this case
have the following form:

rot(J)=0, (@)
rot(H)-J =0, (b)
div(/)=0, ©
div(H)=0, @

and current density J,

.. 1s not included in equations (a, d) since all
derivatives of this current are equal to zero.

It was shown that the complete solution of Maxwell equations in
this case consists of two parts:

1) known equation of the form

H,, =J,.,r, 1)
2) equations of the form (5.2.10-5.2.17) and (5.2.25-5.2.30)
obtained in Chapter 5; these equations combine magnetic
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intensities and current densities with known constants(«, )

and wire radius R.
The currents and intensities determined by these equations are

formally independent of the given currentJ . However, they define the

flow of energy transmitted through the wire, i.e. that capacity which is
produced by load current.

Below we consider the case when there is DC current directed
along the circumference, ring current. For example, the coil of the
solenoid can be represented as a solid ring cylinder with direct current
around its circumference. We denote the density of this given current as

J,,- Just as in the case of the given currentJ,, the complete solution of

Maxwell equations (a-d) in this case consists of two parts:
1) known equation of the form
oH
-——==]_, 17
o g an
2) equations (5.2.10-5.2.17) and (5.2.25-5.2.30).

Let us consider the source of currentJ, o If there is no rotation of

the rod, the direct current with density J_, flows through it. Free electrons

of this current move with some velocity along the rod. When the rod
rotates, free electrons of this current also acquire the circumferential
velocity. Thus, there is so called convection current, which is the current

with densityJ,,. Aikhenvald has shown [86] that the convection current

creates also the magnetic intensity. Therefore, the current with density

J,, creates the magnetic intensity (17).

Thus, the charges with density ¢ and velocity v (velocity of electrons in

the wire) move along the wire in the current J, where

J,=qv. (18)
If the rod rotates with angular rotation @, then
Jp =q@-r (19)

or, with consideration of (4),
J,(r)=J,0-r/v. (20)
Consequently, in the rotating rod of the Milroy engine the direct
convection current with density (20) flows along the wire circumference
together with axial currentJ,.
From (17, 20) we find:
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Jo-r

2y

Further, it will be shown that the solution of equations (1-16)
implies the existence of driving moment Min the rod. This driving
moment increases the rotation speed, thereby increasing the convection

(21)

currentJ, o Balance occurs when the specified driving moment and the

braking moment on the engine shaft are equal (at given currentJ, ). This

phenomenon is analogous to the fact that the currents flowing along the
wire, under the influence of Ampere force, shift the wire as a whole (in
ordinary electric motors).

Finally, it is possible to imagine a design where an additional radial

magnetic intensities /,, is created in the rod.

One can also imagine a design where an additional axial magnetic

intensities H, __is created in the rod.

3. Electromagnetic energy flux

Section 3 of Chapter 5 shows that the electromagnetic flux density
and Lorentz magnetic force density in DC wire are connected by the
following relationships:

S=ExH, (1)
S=,a]><H=£J><B, 3)
U
F=JxB, )
F=uS/p, 5)
where p, g - electrical resistivity and magnetic permeability.

Consequently, in a wire with direct current the density of Lorentz
magnetic force is proportional to Poynting vector.

In cylindrical coordinates, the densities of these flows of energy by
coordinates are expressed by the formula of the form — see (5.3.12):

s JH.~(J.+J \H, +H,,
S=|S,|=pUxH)=p|J.H -J H +J,H, : ©)
S. JH,-J,H +JH,

For Milroy engine, this formula is amended due to values H_, J, o

z0?

and takes the following form:
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S, U, +J, H. +H,)-(.+J,\H,+H,
S=|S, |=plxH)= | .+, W1, ~J, (1, + 1) 0
S. T, + 1, )0, 40, 1,
According to (5) we can find Lorentz forces acting on volume unit,
F, S,
U
F = Fgo = ; S(p . (8)
FZ SZ
3a. Torque

In (3.8), in particular, £, is the rotational force acting on the shaft

in the volume unit of layer with radius 7. Therefore, density of driving
moment acting on the shaft in the layer with radius ris equal to:

M(r) = I”-F(p. O
From (7, 8) we can find:
S(/J:p[(‘]z+‘]oy1r_Jr(Hz-I_Hza-I_HZZo)]’ (11)
,Ll (J2+J0XHr+Hm)_
F,==S8,=u : (12)
P _Jr(Hz+Hzo+H220)
From (9, 12) we can find:
(JZ +J0 XHF + HI‘O )_
M(r)y=r-F, =u-r
g _J)‘(HZ+HZO+H220)
ot, with consideration of (2.21),
(. +J,H, +H,,)-
M(r)y=pu-r ) 13
(r)=u _Jr(Hz+szo+J0wrj 13)
i 2v
In Chapter 5 it is shown that H, = 0. Then
_(JZ +J0XHV +HV0)_
M@F)y=u-r NP 14
(r)=pu _J{H220+Joc§rj (14)
%

Formula (14) determines the density of the torque acting on the
shaft in a layer with a radius r. Recall from Chapter 5 that

J,.=—] (r)cos(ago + y2), (15)
J..= . kin(ap + z2), (16)
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H.=h (r)cos(a(p + x2), 17)
where

Jj,)=F,(). (18)

5,0)=G, )+l )e, (19)

J.(r)= —fr (), (20)

h()=j,) x. 1)

Here the constants y, a and the Bessel function £, (r) are defined in
Chapter 5. Combining (14-17), we get:
G0 kinap+ 22)+J,)
{ (1, (keos(ap+ z2) + H, )} '
M(r)=por| = Hy, . Jeos(ap + 72) + @2
s szrjj ()

cos(ap + yz)

The total torque is calcu_lated as an integral of the form

M = ” I M (r)drdedz . (23)

}",Q,Z
This integral can be represented as the sum of integrals:
M=M+M,+ M, +M,+M;+M, (24)

where the summands are defined in Appendix 1.

These relationships allow calculation of the mechanical torque in
the Milroy engine.

In Appendix 1 it is shown that in the ordinary Milroy engine the
magnitude of the moment (21) is negligible, if @ =0, ie. there is no
starting torque. However, when H, #0 and\or H, #0 there is a

significant starting torque.

4. An Additional Experiment

We may propose an experiment in which the previously suggested
explanations of the reasons for the rotation of Milroy engine are not
acceptable (in the author's view). We should give the opportunity to a rod
with current to rotate freely. This can be realized in the following way —
see Fig. 2. A copper roll with pointed ends is clamped between two
carbon brushes so that it could rotate. The carbon brushes are needed in
order that the contacts would not be welded at strong currents. In
accordance with the theory contained in this paper, in such a structure
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the shaft must rotate. This will permit to refrain from the consideration
of several hypothesis for the explanation of Milroy engine functioning,.

carbon
+ carbon
brushes copperroll ==

/ brushes

flywheel

Fig. 2.

5. About the Law of Impulse Conservation

We need to pay attention to the fact that in the Milroy engine the
Law of mechanical impulse conservation is clearly violated. This is due to
the fact that in the rod there exist an electromagnetic impulse with a flow
of electromagnetic energy. And this once more confirms that the torque
exists inside the wire.

Appendix 1. Calculation of the torque
We transform (3a.22). Then we get:

J.0 . (Kin(ap + 72) - cos(ap+ 12) +
M@y =u-rl+ j.(pin(ap+ y2)H, +J H, + 1)

o210 IO 1) ot

The total torque is calculated as an integral of the form

7.6 (r)sin(...) - cos(...) +
M = [[[u-r|+ .G inCIH,, + L H,, + irdgdz

: {Jo(h, ) WZ—WJ_H ; (r)} cos(.)
A%

This integral can be represented as the sum of integrals:
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M, = [[[u-rl 1, Yirdpdz ®
V,w,Z
Vz = J.'”.,u . r[/'z (r)hr (r)sin(...) . cos(...)]irdqﬂdz , @
r,p,z
E = ”jy . r[iz (r)sin(...)Hm ]:lrd(odz, )
r,p,z
M, = j j j w-Jrh (r)eos(...)drdpdz | ©)
V,@,Z
M, = I” -Jr M cos(...)drd pdz 7
S rW,u , 5 , 7
M =—=([[p-rH,.,j, @ oos(...)drd pdz ®
r,p,z
or
M =u-JH, j j j rdrdgdz = - J H 1R’L | )
79,z
My =u- (IM ” (r)erM 52, (10)
E:ﬂ.Hm(J.Mb’(r)erMS?’ 11
E:u.JU(IM4r(r)erMS4’ (12)
AZ:/UTVCO o(jMSF(r)erMS4’ (13)
AZ: _:Ll.HZZo(J.M6r(r)erMS4- 14
where ’

M, = [ [[Bsin(...) cos(...)]z’(pdzJ, (15)

M (r) = E j j sin(...)d(pdz] , (16)

(254
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M, = {”cos(...)d(pdz], 17)

M, (ry=r-j.0 @), (18)

M, (n=rj.C), 19)
M, (r)=r-h (r) (20)
M, (" =r"j.(), e
M6r(r) :r.jr(r) (22)
The integrals (10-14) include the

h0) 100 16D SO-Ln L a5 22,

It is important to note the following. In the usual Milroye engine
there is no intensities H,, H, . Moreover, the terms (9, 11, 14) are

2zo *

equal to zero, i.e. in a conventional Milrow motor torque

M= ]\72 + ]\74 + E . (23)
At @ =0 with only the torque remaining
M=M,+M,, (24)

This moment is a starting in the usual Milroy engine and its magnitude is
negligible. However, when H,, #0 and\or H,  # 0, the torque exists,

even at @ =0. Consequently, when H  #0 wu\mau H,  #0 there is
a significant starting torque.
Photos
bearing iron flywheel
metal axle

electrical contact

*
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Chapter 5c. Magnetoresistance

The magnetoresistive effect is known, which consists in the fact
that the electrical resistance of a material depends on the magnetic
induction of the magnetic field in which the material is Aokarea, the so-
called magnetoresistance [114]. Below, we consider a conductor with
direct current in a magnetic field and show that the existence of
magnetoresistance directly follows from the solution of Maxwell's
equations.

Chapter 5 dealt with the solution of Maxwell's equations for a wite
with direct current. It shows that in a wire with direct current the density
of the Lorentz magnetic force acting along the wire axis is proportional
to the Poynting vector - the energy flux density. This force drives
electrical charges. It is this force that overcomes the resistance of the
material of the wire to the movement of charges.

Chapter 5a shows the calculation of this force. It is shown that it
also depends on the intensity of the external magnetic field.
Consequently, the effect of an external magnetic field manifests itself as a
change in the resistance of the wire.
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Chapter 5d. The Solution of Maxwell's

equations for a wire with a constant
current in a magnetic field

Contents
1. Introduction \ 1
2. Wire with direct current \ 2
3. Wite in a longitudinal magnetic field \ 3
4. Wire in a circular magnetic field \ 4
5. Wire in a transverse magnetic field \ 5
6. Summary \ 7

1. Introduction
Here we look at the wire, which is in a constant magnetic field.

2. Wire with direct current
Chapter 5 deals with Maxwell’s equations for a wire through which

direct current flows with a density of Jo. The solution obtained there can
be used without change in this case. It has the following form:

J,.=j,(r)co. @
J,o==J,(r)-si, ?3)
J.= J.(r) si, @
H .=-h (r) co, ©)
H,.=~h,(r)-si, (6)
H..=h(r)-si, o
co =—cos(a@p+ yz), (8)
si =sin(a@p+ yz), )

where «, y are some constants, j(r), A(r) are some functions of the

coordinate 7, namely
J,()=F, (). (10)
5 O=G,0)+rjy () )a, ()
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J)==Lrj (), (12)
a

h.(r)=0, (13)

h(r)=j,) x, (14)

hG)=j,(r)/ (15)

moreover, the function Fo(M is a solution of the modified Bessel
equation. For small 7; this function takes the form

y= AxB, (16)

where A is a constant, and

Bz%(_Si\/3+4X2)' B<0' 17)

To calculate using these equations, the quantities A, = x should be
known. The resulting solution determines the value of energy flux S
entering the wire, i.e. power P which enters the wire. Thus, the values of
A, %, X determine the magnitude of the power P.

The value of /o is determined by the magnitude of the power P 1nd

the load resistance. The existence of a non-zero current density Joensures
the existence of a non-zero solution of the system of Maxwell equations,
which follows from the equation

H, OH
A— _l._aHr =J, (18)

r or r op

Indeed, if J2 exists, then magnetic intensities Hy and \ or Hy must
also exist. At the same time, the Maxwell system of equations must have
a nonzero solution. However, the constant /o is not formally included in
the solution of these equations. This is explained by the fact that
Jo creates tension Heo =Jo" and both of these values - H
excluded from equation (18).

Chapter 5 shows that the density of this energy flow is determined
(in the SI system) by the formula:

S('I‘) = p(]r(r)h(p(r) _j(p(r)hr(r))’ (19)

where P is the resistivity of the wire. So, the solution of Maxwell's

oo Jo can be

equations in the form of functions ] (T‘), h(T) determines the energy
flux density S(r). Obviously, there is an inverse relationship:
S (T) defines the functions J (T‘), h(T) This inverse problem is a
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mathematically considered solution, but it is important for us to further
emphasize that Nature solves this inverse problem.

3. Wire in a longitudinal magnetic field
In Section 2, it was assumed that there is a ditect current with a

density Jo in the wire. This current is created by the flow of energy
entering the wire from the end. Suppose now that there is a

longitudinal magnetic intensity H; The existence of 2 non-uniform and
non-uniformly distributed along the radius of the longitudinal

magnetic intensity H; ensures the existence of a non-zero solution of the
system of Maxwell equations, which follows from the equation
OH, OH,
- = J(pa (1)
0z  oOr
oH,
Indeed, if there is , (since there is a magnetic intensity =z
unevenly distributed along the radius), then there must be a magnetic

intensity H: and current density Jo. Moteover, the Maxwell system of
equations must have a nonzero solution. It still has the form given in
section 2.

It follows that in a wire that is in a non-uniform longitudinal
magnetic field, there is a solution to the Maxwell equations in the form
given in Section 2. Therefore, there is an energy flow in this wire, the
density of which is determined by (2.19) The source of this energy flow

obviously, is the source of magnetic intensity i,

This energy flow generates a longitudinal constant current in the
wire. Thus, there is a conversion of the energy of the longitudinal
constant magnetic field in the wire into electrical energy. which is
transferred by direct current along the wire.

Example 1

Consider a solenoid, a metal rod located along the axis of the
solenoid and closed outside the solenoid. The current in the coil of the
solenoid creates magnetic intensity in the rod. In accordance with the
above, a current should appear in the rod.

