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Annotation
A new solution of Maxwell equations for a vacuum, for wire with 
constant and alternating current, for the capacitor, for the sphere, etc. is 
presented. First it must be noted that the proof of the solution's 
uniqueness is based on the Law of energy conservation which is 
not observed (for instantaneous values) in the known solution. 
The solution offered:
 Complies with the energy conservation law in each moment 

of time, i.e. sets constant density of electromagnetic energy 
flux;

 Reveals phase shifting between electrical and magnetic 
intensities;

 Explains existence of energy flux along the wire that is equal 
to the power consumed.

The work offers some technical applications of the solution 
obtained. A detailed proof is given for interested readers.
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Preface
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1. Introduction
“To date, whatsoever effect that would request a modification of 

Maxwell’s equations escaped detection” [36]. Nevertheless, recently 
criticism of validity of Maxwell equations is heard from all sides. Have a 
look at the Fig.1 that shows a wave being a known solution of Maxwell’s 
equations. The confidence of critics is created first of all by the violation 
of the Law of energy conservation. And certainly "the density of 
electromagnetic energy flow (the module of Umov-Pointing vector) pulsates 
harmonically. Doesn't it violate the Law of energy conservation?" [1]. Certainly, it is 
violated, if the electromagnetic wave satisfies the known solution of 
Maxwell equations. But there is no other solution: "The proof of solution's 
uniqueness in general is as follows. If there are two different solutions, then their 
difference due to the system's linearity, will also be a solution, but for zero charges and 
currents and for zero initial conditions. Hence, using the expression for electromagnetic 
field energy we must conclude that the difference between solutions is equal to zero, 
which means that the solutions are identical. Thus the uniqueness of Maxwell 
equations solution is proved"   [2]. So, the uniqueness of solution is being 
proved on the base of using the law which is violated in this solution.

Another result following from the existing solution of Maxwell 
equations is phase synchronism of electrical and magnetic components of 
intensities in an electromagnetic wave. This is contrary to the idea of 
constant transformation of electrical and magnetic components of energy 
in an electromagnetic wave. In [1[, for example, this fact is called "one of 
the vices of the classical electrodynamics".
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Рис. 1.

Such results following from the known solution of Maxwell 
equations allow doubting the authenticity of Maxwell equations. 
However, we must stress that these results follow only from the found 
solution. But this solution, as has been stated above, can be different (in 
their partial derivatives, equations generally have several solutions).

Further we shall deduct another solution of Maxwell equation, in 
which the density of electromagnetic energy flow remains constant in 
time, and electrical and magnetic components of intensities in the 
electromagnetic wave are shifted in in phase. 

In addition, consider an electromagnetic wave in wire. With an 
assumed negligibly low voltage, Maxwell’s equations for this wave literally 
coincide with those for the wave in vacuum. Yet, electrical engineering 
eludes any known solution and employs the one that connects an 
intensity of the circular magnetic field with the current in the wire (for 
brevity, it will be referred to as “electrical engineering solution”). This 
solution, too, satisfies the Maxwell’s equations. However, firstly, it is one 
more solution of those equations (which invalidates the theorem of the 
only solution known). Secondly, and the most important, electrical 
engineering solution does not explain the famous experimental fact.

The case in point is skin-effect. Solution to explain skin-effect 
should contain a non-linear radius-to-displacement current (flowing 
along the wire) dependence. According to Maxwell’s equations, such 
dependence should fit with radial and circular electrical and magnetic 
intensities that have non-linear dependence from the radius. Electrical 
engineering solution offers none of these. Explanation of skin-effect 
bases on the Maxwell’s equations, yet it does not follow from electrical 
engineering solution. It allows the statement that electrical engineering 
solution does not explain the famous experimental fact.
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At last, the existing solution denies the existence of so called 
twisted light [65].

2. On Energy Flux in Wire 
Now, refer to energy flux in wire. The existing idea of energy 

transfer through the wires is that the energy in a certain way is spreading 
outside the wire [13]: "… so our “crazy” theory says that the electrons are getting 
their energy to generate heat because of the energy flowing into the wire from the field 
outside. Intuition would seem to tell us that the electrons get their energy from being 
pushed along the wire, so the energy should be flowing down (or up) along the wire. But 
the theory says that the electrons are really being pushed by an electric field, which has 
come from some charges very far away, and that the electrons get their energy for 
generating heat from these fields. The energy somehow flows from the distant charges 
into a wide area of space and then inward to the wire."

Such theory contradicts the Law of energy conservation. Indeed, 
the energy flow, travelling in the space must lose some part of the energy. 
But this fact was found neither experimentally, nor theoretically. But, 
most important, this theory contradicts the following experiment. Let us 
assume that through the central wire of coaxial cable runs constant 
current. This wire is isolated from the external energy flow. Then whence 
the energy flow compensating the heat losses in the wire comes? With 
the exception of loss in wire, the flux should penetrate into a load, e.g. 
winding of electrical motors covered with steel shrouds of the stator. 
This matter is omitted in the discussions of the existing theory.

So, the existing theory claims that the incoming (perpendicularly to 
the wire) electromagnetic flow permits the current to overcome the 
resistance to movement and performs work that turns into heat. This 
known conclusion veils the natural question: how can the current attract 
the flow, if the current appears due to the flow? It is natural to assume 
that the flow creates a certain emf which "moves the current". Meanwhile, 
energy flux of the electromagnetic wave exists in the wave itself and does 
not use space exterior towards the wave.

Solution of Maxwell’s equations should model a structure of the 
electromagnetic wave with electromagnetic flux energy presenting in it.

The intuition Feynman speaks of has been well founded. The 
author proves it further while restricted himself to Maxwell’s equations.

3. Requirements for Consistent Solution of 
Maxwell’s Equations 
Thus, the solution of Maxwell’s equations must:
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 describe wave in vacuum and wave in wire;  
 comply with the energy conservation law in each moment of time, 

i.e. set constant density of electromagnetic energy flux;  
 reveal phase shifting between electrical and magnetic intensities; 
 explain existence of energy flux along the wire that is equal to 

power consumed.   
What follows is an appropriate derivation of Maxwell’s equations.   

4. Variants of Maxwell’s Equations
Further, we separate different special cases (alternatives) of 

Maxwell’s equations system numbered for convenience of presentation.

Variant 1.
Maxwell's equations in the general case in the GHS system are of 

the form [3]:

  0rot 




t
H

c
E  , (1)

  04rot 



 I
ct

E
c

H  , (2)

  0div E , (3)
  0div H , (4)
EI  , (5)

where 
EHI ,,  - сonduction current, magnetic and electric intensitions 

respectively,
 ,,  - dielectric constant, magnetic permeability, conductivity 

wire material.

Variant 2.
For the vacuum must be taken 0,1,1   . When the 

system of equations (1-5) takes the form:

  01rot 




t
H

c
E , (6)

  01rot 




t
E

c
H , (7)

  0div E , (8)
  0div H . (9)

The solution to this system is offered in the Chapter 1. 

7



Preface

Variant 3.
Consider the case 1 in the complex presentation:

  0rot  H
c

iE  , (10)

     0)(imagreal4rot  IiI
c

E
c

iH  , (11)

  0div E , (12)

  0div H , (13)

   EI absreal  . (14)
It should be noted that instead of showing the whole current, (14) 

shows only its real component, i.e. conductivity current. Imaginary 
component formed by a displacement current does not depend on 
electrical charges.

The solution to this system is offered in the Chapter 4. 

Variant 4.
For the wire with sinusoidal current I flowing out of an external 

source,  Ireal  may at times be excluded from equations (11-14). It is 
possible for a low-resistance wire and for a dielectric wire (for more 
details, refer to Chapter 2). As this takes place, the system (11-14) takes 
the form of

  0rot 




t
H

c
E  , (15)

  04rot 



 I
ct

E
c

H  , (16)

  0div E , (17)

  0div H . (18)
It is significant that current I is not a conductivity current even 

when it flows along the conductor. 
The solution for this system will be considered in the Chapter 2.

Variant 5.
For a constant current wire, system in alternative 1 simplifies due 

to lack of time derivative and takes the form of:
  0rot E , (21)

  04rot  I
c

H  , (22)

  0div E , (24)
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  0div H , (25)
EI  (26)

or
Variant 6.

  0rot I , (27)

  04rot  I
c

H  , (28)

  0div I , (29)

  0div H . (30)
The solution for this system will be considered in the Chapter 3.

We will be searching a monochromatic solution of the systems 
mentioned. A transition to polychromatic solution can be accomplished 
via Fourier transformation.

We will employ cylindrical system of coordinates zr ,,   - see 
Appendix 1. Obviously, if solution exists in the cylindrical system of 
coordinates, it exists in any other system of coordinates, too. 