4. Wire in a circular magnetic field
H

Now suppose that there is a circular magnetic intensity = ¢
unevenly distributed along the radius. The existence of such intensity
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ensures the existence of a non-zero solution of the system of Maxwell
equations, which follows from the equation
H, 0H, 1 0H
t—— 7=/, @
r or r 0@
0H
. . L . .. . H
Indeed, if there is 07 (since there is a magnetic intensity "o
unevenly distributed along the radius), then there must be a magnetic

intensity Hy and \ or current density J2. Moreover, the Maxwell system of
equations must have a nonzero solution.

Similarly to the previous one, it follows that in a wire that is in an
inhomogeneous circular magnetic field, there is a solution to Maxwell's
equations in the form given in Section 2. Consequently, there is an energy
flow in this wire, the density of which is determined by (2.19). Energy

flow, obviously, is the source of magnetic intensity H,,

This energy flow generates a longitudinal constant current in the
wire. Thus, there is a conversion of the energy of the ring constant
magnetic field in the wire into electrical energy, which is transferred by
direct current along the wire.

Example 1
In fig. 1 shows a tubular wire 1 inside which a wire 2 passes,

insulated from wire 1 by a dielectric 3. If current J2 flows through wire 2,

then a ring magnetic field Hy appears in the body of wire 1. In
accordance with the above, a circular ring magnetic field in wire 1 creates

a constant current /1 in this wire. The effect should be stronger if wire 1
is ferromagnetic.
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ig. 1.
5. Wire in a transverse magnetic field
Now suppose that there is a transverse magnetic intensity B The

existence of such a strength ensures the existence of a nonzero solution
of the system of Maxwell equations, which follows from the equation

H, OH, 1 0OH,
R N E, (U
r or r O¢

=J_,

z

Indeed, if H, exists, then magnetic intensity Hy and \ or current

density J2 must exist. Moreover, the Maxwell system of equations must
have a nonzero solution.

Similarly to the previous one, it follows that in a wire that is in a
circular magnetic field, there is a solution to Maxwell's equations in the
form given in Section 2. Therefore, there is an energy flow in this wire,
the density of which is determined by (2.19). The source of this energy

flow, obviously, is the source of magnetic intensity H,

This energy flow generates a longitudinal constant current in the
wire. Thus, there is a conversion of the energy of the radial constant
magnetic field in the wire into electrical energv transferred by direct
current along the wire.

Example 1
In fig. 1 shows an annular wire 1 located in the gap of two

permanent magnets 2. The magnetic intensity in this gap is the intensity

Hr, which penetrates the wire 1 along the radius. In accordance with the
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above, the radial magnetic field in wire 1 creates a constant current / in
this wire. The effect should be stronger if wire 1 is ferromagnetic.

1

2

Fig. 1.
Example 2
The magnetic intensity H: can be created by a permanent ring

magnet in the wire - the winding of this permanent magnet - see fig. 1
and fig. 2

Fig. 1 from https://www.youtube.com/watch?v=sPHIWNXMIow.
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Fig. 2 from http://www.inventedelectricity.com/free-energy-generatot-
magnet-coil-100-real-new-technology-new-idea-project/

6. Summary

The above shows that

1. a stream of electromagnetic energy is transmitted from a source
of magnetic field to a wire in a magnetic field,

2. a flow of electromagnetic energy circulates in a magnetic field
with a magnetic flux - see Chapter 5e.

3. the flow of electromagnetic energy creates an electromotive
force that moves the charges in the wire [19],

4. while in the wire there is a longitudinal constant current.

The experiments shown in section 5 are often viewed as generators
of unlimited energy stored in permanent magnets. However, in fact, they
demonstrate the exact opposite - the limited energy of the permanent
magnet: the light bulbs gradually go out.
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Chapter 5e. Solving Maxwell's
equations for a permanent magnet.
Recovery of magnet energy.

Contents
1. Permanent conductive magnet \ 1
2. Stationary flow of electromagnetic energy \ 2

1. Permanent conductive magnet

Chapter 5d shows that in a wire that is in a longitudinal magnetic
tield, there is an electromagnetic field and streams of electromagnetic
energy.

Consider a permanent conductive magnet. Obviously, it can be
identified with a wire in a longitudinal magnetic field. Consequently, in
such a magnet there is a longitudinal flow of electromagnetic energy.
Thus, in a permanent magnet, in addition to the magnetic flow, there is
an electromagnetic flow.

This flow closes through the air and partially disperses. The
scattering would have led to the loss of energy and the demagnetization
of the permanent magnet. Why does he save his energy indefinitely?

To answer this question, we recall that the flow of electromagnetic
energy is an electromagnetic wave, and the stationary flow of
electromagnetic energy is a standing electromagnetic wave. Consequently,
a standing electromagnetic wave exists inside and around the permanent
magnet. In [124], it was shown that a standing electromagnetic wave
cools the air and thereby attracts heat flux into its area, which increases
the energy of this wave. Thus, the flow of electromagnetic energy is
constantly replenished by heat flow.

The heat flow energy may exceed the energy loss due to
dissipation, but the energy of the permanent magnet cannot exceed the
energy of the saturated state. The energy of the heat flux at a lower
temperature may be less than the energy loss due to dissipation and then
the magnet is demagnetized. The last statement corresponds to reality.

As for the basic assumption about the effect of heat flux on the
conservation of energy of a permanent magnet, it can be checked with a
simple (but inaccessible for the author) experiment: we place a
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permanent magnet with an internal heater in a vacuum chamber and
make sure that it demagnetizes.

2. Stationary flow of electromagnetic energy

If the magnetic circuit of a permanent magnet is closed with a
ferrite jumper, then magnetic flux and electromagnetic flux will circulate
in this circuit. In this case, the term “flow” for a stationary magnetic field
can only be conditionally used, since the magnetic flux does not have a
moving speed.

The stationary electromagnetic energy flow is also retained. Its
existence does not contradict our physical understanding [3]. The
presence of this flow in a static system was studied by Feynman [13]. He
provides an example of an energy flow in a system consisting of an
electric charge and a permanent magnet which are fixed and closely

spaced.

Puc. 2.

Other experiments [38] demonstrating this effect are also available.
Fig. 2 shows an electromagnet which retains its attractive force after the
current is switched off. Edward Leedskalnin is assumed to use such
electromagnets in constructing the famous Coral Castle, see Fig. 3 [38].
In these electromagnets (or solenoids), the electromagnetic energy in not
zero at the instant the current is switched off. This energy can be
dissipated by radiation and heat loss. However, if these factors are not
significant (at least at the initial phase), the electromagnetic energy must
be conserved. With electromagnetic oscillations, the electromagnetic
energy flow must be induced and propagate WITHIN the solenoid
structure. This flow can be interrupted by destructing the structure. In
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this case, according to the energy conservation law, the work should be
done equal to the electromagnetic energy which dissipates on destruction
of the solenoid structure. This means that a "destructor" should
overcome a force. It is this fact that is demonstrated in the above-
specified experiments.

Mathematical models of similar solenoid structures based on the
Maxwell equations are examined in [39]. The conditions are identified
which are to be met to maintain the electromagnetic energy flow for an
unlimited time period.

5e-3



Chapter 6. Single-Wire Energy Emission and Transmission

Chapter 6. Single-Wire Energy

Emission and Transmission

Contents
1. Wire Emission \ 1
2. Single-Wire Transmission of Energy \ 3
3. Experiments Review \ 5

1. Wire Emission

Once again (as in Chapter 2), we deal with an AC low-resistance
wire. It incurs radiation loss, though loses no heat. Emission comes from
the side surface of the wire. Vector of emission energy flux density is

directed along the wire radius and has S value, see 2.4.4 — 2.4.6 in
Chapter 2. So,

S, =n[k, s Jr-do. (1
r,e

where
s, = (6th —e.h, @)
or, with regard to formulas given in the Table 1 of Chapter 2,

24R ¢ 2R e 5,
5, =—e. (R, (R) = -2~ |£2(R)= 228 |ER2
a \\u a U

where R means a wire radius. In addition, consider formula (see (32) in
the Appendix 1 of Chapter 2).

)(=J_r%1/g HAT ;(zsign()()-%q/cw ,tae sign(y) ==1. @)

Thus, we obtain:

s, = —sign(y)- 2405 poc : )
From (1,5) we obtain:
S_, =—sign(y)- 24 we Rz‘HnJ. si*dg =—sign(y)- 24 ws R*'nr.
With additional (1.4.2), we ﬁnall; obtain:
S_r =—sign(y) -@RM_1 ) ©)
2a
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Obviously, the value must be positive, as emission does exist. By
the way, this fact disproves a well-known theory of an energy flux
propagating bevond the wire and entering it from the outside.

As value (0) is positive, condition

—sign(y)-sign(a) =1, @
must assert, i.e. values y, - must be of opposite sign. In this

connection, for later use we take formula of the type
- Awe
S =

e
The formula calculates the amount of energy flux emitted by the wire of

unit length. Correlate this formula with the one (2.4.15) for the density of
energy flux flowing along the wire:

5 A’c. le/ (1 - cos(4a7r))R2,,,1
‘o 8zaa 1) .
Consequently,

- S_r B 47z(2a —l)a)w/g,u 0)
S, c¢-(-cos(dar))’
So, the wire emits a portion of a longitudinal energy flux of

S.=¢-S.. (11)

Let energy flux is S_ZO in the beginning of wire. Energy flux the

R ®)

©)

wire emits along the L length, can be obtained from the following
formula

SrL :Szo(l_é/)L (12>
Energy flux remaining in the wire

—_— ) — — N

SzL = Szo _SrL = SZOQ_(I_Q,)L ) (13>
Thus, we can calculate the length of wire where the flux remains

SzL = ﬂ. Szo . (14>

The length can be found from the expression

p=l-G-¢Y)

L=In(-A)n(1-2). (15)
Example 1. With @ =1.2, ¢=1, u=1, we obtain { #10w/c. If
®=3-10° so will £~3-10-10°/3-10" =10, The length of wire that
keeps 1% of initial flux makes

L=1In(1-0.01)In(1-¢)~9950 sm.

ie.
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2. Single-Wire Transmission of Energy

A body of convincing experiments show the transmission of
energy along one wire.

1. [29] analyses a transmitting antenna of long wire type that finds
its use in amateur short-wave communication. The author says the
antenna has “an adequate circular pattern that allows the communication to be
established almost in all directions”, whereas in the direction of wire axis “a
considerable amplification develops and grows as antenna length increases... As the
length of the increases, the main lobe of the pattern tends to approach antenna axis as
close as possible. In the process, emission directed towards the main lobe gets stronger”.
Both from the fact that long wire emits in all directions and from the
previous part it follows that energy flux flows along the wire. It is
significant that energy flux exists without any external electrical voltage at

the wire tips.

Puc. 1.

2. S.V. Avramenko’s long-known experiment in single-wire
transmission of electrical energy, also named Avramenko’s fork. First, it
was described in [30] and then in [31] -see Fig.1. [30] reported that the
experimental arrangement included a generator 2 up to 100 kWt of
power to generate 8 kHz voltage that went to Tesla’s transformer. One
tip of the secondary winding was loose, while the other end connected
Avramenko’s fork. Avramenko’s fork was a closed circuit that included
two series diodes 3 and 4 , whose common point was connected to the
wire 1, and a load, with capacitor 5 connected in parallel to it. Several
incandescent lamps — resistance 6 (alternative 1) or discharger (alternative
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2) formed the load. Open circuit allowed Avramenko to transmit about
1300 Wt of power between the generator and the load. Electrical bulbs
glowed brightly. Wire current was very weak, and a thin tungsten wire in
the line 1 did not even run hot. That was the main reason why the
findings of the Avramenko’s experiment were difficult to explain.

On the one hand, the structure offers quite an attractive method of
electrical energy transmission, whereas, on the other hand, it apparently
violates laws of electrical engineering. Since then, many authors
experimented with that structure and offered theories to explain
phenomena observed — see e.g. [32-34]. However, no theory has been
universally accepted. the wire tips. Here also energy flux exists without
any external electrical voltage at the wire tips.

3. Laser beam should also be included in this list. Laser obviously
directs energy flux into the laser beam. The energy, that may be rather
considerable, incurs almost no loss when transmitted along the laser
beam and, on its exit, is converted into the heat energy.

4. Known are experiments by Kosinov [35] that showed the
glowing of the burned incandescent lamps. It was reported that
“incandescent lamps burned most often in more than two places, with not only spiral,
but current conductors of the lamp burning. With the first circuit break took place,
over some time lamps light was even brighter than one produced before burning. The
lamps kept glowing until burning of the next portion of the circuit. In this experiment,
inner circuit of one lamp burned in as many as four places! Spiral burned in two
Pplaces, as well as both lead electrodes in the lamp. The lamp went off no sooner than
the fourth leg of the circuit burned, i.e. the electrode where the spiral is attached’.
Here, too, energy flux exists with no external electrical voltage at the wire
tips. It is significant that burned lamp consumes even more power
sufficient to burn the next leg of the spiral.

5. There is an experiment known for charging a capacitor through
the Avramenko’s plug [66]. In this experiment, the circuit diagram shown
in Figure 1 above is used but there is no resistor 6. The author of the
experiment notes that the capacitor is charged from zero through the
Avramenko’s plug slowly (3 volts per 2 hours) but faster than without
this plug (charge without plug is the charge of the capacitor together with
the capacitance between the ground and one of the capacitor plates).
Increasing the length of the wire up to 30 m does not affect the result.
This experiment indicates that direct current of the charge flows along
one wire.
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Consideration of equation for the electromagnetic wave in the wire
cannot reveal physical nature of the wave existence: any component of
intensity, current and density of energy flux can be seen as an exposure
governing all the rest. A longitudinal electrical intensity is accepted to be
such an exposure. Facts reported earlier testify possible exceptions, e.g.
when exposure is an energy flux at the wire inlet. In [19, 17] show that
energy flux can be viewed as fourth electromagnetic induction.

Thus, inlet energy flux propagates along the wire, and, (almost with
no loss, see pp. 2, 3, 4 above) reaches its distant end. Current can
propagate alongside with the energy flux. Yet, this correlation does not
need to be (see pp. 2, 3 above). It is significant output energy flux can be
rather considerable and make a part of the load. The lack of energy flux —
to-current correlation was approached and explained in the Section 2.5.

3. Experiments Review
Return to "long-wire" antenna. It emits in all directions. As is

obvious from the Section 1, §, energy flux emitted makes a part of a

longitudinal §, energy flux, see (1.11). Their coefficient of
proportionality ¢ relies, in its turn, on frequency @- see Example 1.
Because of this, reduction of frequency @ drops emission of energy flux

S .

r
Section 2.5. considered and correlated currents and energy fluxes in
the wire. It showed that, generally, currents and energy fluxes inside the
wire exist as "jets" of opposite direction. This fits with the existence of
active and re-active energy fluxes.