Apppendix 1. Cylindrical Coordinates 
As it is known to [4], in cylindrical coordinates scalar divergence of 

H vector, vector gradient of scalar function  zyxа ,, , vector rotor of H 
vector, accordingly, take the form of

  




















z
HH

rr
H

r
HH zrr


1div , (a)

      ,grad,1grad,grad
z
aaa

r
a

r
aa zr 












 (b)

  ,1rot 
















z
HH

r
H z

r



(c)

  ,rot 















r
H

z
HH zr

 (d)

  .1rot 

















 r

z
H

rr
H

r
H

H (e)
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Apppendix 2. Spherical Coordinates
Fig. 1 shows a system of spherical coordinates  ,, , and Table 1 

contains expressions for rotor and divergence of vector E in these 
coordinates [4].

Fig. 1.
Table 1.

1 2 3
1  Erot

    










sintg
EEE

2  Erot
  









 EEE
sin

3  Erot











EEE

4  Ediv
    















sintg
EEEEE
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Apppendix 3. Some Correlations Between GHS and 
SI Systems 
Further, formulas appear in GHS system, yet, for illustration, some 

examples are shown in SI system. This is why, for reader’s convenience, 
Table 1 contains correlations between some measurement units of these 
systems.

Table 1.
Name GHS SI

electric current 1 GHS 3,33·10-10 A
voltage 1 GHS 3·102 V
power, energy flux density 1 GHS 10-7 Wt
energy flux density per unit 
length of wire

1 GHS 10-5 Wt/m

electric current density 1 GHS 3.33·10-6 A/m2

3.33·10-12 A/mm2

electric field intensity 1 GHS 3·104 V/m
magnetic field intensity 1 GHS 80 A/m
magnetic induction 1 GHS 10-4T
absolute dielectric permittivity 1 GHS 8.85·10-12 F/m
absolute magnetic permeability 1 GHS 1.26·10-8 H/m
capacitance 1 GHS 1.1·10-12 F

inductance 1 GHS 10-9 H
electrical resistance 1 GHS 9·1011 Om
electrical conductivity 1 GHS 1.1·10-12 sm
specific electrical resistance 1 GHS 9·109 Om·m
specific electrical conductivity 1 GHS 1.1·10-10 sm/m
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Chapter 1. The Second Solution of Maxwell's Equations for vacuum

Chapter 1. The Second Solution of 
Maxwell's Equations for vacuum

Contents
1. Introduction
2. Solution of Maxwell's Equations
3. Intensities
4. Energy Flows
5. Impulse and momentum
6. Discussion
Appendix 1
Appendix 2

1. Introduction
In Chapter "Introduction" inconsistency of well-known solution of 

Maxwell's equations was demonstrated. A new solution Maxwell's 
equations for vacuum is proposed below [5].

2. Solution of Maxwell's Equations
First we shall consider the solution of Maxwell equation for vacuum, 
which is shown in Chapter "Introduction" as variant 1, and takes the 
following form

  01rot 




t
H

c
E ,  

  01rot 




t
E

c
H ,  

  0div E ,  
  0div H .  

In cylindrical coordinates system zr ,,   these equations look as 
follows:

01














z
EE

rr
E

r
E zrr


 , (1)

,1
r

z M
z
EE

r









 


(2)
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,Mr
E

z
E zr 








(3)

,1
z

r ME
rr

E
r
E












 (4)

01














z
HH

rr
H

r
H zrr


 , (5)

,1
r

z J
z
HH

r









 


(6)

,Jr
H

z
H zr 








(7)

,1
z

r JH
rr

H
r
H












 (8)

t
E

c
J





1

, (9)

t
H

c
M





1

. (10)

For the sake of brevity further we shall use the following notations:  
)cos( tzco   , (11)

)sin( tzsi   , (12)

where  ,,  – are certain constants. Let us present the unknown 
functions in the following form:

 corjJ rr . , (13)

sirjJ )(.   , (14)

sirjJ zz )(.  , (15)

 corhH rr . , (16)

sirhH )(.   , (17)

sirhH zz )(.  , (18)

 sireE rr . , (19)

coreE )(.   , (20)

coreE zz )(.  , (21)

 cormM rr . , (21)

sirmM )(.   , (22)

sirmM zz )(.  , (23)

where )(),(),(),( rmrerhrj - certain function of the coordinate r . 
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Chapter 1. The Second Solution of Maxwell's Equations for vacuum

By direct substitution we can verify that the functions (13-23) 
transform the equations system (1-10) with three arguments zr ,,   
into equations system with one argument r  and unknown functions

)(),(),(),( rmrerhrj .
In Appendix 1 it is shown that for such a system there exists a 

solution of the following form (in Appendix 1 see (24, 27, 18, 31, 33, 34, 
32) respectively):

0)( rhz , 0)( rez . (24)

 


 1

2
rAeer , (25)

 rerh r)( . (26)

  ),(rerhr  (27)

c  . (28)
where  ,,,,cA  – constants.

Thus we have got a monochromatic solution of the equation 
system (1-10). A transition to polychromatic solution can be achieved 
with the aid of Fourier transform.

If it exists in cylindrical coordinate system, then it exists in any 
other coordinate system. It means that we have got a common solution 
of Maxwell equations in vacuum.

3. Intensities
We consider (2.25):

15.0  
 rAeer , (1)

where (А\2) - the amplitude of the intensities. From (1) it follows that
   1222  

 rAeer . (2)

Fig. 1 shows, for example, the graphics functions (1, 2) for 
8.0,1  A . 

Fig. 2 shows the vectors of intensities originating from the point
 ,rA . Let us remind that  rerh r)(  and   )(rerhr  - see (2.26, 

2.27). The directions of vectors  rer  and )(re  are chosen as:   0rer ,

0)( re . Note that the vectors HE,  are always orthogonal. The sum 
of the modules of these vectors is determined from (2.17, 2.18, 2.20, 
2.21, 2.26, 2.27) and is equal to

           222222 corhcorhsiresireHEW rr  
or
14



Chapter 1. The Second Solution of Maxwell's Equations for vacuum

     22 rereW r  (3)

- see also (10) and Fig. 1. Thus, the density of electromagnetic wave 
energy is constant in all points of a circle of this radius.

0 2 4 6 8 10 12 14 16 18 20
-0.5

-0.45

-0.4

-0.35

-0.3

-0.25
ef

(r)

0 2 4 6 8 10 12 14 16 18 20
-0.25

-0.2

-0.15

-0.1

-0.05

A
*e

f(r
)2

Fig.1. SecondSolMax.m

A

O 

re

e
h

rh

H

E

A

O

re

e
h rh

H

E

Fig. 2. Fig. 3.

The solution exists also for changed signs of the functions (2.11, 
2.21). This case is shown on Fig 3. Fig. 2 and Fig. 3 illustrate the fact that 
there are two possible type of electromagnetic wave circular polarization. 

In order to demonstrate phase shift between the wave components 
let's consider the functions (2.11, 2.12) and (2.16-2.21). It can be seen, 
that at each point with coordinates zr ,,   intensities EH ,  are shifted 
in phase by a quarter-period.
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Chapter 1. The Second Solution of Maxwell's Equations for vacuum

Let's consider the functions (2.11, 2.12) and (2.28). Then, we can 
find

)cos( tz
c

co   , )sin( tz
c

si   . (4)

Let's consider a point moving along a cylinder of constant radius r , 
where the value of intensity depends on time as follows:

Let's consider a point moving along a cylinder of constant radius 
r , at which the value of intensity depends on time as follows:

   trhH rr cos.  (5)
Comparing this equation with (2.16) and taking (4) into account, we can 
notice that equation (5) is the same as (2.16), if at any moment of time

0 z
c
 (6)

or

z
c



 . (7)

Path of the point described by equations (4, 7, 2.28) is a helix. Thus, the 
line, along which the point moves in such a way, that its intensity varies 
in a sinusoidal manner, is determined by the equation describing a helix. 
The same conclusion can be repeated for other intensities (2.17-2.21). 
Thus, 

path of the point, which moves along a cylinder of given radius in 
such a manner, that each intensity value varies harmonically with 
time, is described by a helix.

(A)

-1
-0.5

0
0.5

1

-1
-0.5

0

0.5
1

-2000

-1500

-1000

-500

0

(TokPotok33.m)Fig. 4.
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Chapter 1. The Second Solution of Maxwell's Equations for vacuum

For example, Fig. 4 shows a helix, for which 
  20,3,3000,300000,1  cr . Fig. 4a shows 

helices in the same conditions, but for different radii, where 
 1.1,0.1...,6.0,5.0r . Straight lines indicate the geometric loci of 

points with equal  . 

-2
-1

0
1

2

-2
-1

0

1
2
0

500

1000

1500

2000

(TokPotok33.m)Fig. 4a.

The last means (A) that at point T , moving along this helix the 
vectors of intensities (2.16-2.21) can be written as follows:

   trhH rr cos.  ,  trhH  sin)(.  ,  trhH zz sin)(.  ,

   treE rr sin.  ,   treE  cos)(.  ,   treE zz cos)(.  .

It was shown above (see 2.24-2.27), that 
0)( rhz , 0)( rez , )()()( rerere rr   ,  rerh r )( ,   )(rerh rr  .

Therefore, at each point there are only vectors
   treH rr  cos.  ,  treH r  sin)(.  , 

   treE rr  sin.  ,      treE r  cos)(.  .

In this case resultant vectors  HHHr  r  and  EEEr  r  lay in 

plane ,r , and their moduli are  reH rr    and  reE rr   . Fig. 4a 

shows all these vectors. It can be seen, that when the point T  moves 
along the helix, resultant vectors rH  and rE  rotate in plane ,r . 
Their moduli are constant and equal one to the other. These vectors rH  
and rE  are always orthogonal.
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Fig. 4b.

So, at each point T , which moves along this helix, vectors of 
magnetic and electric intensities: 

 exist only in the plane which is perpendicular to the helix axis, 
i.e. there only two projections of these vectors exist,

 vary in a sinusoidal manner,
 are shifted in phase by a quarter-period.

Resultant vectors:
 rotate in these plane,
 have constant moduli,
 are orthogonal to each other.

4. Energy Flows
The density of electromagnetic flow is Pointing vector 

HES  , (1)
where 

 4c . (2)
In the SI system 1  and the last formula (1) takes the form:

HES  , (3)
In cylindrical coordinates zr ,,   the density flow of 

electromagnetic energy has three components zr SSS ,,  , directed along 
вдоль the axis accordingly. They are determined by the formula
18
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 










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
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
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r

HEHE
HEHE
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HE
S
S
S

S





  . (4)

From (2.12-2.17, 3.4) follows that the flow passing through a given 
section of the wave in a given moment, is:

 












































 
,

2

r
z

r

z

r

ddr
cosis
cosis

sis

S

S

S

S . (5)

where
 
 
 rrz

zrrz

zzr

hehes
hehes
hehes













. (6)

In Appendix 1 it is shows that 0)( rhz , 0)( rez . Consequently, 
0,0  ssr , i.e. the energy flow extends only along the axis oz and is 

equal to
  




,r

zz ddrcosisSS . (7)

Lack of radial energy flux indicates that area of wave existence is 
NOT growing. Existence of laser provides evidence of this fact.

We'll find zs . From (2.26, 2.27), we obtain:
2
rr ehe  , (8)

2
 ehe r  . (9)

From (7, 8, 9), we obtain:
 22

ees rz  . (10)

In this way,
   


 

,

22

r
r ddrcosieeS . (11)

Hence, as shown in Appendix 2, it follows that

      
r

r dreecS 224cos1
16 


. (12)

From (10, 3.12), we obtain:

      
r

drrcAS 124cos1
16




. (12а)
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Let R  be the radius of the circular front of the wave. Then

  
 

 12

12

0

12
int 






 


 RdrrS

R

r

, (13)

  


4cos11
alfaS , (14)

int16
SScAS alfa

 . (15)

Fig. 5 shows the function )(alfaS (13) and Fig. 6 shows the 
function )(int S . On Fig. 6 the upper and lower curves refer accordingly 
to 200R  and 100R . From the formula (15), Fig. 5 and Fig. 6 that 
the power flow is positive, for example, at 8.0,1  A .

8.0,1  A .
Since the energy flow and the energy are related by the expression
cWS  , then from (15) we can find the energy of a wavelength unit: 

int16
SSAW alfa

 . (17)
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In Appendix 2 also shows that the energy flux density on the circle 
is determined by function of the form

   czeeS rrz  42sin22  . (18)

From this and from (3.10) we obtain:
   czrAS rz  42sin12   . (19)

In Fig. 7 shows these functions, when 1,8.0,1  rA  , and 
the second term has two values: 0; 0.5 - see the solid and dashed lines, 
respectively.
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It follows that
 flux density is unevenly distributed over the flow cross section – 

there is a picture of the distribution of flow density by the cross 
section of the wave

 this picture is rotated while moving on the axis oz;
 the flow of energy (15), passing through the cross-sectional area, not 

depend on zt ,,  ; the main thing is that the value does not change 
with time, and this complies with the Law of energy conservation.

5. Impulse and momentum
It is known that the flow of energy is associated with other 

characteristics of the wave dependency of the following form [21, 25, 63] 
(in the SI system):

Wf  . (1)
cWS  , (2)
cWp  , 2cSp  , (3)
cpf  , cSf  , (4)
rpm  , (5)

where
W  - energy density (scalar), kg m-1·s−2,
S  - energy flux density (vector), kg·s−3,
p  - pulse density (vector), kg·m−2·s−1,
f  - pulse flux density (vector), kg·m-1·s−2,
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m  - density momentum at this point about an axis spaced from 
the given point by a distance r  (vector), kg·s−2,

V  - объем электромагнитного поля (scalar), m3.

It follows from the above that in the electromagnetic wave there 
exist energy flows, which directed along a radius, along a circle, along a 
axis. Consequently, in the electromagnetic wave there exist pulses, which 
directed along a radius, along a circle, along a axis. Also there exist 
momentum, which directed along a radius, along a circle, along a axis.

Let's consider the angular momentum about the axis z . According 
to (3) we can find this momentum as follows:

crSrpL zzz  . (6)
This is orbital angular momentum, which can be detected in so called 
twisted light. Further on, we bring you a reduced quotation from [64]. 
The fact that the light wave carries not only energy and momentum, but also angular 
momentum was known a century ago. At first, of course, angular momentum was 
associated only with polarization of light. … But time went by. Lasers were created, 
scientists had learnt to control the light emitted by lasers, and a theory describing its 
electromagnetic field was developing. And at a certain time it was realized that these 
two properties — direction of the light beam and its twisted characteristic  — do not 
contradict to each other. … Certain methods of generation and detection of the twisted 
light were proposed. Three years after ... practical researchers confirmed that a specially 
prepared mode of the laser beam, which have also been known before, is actually 
occurred to be the twisted light. … After that, like an avalanche, researches rushed to 
investigate the phenomenon of the twisted light. … Along with fundamental 
researching, various practical applications of the twisted light started to be 
developed…"

However, it should be noted that existence of the twisted light 
does not follow from the existing solution of Maxwell's equations. But it 
naturally follows from the proposed solution — see (6). In Fig. 7а (taken 
from [64]) "the picture with the twisted light doesn't show the electric field, but the 
wavefront (the middle picture shows non-twisted light, and the upper and 
lower ones — the light twisted to one or another side). It is not flat; in this 
case the wave phase changes not only along the beam, but also with shifting in cross-
sectional plane… As the energy flow of the light wave is usually directed perpendicular 
to the wavefront, it occurs, that in the twisted light energy and momentum not only fly 
ahead, but also spin around the axis of movement." This particular fact was 
confirmed above — see Fig. 3.4a for comparison.
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Fig. 7а.

6. Discussion
The Fig. 8 shows the intensities in Cartesian coordinates. The 

resulting solution describes a wave. The main distinctions from the 
known solution are as follows: 

1. Instantaneous (and not average by certain period) energy flow 
does not change with time, which complies with the Law of 
energy conservation.  

2. The energy flow has a positive value  
3. The energy flow extends along the wave.
4. Magnetic and electrical intensities on one of the coordinate 

axes zr ,,   phase-shifted by a quarter of period.

5. The solution for magnetic and electrical intensities is a real 
value.

6.  The solution exists at constant speed of wave propagation.
7. The existence region of the wave does not expand, as 

evidenced by the existence of laser.   
8. The vectors of electrical and magnetic intensities are 

orthogonal.  
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9. There are two possible types of electromagnetic wave circular 
polarization. 

10. The wave and its energy are determined if the parameters 
 ,,, RA are specified. For given SR,  the parameter     

can be found.
11. The path of the point, which moves along a cylinder of given 

radius in such a manner, that each intensity value varies 
harmonically with time, is a helix.
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Appendix 1
Let us consider the solution of equations (2.1-2.10) in the form of 

(2.13-2.23). Further the derivatives of r  will be designated by strokes. We 
write the equations (2.1-2.10) in view of (2.11, 2.12) in the form

0)(
)(

)()(
 re

r
re

re
r
re

zr
r  ,  (1)

 ,)()(1 rmrere
r rz     (2)

  ),()( rmrere zr    (3)

  ),()(
)(

rm
r
rere

r
re

z
r  

 (4)
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    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  , (5)

 ,)()(1 rjrhrh
r rz     (6)

  ),()( rjrhrh zr   (7)

  ,0)()(
)(

 rj
r
rhrh

r
rh

z
r 

  (8)

rr e
c

j 
 , 

 e
c

j  , zz e
c

j 
 , (9)

rr h
c

m 
 , 

 h
c

m  , zz h
c

m 
 , (10)

We consider travelling wave in vacuum. In this case 0)( rez , as 
there is no external energy source. 