Sminus Fig.9. (SSMB)
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Formation of such "jets" may be assumed in the “long wire”. If
“long wire” emits all the incoming energy, then one of the fluxes (active
power flux) prevails, and the generator wastes its energy to support it. If
“long wire” does NOT emit, energy flux flowing in one direction returns
the opposite way, the generator SAVES the energy (re-active power flux
circulates), and no current forms in the wire. Clearly, there are some
intermediate cases when “long wire” emits only a part of energy it
receives.

With some combinations of parameters, total currents in opposing
jets have are equal in absolute value, and, as well as total energy fluxes of
opposing jets. For the sake of readet’s convenience, Fig.9 from the
Section 4 is replicated above. It shows the functions of the opposing jets:

Splus - energy flux jet directed from the energy source;

Sminus - energy flux jet directed to the energy flux;
For illustration, functions plots are shown with the opposite sign. They
obey the following relationships between integrals of sectional area, Q, of
the wire:

J. Splus dQ = — _[ Sminus - dQ,
0 0
_[ Jplus dQ = —'[ Jminus-dQ.
0 0

As follows from experiments (paccMorpeHHBIX above), currents
and jets can complete at the broken wire — see Fig.3, where 1 means a
wire, 2 means a direct “jet”, 3 means a reverse “jet”, and 4 means a
closing circuit. In this case, there arises the question of the nature of
electromotive force that makes the current to overcome the spark gap.
[19, 17] show that energy flux can be viewed as fourth electromagnetic

induction.

Puc. 3.
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Prominent experiments by Kosinov [35] evidently prove the
hypothesis offered: the arch that forms at the broken spiral is to have a
beginning and an end. Electromotive force should be applied between
them. When expanding arch reaches the next leg of the spiral, this leg,
together with connecting arch, joins a long line etc. Kosinov observed as
many as eight such legs.

Avramenko’s fork is a circuit that includes two series diodes and a
load — see Fig.1. The circuit forms the arch shown in Fig.3. An air gap of
discharger 7 can serve as a load, an equivalent of arch from Kosinov’s
experiments. Resistor 6 — energy receiver in single-wire energy
transmission system — can, too, serve as a load. Wire 1 of this structure
can be identified with “long wire”. In this case (at low frequency of 8
kHz) the wire 1 does not emit. Consequently, it carries two opposing
energy fluxes but no current.

Which means single-wire energy transmission follows from
Maxwell’s equations without any contradiction.
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Chapter 7. The solution of Maxwell's
equations for the capacitor in the
constant circuit. The nature of the
potential energy of the capacitor.
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4. Dischatge of capacitor \ 5
Appendix 1\ 6
Appendix 2\ 6

1. Introduction

A charged capacitor always discharges after some resistance R,
even if there is no shunt resistance. Even in vacuum, the capacitor is
discharged due to the fact that it radiates energy, which can also be
considered as the existence of some leakage resistance. In this case, a
stream of electromagnetic energy propagates along the capacitor, which is
equal to the power of thermal losses in the resistance R. Therefore, an
electromagnetic field must exist in the capacitor, in which there is a
longitudinal electric intensity and currents. Next is the solution of the
Maxwell equations that satisfies these conditions.

If there are energy flows in a capacitor, magnetic intensities must
exist. In this case, Maxwell's equations for a charged capacitor in the
system of cylindrical coordinates 7, @, z have the following form:

E OE, 1 ©E, OE.
+ +—- +

- =0, @
r or r Op Oz
10E, OE, 0
rde 0z )
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0E, OF,
_6_ or 3
ﬂ_l_aE(p_laEr:O
roor rde @
ﬂ aH’+l-8H¢’+aHZ=0, ©)
or r Op Oz
16H 0H,
roQ 0z ©
OH, OH,
_ =0
0z or )
H <P aH 1(3H ~0
. ®
We will look for unknown functlons in the form
H,.=h(r)o, ©)
H,.=h,(r)si, (10)
H_.=h_(r)si, (11)
E.=e(rki, (12)
E,=e,(r)co, (13)
E_.=e(r)co, (14)
where h(r), e(r) are some functions of coordinate r,
co =cos(ap+ yz), (15)
si =sin(ag + yz), (16)

where, in turn, @, ¥, @ are some constants.

2. The flow of energy
Also, as in Chapter 1, the energy flux densities by coordinates are
determined by the formula

S. E (pH ,~E H 0
S= S(p =nExH)=n|E,H -EH,
S, E.H,-EH, "
or, taking into account the prev1ous formulas,
S —n(e(p .- (P)co si .
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— 2 2

S(p o n(ezh‘rco ethSl ) 3)

©)

Further, it will be shown that these densities of energy flow to
satisfy the law of energy conservation, if

Sz = n(erh(psi2 - e(phrcoz)

h. = ke, o
h(p =- ke(p’ ©
h,=-ke,.

)
From (2, 6, 7) it follows that

S. = n( - e(pkez + keze(p)co “si= 0’ (8)

L.e. no radial flow of energy. From (3, 5, 7) it follows that
— 2 2\ —

S =n(e ke o’ + ke,e,si%) = nkerez’ o

i.e. the density of the energy flux along a circle at a given radius does not
depend on time and other coordinates. From (5-7) it follows that

S, =nke,h(si*+co®) = nke,h, n

L.e. the vertical energy flux density at a given radius does not depend on
time and other coordinates. These statements were the purpose of
assumptions (5-7).

Thus, in a charged capacitor

1. There is no radial flow of energy.

2. The flow of energy along the axis of the capacitor is equal to the
active power consumed during the discharge of the capacitor.

3. There is a flow of energy around the circumference.

Consequently, in a charged capacitor there is a stationary flow of
electromagnetic energy, and that energy that is contained in a capacitor
and which is generally considered to be electrical potential energy is
electromagnetic energy stored in a capacitor in the form of a stationary
flow. It is in this flow that the electromagnetic energy stored in the
condenser circulates. Consequently, the energy that is contained in the
capacitor and which is commonly thought of as electric potential energy
is electromagnetic energy stored in the condenser as a steady flow.

The experiment is known, which is (in our opinion) the
indisputable proof that the energy of a capacitor is stored in a dielectric
[122]. For experiments, the installation was made of two capacitors,
between which the dielectric moves. As a result, in one capacitor the
dielectric is charged with energy from a high-voltage source, and from
the other capacitor this energy is extracted - the capacitor discharges
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through the discharger. The author of the experiment explains this
phenomenon by charge transfer in a dielectric. This is not surprising: the
question of where the charge is stored is still being debated. Similar, but
much less spectacular experiments, have so far been explained by the fact
that a film of moisture retains charge on the surface of the dielectric after
the removal of the metal plate [123]. But how this film manages to arise
and how water manages to charge - this issue is not considered.

3. Intensities
Equations (1.1-1.16) and (2.5-2.7) take the form:
e e

ro [0 _
—te —Ja-xe, = 0
, Q)
“Zo + 0

-Zate x=
r ¢ , @

-e,+tex= 0, G
e e
Py o=
- +e, —Q 0, “

e, . € B
k—+ ke, — k—Fa—kye,=0 5

Kz + k 0
~kZa+ ke x =
r @ ; ©)

ke, - ke x = 0’ -

e . e,
~k-2-ke,+k-La=0
It can be seen that equations (1-4) and (5-8) coincide. Therefore, it
suffices to solve equations (1-4). Appendix 1 shows the solution of the
system of equations (1-4). It has the following form:

. e e
ez+7z—ezx2——§oc2 =0.
r ©)

This equation is a modified Bessel equation and its solution ~Z is

considered in Appendix 2. The function €z is also considered there

1£ €2 €2 are known, you can find $€0y by (2, 3). Folding (2, 3),
we find
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ITpn m3BecTHBIX €» €z MOKHO HANTH €réo o (2, 3). CkaaawpBas
(2, 3), HaxOAMM:

e
z : —
-Jo-e,+ (e, +e)x= O’ "
Subtracting (3) from (2), we find:

e
z y —
-Cate,+ (e(p—er)x— 0, .
Adding and subtracting (10, 11), we find:
e

zX

e ===

¢ TrX, 12)
eZ

e.=—=

X (13)

The equations (9, 12, 13, 2.5-2.7) define functions A(r), e(r), and

these functions, together with constants ¢, ¥, @, determine electrical

and magnetic intensities (1.9-1.14)

It follows that in a charged capacitor there are electrical and
magnetic intensities. Therefore, it can be argued that there is an
electromagnetic field in a charged capacitor, and the mathematical
description of this field is a solution to Maxwell's equations.

Experiments on the detection of a magnetic field between the
plates of a charged capacitor using a compass [49, 50] are known. In
accordance with the above, only the location of the compass needle
perpendicular to the radius of the circular capacitor should be observed
in the circular capacitor. The deviation of the arrow observed in these
experiments from the axis of the capacitor can be explained by the
nonuniformity of the charge distribution over the square plate.

4. Discharge of capacitor

As before, in chapters 1 and 5 we consider the velocity of the
energy. The concept of Umov [81] is generally accepted, according to
which the energy flux density s is the product of energy density w and

energy velocity v,:
s=w-v,. ©)
The energy of the capacitor
2
W, = cU ,
2

()
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and energy density
We

w, = o 8
where C,U,b,d is capacity capacitor voltage, plate area and dielectric
thickness, respectively, and capacity of condenser

C=¢-b/d. 9)

When the capacitor is discharged to the resistor R, the energy flow

to the resistor is equal to the power released in the resistor, i.e.

2
S=P= UI—% (10)

If the capacitor is connected to the load by the entire surface of the
plates, then the energy flux density

S U 2

=5 TR
and power of the source

P=sb. (12)

Then the velocity of moving of energy (7) through the capacitor
s W % / CU*> 2d
“w, bR 2bd  CR’

)

Vo W, (13)

ot, taking into account (9),
, = 2d

¢~ ebR’ (14)

L.e. this speed does not depend on voltage! It can have a value that is
substantially less than the velocity of light.

Appendix 1

Consider the solution of the system of equations (3.1, 3.2, 3.3)

from section 3. After substituting €o from (3.2) and €r from (3.3) into
(3.1), we find:
e e
. z 2 zZ 2 _
e, +—--ex —?a = 0.
M
Now we consider the solution of the system of equations (3.2, 3.3,
3.4) from section 3. After substituting €9 from (3.2) and €r from (3.3)

into (3.4), we again find (1). Consequently, the solution of the four
equations (3.1-3.4) has the form (1).




Chapter 7. The solution for the capacitor in the constant circuit.

Appendix 2.
Known modified Bessel equation, which has the following form:
: 2
31+X—y(1+" )=0
AT 1)
where Vv is the order of the equation. With a valid argument, it has a

valid solution. This solution and its derivative can be found numerically.
Equation (3.9)

P 2 2
. 7 X o\ _
ez+?—ez(7+—2') =0
r @
in section 2 similar to equation (1), its solution and its derivative can also
be found numerically.
When 720 equation (2) takes the form:
e 2
. 7 o
e,t--€—>= 0
r ©)
His solution is:
_ AP
e, =Ar ’ @

where A is a constant, and B is determined from the equation

2 2 _
B +B—O( —0, (5)

B=1(-1+.1+40?), B<O ;

Thus, at the first iterations, you can search for a function €2 in the
form (4), and then calculate it by (2).

i.e.
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1. Introduction
Here (unlike Chapter 7), consider a capacitor with a conductive
dielectric.

2. Condenser charge by longitudinal magnetic
field

Chapter 5d shows that in a wire that is in a non-uniform
longitudinal magnetic field, a longitudinal direct current is created.
Consequently, a constant current is also generated in a capacitor with a
conductive dielectric. This current charges the capacitor. In other words,
the capacitor is charged in an external inhomogeneous magnetic
field.

Fig. 1.
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This phenomenon is detected experimentally. In [116] describes
the construction shown in Fig. 1, which shows one of the options for the
practical implementation of this phenomenon. Two insulating spacers 2
and metal foil 3 are placed in the inhomogeneous magnetic field of
conductive magnets 1. Magnets 1 and foil 3 act as electrodes A, B and C.
A constant potential difference that arises at the time of creation of this
structure is fixed between electrodes AB and CB.

In [125] an experiment is described (see Fig. 2), where its author
checks the voltage on several structures:

1) single disk neodymium magnet (NM)

2) several NM,

3) ferrite disk (FD),

4) ferrite disc magnet (FD-magnet),

5) a stack of blocks FD-magnets.

In these constructions, ferrite FD is a conductive dielectric. The
author notes that

1. in 1) there is no voltage

2. in 2)-4) there is a voltage

3. in 4) the voltage is greater than in 3),

4. in 5) the voltage is greater than in 4),

5. The voltage decreases with time, but is restored in the next
experiment.
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Such a scheme operates as follows. At some point in time, the

capacitor under the influence of magnets accumulates magnetic energy

Wi and charges up to voltage U, i.e. acquires electrical energy We Next,

the capacitor is discharged through its own internal resistance K. In this
case, the voltage on the plates decreases. However, from the magnetic
energy, it is again charged to the voltage U. Thus, this process can be
considered as a constant discharge of a capacitor, the voltage on which is
maintained by an external source of energy.

Formal relations are discussed in Appendix 1.

3. Condenser charge by circular magnetic
field

Chapter 5d shows that a longitudinal constant current is created in
a wire that is in a circular magnetic field. Consequently, a constant
current is also generated in a capacitor with a conductive dielectric. This
current charges the capacitor. In other words, the capacitor is charged
in an external circular magnetic field.

Thus, if a conductor with a constant current passes through a
capacitor, a longitudinal intensity arises in the capacitor.

Example 1

Consider the construction shown in fig. 3, which shows a capacitor
with a conductive dielectric 1 and plates 2. This capacitor has a hole
through which the wire 3 passes. If a current J passes through the wire, a

circular magnetic field with an intensity of H @y is created in the capacitor.
In accordance with the above, a longitudinal constant current (directed
parallel to the current in the wire) is created in the conductive dielectric.
This current passes through an external resistance R.

Such a scheme operates as follows. At some point in time, the

capacitor under the influence of current I accumulates magnetic energy
w

mand charges up to voltage U, i.e. acquires electrical energy We Next,
the capacitor is discharged through its own internal resistance R. In this
case, the voltage on the plates decreases. However, from the magnetic
energy, it is again charged to the voltage U. Thus, this process can be
considered as a constant discharge of a capacitor, the voltage on which is
maintained by an external source of energy.