Along with that, according to (9) we obtain 0)( rjz . Then, the 
initial system (1, 5-8) will be as follows:

0
)(

)()(
 

r
re

re
r
re

r
r , (17)

    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  , (18)

 ,)()(1 rjrhrh
r rz    (19)

  ),()( rjrhrh zr   (20)

  ,0)(
)(

 


r
rhrh

r
rh r (21)

Substituting (9) in (17), we get:

0
)(

)()(
 

r
rj

rj
r
rj

r
r ,  (22)

Substituting (19, 20) in (22), we get:

   0)()()(1)(1)(1
2 

r
rhrhrhrh

r
rh

r
rh

r zrzz
 

or

  0)()(1)(1
2 

r
rhrhrh

r
rh

r rz
  (23)

In this case, for calculation of three intensities we obtain three equations 
(19, 21, 23). Then, we exclude )(rh  from (21, 23):
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    0)(1)(1)(1
2 






 

r
rh

r
rhrh

r
rh

r
rh

r rrz
 

or 0)(1
2 

 rh
r z  or 0)( rhz . Thus, in a 0)( rez  condition 

0)( rhz  to be respected. This implies
Lemma 1. The equation system (1, 5-9) for 0)( rez  is compatible 

only if 0)( rhz .
If 0)( rez  and 0)( rhz , then equations (1, 5-9) will be as 

follows – equations (1, 5, 8) can be simplified, and equations (6, 7) taking 
(9) into account, can be substituted for the following equations (1.3, 1.4):

0
)(

)()(
 

r
re

re
r
re

r
r , (1.1)

    0
)(

 

r
rh

rh
r
rh

r
r , (1.2)

 ,)( rerhc
r

  (1.3)

  )(rerhc
r 


 , (1.4)

  0)(
)(

 


r
rhrh

r
rh r .  (1.5)

In a similar way we can prove
Lemma 2. If 0)( rez , system of equations (1-5, 10) has a solution 

only in that case, when 0)( rhz .
In this case, similar to equations (24, 28), we can obtain equations

0
)(

)()(
 

r
re

re
r
re

r
r ,  (2.1)

 ,)( rh
c

re r
  (2.2)

  ),(rh
c

rer 
  (2.3)

  ,0)(
)(

 


r
rere

r
re r (2.4)

    0
)(

 

r
rh

rh
r
rh

r
r . (2.5)

From Lemmas 1 and 2 follows 
Lemma 3. System of equations (1-10) has a solution only if

26



Chapter 1. The Second Solution of Maxwell's Equations for vacuum

0)( rhz , 0)( rez . (3.1)
Therefore, initial system of equations (1-10) can be written in the 

form of equations shown in lemmas 1 and 2. We combined them for 
readers' convenience.

0
)(

)()(
 

r
re

re
r
re

r
r , (24)

 ,)( rh
c

re r
  (25)

  ),(rh
c

rer 
  (26)

  ,0)(
)(

 


r
rere

r
re r (27)

    0
)(

 

r
rh

rh
r
rh

r
r , (28)

 ,)( re
c

rh r
  (29)

  ),(re
c

rhr 
   (30)

  0)(
)(

 


r
rhrh

r
rh r . (31)

We multiply equations (26, 29). Then we get:

    )()(
2

2 rhre
c

rhre rr 
 








or
c  . (32)

Substituting (32) in (26, 29), we get:
 rerh r)( . (33)

Thus, with condition (32) equation (26, 29) are equivalent to a 
single equation (33). A similar equation follows from (25, 30):

  ),(rerhr  (34)

Thus, system (24-31) is equivalent to system (24, 27, 28, 31-34).
Below we find a solution for equations (24, 27).
First we shall consider the equation

0' y
x
ay , (а)

The solutions of this equations is as:
axy   or 0y . (в)
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     01 


 
 r

ee
ee r

r , (35)

We subtract the equation (27) from (24):

     01 


 
 r

ee
ee r

r , (36)

In accordance with (a, в) from (35) we find:
   


 1Areer  или   0 eer . (37)

In accordance with (a, в) from (36) we find:
   


 1Creer  или   0 eer . (38)

Adding or subtracting the equation (38) from (37) we find the 4 
solutions:

 


 1

2
rAeer , (39)

 


 1

2
rCeer , (40)

      

      





















11

11

2
1
2
1

CrArre

CrArrer
(41)

0 eer . (42)

Hereinafter we will consider solution (39). Thus, initial system of 
equations (1-10) has a solution in the following form:

0)( rhz , 0)( rez , (3.1)
c  , (32)

 


 1

2
rAeer , (39)

 rerh r)( , (33)

  )(rerhr  . (34)

Appendix 2
In (3.11) it is shown that the energy flow passing through the wave 

cross-section, is  
   


 

,

22

r
r ddrcosieeS . (1)

Let the speed of wave propagation is constant and equal to с. Then,
ctz  . (2)
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Then from (2, 2.11, 2.12, 2.30), we obtain:
  zctzco  2cos)cos(  (3)

and similarly,
  zcsi  2sin  . (4)

Due to (3, 4), we can rewrite (1) as:

       


 drdzceeS
r

r 
,

22 22sin
2
1

. (5)

Thus, the energy flux density on the circle defined by function of the 
form

   czeeS rrz  42sin22  . (5а)

When z=0 on the axis oz have:

     


 drdeeS
r

r 
,

22 2sin
2
1

. (6)

Further, from (6) we find:

     
























r
r drdeeS


  2sin

2
22 . (7)

We have:

      







4cos1
2
12sin2sin

2

0

  dd . (8)

From (7, 8), we obtain:

      
r

r dreeS 224cos1
4 



. (9)

Substituting here (3.2), we finally obtain:

      
r

r dreecS 224cos1
16 


. (10)

Obviously, for any choice of the point z = 0 on the axis oz last 
relation is maintained. 
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Chapter 2. Solution of Maxwell's 
Equations for Electromagnetic Wave in the 

Dielectric Circuit of Alternating Current

Contents
1. Introduction
2. Solution of Maxwell's Equations
3. Intensities and Energy Flows
4. Discussion
Appendix 1
Appendix 2
Appendix 3

1. Introduction
An electromagnetic field in vacuum is considered in chapter 1. The 

evident solution obtained there is extended to a non-conducting 
dielectric medium with certain dielectric and magnetic permeability ε and 
μ, respectively. Therefore, the electromagnetic field does also exist in a 
capacitor as well. However, a considerable difference of the capacitor is 
that its field has a non-zero electrical intensity along on of the 
coordinates induced by an external source. The electromagnetic field in 
vacuum was examined on the basis of an assumption that an external 
source was absent. 

The same can be said about an alternating current dielectric circuit. 
The system of Maxwell equations is applied to such a circuit. It is shown 
that an electromagnetic wave is also formed in this circuit. An important 
difference between this wave and the wave in vacuum is that the former 
has a longitudinal electrical intensity induced by an external power 
source. 

Below are considered the Maxwell equations of the following form 
written in the GHS system (as in chapter 1, but with ε and μ which are 
not equal to 1):

  0rot 




t
H

c
E  , (1)

  0rot 




t
E

c
H  , (2)
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  0div E , (3)
  0div H , (4)

where EH ,  are the magnetic intensity and the electrical intensity, 
respectively. 

2. Maxwell Equations Solution
Let us consider solution to the Maxwell equations (1.1-1.4) [37]. In 

the cylindrical coordinate system zr ,,  , these equations take the 
form:

01














z
EE

rr
E

r
E zrr


 , (1)

,1
dt
dHv

z
EE

r
rz 







 


(2)

,
dt
dH
v

r
E

z
E zr 








(3)

,1
dt
dHvE

rr
E

r
E zr 











 (4)

01














z
HH

rr
H

r
H zrr


 , (5)

dt
dEq

z
HH

r
rz 







 


1 (6)

,
dt
dE
q

r
H

z
H zr 








(7)

dt
dEqH

rr
H

r
H zr 











 1
(8)

where 
cv  , (9)

cq  , (10)

zr EEE ,,   are the electrical intensity components,

zr HHH ,,   are the magnetic intensity components.
A solution should be found for non-zero intensity component zE . 

To write the equations in a concise form, the following 
designations are used below: 

)cos( tzco   , (11)
)sin( tzsi   , (12)
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where  ,,  are constants. Let us write the unknown functions in the 
following form:

 corhH rr . , (13)

sirhH )(.   , (14)

sirhH zz )(.  , (15)

 sireE rr . , (16)

coreE )(.   , (17)

coreE zz )(.  , (18)

where )(),( rerh are function of the coordinate r . 
Direct substitution enables us to ascertain that functions (13-18) 

convert the system of equations (1-8) with four arguments tzr ,,,   in 
a system of equations with one argument r  and unknown functions 

)(),( rerh .

Table 1.
Chapter 1 Chapter 2

e 1Ar  r,,khA 

re 1Ar  )()(1 rerre 


ze 0

qrerA )(

rh )(re  re
c

A 


h )(rhr  re
c

A r




zh 0 0

Appendix 1 proves that such a solution does exist. It takes the 
following form:

 rre ,,kh)(   , (20)

   )()(1 rerrerer 
 , (21)


qrerrez )()(  , (22)
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 





1)( re
c

rh r , (23)

   





1re
c

rhr  , (24)

0)( rhz . (25)
where kh()  – is the function determined in Appendix 2,












 2

2

c
q . (26)

Let us compare this solution with the solution for vacuum, 
obtained in Chapter 1- see Table 1. A considerable difference between 
these solutions is evident. 
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3. Intensity and Energy Flows
Also, as in Chapter 1, the energy flow density along the coordinates 

is calculated by the formula

 












































 
,

2

r
z

r

z

r

ddr
cosis
cosis

sis

S

S

S

S . (1)

where
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 
 
 rrz

zrrz

zzr

hehes
hehes
hehes













, (2)

 4c . (3)
Let us consider functions (2) and )(),(),( rerere zr  , 

)(),(),( rhrhrh zr  . Fig. 1 shows, for example, these functions plotted 

for 300,50,2,1,5.5,1  A . 

4. Discussion
Further conclusions are similar to those of chapter 1. Thus, an 

electromagnetic wave propagates via a dielectric circuit and, in particular, 
through a capacitor connected to an AC circuit, and the mathematical 
description of this wave is the solution of the Maxwell equations. In this 
case, the field intensity, the displacement current, and the energy Flow 
propagate in the dielectric along a helical path. 

Appendix 1.
A solution to equations (2.1-2.8) is considered to be in the form of 

functions (2.13-2.18). Derivatives with respect to r  will be denoted with 
primes. Let us re-write equations (2.1-2.8) considering (2.11, 2.12) in the 
form

0)(
)(

)()(
 re

r
re

re
r
re

zr
r  ,  (1)

,0)()(1
 rz h

c
rere

r
  (2)

  ,0)(  
 h
c

rere zr (3)

  ,0)(
)(

 z
r h

cr
rere

r
re 

 (4)

    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  , (5)

,0)()(1
 rz e

c
rhrh

r
  (6)

  ,0)(  
 e
c

rhrh zr (7)
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  0)()(
)(

 re
cr

rhrh
r
rh

z
r 

 . (8)

The correspondence between the formula numbers in Part 2 and in this 
Appendix is as follows:

Part 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
App. 1 1 5 6 7 8 6 7 8

Formulae (1 – 8) will be transformed below. In doing so, the 
formula numbering will be retained after transformation (to make easier 
to follow the sequence of transformations), and only new formulae will 
take the next number.

Assume that 
0)( rhz . (9)

From (6, 7) it follows that:

 





1)( re
c

rh r (6)

   





1re
c

rhr  (7)

Let us compare (1, 8):

0)(
)(

)()(
 re

r
re

re
r
re

zr
r  ,  (1)

  0)()(
)(

 re
cr

rhrh
r
rh

z
r 

 . (8)

From (6, 7) it follows that (1, 8) are identical. Then (8) can be 
deleted. Then compare (4) with (5):

  ,0)(
)(

 


r
rere

r
re r (4)

    0
)(

 

r
rh

rh
r
rh

r
r . (5)

From (6, 7) it follows (4, 5) are identical. Hence, equation (5) can 
be deleted. The remaining equations are as follows: 

0)(
)(

)()(
 re

r
re

re
r
re

zr
r  ,  (1)

,0)()(1
 rz h

c
rere

r
  (2)

  ,0)(  
 h
c

rere zr (3)
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  ,0)(
)(

 


r
rere

r
re r (4)

 





1)( re
c

rh r , (6)

   





1re
c

rhr  . (7)

Substitute (6, 7) in (2, 3):

  ,01)()(1



  re
cc

rere
r z (2)

    ,01)( 


 re
cc

rere rzr (3)

or















1)()(

cc
rere

r z (2)

  










 1)(
cc

rere rz (3)

The remaining equations are as follows:

0)(
)(

)()(
 re

r
re

re
r
re

zr
r  , (1)















1)()(

cc
rere

r z (2)

  










 1)(
cc

rere rz (3)

  ,0)(
)(

 


r
rere

r
re r (4)

 





1)( re
c

rh r , (6)

   





1re
c

rhr  . (7)

Let us denote:












 1
cc

q (11)

From (1, 2, 11) it can be found that:

0/)(
)(

)()(
  

 qrer
r
re

re
r
re

r
r , (12)
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From (4) it can be found that:

   )()(1 rerrerer 
 (13)

   )()(21 rerrerer 
 (14)

From (12-14) it can be found that:

  0)(
)(

)()(21)(
)(1








  rerq
r
re

rerrere
r
re











(15)

For the solution and analysis of this equation, see Appendix 2. This 
solution cannot be presented as an analytical expression. Let us call this 
solution as a function 

 rre ,,kh)(   , (16)

and its derivative as a function
 rre ,,kh1)(   . (17)

With the known functions (16, 17), the remaining functions can 
also be found. Thus, all the functions can be determined from the 
following equations:

0)( rhz , (9)

 rre ,,kh)(   , (16)

 rre ,,kh1)(   , (17)

   )()(1 rerrerer 
 , (13)

   )()(21 rerrerer 
 , (14)


qrerrez )()(  , (2)

 qrere rz  )( , (3)

 





1)( re
c

rh r , (6)

   





1re
c

rhr  . (7)

For the accuracy of the obtained solution, see Appendix 3. 
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Appendix 2. 
Let us consider equation (15) from Appendix 1:

  0)(
)(

)()(21)(
)(1





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re

rerrere
r
re


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






. (1)

Its simplification gives:

  0)(
)(

)()(2)(
)( 2 




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re
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re


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 
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








 rerrerq
r

re  
,

)(31)()( 2
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r
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r

rere   










 . (2)
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Equation (2) has not an analytical solution. But the following 
functions can be calculated numerically

 rre ,,kh)(   (3)

 rre ,,kh1)(   (4)

 rre ,,kh2)(   (5)

For an example, Fig. 2 shows these functions for 
 50,5.5    at a radius of 1.0R .
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Appendix 3. 
Substitution of the functions found in Appendix 1 in equations (1-

8) enables us to determine a RMS residual error of these equations. Fig. 3 
shows this residual error for  50,5.5    at a radius of 1.0R . 

A RMS residual error of these equations can be found as a function 
of one or other variable. Fig. 4 shows the residual error as a function of 
  for 50  at a radius of 1.0R . Here, the upper window presents 
the residual error value, and lower window the residual error logarithm. 
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Chapter 3. Solution of Maxwell's 
Equations for Electromagnetic 

Wave in the Magnetic Circuit of 
Alternating Current 

Contents
1. Introduction
2. Solution of Maxwell's Equations
3. Intensities and Energy Flows
5. Discussion
Appendix 1

1. Introduction
Chapter 2 deals with the electromagnetic field in an AC dielectric 

circuit. The electromagnetic filed in an AC magnetic circuit can be 
examined using the same approach. The simplest example of such a 
circuit is an AC solenoid. However, if the dielectric circuit has a 
longitudinal electrical field intensity component induced by an external 
power source, the magnetic circuit features a longitudinal magnetic field 
component induced by an external power source and transmitted to 
circuit with the solenoid coil. 

In this case, the Maxwell equations outlined in chapter 2, are also 
used - see (2.1.1-2.1.4).

2. Maxwell Equations Solution
Let us consider solution to the Maxwell equations (2.1.1-2.1.4) [37]. 

In the cylindrical coordinate system zr ,,  , these equations take the 
form:

01














z
EE

rr
E

r
E zrr


 , (1)

,1
dt
dHv

z
EE

r
rz 







 


(2)
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,
dt
dH
v

r
E

z
E zr 








(3)

,1
dt
dHvE

rr
E

r
E zr 











 (4)

01














z
HH

rr
H

r
H zrr


 , (5)

dt
dEq

z
HH

r
rz 







 


1 (6)

,
dt
dE
q

r
H

z
H zr 








(7)

dt
dEqH

rr
H

r
H zr 











 1
(8)

where 
cv  , (9)

cq  , (10)

zr EEE ,,   are the electrical intensity components,

zr HHH ,,   are the magnetic intensity components.
A solution should be found for non-zero intensity component zH  (in 
Chapter 2 this should be found at non-zero intensity zE ). 

To write the equations in a concise form, the following 
designations are used below: 

)cos( tzco   , (11)
)sin( tzsi   , (12)

where  ,,  are constants. Let us write the unknown functions in the 
following form:

 corhH rr . , (13)

sirhH )(.   , (14)

sirhH zz )(.  , (15)

 sireE rr . , (16)

coreE )(.   , (17)

coreE zz )(.  , (18)

where )(),( rerh are function of the coordinate r . 
Direct substitution enables us to ascertain that functions (13-18) 

convert the system of equations (1-8) with four arguments tzr ,,,   in 
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a system of equations with one argument r  and unknown functions 
)(),( rerh .