Formal relations are discussed in Appendix 1.
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J

He

(1)
.

Puc. 3.

4. The density of electrical energy

It is known that oxide-semiconductor and electrolytic capacitors
have a very large specific capacity. The electrolyte or semiconductor
serves as a dielectric in such capacitors. Such a dielectric is electrically
conductive. The dielectric constant of such dielectrics is about 3 times
greater than the dielectric constant of ordinary (non-conductive)
dielectrics. However, this is impossible to explain a very large increase in
specific capacity. It is also known that the specific capacitance increases
with decreasing resistance. Previous results allow us to explain why
conduction increases the capacitance of a capacitor.

Chapter 5 shows that at a constant density of the main current in
the wire, the power transmitted through it depends on the structure
parameters (&, y ), i.e. from the density of the screw path of current: as
the parameter y decreases, the power increases and the density of the
screw path of current increases. In this case, the total length of the
trajectory increases. Likewise, the length of the line on which the electric
intensity is proportional to this current increases. But capacitance is
proportional to the square of the length at which the electric intensity
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exists. Consequently, the capacity of the wire increases with increasing
density of the screw current path, i.e. with increasing transmit power.
Exact relationships between electrical energy and heat power can be
found from the relationships found in Chapter 5 - see (2.25-2.30, 3.14)
and Appendix 3. Since electrical energy is proportional to capacitance,
then the capacitance of the wire can be found from these relationships.
In a conductive capacitor equivalent to a wire, all thermal power is
released in the capacitor itself. Consequently, the heat output from the
condenser substantially enhances the capacitance of the capacitor.

Appendix 1.
Consider the formal relations for sections 2 and 3. Denote:

P is the power consumed by the capacitor load,

P1is the power of the current source I,

P is the resistance of the wire (in section 2) or the windings of
electromagnets (in section 3),

L is the inductance of the capacitor,

W, W

P

mis electric and magnetic energy of the capacitor,

2 is power loss in the wire,

" is the apparent resistance of the wire (in section 2) or the
windings of electromagnets (in section 3) are the load
resistance for the current source L

We have:
P,=Po 0
P=UR, ©)
w, = LI%/2, 3)
W, =CU%/2, 4
P,=I’r=P+P,=UR+ 12p, 5)
Then

I’/ _U’R
"= /Pl__12_+p' ©)

Obviously, for consistent work, the time constants of inductance
charge circuit and capacitor discharge circuit must coincide, i.e.

L/p =RC. (7)
Then
r=L
pC ®)

It is known that for the torus
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—kq
LT )
where
H is the absolute magnetic permeability of the torus,
q is the cross-sectional area of the core,
lis the length of the average magnetic field line of the torus.
Obviously
q=Dd2 (10)
l=mD (11)
where D is the diameter of the torus, d is the height of the torus. Then
from (9-11) we find:

_hd
e (13)
Capacitor capacitance
C= enD*
“4d (14)

Then from 8, 13, 14 we find:

R=(nd snDZ)z 2ud2
() () = m2en%s (15)
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The first solution. Maxwell's equations in
spherical coordinates in the absence of
charges and currents.

1. Solution of the Maxwell equations

Fig. 1 shows the spherical coordinate system ( p, 8, @). Expressions
for the rotor and the divergence of vector E in these coordinates are
given in Table 1 [4]. The following notation is used:

E - electrical intensities,

H - magnetic intensities,

M - absolute magnetic permeability,

& - absolute dielectric constant.

The Maxwell’s equations in spherical coordinates in the absence of
charges and currents have the form given in Table. 2. Next, we will seck a

solution for FE = 0, H ,= 0 and in the form of the functions
E, H presented in Table 3, where the function g(@) and functions of
the species E(pp(p) are to be calculated. We assume that the intensities

E, H do not depend on the argument ¢. Under these conditions, we

transform Table 1 in Table 3a. Further we substitute functions from
Table 3 in Table 3a. Then we get Table 4.

Substituting the expressions for the rotors and divergences from
Table 4 into the Maxwell's equations (see Table 2), differentiating with
respect to time and reducing the common factors, we obtain a new form
of the Maxwell's equations - see Table 5.

Consider the Table 5. From line 2 it follows:

oH
) , (2)

p  Op

wé
ZHW)'FTEBPZO. (3)

Consequently,
h

Hoy == 4
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®)

©)

)

8)

©)

(10)

1

12)

we
H(Pp = —; Etgp ,
where h(pp is some constant. Likewise, from lines 3, 5, 5 should be
correspondingly:
h,
_ o
H@p - 7 5
&
H o = ;E op >
e
E,, = -,
Jo)
_ou
E op ;H p >
€y,
E@p = 7 s
__ou
It follows from (5) that
__ X
E bp — _EH op >
and from a comparison of (11) and (12) it follows that
ou_ e
Y
or

=2

The same formula follows from a comparison of (7) and (9).
It follows from (5, 13) that

&
H(PP = _Eé‘p’

Y7
and it follows from (14, 4, 11, 12) that

&
h(gp = —egp\/;,

Similarly, it follows from (7, 13) that

13)

14

(15)
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H, =— |—F (16)

op op>

and it follows from (16, 6, 8, 12) that

&
hy, =—e,, \/; . 7

From a comparison of (15) and (17) it follows that

h e
o)
oo _ O _ q, (18)
o Cop
) &
eﬁp ewp H

Further we notice that lines 1, 4, 7 and 8 coincide, from which it
follows that the function g(H) is a solution of the differential equation
20)  20)_, N
tg(e) 00

In Appendix 1 it is shown that the solution of this equation is the
function

g( ) 4. |sm((9) (202)
where A is a constant. We note that in the well-known solution
g(9)= Sin(ﬁ). It is easy to see that such a function does not satisfy
equation (20). Consequently,

in the known solution 4 Maxwell's equations with
expressions rot p(E), rot p(H ), diV(E), diV(H ) are not
satisfied.

Thus, the solution of the Maxwell's equations for a spherical wave
in the far zone has the form of the intensities presented in Table 3, where

H, = S , H,, _ oy E,, _Smw ,E, _So 1)
P P P ,0
w 1
=—4/& . 13), 0)= — 7~ (oM. 20a
X . M (o 13) g( ) 1. |s1n(9] ( )

and the constants /

op? hﬂp’ et‘)p’ 2

o satisfy conditions
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h e h h / £
ﬂ:ﬁ:q (CM18), ﬂzﬁ:— — . (M. 19)
hep ewp e6’p ewp H

From Table. 3 it follows that
the same (with respect to the coordinates ¢ and @)
electric and magnetic intensities are shifted in phase by a
quarter of the period.

This corresponds to experimental electrical engineering. In Fig. 2 shows

the intensities vectors in a spherical coordinate system.

» E, H, E,
v ‘/

H,
Fig. 2.
3. Energy Flows

Also, as in [1], the flow density of electromagnetic energy - the Poynting
vector is

S=nExH |, 1)
where
n=clr. 2)
In spherical coordinates ¢, 8, p the flow density of
electromagnetic energy has three components S, S,, S, directed along

the radius, along the circumference, along the axis, respectively. They are
determined by the formula

S, E,H,-E,H,
S=|S,|=nExH)=n|E,H,~E,H, |. @
S, E,H,-E,H,

From here and from Table 3 it follows that
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S,=0
S,=0 : )
E Hep (g(@)sin(;(p + a)t))z -

gp op (g(@)cos(;(p + a)t))2
It follows from (1.9, 1.11) that

yel

By, == -1, ). ©

E,H,, = —%(Hﬁ- o
It follows from (6,7, 1.4, 1.6) that

E,Hgy = %(hep) % ®)

EyH, = —w—’c’(hw)# 0

From (5, 8, 9) we obtain:
1 ((y, ) Gin(zp +on)) + J

2 (9)_ [ (hwp)z(cos(;(p + a)t))z

Further from (9, 1.13, 1.18) it follows that

S, = n.gz(g)m\/ZLz (1, ) Gin(zp + 1) + o
& P*{+(ghy, Y cos(zp +wn))

where q is a previously undefined constant. If we take
g=1, (102)
then we get

h2
S, =77-g2(9)0\/ﬁi§- (1)
£ p

We also note that the surface area of a sphere with a radius p is equal to

47mp* . Then the flow of energy passing through a sphere with a radius p
is
] h |
S, = f411p25 do = 4mp? no—r | g 2(9)do
8 o 8
Because the
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2
f g%(8)de =¢,

0
where C is a constant, then
§p = 411Cnu>hezp.
It follows from (12) that
in a spherical electromagnetic wave, the energy flux
passing through the spheres along the radius remains
constant with increasing radius and does not change with
time.
This strictly corresponds to the law of conservation of energy.
It follows from (12) that the energy flow density varies along the

12

meridian in accordance with the law g g (9 )

4. Conclusion
An exact solution of the Maxwell equations for the far zone, which
is presented in the table 3 is obtained, where

H(pp(p), ng = (p) Ewp = (p) Egp = (p) are functions defined
by (1.21, 1.18, 1.19),

g(@) is a function defined by (1.20a),

X is the constant determined by (1.13).

* The electric and magnetic intensities of the same name (with
respect to the coordinates @ and @) are phase shifted by a
quarter of a period.

* In a spherical electromagnetic wave, the energy flux passing
through the spheres along the radius remains constant with
increasing radius and does NOT change with time and this
strictly corresponds to the law of conservation of energy.

* The energy density varies along the meridian according to the law

g’0).

Appendix 1
We consider (1.20):
2), a(g(ﬁ))

tg(e) 00

M

or
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olgl@
WO)- 40) 500) o
We have:
2 _ @)
20 (ln(g(@)))— g(@) : ©)
From (2, 3) we find:
In(g(©))= I ctg(0)p6. 4
It is known that
Ictg(@)@& = ln(A . |sin(9)). (5)
where A is a constant. From (4, 5) we obtain:
In(2(0))=~In(4-sin(9)) ©
g( )_ A4- |sm(6’) ®
Tables
Table 1.
1 2 3
Ul rot (E)| E, OE, OE,

+ —
ptg(6) po0  psin(@Pe
2| rot,(E) OE, E, OE,

psin@Pe p  dp
3 rot(p(E) & OE OE

p

p p pop
4| div(E) | E, O0E, E, CE, OE,

P P

+—L 4 + =2 4
p_op pg®) pdb  psin(6Pg
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Table 2.

Table 3.

1 2
1. OFE
rotpH—f L =0
c ot
2.
rot,H _£%, _ 0
c Ot
3. OF
rot(pH—f 2 =0
c Ot
4. OH
rotpE+ﬁ—p =0
c Ot
5.
rot,E S0, 0
c Ot
6. OH
rot E + M 0
c Ot
7. div(E)=0
8. | div(H)=0
2

E,= Eep(p)g(ﬁ)cos(;(p + wrt)

E(”

= E,,(p)g(0)sin(zp + o)

E

=0

yel

H,=H,, (p)g(@)sin(;(p + o)

H(ﬂ

=H, (p)g(@)cos(yp + wt)

H, =0
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Table 3a.
2 3
1 1.Otp(E') 14 +ai
pig(6) pod
2 rotg(E) _ﬂ_@i
p _Op
3 rot(p(E) &+%
p Op
4| div(E) E, . Ok
pig(6) pod
Table 4.
1] 2 3
1 rOtp(E) (4 +ai
pte(6) pod
2| rot,(E E OE
rot,(E) _(ﬂsin(...)+—Wsin(---)+ZE¢,p cos(...)jg(t9)
P op
3| rot (E E OE
rot, (E) [ o cosy+ ZE0 cog(y ;(Egpsin(...)Jg(é?)
p %p
4| div(E) E, . Ok
pig(6) pob
5 rotp(H) 0 +5H_<p
pte(6) pod
6| rot,(H H oH
ro "( ) —| —*cos(...) +—"cos(...)— ¥H ,, sin(...) |g(6)
P op
7] rot H H OoH
rot,, [lsin(.,,)+—9psin(...)+;(H9pCOS(---)Jg(H)
P op
8| div(H) | H, L o8,
pte(6) pob
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Table 5.
1 2
L] g0), @) _,
tg(«9) 00
2. H . wE .
——"%-c08(...) ——*cos(...)+ yH ,sin(...) + — E,, sin(...) =0
0 c
> —%sin(.. )+ xH,, cos(...)—ngcos(...)=0
C
4. g(H) a(g(a))
g(0)
> —@sm(...)— OE,, sin(...)— 7E, cos(...) + = H, sin(...) = 0
Yo, 0 c
6. OE,,
cos( J+— o =c08(...) = ¥E,, sin(.. )— H ,sin(...)=0
7. g(ﬁ) a(g(ﬁ))
@)
8| g0) a(g(é’))
tg(H) 00
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The second solution. The Maxwell
equations in spherical coordinates in the
general case

1. Introduction

Above in «The first solution» a solution of the Maxwell equations
for a spherical wave in the far field was proposed. Next, we consider the
solution of Maxwell's equations for a spherical wave in the entire region
of existence of a wave (without splitting into bands).

2. Solution of the Maxwell’s equations

So, we will use spherical coordinates ( p,8, ). Next, we will place
the formulas in tables and use the following notation:

T (table_number) - (colummn_number) - (line_number)

Table T1-3 lists the expressions for the rotor and the divergence
of the vector E in these coordinates [4]. Here and below

FE'is electrical intensities,

H is magnetic intensities,

J is the density of the electric displacement current,

M is the density of the magnetic displacement current,

M 1s absolute magnetic permeability,

& is absolute dielectric constant.

We establish the following notation:

E  OE
—_ P p
‘P(Ep) 5 + b "
E d(E
T(E,) = (7% + ?TT( ‘P))

With these designations taken into account, the formulas in Table
T1-3 take the form given in Table T1-4. In the table T1A-2 we write the
Maxwell equations.

Thus, there are eight Maxwell equations with six unknowns. This
system is overdetermined. It is generally accepted that there are no radial
tensions in the spherical wave (although this has not been proved). In
this case, a system of eight Maxwell equations with four unknowns
appears. A solution of this problem was found in «The first solution». In
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essence, there is a solution of 4 equations (see T1A-2.2, 3, 6, 7). In this
solution, the intensities functions have the same factor for all functions -
the function 9(8) of the argument 8. The remaining 4 equations are
satisfied for a certain choice of this function. This solution turns out to
be such that it

We have to admit that in a spherical wave there are radial
intensities. However, even so, the system of Maxwell's equations remains
redefined. Let us also assume that there are radial electric currents of
displacement. This assumption does not remove the problem of over
determination, but adds one more problem. The point is that the sphere
has an ideal symmetry and the solution must obviously be symmetrical.