Table 1.
Chapter 1 Chapter 2 Chapter 3

re 1Ar  r,,khA  )(rh
c 




e 1Ar  )()(1 rerre 
 )(rh

c r


ze 0

qrerA )( 0

rh )(re  re
c

A 
  )()(1 rhrrh 



h )(rhr  re
c

A r


  r,,kh 

zh 0 0  /)( qrhr 

Appendix 1 proves that such a solution does exist. It takes the 
following form:

0)( rez , (20)

 rrh ,,kh)(   , (21)

   )()(1 rhrrhrhr 
 , (22)

 /)()( qrhrrhz  , (23)

)()( rh
c

re r


  , (24)

  )(rh
c

rer 


 , (25)

where kh()  – is the function determined in Appendix 2 of Chapter 2,












 2

2

c
q . (26)

Let us compare this solution with the solutions, obtained in 
chapters 1 and 2 - see Table 1. Similarity of these equations is illustrated 
in Chapters 2 and 3. 
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3. Intensity and Energy Flows
Also, as in Chapter 1, the energy flow density along the coordinates 

is calculated by the formula

 












































 
,

2

r
z

r

z

r

ddr
cosis
cosis

sis

S

S

S

S . (1)

где
 
 
 rrz

zrrz

zzr

hehes
hehes
hehes













, (2)

 4c . (3)
Let us consider functions (2) and )(),(),( rerere zr  , 

)(),(),( rhrhrh zr  . Fig. 1 shows, for example, these functions plotted 

for 300,50,2,1,5.5,1  A . These parameters 
are chosen the same as in Chapter 2 - for comparison of the obtained 
results.
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4. Discussion
Further conclusions are similar to the conclusions of chapter 1 and 

2. Thus, an electromagnetic wave propagates in an AC magnetic circuit, 
and the mathematical description of this wave is a solution to the 
Maxwell equations. In this case, the field intensity and the energy Flow 
follow a helical trajectory in the considered circuit. 

Appendix 1.
A solution to equations (2.1-2.8) is considered to be in the form of 

functions (2.13-2.18). Derivatives with respect to r  will be denoted with 
primes. Let us re-write equations (2.1-2.8) considering (2.11, 2.12) in the 
form

0)(
)(

)()(
 re

r
re

re
r
re

zr
r  ,  (1)

,0)()(1
 rz h

c
rere

r
  (2)

  ,0)(  
 h
c

rere zr (3)

  ,0)(
)(

 z
r h

cr
rere

r
re 

 (4)

    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  , (5)

,0)()(1
 rz e

c
rhrh

r
  (6)

  ,0)(  
 e
c

rhrh zr (7)

  ,0)()(
)(

 re
cr

rhrh
r
rh

z
r 

 (8)

The correspondence between the formula numbers in Part 2 and in this 
Appendix is as follows:

Part 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
App. 1 1 5 6 7 8 6 7 8

Formulae (1 – 8) will be transformed below. In doing so, the 
formula numbering will be retained after transformation (to make easier 
to follow the sequence of transformations), and only new formulae will 
take the next number.

Assume that 
0)( rez . (9)
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From (2, 3) it follows that:

)()( rh
c

re r
  (2)

  
 h
c

rer  (3)

Let us compare (4, 5):
  ,0)(

)(
 z

r h
cr

rere
r
re 

 (4)

    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  , (5)

From (2, 3) it follows that (4, 5) are identical. Then (4) can be 
deleted. Then compare (1) with (8):

0
)(

)()(
 

r
re

re
r
re

r
r ,  (1)

  ,0)(
)(

 


r
rhrh

r
rh r (8)

From (2, 3) it follows (1, 8) are identical. Hence, equation (1) can 
be deleted. The remaining equations are as follows: 

)()( rh
c

re r


  , (2)

  )(rh
c

rer 


 , (3)

    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  , (5)

,0)()(1
 rz e

c
rhrh

r
  (6)

  ,0)(  
 e
c

rhrh zr (7)

  ,0)()(
)(

 re
cr

rhrh
r
rh

z
r 

 (8)

Substitute (2, 3) in (6, 7):

0)()()(1
 rh

cc
rhrh

r z  
 (6)

  ,0)()(  rh
cc

rhrh rzr 
 (7)

or
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



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








1)()(

cc
rhrh

r z (6)

  










 1)(
cc
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The remaining equations are as follows:
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Let us denote:
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


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
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From (5, 6, 11) it can be found that:
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From (8) it can be found that:

   )()(1 rhrrhrhr 
 (13)

   )()(21 rhrrhrhr 
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From (12-14) it can be found that:
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It can be observed that this equation is the same as equation (15) in 
Appendix 1 of Chapter 2, if variable )(rh  is substituted for variable 

)(re . Therefore, the solution of the equation is a function of
 rrh ,,kh)(   , (16)

and its derivative as a function
 rrh ,,kh1)(   . (17)

With the known functions (16, 17), the remaining functions can 
also be found. Thus, all the functions can be determined from the 
following equations:

0)( rez , (9)

 rrh ,,kh)(   , (16)

 rrh ,,kh1)(   , 17)

   )()(1 rhrrhrhr 
 , (13)

   )()(21 rhrrhrhr 
 , (14)

 /)()( qrhrrhz  , (6)

 qrhrh rz  )( , (7)

)()( rh
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re r
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  )(rh
c

rer 
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 . (3)

47



Chapter 4. The solution for the low-resistance Wire with Alternating Current

Chapter 4. The solution of Maxwell's 
equations for the low-resistance Wire 

with Alternating Current

Contents
1. Introduction
2. Solution of Maxwell's Equations
3. Intensities and currents in the wire
4. Energy Flows
5. Current and energy flow in the wire 
6. Discussion
Appendix 1

1. Introduction
The Maxwell equations in general in GHS system have the 

following form (see option 1 in the "Preface"):

  0rot 




t
H

c
E  , (1)

  04rot 



 J
ct

E
c

H  , (2)

  0div E , (3)
  0div H , (4)

EJ

1

 , (5)

where
EHJ ,,  - conduction current, magnetic and electric intensity 
accordingly ,

 ,,  - dielectric permittivity, permeability, specific resistance of 
the wire's material

Further these equations are used for analyzing the structure of 
Alternating Current in a wire [15]. For sinusoidal current in a wire with 
specific inductance L  and specific resistance   intensity and current are 
related in the following way:
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 
E

L
LiE

Li
J 22

1



 





 .

Hence for L   we find:

E
L
iJ




 .

Therefore for analyzing the structure of sinusoidal current in the 
wire for a sufficiently high frequency the condition (5) can be neglected. 
При этом is necessary to solve the equation system (1-4), where the 
known value is the current zJ  flowing among the wire, i.e. the projection 
of vector J  on axis oz  (see option 4 in the "Preface"):

2. Solution of Maxwell's equations 
Let us consider the solution of Maxwell equations system (1.1-1.4) 

for the wire. In cylindrical coordinates system zr ,,   these equations 
look as follows [4]:
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 
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1 (6)
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dt
dE
q

r
H

z
H zr 


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

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(7)

.41
z

zr J
cdt

dEqH
rr

H
r
H 


 








 (8)

where
cv  , (9)

cq  , (10)
Further we shall consider only monochromatic solution. For the 

sake of brevity further we shall use the following notations:
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)cos( tzco   , (11)
)sin( tzsi   , (12)

where  ,,  – are certain constants. Let us present the unknown 
functions in the following form:

 corhH rr . , (13)

sirhH )(.   , (14)

sirhH zz )(.  , (15)

 sireE rr . , (16)

coreE )(.   , (17)

coreE zz )(.  , (18)

 corjJ rr . , (19)

sirjJ )(.   , (20)

sirjJ zz )(.  , (21)

where )(),(),( rjrerh  - certain function of the coordinate r . 
By direct substitution we can verify that the functions (13-21) 

transform the equations system (1-8) with four arguments tzr ,,,   
into equations system with one argument r  and unknown functions

)(),(),( rjrerh .
Further it will be assumed that there exists only the current (21), 

directed along the axis z . This current is created by an external source. 
It is shown that the presence of this current is the cause for the existence 
of electromagnetic wave in the wire.

In Appendix 1 it is shown that for system (1.1-1.4) at the 
conditions (13-21) there exists a solution of the following form:

  1 
 Arre , (22)

)()( rerer  , (23)

 rre
cM

Mrez 


 )1(ˆ)( 
 , (24)

  )(ˆ re
M

rhr 
 , (25)

)()( rhrh r , (26)
0)( rhz , (27)







 Arrerj zz 2

)(
4

)(  , (28)
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where  ,,,cA  – constants.
Let us compare this solution to the solution obtained in chapter 1 

for vacuum – see Table 1. Evidently (despite the identity of equations) 
these solutions differ greatly. These differences are caused by the 
presence of external electromotive force with 0)( rez . It causes a 
longitudinal displacement current which changes drastically the structure 
of electromagnetic wave. 

Table 1.
Vacuum Wire

 
c

ˆ 1ˆ,ˆ  M
c

zj 0 )(
4

rez


re

e
1Ar 1Ar

ze 0  rre
cM

M



 )1(ˆ 

rh )(re )(ˆ re
M 


h )(rhr )(rhr

zh 0 0

3. Intensities and currents in the wire
Further we shall consider only the functions ),(rjz  

)(),(),( rerere zr  , )(),(),( rhrhrh zr  . Fig. 1 shows, for example, the 

graphs of these functions for 300,1,1,3,1  A . The 
value )(rjz  is shown in units of (A/mm^2) - in contrast to all the other 
values shown in system SI. The increase of function )(rjz  at the radius 
increase explains the skin-effect. 
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Fig.1. (SSMB)

The energy density of electromagnetic wave is determines as the 
sum of modules of vectors HE, from (2.13, 2.14, 2.16, 2.17, 2.23, 2.24) 
and is equal to

           222222 corhcorhsiresireHEW rr  
or

     22 rereW r  (1)

- see also Fig. 1. Thus, the density of electromagnetic wave energy is 
constant in all points of a circle of this radius.

In order to demonstrate phase shift between the wave components 
let's consider the functions (2.11-2.19). It can be seen, that at each point 
with coordinates zr ,,   intensities EH ,  are shifted in phase by a 
quarter-period.

Let us find the average value of current amplitude density in a wire 
of radius R:

  



 ,

2
1

r
zz ddrJ

R
J . (5)

Taking into account (2.21), we find:

   



 ,

2
1

r
zz ddrsirj

R
J (5а)

Next, we find:
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    







  

R

zz drdsirj
R

J
0

2

0
2

1 




Taking into account (2), we find:

  





 

R

zz drz
c

z
c

rj
R

J
0

2 )2cos()22cos(1 


or

  zrz J
R

J  1)2cos(1
2 


, (6)

where

 
R

zzr drrjJ
0

. (7)

Taking into account (2.28), we find:

 
R

zr drrAJ
02




 (9)

or

 
1

12



 


 RAJ zr . (10)
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Fig.3. (SSMB)

Fig. 3 shows the function )(zJ  (6, 10) for 1A . On this Figure 
the dotted and solid lines are related accordingly to 2R  and 75.1R . 
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From (6, 8) and Fig. 3 it follows that for a certain distribution of the 
value  rjz  the average value of the  amplitude of current density zJ  
depends significantly of  .

The current is determined as

t
E

c
J





 , (11)

or, taking into account (2.13-2.21):

 core
c

J rr


. ,

sire
c

J )(. 


 ,

sijre
c

J zzz 





  )(. 

. (12)

You can talk about the lines of these currents. Thus, for instance, 
the current .zJ  flows along the straight lines parallel to the wire axis. We 
shall look now on the line of summary current. 
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Fig.4. (SSMB)

It can be assumed that the speed of displacement current 
propagation does not depend on the current direction. In particular, for a 
fixed radius the path traversed by the current along a circle, and the path 
traversed by it along a vertical, would be equal. Consequently, for a fixed 
radius we can assume that 

 z (13)
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where   is a constant. Based on this assumption we can convert the 
functions (4b) into

  2cos co ,   2sin si (14)
and build an appropriate trajectory for the current. Fig. 4 shows two 
spiral lines of summary current described by the functions of the form

  )2(cos co ,    2sin si .
On Fig. 4 the thick line is built for 8.1 and a thin line for 5.2 . 

From (2.19-2.21, 14) follows that the currents will keep their values 
for given ,r  (independently of z ) if only the following value is 
constant

  2 . (15)
Further, based on (14, 15) we shall be using the formula 

 cosco ,  sinsi . (16)

4. Energy Flows
Electromagnetic flux density - Poynting vector in this case is determined 

in the same way as in Chapter 1, Section 4. Although here we repeat the first 6 
equations from that Section for readers' convenience. So,

HES  , (1)
where 

 4c . (2)
In cylindrical coordinates zr ,,   the density flow of 

electromagnetic energy has three components zr SSS ,,  , directed along 
вдоль the axis accordingly. They are determined by the formula

 








































rr

zrrz

zz

z

r

HEHE
HEHE
HEHE

HE
S
S
S

S





  . (4)

From (2.13-2.18) follows that the flow passing through a given section of 
the wave in a given moment, is:

 












































 
,

2

r
z

r

z

r

ddr
cosis
cosis

sis

S

S

S

S . (5)

where
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 
 
 rrz

zrrz

zzr

hehes
hehes
hehes
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
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
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. (6)
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It is values density of the energy flux at a predetermined radius 
which extends radially, circumferentially along, the axis oz respectively. 
Fig. 5 shows the graphs of these functions depending on the radius at 

300,1,1,3,1  A .
The flow of energy along the axis oz is

  



,r

zz ddrcosisS . (7)

We shall find zs . From (6, 2.22, 2.23, 2.26), we obtain:

)(ˆ2 2 re
M

hes rz  
 (9)

or
22  Qrsz , (10)

while



M

AQ ˆ2 (11)

In Chapter 1, Appendix 2 shows that from (7) implies that

     
r

z drrscS 


4cos1
16

. (12)
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Let R  be the radius of the circular front of the wave. Then from (12) we 
obtain, as in chapter 1,

   12

0
int 12



 
  


RQdrrsS

R

r
z , (13)

  


4cos11
alfaS , (14)

int16
SScS alfa

 . (15)

Combining formulas (11-15), we get:

   122

12
ˆ

4cos11
16




 








R

M
AcS z

or
  

 
12

2

128
4cos1ˆ 




 





 R

M
cAS z . (16)

This energy flow does not depend on the coordinates, and so it 
keeps its value along all the length of wire.

Fig. 7 shows the function )(S  (16) for 
1,1,13^10,1  MA . On Fig. 7 the dotted and the solid lines 

refer respectively to 2R  and 8.1R . 
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Since the energy flow and the energy are related by the expression
cWS  , then from (15) we can find the energy of a wavelength unit: 

int16
SSAW alfa

 . (17)

It follows from (7, 3.16), the energy flux density on the 
circumference of the radius defined function of the form

 2sinzrz sS  . (18)

Fig. 8 shows this function (18) for 22  rsz  - see (10). Shows two 
curves for two values at 4.1  and at two values of radius 1r  (thick 
line) and 2r  (thin line). 

Fig. 9 shows the function S  (18) on the whole plane of wire 
section for 22  rsz  and 4.1 . The upper window shows the part of 
function S  graph for which 0S  - called plusS , and the lower window 
shows the part S  graph for which 0S  - called minusS , and this part 
for clarity is shown with the opposite sign. This figure shows that

0minusplus  SSS ,
i.e. the summary vector of flow density is directed toward the increase of 
z  - toward the load. However there are two components of this vector: 
the plusS  component, directed toward the load, and minusS  
component, directed toward the source of current. These components of 
the flow transfer the active and reactive energies accordingly.
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It follows that
 flux density is unevenly distributed over the flow cross section – 

there is a picture of the distribution of flow density by the cross 
section of the wave

 this picture is rotated while moving on the axis oz;
 the flow of energy (15), passing through the cross-sectional area, not 

depend on zt, ; the main thing is that the value does not change 
with time, and this complies with the Law of energy conservation.

 the energy flow has two opposite directed components, which 
transfer the active and reactive energies; thus, there is no need  in the 
presentation of an imaginary Pointing vector.

5. Current and energy flow in the wire 
One can say that the flow of mass particles (mass current) "bears" 

a flow of kinetic energy that is released in a collision with an obstacle. 
Just so the electric current "bears" a flow of electromagnetic energy 
released in the load. This assertion is discussed and substantiated in [4-9]. 
The difference between these two cases is in the fact that value of mass 
current fully determines the value of kinetic energy. But in the second 
case value of electrical current DOES NOT determine the value of 
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electromagnetic energy released in the load. Therefore the transferred 
quantity of electromagnetic energy – the energy flow, - is being 
determined by the current structure. Let us show this fact.
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Fig.10. (SSMB)

As follows from (3.10), the average value of amplitude density of 
current zJ  in a wire of radius R depends on two parameters:   and A . 
For a given density one can find the dependence between these 
parameters, as it follows from (3.10):

 
zrJRA 112 

 




. (1)

As follow from (4.16), the energy flow density along the wire also 
depends on two parameters:  and A . Fig. 10 shows the dependencies 
(1) and (4.16) for given 2,2  RJ z . Here the straight line depicts the 
constant current density (in scale 1000), solid line – the flow density, 
dotted line – parameter А in scale (in scale 1000). Here A  calculated 
according to (1), the energy flux density - to (4.16) for a given A  One 
can see that for the same current density the flow density can take 
absolutely different values. 

From equations (4.7, 3.16) above we found energy flux density on a 
circumference of given radius as a function (see. (4.18)):

 2sinzrz sS  . (2)
In a similar way from equations (3.5а, 3.16) we can find current 

density on a circumference of given radius as a function of 
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 sinzrz jJ  . (3)

Function (2) was illustrated on Fig. 9. Left windows on Fig. 11 
illustrate the graph of this function rzS  (2), and the right windows, for 
comparison purpose, show graph of function rzJ  (3) drown in the same 
way for 19,6.1,4.1,1  RA  . 

From Fig. 11 it can be seen that currents and energy fluxes can 
exist in the wire, which are divided into contra-directional "streams". 

Combinations of parameters can be selected such that total 
currents of contra-directional "streams" are equal in modulus, and at the 
same time, total energy fluxes of contra-directional "streams" are also 
equal in modulus. Fig. 13 illustrates this case: If 

19,2,8.1,1  RA  , then the following integrals over wire 
cross-section area Q  are equal (it's important that   is divisible by 2):

 
QQ

dQSdQS minusplus ,  
QQ

dQJdQJ minusplus .
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6. Discussion
It was shown that an electromagnetic wave is propagating in an 

alternating current wire, and the mathematic description of this wave is 
given by the solution of Maxwell equations. 