It is suggested that there are also radial magnetic displacement
currents. Such an assumption does not require the existence of magnetic
monopoles just like as the existence of electric bias currents does not
follow from the existence of electric charges.

Next, we will look for the solution in the form of the functions E,
H, J, M, presented in Table T2-2, where the actual functions of the form
g(@) and e(p), h(p), j(p), m(p) are to be calculated, and the coefficients
%, W are known.

Under these conditions, we transform the formulas T1-3 into T1-4,
where the following notations are adopted:

st} d(e, (p)) .

q=Xp + wt 4
From (2, 4) we find:

T(Etp) = (5111((9)) — cos(B))e cos(q) = 2e,cos(B)cos(q) (5
Similarly,
T(Eg) = 2egcos(8)sin(q) (6)
T(Hga) = 2h,cos(8)sin(q) @)
T(Hg) = 2hgcos(8)cos(q) (8)

With these designations taken into account, the formulas in Table
T1-3 take the form given in Table T1-4.

Further, using the above formulas and using the formulas from
Table T2, we construct the tables T2i, T2P, T2W,

In Table T3-2 we write the Maxwell equations taking into account
the radial displacement currents. Further, we take condition

a=0 &)
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We substitute the rotors and divergences from Table T1-4 into
T1A-2 equations, take into account condition (9), shorten the obtained
expressions on the functions of argument 0 and write the result in Table
T1A-3. Then substitute the functions from the tables T2LT2p,T2¥ in the
function T1A-3 and write the result in Table T4-2. In this table, we use
the notation of the form

si = sin(yp + wt), (10)
co = cos(yp + wt). (11)

Further, each equation in Table T4-2 is replaced by two equations,
one of which contains terms with a factor Si and the other with a factor
0. The result will be written in Table T'5-2.

Equations T5-2-2, 6, 3, 7 have a solution, found in «The first
solution» and having the following form (which can be verified by direct
substitution):

w
X = ;\/SH (12)
e, =A/p,eg = A/p, (13)
1, = —B/p,hg = B/p, (14)

I
B_ |[e 15)
A " (15)

Consider the equations T5-2.4, T5-2.8. Their solution is
considered in Appendix 1, where functions ¢p(P), fp(p)' ho (), €,(P) are
found. After this, the functions Jo), Jo(P), mo(P), My(P) o be found
using the equations T5-2.1, T5-2.5.

This completes the task.

In particular, for A=B and a small value of X, these functions take
the following form:

1

h,=e, = —;(G +24-In(p)),~ -~ 6N
= = D

h,=¢e, = P - - - (7
. 24 pw D

N
J, =5 l(G +24-In(p)). -~ - (199

_ 28" cw D .

m,= =S4 - - - (20
m, = —ﬂl((} +24-In(p)). - ~ @
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Here G is a constant that can take different values for the functions “p

e
and _hp, D is a constant that can take different values for the functions p
and .

3. Energy Flows
Density of electromagnetic energy flow - Poynting vector
S=nExH, (1)
where
n=cldr. 2)
In the SI system formula (1) takes the form:
S=FExH ©))

In spherical coordinates ¢, 6, p the flux density of electromagnetic
energy has three components S 0 S, S s directed along the radius,

along the circumference, along the axis, respectively. It was shown in [4]
that they are determined by the formula

S, E,H,-E H,
S=|S, |=n(ExH)=nE,H,-E,H, |- )
S, E,H,-E,H,

We first find a radial flux of energy. Substituting in here the formulas
from Table T2 and (1.4, 2.13, 2.14), we find:

Sp = %sin(e)sin(q)gsin(e)sin(q) - %sin(e)cos(q)_TBsin(e)cos(q) = %gsinz(e) (sinz(q)

(42)
or, taking into account (2.15),

Az\/E .
S = =sin”(0)
P phH ©

Note that the surface area of a sphere with a radius p is 47p°. Then the
flow of energy passing through a sphere with a radius p is

. A2 e[
Sp = f4ﬁp25pde =— 4-1'[p2]’]—2- —fSlTlZ(e)de
0 P 0

2
0 =" 41mA2\/§fsin2(9)d9
s

§=—42A2\/§
LN ©)
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Thus, the energy flux density passing through the sphere does not
depend on the radius and does not depend on time, i.e. this flux has the
same value on a spherical surface of any radius at any instant of time. In
other words, the energy flux directed along the radius retains its value
with increasing radius and does not depend on time, which corresponds
to the law of conservation of energy.

Let us now find the energy flux
S =n(EoH, - E,Ho) o

Substituting here the formulas from Table T2 and (2.13, 2.14, 2.16, 2.17),
we find:

gsin(e)cos(q)cos(ﬁ) (hpsin(q) + chos(q))
Se =1
¢ — cos(@) epcos(q) + ep 3111(q))—31n(9)31n(q)
_n sm(@)cos(@) ACOS(Q) h »sin(q) + h COS(Q))
— Bsin(q) epcos(q) + epsm(q))

_n sm(G)cos(G)( h ACOS(G)SIH(Q)‘I'h ACOSZ(Q))
2.1

eszm(q)cos(q) + ,Bsin? (q))

or, taking into account (2.16,

_ 1 -sin(8)cos(6) (%;ACOS (q)sin(q) + 5,0:4(3052(@))
P — (ep Bsin(q)cos(q) + &,Bsin? (q))

or
n-sin(@)cos(8) (

S =

° e, (A — B)cos(q)sin(q) + &,(Acos®(q) +

Bsin? (q))) ©)
Let us now find the energy flux

So =N(EgH y ~ EgHp). ®
Similarly to the previous one, we find:
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Lk sin(@)cos(8) [ — (epBCOS(Q)SiH(Q) + é,Bcos? (Q))
p — (epAsin(q)cos(q) + é,Asin? (q))

or

Sy = _M (ep(A + B)cos(q)sin(q) +

Ep (Ac052 (q) + Bsinz(q) )) (9)

In particular, for € =M, for example, for a vacuum, we find from (2.15)
that A = B, and from (7, 9) we obtain:

N sm(B)cos(B) . = )
Se = T(ZAe cos(q)sin(q) + Aep). (11)
or
qu _ sm(29)A_ )
Aqusm(zéi) =
Sy = T (e,sin(2q) + &,). (13)

From (12, 13) we find the density of the total energy flux directed along
the tangent to a sphere of a given radius,

Sps =Sy +Se = —‘:—zepsin(ze)sin(zq).

or
An -
Spg = — v . (cos(26 — 2q) — cos(26 + 2q))

or

¢ __4v ( cos(2(xp + wt — 6)) B
08 = T3 % —cos(2(xp+ wt +0))/) oY

This means that standing waves exist on the circles of the sphere.

4. Conclusion

1. A solution of Maxwell's equations, free from the above
disadvantages, is presented in Table T2.

2. The solution is monochromatic.

3. There are electrical and magnetic intensities along all axes of
coordinates.
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4. The amplitudes of the transverse wave intensities are
proportional to P g

5. The electric and magnetic intensities of the same name
(according to coordinates p ¢ @) are phase shifted by a quatter of a

period.

6. There is a longitudinal electromagnetic wave having electric and
magnetic components, there is a longitudinal electromagnetic wave
component of the electric and magnetic components, i.e. there are radial
electrical and magnetic intensities.

7. The energy flux directed along the radius retains its value with
increasing radius and does not depend on time, which corresponds to the
law of conservation of eneroy.

8. There are radial electric and magnetic intensities.

9. There are radial electric and magnetic displacement currents.

Appendix 1.
From T5-4.1 and (2.13) we:

= 1 1 2A
e =- -—e -
P = %0 X% xp°.
Differentiating (1), we obtain:
1 1 1 4A
=- - +—e, +
Bl= 3w % (2)
We substitute (2) in T5-4.2 and find:
1 1 2A 1 1 1 4A\ _
(‘;Tp@‘)gzep‘x—psﬂep‘@‘@@Jf—zepJf—S) =0
of

2 2 24
+ +x°e,—=5=0.
@ B@ X€p E’é’ 3)
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From this differential equation one can find the function ep(p)’ and from
this known function and the differential equation T5-4.2, find the

function =ep(p).
From T5 8 1 and (2 14) we:

ZB
+xp P

Differentiatmg (4), we obtaln.

A, 1. 1, 4B
@ - + XP. Whp F 5)
We substitute (5) in T5-8. 2 and ﬁnd

1 4B

or

)

+—.+ h, - —; =0 ©

From this differential equation one can find the function hp(p), and from
this known function and the differential equation T5-8.2, find the
function (P

In particular, for E=H for example, for a vacuum, we find from
(2.15) that A=B and, comparing (3) and (6), we find that

h =e
0=, (7)

If A=B and the value of X is small, the equations T5-4.1 and T5-

8.1 coincide and take the form

2 2A
y+iy-25=0,
s ®

where
y=l=Fj 9)
The method for solving such an equation is given in [9, p. 50].
Following this method, we find

_C+2AIn(p)
y= 2

p 10
where C is a constant that can take different values for the functions@
and . From (9, 10) we find:

—e =_C_oy(ltin(py_ _1 .
hy=e,=-7 2A( : ) 5(G + 24 In(p)) .

P
where G is a constant that can take different values for the functions €p

and .
For a small value of X, the equations T5-4.1 and T5-8.1 coincide
and take the form
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o1
z+ EZ =0, (1 2)
where o
z=h,=¢, (13)
The solution of this equation has the form:
b D
S (14)
WhCE D is a constant that can take different values for the functions €p
and hp.
From T5-2.1and (2.13, 14, 11) we:
_2 2A pw D
j,==%e ——uﬂl -z
PTp e EZ' c P (15)
Jp=ton, =-E2 -B(G + 24 - In(p)) 6
From T5-2.2 and (2.14, 14, 11) we:
2y L& —_ 2B &w D
mp—ph(p+cooep p + cp, a7
= _ 8 _
Mo T T e p CPY )
Tables
Table 1
1 2 3 4
Ulrot, () | E, 0E, 0K, TE,) iaE,

pe@) P00 psin@Pp | p  pin(0)

Slrog,() | H, o, oH, T(H,) o,
pg@) pod psin@Pp | p  psin(0)

2| rot,(E) 0E, E, OE, iaE, )
psin@Pe  p  op psin(@) "

3| rot (E E 1o

ro (p( ) & 0E, 0 oE, l//(E,g)—la »

p dp pop p

6| rot,(H) | oH, H, 0H, iaH o)
psin@Pp  p  dp psm(é’)

7 rot  H H, .\ oH, OH iaH

- ‘//( 0)_

p_ Op pip
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@) B B ] ) TE),
P ap ptg (9) P 0 pSlIl (0)
N OE, N 8E¢
00 psm(é?)a(p
8 | div(H) a, aH”+ o y/(H )+T(H )
P 8,0 ptg (H) P P pSlIl (9)
N 0H, N an
po0  psin(@Pg
Table 1A.

1 D) 3
1. rotp(E) + E_aal% - Mp =0 T(g(p) lu)l:H Mp — 0
> | rot (H)‘%E_p‘] =0 T(gw)'lwiEp—lp—o
2. rote(E) +mHt— 0 —‘P(E(p) + inHO_O
3. rot(p(E) + C—aT‘E =0 LP(EB) n l(l)p.H ~0
6. rote(H) —i—aal—%z 0 —LP(H(P) _l(DSEe=
7. _ 0E, _ lweE,

rot,(H) -7 =0 W(He) =0
4 div(E)=0 w(E () »

0
8. div(H)=0 W)+ T(Hy) _,
Q
Table 2.

1

Eg = egsin(0)cos(xp + wt)

E(P = e(psin(e)sin(xp + wt)

E, = cos(8)(e,cos(xp + wt) + e sin(xp + wt))

J, = cos(0)(j,sin(xp + wt) +j,cos(xp + wt))

Hy = hysin(B)sin(xp + wt)

H,= h(psin(e)cos(xp + wt)

H, = cos(8)(h,sin(xp + wt) +h cos(xp + wt))

M, = cos(8)(m,cos(xp + wt) + m sin(xp + wt))
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Table 2i.

1 2

IwEg = wsin(0)( - egsin(xp + wt))

0E, = wsin(e)(e(pcos(xp + wt))

I0E, = wcos(B)( - e sin(xp + wt) + e, cos(xp + wt))

iwHg = wsin(0) (hgcos(xp + wt))

iwH = wsin(0)( - h,sin(xp + wt))

ioH, = wcos(8)(h cos(xp + wt) —h sin(xp + wt))

Table 2pP.

1 2

0E, . .
bp = xsin(0)( - egsin(xp + wt))

J0E
_BFLP = xsin(8) (e, cos(xp + wt))

0E =
_BT)E = xcos(8)( - e,sin(xp + wt) +e,cos(xp + wt))

0H,4 . ]
Tp = xsin(0)( - hosin(xp + wt))

0H . ]
—aF“’ = xsin(8)( - hysin(xp + wt))

aH, -
Tp = xcos(8) (h,cos(xp + wt) —h,sin(xp + wt))
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Table 2.
2
E 0FE
Y(E,) = _e + _a_e = sin(8) (%(eeco) +x( - egsi) + co))
‘p(E(p) _8_ = sin(e)(l(e si) + x(eyc0) + -si))

Y(E,) = —p + %— cos(e)( (eyc0) + (ze si) + x(e,c0) - x(e,st) + (ejed

LIJ(HQ) =— + ?H— = sm(G)( (hgsi) + x(hgco) + l))

‘P(H(p) = H‘P + %H— sm(e)( (hyco) +X( = hysi) + -co))

Y(H,) = _pE + _659 = cos(e)(ﬁ(hpﬂ) + E(cho) - x(7lp51) +x(h,co) +

Table 4.
1 2
L | Segst) - Bo(hysi) = s
%w(hpco) ==jpc0
2
5| 200 + Foy00) = myeo
%w(epsi) = ?npsi
2. ] - (%(e(psi) + x(eq)co) + @51)) + I”Elm(heco) =0
3. (%(eeco) + x( - egsi) + (co)) + %w( - h(psi) =0
6. | - (l(h co)+x(-h si) + co)) —Ew( - egsi) =0
7. ( (hosi) + x(hgco) + ( .SL)) - u)(e co)=0
4. ( (e,c0) +x(=e co) + (@CO)) +Z (eeco) 0
( (e,st) - x(epsi) + |E ))—0
8. ( (hysi) - x(hysi) + l)) (Rgsi) = 0
( (hyc0) + x(h,co) + @co))
Table 5
1 2
L %e(p ~ g0hy =g ¢0hy =Ty
> %htp + gwe, =m,; Cwe, =,
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6. phcp'Xhtp_*'%e@

3. = —ee' - Xeq _&h(p =0

7 - he'Xhe <%

2. @ =-Xe, - %e(p +B2h,

0. Xh<p_ph<p c €o

3, =Xee—%ee——h

7 == xho - h +°7 c €

4.1 (pl) p+xe +@)+ Zeg=0
2 (Fl)p X%"'@) 0

8. |1 (rl) e +.)+ Zhy=0
2l o

The third solution. Maxwell's equations in
spherical coordinates for an electrically
conductive medium.

1. An approximate solution

Above in the "The second solution" we considered the solution of
the Maxwell equations for a sphere in a medium that has € nd H different
from unity. Further, suppose that the medium has some electrical
conductivity o . In this case an equation of the form

& OF

rotH ———=0 1)
c ot
is replaced by an equation of the form
rotH _£0F oE =0 )
c ot

We will seek a solution in the form of the functions E, H, J, M presented
in Table T2-2 (see “The second solution") and rewrite it in a complex
form as T1-2. Then equation (2) takes the form:

rot(H) - "2 - 6E = 0 5

or
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rot(H) -wE =0 @
where the complex number
iwe
== to

. 5)

We now rewrite Table T1A (see “The second solution") in a
complex form in Table T2, taking into account formula (4). We assume
that the conduction currents are substantially larger than the
displacement currents on the circles of the sphere, i.e. on the circles one
can take into account only the conduction currents. In Table T2-3, we
obtain a system of 8 algebraic equations with 8 complex unknowns E, H,
Jo, My,

The solution can be performed in the following order.

1. The systems of two equations T2-2 and T2-7 with respect to

the unknowns £¢ and e are solved.
2. The systems of two equations T2-3 and T2-6 with respect to

the unknowns £6 and o are solved.

3. With the data £ and He the equations T2-4 and T2-8 are solved
and the unknowns £ and p, respectively, are determined.

4. For the data ¢ and ¥ p, the equations T2-1 are solved and the
unknown Mp is determined.

5. For the data Ho and Fo, the equations T2-1 are solved and the
unknown /e is determined.

2. The exact solution

We now consider the table T2, in which all 6 displacement currents
are indicated. This table contains 8 algebraic equations with 12 complex
unknowns E, H, J, M and is overdetermined.

Consider the equations of energy fluxes (3.4) from the section
"The second solution":

S(pzn(Eer_EpHe), (1)
Sﬂzn(Epr_Epr), 2)
Sp=n(EtpH9_EGH(p)_ (3)

From the law of conservation of energy it follows that the
flow of energy can not change in time. This means that the quantities (1-
3) must be real. Consequently,

Im(Eer—EpHe) = 0’ (4)
Im(EpH(p—E(pHp) = 0’ (5)
Im(E(pHe—EeH(p) = 0 (6)

We also assume that one of the intensities is known, for example,
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ey = A/p’ (7)
where A is a constant. In this case, we have a system of 12 nonlinear
equations T3-3 and (4-7) with 12 complex unknowns E, H, J, M.
Methods for solving such systems are known.

8-26



Chapter 8. Solution of Maxwell's Equations for Spherical Coordinates

Tables
Table 1.
1 2

Eq=egsin(0)

E(p = ie¢sin(6) _

E, = cos(0)(e, +i 0)

J, = cos(®)(ij, +7,)

Hy =ihysin(0)

H,= h(psin(e)

H, = cos(8)(ih, +h,)

M, = cos(0)(m, + im,))

Table 2.
1 2 3
L. rotp(E)—“”“H -M,=0 @J,%_Mp:o
c
3 rotp(H)—WEp—]p—O T(I:‘p)— E _] —o
2 | roty(E) - “‘)” He=0 -Y(E,) + lw“H" =0
7. | rot,(H) - WE =0 W(Hy) - WE,, 0
3. | rot,(E) - ‘“’“H =0 W(E,) + “"“H ~0
6. | rotg(H) -wEyg=0 -¥(H,)- wE9=0
4. | div(E)=0 W(E) + T(ge) o
8. i = T(Hp) _
div(#)=0 W(H,) + 5% =0
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Table 3.
1 2 3
. il _ T(E iwpH
1 T'Otp(E)—THp—Mp—O %L)+—CE_MP=O
5. | rot,(H)-wE,-],=0 T(H,) £ B
—5% - wE, -J,=
. R
2. | roty(E) - “Hy - My =0 ~W(E,) + “"‘: 0 _M,=
7. | rot,(H)-wE,-J,=0 W(Hy)-wE,=0
. o _ iopH
3. | rot,(B) -*2EH - M, =0 W(Eg) + ¥ - M, =
6. | rotg(H)-wEy—-Jg=0 -¥(H,)-wEq-Jo=0
; T
4, le(E): 0 ‘P(Ep) + (ge) -0
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Chapter 8a. Solution of Maxwell's
Equations for Spherical Capacitor

Contents
1. Introduction \ 1
2. Solution of the Maxwell Equations in the Spherical Coordinate
System \ 2
3. Electric and magnetic intensities \ 4
4. Electromagnetic Wave in a Chatged Spherical Capacitor \ 6

1. Introduction

The electromagnetic wave in a capacitor in an alternating current of
constant cutrent circuit is investigated in raasax 2 u 7. In this paper, a
spherical capacitor in a sinusoidal current circuit or an constant current
circuit is considered. The capacitor electrodes are two spheres having the

same center and radii R, > R, .

2. Solution of the Maxwell Equations in the
Spherical Coordinate System

The solution of the Maxwell equations in spherical coordinates was
obtained in Chapter 8 (second solution).

The radial coordinate changes within

R, <p <R, 1)

For a bounded p and a small value y, Table 2 in Chapter 8 (second
solution) takes the form of Table 1.

Next, we rewrite this table in a complex form - see T2-2 and T2-3,
where 1Eol is the strength module of intensities E, (which includes the
dependence on 9), W is the argument of intensities Ey and so on.

8a-1



Chapter 8a. Solution of Maxwell's Equations for Spherical Capacitor

Table 1.
1 2
Ey = eysin(8)cos(wt)
E,= e(psin(e)sin(mt)
E, = cos(8)(e,cos(wt) + e sin(wt))
J, = cos(8)(j sin(wt) +jcos(wt))
Hgy = hysin(0)sin(wt)
H(p = h@sin(e)cos(wt)
H, = cos(8)(h,sin(wt) + h cos(wt))
M, = cos(8)(m cos(wt) + m sin(wt))
Table 2.
1 2
Ey = eysin(0) Eq = |E|
E, =ie,sin(6) E(p=i|E(p|

E, = cos(0)(e, + le,))

E,=|E,|cos({)

J, = cos(®)(ij, +7,)

Jo = plcos(¥)

Hgy = ihysin(0)

He=i|He|

H,= hlpsin(e)

H, = [H,|

H, = cos(8)(ih, +h))

H,=|H |cos({)

M, = cos(8)(m, + im)

M,= |Mp|COS(L|J)

It is important to note that at the moment the potential on the
sphere of a given radius changes as a function of Sin(6)- The outer and
inner metal surfaces are on a constant radius. Consequently, the potential
on the metal plate of the spherical radius is different at different points of
the sphere. Consequently, further, currents flow on the plates of the
spherical capacitor.

An additional argument in favor of the existence of such currents is
the existence of telluric currents [53]. There is no generally accepted
explanation of their cause.

Next, we will refer to the formulas of Chapter 8 (second solution)
in the form: (8. "room_ of the". "Formula_number").

From (8.2.16, 8.2.17) we find:
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E,| = [(e,) +(5,) = \/(; (6 + ZA-ln(p)))z + (g)z —

ﬁJ(G + 24 - ln(p))2 + Dzn )
tg(e,) = z—z =D/(G+24-In(p)). 3)

Completely analogous formulas exist for Hy but for Yho the formula has
the form

hP
tg(Wyy) =32 = (G + 24 In(p))/D o
p b
which follows from Table T2-2. Consequently,,

tg(Wnp) = /tg (W) 7)

Further from (8.2.18, 8.2.19) we find::
ol =Gp)* + ()" =

(ZA Ho D) (H‘D Lc+2a. ln(p)))

@

)
o) =% = (342 5)/ (-4 3G+ 24- o)) 0
Finally, from (8.2.20, 8.2.21) we find:
M| = (mp)z—l'(?np)z:
_2B tw DYz, (ew-1 . 2
J( RS p) +( G+ 24 ln(p))), o

m cw- 1 D
_Mpy (L G+24-In )( &_)
tg(qjmp) mp ( c p( (p)) / T+ 0 ' (11)
From the formulas obtained it follows that the spherical capacitor
must have magnetic properties similar to its electrical properties.
With the known voltage with the rms value U on the capacitor
from (2), we find:

U =18,(R;)| - [E(R))| = /(G +24 - In(R,))* + D* -

R%\/(G + 24 - In(Ry))* + D?

12)
In particular, with In(Ry) ~ In(Ry) e get:

v= K(I%z Ril) (13)
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where K is a constant. Consequently, the amplitude of the potential on
the outer sphere of the capacitor is smaller than the amplitude of the
potential on the inner sphere of the capacitor.

3. Electric and magnetic intensities
Let us consider a point T with coordinates @, € on a sphere of
radius p .Vectors qu and H,, going from this point are in plane P,
tangent to this sphere at point T (go, 6’) - see Fig. 2. These vectors are
perpendicular to each other. Hence, at each point (@, 9) the sum vector
Hyo=H,+ Hg 0
is in plane P and has an angle of y to a parallel line. As it follows from
the Table 2 and (8.2.14), the module of this vector ‘H wﬁ‘ and the angle
¥ defined by the following formulas:
H y = [H yo|cos() )
|H(p9| = gsin(e) o
U = arcctg(xp + wt) )

A

®»

Fig, 2.

We find the intensities H , at the poles of the sphere, where

8a-4



Chapter 8a. Solution of Maxwell's Equations for Spherical Capacitor

9:1%, sin(@)=+1, p=R. ©)

It follows from (2-4) that at the poles
B
=42

and there is a magnetic intensities between the poles

H,,= %eos(xR + wt) ™

Similarly, the same relationships exist for the vectors E ,and Ej.

At each point (@, 6’) the total vector
E,=E,+E, ®)

lies in the plane P and is directed at an angle /, to a line parallel (along
the coordinate 9). It follows from Table 3 and (8.2.13), the module of

this vector and the angle i/, defined by the following formulas:
E<p9 = |E(P9|COS(lIJe) )
—A
|E po| = psm(e) (10)
Y, =arctg(xp + wt) (11)
The angle between H , n E , in the plane P is straight.

Therefore, in a spherical capacitor we can consider only one vector
of the electrical field intensities E_, and only one vector of the magnetic

field intensities H ,. As these vectors lie on the sphere, they will be

called spherical vectors.

Angle ¥ (30) is constant for all vectors H , for a given radius p.
This means that the directions of all vectors H o0 constitute the same

angle i with all parallels on a sphere with a radius of p. This implies in

turn that there are the magnetic equatorial plane inclined to the
mathematical equatorial plane at angle ¥, magnetic axis, magnetic poles,

and magnetic meridians, along which vectors H , are directed — see Fig.

4, where thin lines mark the mathematical meridional grid, thick lines
mark the magnetic meridional grid, the mathematical axis 772, and
magnetic axis @a and electric axis /b are shown. It is important to note
that the magnetic axis aa, electric axis bb and all vectors E 00 1 H,, ate
perpendicular.

When — = 0 the magnetic axis coincides with the mathematical axis.
C
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W

Fig. 4.

Spherical vectors depend on Sin(H). Radial vectors depend on

COS(@) —see Table 2. Therefore, there are the radial intensities only in
locations where the spherical intensity is zero.

4. Electromagnetic Wave in a Charged
Spherical Capacitor

A solution of the Maxwell equations for a parallel-plate capacitor
being charged (see chapter 7) systems from a solution of these equations
for a parallel-plate capacitor in a sinusoidal current circuit (see chapter 3).
In this paper the method described in chapter 7 will be used in solving
the Maxwell equations for a spherical capacitor being charged.

For a charged spherical capacitor, the system of Maxwell's
equations presented in Tables 1A-2 of Chapter 8 (““The second solution”)
must be changed, namely, instead of equation (4) the following equation
is used:

div(£)=00), o)
where Q(f) - charge on capacitor plate, which appears and accumulates
during charging. The system of partial differential equations obtained in
such a way has a solution represented by the sum of a particular solution
of this system and a general solution of the corresponding homogeneous
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system of equations. Homogeneous system is shown in specified table,
i.e. it only differs from this new system by the absence of term Q().
Particular solution with given ¢ is a solution, which associates electric
intensity £, (#) between the capacitor plates with electric charge O(¢) . If

E () varies with time, then a solution of the system of equations from

specified table shall exist at given Ep(®, Exactly this solution we're going
to seek further on.

Table 6.

1 2

Eq = egsin(0)(1 - exp(wt))

E, = e,sin(8)(exp(wt) - 1)

E, = cos(8)(e,(1 - exp(wt)) +=ep(exp(u)t) -1)
J, = cos(8)(j,(exp(wt) - 1) +j,(1 - exp(wt)))
Hgy = hysin(0)(exp(wt) - 1)

H(p = h(psin(e)(l - exp(wt))

H, = cos(8)(h,(exp(wt) - 1) + R (1 - exp(wt)))
M, = cos(8)(m,(1 - exp(wt)) + m (exp(wt) - 1))

Let us consider the field intensities in the form of functions
presented in Table 6. These functions differ from functions of Table 1
only by the type of time dependence: in Table 3, E and H functions

depend on time as sin(@t), cos(at), respectively, while in Table 6, E

and H functions depend on time as (exp(wt)-1), (1-exp(wt)),
respectively. Although the indicated substitution, the solution of
Maxwell's equations remain unchanged. Here the constant ® =-1/T
where 7 is the time constant in the capacitor charge circuit.

Fig. 6 presents intensities components and their time derivatives as
well as the bias current as a function of time for @ =-300: H , is shown

with a solid line, with a dashed line, and J, with dotted line. It is evident

that with # = o the amplitudes of all intensities components tend to a
constant together, while the current amplitude approaches zero. This
corresponds to the capacitor charging via a fixed resistor.
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Thus, it's fare to say, that spherical capacitor is a device which is
equivalent to both - magnet and, at the same time, electret which axes are
perpendicular.

By analogy with Section 3 in Chapter 8 (“second solution”), we
consider the flux of radial energy in a charged spherical capacitor. For
this, in the formula (8.3.4a) it is necessary to make the following change
of functions:

sin(q) = (exp(wt) — 1),
cos(gq) = (1 — exp(wt))_
Then we get:

S = gsin(e)(exp(a}t) -1) g sin(8) (exp(wt) — 1)

i
c

]
— gsin(e)(l — exp(wt))_TB sin(@)(l — exp(wt))

or

24B 2 o
S, = 2 sin?(6) (1— exp(wt)) =0 4

Thus, the solution of the Maxwell equations for a capacitor being
charged and for a capacitor in a sinusoidal current circuit differs only in
that the former includes exponential functions of time and the latter
contains sinusoidal time-functions.

So, It was shown that electromagnetic wave propagation in
charging spherical capacitor , and mathematical description of this wave
is proved to be a solution of Maxwell's equations. It was shown that a
charged spherical capacitor accommodates a stationary flux of
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electromagnetic energy, and the energy contained in the capacitor, which
was considered to be electric potential energy, is, indeed, electromagnetic
energy stored in the capacitor in the form of the stationary flux.
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Chapter 8b. A new approach to

antenna design
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1. On the shortcomings of existing methods

The solution of the Maxwell equations for a spherical wave is
necessary for the design of antennas. Such a problem arises in the
solution of the equations of electrodynamics for an elementary electric
dipole - a vibrator. The solution of this problem is known and it is on the
basis of this solution that the antennas are constructed. At the same time,
this solution has a number of shortcomings, in particular [107-110].

1. The energy conservation law is satisfied only on the average,

2. The solution is inhomogeneous and it is practically necessary to
divide it into separate zones (as a rule, near, middle and far),
in which the solutions turn out to be completely different,

3. In the near zone there is no flow of energy with the real value

4. The magnetic and electrical components are in phase,

5. In the near zone, the solution is not wave (i.s. the distance is not
an argument of the trigonometric function),

6. The known solution does not satisfy Maxwell's system of
equations (a solution that satisfies a single equation of the
system can not be considered a solution of the system of
equations).

In Fig. 1 [110] shows the picture of the lines of force of the electric
field, constructed on the basis of the known solution. Obviously, such a
picture can not exist in a spherical wave.

Far from the vibrator - in the so-called the far zone, whete
longitudinal (directed along the radius) the electric and magnetic
intensities can be neglected by , the solution of the problem is simplified.
But even there the well-known solution has a number of shortcomings
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[107-110]. The main disadvantages of this solution (see Appendix 1) are
that
1. the law of conservation of energy is fulfilled only on the average
(in time),
2. the magnetic and electrical components are in phase,
3. in the Maxwell equations system, in the known solution, only
one equation of eight is satisfied.
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Fig. 1.
2. A new approach

These shortcomings are a consequence of the fact that until now
Maxwell's equations for spherical coordinates could not be solved. A
well-known solution is obtained after dividing the entire domain into so-
called near, middle and far zones and after applying a variety of
assumptions, different for each of these zones.

In practice, specified drawbacks of the known solution mean that
they (mathematical solutions) do not strictly describe the real
characteristics of technical devices. A more rigorous solution (see
Chapter 8), when applied in the design systems of such devices, must
certainly improve their quality.
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Appendix 1
The known solution has the form [107, 108]:
1 . .
E, = e,—sin(@)sin(at - yp). (1)
Yol
1 . .
H,=h, —sin(8 )sin(wt — yp), @)
0
‘1l
oo = %4 sk, :Z—H , where [, I - length and current of the
drwee,
vibrator. We notice, that
o - X
h, we 3)

It should be noted that these tensions are in phase, which
contradicts practical electrical engineering.

Table 2.
1 2
1. OFE
rot ,H — £ _ 0
c Ot
2.
rot,H — 29, _ 0
c Ot
3. OF
rot H — £ _ 0
c Ot
4 OH
rot E + HZ0 0
c Ot
5
rot,E +ﬁaH9 =0
c Ot
6 5]
rot, E + H _ 0
C t
div(E)=0
div(H)=0

Let us consider how equations (1, 2) relate to Maxwell's system of
equations - see Table 2 (rewritten from Chapter 8, first solution). The
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intensities (1, 2) enter only in equation (6) from Table 2, which has the
form

oH
rot, E + Tl at‘” =0 )
C

or
E, CE, OH,
Zoy o KT g, 5)
Yo, 8,0 c Ot

We substitute (1, 2) into (5) and obtain:

—-e, lsin(@)cos(a)t - 1P)—
0

©)
—h, LA sin(ﬁ)cos(a)t— rp)=0
' poc
or
€  H
——+==0. 7
T 0

From a comparison of (3) and (7) it follows that the intensities (1, 2)
satisfy equation (4). The remaining 7 Maxwell equations are violated. In
the equations (2, 3, 5) from Table 2 one of the terms differs from zero,
and the other is equal to zero. The violation of equations (1, 4, 7, 8) from
Table. 2 is shown — see Chapter 8, first solution, formula (2.20). So,

the known solution does not satisfy Maxwell's

system of equations.
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Chapter 9. The Nature of Earth's
Magnetism

It is known that the Earth electrical field can be considered as a
field "between spherical capacitor electrodes" [51]. These electrodes are
the Earth surface having a negative charge and the ionosphere having a
positive charge. The charge of these electrodes is maintained by
continuous atmospheric thunderstorm activities.

It is also known that there is the Earth magnetic field. However, in
this case no generally accepted explanation of the source of this field is
available. "The problem of the origin and retaining of the field has not
been solved as yet." [52].

Next, we will consider the hypothesis that the Earth's magnetic
field is a consequence of the existence of the Earth's electric field.

In Chapter 8a, a spherical capacitor is considered in a DC circuit
and it is shown that after a capacitor charge, when the current practically
ceases, the stationary flux of electromagnetic energy remains in the
capacitor, and with it an electromagnetic wave is conserved. A magnetic
field is present in the capacitor.

In Chapter 8a it was shown that in a spherical condenser are are
the magnetic equatorial plane, magnetic axis, magnetic poles and

magnetic meridians, along which vectors H 0 Afc directed — see Fig. 4 in

chapter 8. The angle between the magnetic axis and the axis of the
mathematical model can not be determined from the mathematical
model. Moreover, not determined angle between the magnetic axis and
the Earth's physical axis of rotation.

Spherical vectors depend on sin(@). Radial vectors depend on

COS(@) —see table 6 in chapter 8. Therefore, there are the radial
intensities only in locations where the spherical intensity is zero.

It flows from the above mentioned that the Earth electrical field
is responsible for the Earth magnetic field.

Let us consider this problem in more details.

The vector field HW in a diametral plane passing through the

magnetic axis is shown in Fig. 8. Here, HW‘ =0.7; p=1. The vector
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field H , in a diametral plane passing through the magnetic axis is shown

in Fig. 9. Here,

H,|=0.4; p=1. The vector field H=H,,+H, in a
diametral plane passing through the magnetic axis is shown in Fig. 10.

H,,[=0.3; [H,[=0.2; p=1.

Here,
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FIG. 10. (S &ra 88)

Similarly, can be described the electric field of the FEarth.
Importantly, the electric field and the magnetic field are perpendicularly.

Once again, the very existence of the electric field is not in doubt,
and the charge of “Earth's spherical capacitor” is supported by the
thunderstorm activity [51, 52].

Also consider the comparative quantitative estimates of magnetic
and electric intensity of the Earth's field.

In a vacuum, where &€= =1, there is a relation between the

magnetic and electric intensity in any direction in the GHS system [51]
E=H. ©9)
This relation is true if these intensities are measured in the GHS system
at a given point in the same direction. To go to the SI system, one shall
take into account that
for H: 1 GHS unit = 80 A/m
for E: 1 GHS unit = 30,000 B/m
Hence, the equation (9) takes the following form in the SI system:

3000F =80H (10)
or

E=0.03H. 11)
or

H =30E-tg(p). (12)
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An additional argument in favor of the existence of the electric
field of the structure specified is the existence of the telluric currents [53].
There is no generally accepted explanation of their causes. On the basis
of the foregoing, it shall be assumed that these currents must have the
largest value in the direction of the parallels.

It is possible that the electric field of the Earth can be detected
using a freely suspended electric dipole, made in the form of a long
isolated rod with metal balls at the ends. It is also possible that
oscillations of the rod will be recorded at the low frequency of changing
in dipole charges.

Based on the hypothesis suggested, it can be assumed that the
magnetic field shall be observed among planets with an atmosphere.
Indeed, the Moon and Mars, free of the atmosphere, lack the magnetic
field. However, there is no magnetic field at Venus. This may be due to
the high density and conductivity of the atmosphere — it cannot be
considered as an insulating layer of the spherical capacitor.
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1. Introduction

The hypotheses that were made about the nature of ball lightning are
unacceptable  because they are contrary to the law of energy
conservation. This occurs becanse the luminescence of ball lightning is
usually attributed to the energy released in any molecular or chemical
transformation, and so it is suggested source of energy, due to which
the ball lightning glows is located in it.

Kapitsa P.I.. 1955 [41]

This assertion (as far as the author knows) is true also today. It is
reinforced by the fact that the currently estimated typical ball lightning
contains tens of kilojoules [42], released during its explosion.

It is generally accepted that ball lightning is somehow connected
with the electromagnetic phenomena, but there is no rigorous description
of these processes.

A mathematical model of a globe lightning based on the Maxwell
equations, which enabled us to explain many properties of the globe
lightning, is proposed in [55]. However, this model turned out be quite
intricate as to the used mathematical description. Another model of the
ball lightning which is substantiated to a greater extent and make is
possible to obtain less intricate mathematical description is outlined
below [56]. Moreover, this model agrees with the model of a spherical
capacitor — see chapter 8.
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When constructing the mathematical model, it will be assumed that
the globe lighting is plasma, i.e. gas consisting of charged particles —
electrons, and positive charged ions, ie. the globe lightning plasma is
fully ionized. In addition, it is assumed that the number of positive
charges equal to the number of negative charges, and, hence, the total
charge of the globe lightning is equal to zero. For the plasma, we usually
consider charge and current densities averaged over an elementary
volume. Electric and magnetic fields created by the average “charge”
density and the “average” current density in the plasma obey the Maxwell
equations [62]. The effect of particles collision in the plasma is usually
described by the function of particle distribution in the plasma. These
effects will be accounted for the Maxwell equations assuming that the
plasma possesses some electric resistance or conductivity.

And so on based on the Maxwell's equations and on the
understanding of the electrical conductivity of the body of ball lightning,
a mathematical model of ball lightning is built; the structure of the
electromagnetic field and of electric current in it is shown. Next it is
shown (as a consequence of this model) that in a ball lightning the flow
of electromagnetic energy can circulate and thus the energy obtained by a
ball lightning when it occurs can be saved. Sustainability, luminescence,
charge, time being, the mechanism of formation of ball lightning are
briefly discussed.

2. The solution of Maxwell equations in

spherical coordinates

In Chapter 8, third solution, a solution is obtained for Maxwell's
equations for a sphere whose material has dielectric and magnetic
permeability, and also has conductivity. This solution has been obtained
under the following assumptions: the sphere is conductive and neutral
(does not have any uncompensated charges). Its existence means only
that in a conductive and neutral sphere, an electromagnetic wave can
exist, and currents can circulate.

3. Energy
From the resulting solution follows that lightning contains the
following energy components
e Active loss energy W, — see the second term in the expression for

the electric strength:
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e Reactive electric energy W, — see the first term in the expression
for the electric strength:
e Reactive magnetic energy W, — see the expression for the

magnetic strength

4. About Ball Lightning Stability

The question of stability for bodies, in which a flow of
electromagnetic energy is circulating, has been treated in [43]. Here we
shall consider only such force that acts along the diameter and breaks the
ball lightning along diameter plane perpendicular to this diameter. In the
first moment it must perform work

dR
A=F—. M
dt
This work changes the internal energy of the ball lightning, i.e.
aw
A=—-. ®
dt
Considering (1, 2) together, we find:
dw |dR
F=—rr/—. 3)
dt | dt
If the energy of the global lightning is proportional to the volume, i.c.
W=aR’. )
where @ — is the coefficient of proportionality, then
aw dR
——=3aR* —. ©)
dt dt
Thus,
dw |dR R1/4
F=—"/"=3aR"=— ©)
dt | dt R

Thus, the internal energy of a ball lichtning is equivalent to the
force creating the stability of ball lichtning.

5. About Luminescence of the Ball Lightning

The problem was solved above considering the electric resistance
of the globe lightning. Naturally, it is nor zero, and when current flows
through it, thermal energy is released.
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6. About the Time of Ball Lightning

Existence

The energy of the ball lightning 7" and the power of the heat losses
P can be found with the solution obtained above.

The existence time of the globe lightning is equal to the time the

electrical energy transforms into the heat losses, i.e.
T=W/P )

7. About a Possible Mechanism of Ball

Lightning Formation

The leader of a linear lightning, meeting a certain obstacle, may
alter the motion trajectory from linear to circular. This may become the
cause of the emergence of the described above electromagnetic fields and
currents.

In [44] this process was described as follows:

Another strong bolt of lightning, simultaneous with a bang, illuminated the
entire space. 1 can see how a long and dazzling beam in the color of sun beam
approaches to me right in the solar plexus. The end of it is sharp as a razor, but
Surther it becomes thicker and thicker, and reaches something like 0,5 meter. Further 1
can't see, as 1 am staring at a downward angle.

Instant thought that it is the end. I see how the tip of the beam approaches.
Suddenly it stopped and between the tip and the body began to swell a ball the size of a
large grapefruit. There was —a thump as if a cork popped from a bottle of champagne.
The beam flew into a ball. I see the blindingly bright ball, color of the sun, which
rotates at a breakneck pace, grinding the beam inside. But I do not feel any touch, any
heat.

The ball grinds the ray and increases in size. ... The ball does not issue any
sounds. At first it was bright and opaque, but then begins to fade, and I see that it is
empty. Its shell has changed and it became like a soap bubble. The shell rotates, its
diameter remained stable, but the surface was with metallic sheen.
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1. Problem statement

Dusty plasma (see the [87]) is a set of charged particles. These
“particles can arrange in space in a certain way and form the so-called
plasma crystal” [88]. The mechanism of formation, behavior and form of
such crystals is difficult to predict. Observation of these processes and
forms under low gravity conditions sets at the gaze — see illustration (Fig
1.) of the experiments in space in the [89)].

Therefore, they were simulated on computer in 2007. The results
surprised even greater, which was reflected in the name of a
corresponding article [90]: “From plasma crystals and helical structures
towards inorganic living matter”. The [91] gives a summary and
discussion of the simulation results.

I like such comparisons too. But, nevertheless, it should be noted
that the method used by the authors of the molecular dynamics
simulations does not fully take into account all the features of the dusty
plasma. To describe the motion of the particles this method uses classical
mechanics and considers only electrostatic forces between the charged
particles. In fact, the charged particles motion causes occurrence of
charge currents — electrical currents and electromagnetic fields as a
consequence. They should be considered during simulation.
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Fig. 1.

In absence of gravity the plasma particles are not affected by
gravitational forces. If we exclude radiation energy, then it can be said
that the dusty plasma is electric charges, electric currents and
electromagnetic fields. Moreover, at its formation (filling a vessel with a
set of charged particles) the plasma receives some energy. This energy
may be only electromagnetic and kinetic energy of the particles, since
there is no mechanical interaction between the particles: they are charged
with like charges. Thus, the dusty plasma should meet the following
conditions:

e to meet the Maxwell’s equations,

e to maintain the total energy as a sum of electromagnetic and
kinetic energy of the particles,

e to become stable in terms of the particles structure and motion in
some time; it follows, for example, from the said experiments in
space — see fig. 1.

The charged particles obviously push off from each other by
Coulomb forces. However, the experiments show that these forces do
not act on the periphery of a particles cloud. Consequently, they are
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compensated by other forces. It will be shown below that these forces
are Lorentz forces arising during charged particles motion (although it
seems strange at first sight that these forces direct into the cloud,
opposing the Coulomb forces). The particles cannot be fixed, since then
the Coulomb forces will prevail. But then these forces will move the
particles, which causes the Lorentz forces, etc.

In the mathematical model shown below we will not take into
account the Coulomb forces, believing that their role is only to ensure
that the particles are isolated from each other (just as these forces are not
considered in electrical engineering problems).

Thus, we will consider the dusty plasma as an area with flowing
electrical currents and analyze it using the Maxwell’s equations. Since the
particles are in vacuum and are always isolated from each other, there is
no ohmic resistance and no electrical voltage proportional to the current
— it should not be taken into account in the Maxwell’s equations. In
addition, in the first stage, we will assume that the currents change slowly
— they are constant currents. Considering these remarks, the Maxwell’s
equations are as follows:

rot(H)-J =0, @
div(J)=0, )
div(H )=0, ©)

where the J, H is the current and magnetic intensity, respectively. In

addition, we need to add to these equations an equation uniting the
plasma energy W with the J, H:

w=rU, H) @)
In this equation, the energy W is known since the plasma receives this
energy at its formation.

In scalar form, the system of equations (1-4) is a system of 6
equations with 6 unknowns and should have only one solution. However,
there is no regular algorithm for solving such a system. Therefore, below
we propose another approach:

1. Search for analytical solutions of underdetermined system of
equations (1-3) with this plasma cloud form. There can be
multiple solutions.

2. Calculation of energy W using the (4). If the solution of the
system (1-4) is the only one then this solves the system (1-4)
with the data of the W and cloud form.
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2. System of equations
In the cylindrical coordinates r, ¢, z, as is well-known [4], the

divergence and curl of the vector H are as follows:

OH
diV(H)=(Hr+aHr +l- ¢+8HZ} @
r or r Op oz
OH
rot, (i#)=| L. 2= _T0 | (b)
r op 0z
OH, OH
t (H)=| —L-=—2| ©
© ¢( ) ( 0z or ]
H OH
rotZ(H):[ ’fo + 6:) —i-a(gprJ. )

Considering the equations (a-d) we rewrite the equations (1.1-1.3)
as follows:
H, ©0H, 1 OH, O0H,
+ + +

=r =0, )
r or r Op Oz
oH

1 oH, o4, =J, ©)
r O0p Oz
OH, oH

E-—==J, 3
oz  or ? ©
H, OH
_‘p+_‘/’_l.%—Jz, 4)

oJ
I, +—6J’ +l-—¢’ +—a‘]2 =0 ®)
r or r Op Oz
The system of 5 equations (1-5) with respect to the 6 unknowns

(Hr, H, H,J,J, J Z)is overdetermined and may have multiple
solutions. It is shown below that such solutions exist and for different
cases some of possible solutions can be identified.

We will first look for a solution for this system of equations (1-5)
as functions separable relative to the coordinates. These functions are as
follows:

Hr'=hr(r)'COS(ZZ)’ (6)
H,.=h,(r) sin(yz), ©)
H_.=h.(r)-sin(yz), ®
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J,.=J.(r)-cos(xz), ©
"]z :jz(r).Sin(ZZ)’ (1l>
where the x is a constant, while the

h.(r), h,(r), h.(r), j.(r), j,(r), j.(r) are the functions of the

coordinate r; derivatives of these functions will be denoted by strokes.
By putting the (6-11) into the (1-5) we get:

£+hr’+;(h2:0, (12
r
_Zh(/) :jr’ (13>
~h ==, 14
h, ., .
7+h¢ =7, (15)
]_',+ g
r
Let’s put the (13) and (15) into the (16). Then we get:

- xh h

Z‘/’—Zh;+;([—”+h;j=0. 17

r

The expression (17) is an identity 0=0. Therefore, the (16) follows
from the (13, 15) and can be excluded from the system of equations (12-
16). The rest of the equations can be rewritten as:

hzz_l(ﬂ”l;j, (18)
X\r

h ’
J. = 7(/’ +h,, (19)
Jo==7h,, 20)
Jp=—xh. =k, 1)

3. The first mathematical model

In this system of 4 differential equations (18-21) with 6 unknown
functions we can define two functions arbitrarily. For further study we
define the following two functions:

h,=q-r- sin(z-r/ y), 22)
h =h-r-sin(z-r/y), 23)

where the ¢, /1 are some constants. Then using the (18-23) we find:
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h, = —E(Z sin(z -7/ y )+ uCOS(ﬂ' : r/;g)) (24)
x X
J. = q(z sin(z -7/ y )+ L. cos(z - r/;()j (25)
4
Jo==x-q-r-sin(zor/y) (26)
2
Jo :h-E z 5 —ZJ-r-sin(ﬁ-r/;g)+£[2—£j-cos(7z-r/)().(27)
R AN 4

Thus, the functions j,.(r), j,(r), j.(r), h.(r), h,(r), h.(r) can be
defined using the (206, 27, 25, 23, 22, 24), respectively.

TN\

N N r \
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A \
1 1
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\

\
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4 5
2
S N O
0
2 i i 5
0 0.5 1 1.5 2 0 0.5 1 1.5 2
FIG. 2 (figPlazma.m)
Example 1.
Fig. 2 shows function graphs

71y J,(r), j.(r), h.(r), h,(r), h.(r). These functions can be
calculated with data y =2, h=1, g =—1. The first column shows the
functions £,(r), h,(r), h.(r), the second column shows the functions
O AGNAGY

It is important to note that there is a point in the function graph
J, (r) Jo (r) where j, (r)z 0 and j, (r): 0. Physically, this means that
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there are radial currents J, (r) in the area 7 < y directed from the center
(with yq < 0). There are no currents J, (r) J, (r) in the point 7=y .
Therefore, the value R = y is the radius of a crystal. The specks of dust
outside this radius experience radial currents J, (r) directed towards the

center. This creates a stable boundary of the crystal.

The built model describes a cylindrical crystal of infinite length,
which, of course, is inconsistent with reality. Let’s now consider a more
complex model.

4. The second mathematical model

The root of the equation j, (r)z 0 determines the value R =y of
the cylindrical crystal radius. Let’s now change the value y . If the value
J is dependent on the z, then the radius R will depend on the z. But

this very dependence is observed in the experiments — see, for example,
the first fragment in Fig. 1.

With this in mind, let’s consider the mathematical model which
differs from the above used by the fact that the function y(z) is used

instead of the constant y . Let’s rewrite the (6-11) with this in mind:
H,.=h(r)-cos(x(2)), (28)
H,.=h,(r)-sin(z(z)), (29)
H..=h.(r)-sin(y(2)), (30)
J .= j(r)-cos(x(2)), 61)
J .= j,(r)-sin(x(2)), (32)
J, = j.(r)-sin(x(z)). (33)
The system of equations (1-6) differs from the system (2.9-2.14)
only by the fact that instead of the constant y we use the derivative

¥'(z) along the z of the function y(z). Consequently, the solution of
the system (28-33) will be different from that of the previous system only
by using the detivative y'(z) in instead of the constant y. Thus, the
solution in this case will be as follows:

J,==2'(2)-q-r-sin(z-r/7'(2)), G4
| h- (;{'(ﬁz—;Rﬂ — ;('(z)] e Sil’l(ﬂ' . r/;('(z))+
Jo = I . > 35)
" 7'(2) [2 - X'(Z)] coslr 1/ 2'(2)
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J. = q[?_ sin(z -7/ 7'(2))+ % -cos(r - r/;(’(z))j , (36)

h =h-r-sin(z-r/y'(z)), 37)

h,=q-r-sin(z-r/ 7 (2)), (38)

h,=- ,h (2 sin(z -7/ 7'(2))+ ﬂcos(7r . r/;(’(z))j- (39)
x'(2) R

The said functions will depend on the y'(z). With the y(z)=7z the
equations (34-39) are transformed into the equations (22-27).
For example, Fig. 3 shows the functions y(z) and y'(z) where

the y'(z) is an equation of ellipse.

2 2

~
15 \ 15
1 \ 1
0.5 \ 0.5

N 0 N 0

-0.5 \ 0.5
- \ -
15 15

2 2 i
-2 -1 0 1 2 0 0.5 1

X (X1) FIG. 3 (figPlazma3.m)

We can suggest that the current of the specks of dust is such that
their average speed does not depend on the current direction. In
particular, the path covered by a speck of dust per a unit of time in a
circumferential direction and the path covered by it in a vertical direction
are equal with a fixed radius. Consequently, in this case with a fixed
radius we may assume that

Ap=Az. (40)

The dust trajectory in the above considered system is described by

the following formulas

co=cos(y(z)). (41)

si = sin( ;((z)) . 42)
Thus, there is a point trajectory described by the formulas (40-42)
in such system on the rotation figure with a radius of r= y'(z). This
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trajectory is a helix. All the tensions and densities of currents do not
depend on the ¢ in this trajectory.

Based on this assumption, we can construct a movement trajectory
for specks of dust in accordance with the functions (1-3). Fig. 4 shows

the two helices described by the current functions j, () and j_(r): with
1, = ¥'(z) with 1, =0.5%'(z), where the y'(z) is defined in Fig. 3.

Fig 4 S

(Plazma4.m)

5. The plasma crystal energy
Under certain magnetic strengths and current densities we can find
the plasma crystal energy. The magnetic field energy density

W, :%(Hf +H:+H?) 3)

The specks of dust kinetic energy density W, can be found in the
assumption that all the specks of dust have equal mass m. Then

W, =03+ T2+ ;) @
m

To determine the full crystal energy we need to integrate the (43,
44) by the volume of the crystal, which form is defined. Thus, with a
defined form of the crystal and assumed mathematical model we can find
all the characteristics of the crystal.

11-9
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Chapter 12. Work of Lorentz force

It is proved that the Lorentz force does the work, and the relations
that determine the magnitude of this work are derived.
The magnetic Lorentz force is determined by a formula of the
form
F =q0(/ xB), 1)
where
q - the density of electric charge,

Q - the volume of a charged body,
V' - velocity of the charged body (vector),
B - magnetic induction (vector).

The work of the Lorentz force is zero, since the force and velocity
vectors are always orthogonal.

The Ampere force is determined by a formula of the form

A=0(jxB), )

where j is the electric current density (vector). Because the

Jj=qV, ?3)
then formula (2) can be written in the form
A=q0( xB). “

It can be seen that formulas (1, 4) coincide. Meanwhile, the work of the
Ampere force is NOT zero, as evidenced by the existence of electric
motors. Consequently, the work of the Lorentz force is NOT zero.
Thus, the definition of mechanical force through work can not be
extended to the Lorentz force.

Let us consider how the Lorentz force performs its work.
The density of the flow of electromagnetic energy - the Poynting
vector is determined by the formula:
S=ExH, ©)
where
E - electric field intensities (vector),
H - magnetic field intensities (vector).

The currents densities correspond to electrical intensities, i.e.
E=p, ©
12-1
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where p is the electrical resistance. Combining (5, 6), as in Chapter 5,
we obtain:

Szngzﬁij. @
7,
where g is absolute magnetic permeability. The magnetic Lorentz force

acting on all charges of the conductor in a unit volume - the volume
density of the Lorentz force is (as follows from (1))

f=qV xB. ®)
From (3, 8) we find:

J=qVxB=jxB. ©)
From (7, 9) we find:

f=uS/p. 10y

The density of the magnetic force of Lorentz is proportional to the
density of electromagnetic energy - the Poynting vector.

The energy flux with density S is equivalent to the power density
p,ie.
p=S. (11)
Consequently, the density of the magnetic force of Lorentz is
proportional to the power density p .

Example 1. For verification, let us consider the dimensions of the
quantities in the above formulas in the SI system - see Table. 1.

Table 1.
Parameter Dimension

Energy kg m?-sec 2
Density of enetrgy kg m?-sec 2
Power P kg m?-sec 3
Density of energy flow, power density | § kg sec 3
Current density Jj A'm™
Induction B kg sec 2-A
The volume density of the Lorentz | f kg sec 3-m™
force
Magnetic permeability H kg sec 2'm-A?
Resistivity P kg'sec 3 m3-A?
ulp plp | seem?

12-2
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So, a current with density j and a magnetic field with induction
B create an energy flow with density S (or power with density p),

which is identical to the magnetic force of Lorentz with density [ - see
(11) or

f=uplp. (12)

Thus, the Lorentz force with density f through energy flux with

density S (or power with density p), acts on charges moving in a

current J in a direction perpendicular to this current. Consequently, it

can be argued that the Poynting vector (or power with density p) creates

an emf in the conductor. This question, on the other hand, was
considered in [19, 17], where such an emf is called the fourth kind of
electromagnetic induction.

Consider the emf created by the Lorentz force. The intensity,
equivalent to the Lorentz force acting on a unit charge, is

_f_ru
q qp’

and the current produced by the Lorentz force in the direction of this
force has a density

e, (13)

i=€f,0=&. (14)
q

If the current | produced by the Lorentz force in resistance R is
known, then

[
U= fp:[(R+p§j’ (15)

where /, s is the length and cross-section of the conductor in which the

Lorentz force acts. From (15) we find:

[ R I
]— R -_ — -
efp/( +ps) ef/( + SJ. (16)

Full power
P=pls. 17)
Finally, from (13, 16, 17) we obtain:
P [y P
[=1# (R+p):’u (sR+pl), (18)
qls s ql

12-3
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U:E:q—l(sR+pl)_ (19)
I

From these formulas, according to the measurement U and [
results, the density of charges under the action of the Lorentz force can
be found.
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