This solution largely coincides with the solution found before for 
an electromagnetic wave propagating in vacuum – see Chapter 1. It was 
found that the current in the wire extends along a helical path, and pitch 
of the helical path depends on the density

It appears that the current propagates in the wire along a spiral 
trajectory, and the density of the spiral depends on the flow density of 
electromagnetic energy transferred along the wire to the load, i.e. on the 
transferred power. And the main flow of energy is propagated along and 
inside the wire. 

Appendix 1
Let us consider the solution of equations (2.1-2.8) in the form of 

(2.13-2.18). Further the derivatives of r  will be designated by strokes. We 
write the equations (2.1-2.8) in view of (2.11, 2.12) in the form

0)(
)(

)()(
 re

r
re

re
r
re

zr
r  ,  (1)

,0)()(1
 rz h

c
rere

r
  (2)

  ,0)(  
 h
c

rere zr (3)
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  ,0)(
)(

 z
r h

cr
rere

r
re 

 (4)

    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  , (5)

,0)()(1
 rz e

c
rhrh

r
   (6)

  ,0)(  
 e
c

rhrh zr (7)

  ),(4)()(
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rj
c

re
cr

rhrh
r
rh

zz
r 

  (8)

We multiply (5) on 











c

. Then we get:

    0)(
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  . (9)

Comparing (4) and (9), we see that they are the same, if
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or, if 
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where M  - constant. Next, we use formulas

 rerh
c

M r


 )(


, (10)

  )(rerh
c

M r 





, (11)

where 1M  in the case of (9a). Rewrite (2, 3, 6, 7) in the form:
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 ,)()( rh
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rrerre rz
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  ),()( rh
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Substituting (10, 11) in these equations (12, 13), we get:

     rer
M
Mrer

M
rez  




 1)( 







  , (16)

     re
M
Mre

M
re rrz  1)( 







  . (17)

Substituting (10, 11) in these equations (14, 15), we get:

  ),()()( 222
2 rhMc
c
rrhr

cc
Mrhz  


 






 
 (18)

     rhMc
c

rh
cc

Mrh rrz
222

2
1)( 


 









 
 . (19)

Differentiating (16) and comparing with (17), we find:

   )()1()1( re
M
Mrre

M
M

r









or
   )(rerre r 

or
     )(rererre r  . (20)

From (1, 16), we find:

  0)1()(
)()( 2 


 rer

M
M

r
re

re
r
re

r
r





 (23)

From physical considerations we must assume that
0)( rhz . (24)

Then from (18) we find 
  0222   Mc

or

1ˆ,ˆ   M
c

. (25)

From (16, 25), we find:
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   rerM
cM

MrerMrez  



 ˆ)1()1()( 



or

 rre
cM

Mrez 


 )1(ˆ)( 
             (25а)

For c  from (25) we find that
1 . (26)

Then in the equation (23) we can neglect the value 2  and obtain an 
equation of the form

)()()( rerrere rr   . (27)

From (27, 20) due to the symmetry we find:
)()( rerer  , (28)

   rerrere   )( . (29)

The solution of this equation is as follows:  
  1 

 Arre , (30)

which can be checked by substitution of (30) into (29). From (11, 25), we 
find

  )(ˆ re
M

rhr 
 , (31)

and from (10, 28), we find
)()( rhrh r . (32)

Finally, from (8, 32), we find
 







  )()()(

4
)( re

cr
rhrh

r
rhcrj z

r
r

r
z




(33)

Taking into account (30.31), we note that the sum of the first three terms 
is equal to zero, and then

)(
4

)( rerj zz 


 . (34)

So, we finally obtain:
  1 

 Arre , (30)

)()( rerer  , (28)

 rre
cM

Mrez 


 )1(ˆ)( 
 (25а)

  )(ˆ re
M

rhr 
 , (31)
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)()( rhrh r , (32)

0)( rhz , (24)

)(
4

)( rerj zz 


 . (34)

The accuracy of the solution
To analyze the accuracy of the solution may be for given values of 

all constants to find the residual equation (1-7). Fig. 0 shows the 
logarithm of the mean square residual of the parameter   - 

)(ln fN  ,  when 1,1,300,1  A .
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Chapter 5. Solution of Maxwell's 
Equations for Wire with Constant Current

Contents
1. Introduction
2. Mathematical Model
3. Energy Flows
5. Discussion
Appendix 1
Appendix 2
Appendix 3
Appendix 4

1. Introduction
In [7, 9-11] was shown that constant current in the wire has a 

complex structure, and the flow of electromagnetic energy is spreading 
inside the wire. Also the electromagnetic flow

 directed along the wire axis,
 spreads along the wire axis,
 spreads inside the wire, 
 compensates the heat losses of the axis component of the 

current. 

Rn

A B C

D

J

J
Fig. 1.

In [9-11] a mathematical model of the current and the flow has 
been. The model was built exclusively on base of Maxwell equations. 
Only one question remained unclear. The electric current J ток and the 
flow of electromagnetic energy S are spreading inside the wire ABCD 
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and it is passing through the load Rn. In this load a certain amount of 
strength P is spent. Therefore the energy flow on the segment AB should 
be larger than the energy flow on the segment CD. More accurate, 
Sab=Scd+P. But the current strength after passing the load did not 
change. How must the current structure change so that еhe 
electromagnetic energy decreased correspondingly? This issue was 
considered in [7].

Below we shall consider a mathematical model more general than 
the model (compared to [7, 9-11]) and allowing to clear also this 
question. This mathematical model is also built solely on the base of 
Maxwell equations. In [12] describes an experiment which was carried 
out in 2008. In [17] it is shown that this experiment can be explained on 
the basis of non-linear structure of constant current in the wire and can 
serve as an experimental proof of the existence of such a structure. 

2. Mathematical Model
Maxwell's equations for direct current wire are shown Chapter 

"Introduction" - see variant 6. In SI-system they can be written as 
follows:

  0rot J , (а)

  04rot  oJJ
c

H  , (b)

  0div J , (с)

  0div H . (d)

Here, in these equations we included a given value of density oJ  of 
the current passing through the wire as a load. 

In building this model we shall be using the cylindrical coordinates 
zr ,,   considering 

 the main current oJ ,
 the additional currents zr JJJ ,,  ,
 magnetic intensities zr HHH ,,  ,
 electrical intensities E ,
 electrical resistivity  .

The solution requires to find density functions for all intensities and 
currents. The current in the wire is usually considered as average 
electrons flow. The mechanical interactions of electrons with the atoms 
are considered equivalent to electrical resistivity. 
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The equations (a-d) for cylindrical coordinates have the following 
form:

01














z
HH

rr
H

r
H zrr


 , (1)

,1
r

z J
z
HH

r









 


(2)

,Jr
H

z
H zr 








(3)

,1
oz

r JJH
rr

H
r
H












 (4)

01














z
JJ

rr
J

r
J zrr


 , (5)

01










z
JJ

r
z 


, (6)

0







r
J

z
J zr , (7)

01












 rJ
rr

J
r
J

. (8)

The model is based on the following facts: 
1. the main electric intensities oE  is directed along the wire axis ,
2. it creates the main electric current oJ  – the vertical flow of 

charges,
3. vertical current oJ  forms an annular magnetic field with intensity 

H  and radial magnetic field rH  - see (4),
4. magnetic field H  deflects by the Lorentz forces charges vertical 

flow in the radial direction, creating a radial flow of charges - 
radial current rJ ,

5. magnetic field H  deflects by the Lorentz forces the charges of 
radial flow perpendicularly to the radii, thus creating an vertical 
current zJ  (in addition to current oJ ), 

6. magnetic field rH  by the aid of the Lorentz forces deflects the 
charges of vertical flow perpendicularly to the radii, thus creating 
an annular current J ,
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7. magnetic field rH  by the aid of the Lorentz forces deflects the 
charges of annular flow along radii, thus creating vertical current 
zJ  (in addition to current oJ ),

8. current rJ  forms a vertical magnetic field zH  and annular 
magnetic field H  - see (2),

9. current J  form a vertical magnetic field zH  and radial magnetic 
field rH  - see (3),

10. current zJ  form a annular magnetic field H  and radial magnetic 
field rH  - see (6),

Thus, the main electric current oJ  creates additional currents 

zr JJJ ,,   and magnetic fields zr HHH ,,  . They should satisfy the 
Maxwell equations. 

In addition, electromagnetic fluxes shall be such that
A. Energy flux in vertical direction was equal to transmitted 

power,
B. The sum of energy fluxes is to equal to transmitted power plus 

the power of thermal losses in the wire.
Thus, currents and intensities shall confirm Maxwell's equations 

and conditions А and В. In order to find a solution we part this problem 
into three following tasks (that is true, because Maxwell's equations are 
linear):

a) to find solution of equations (1-8) without current oJ ; this 
solution occurs to be multi-valued;

b) to find additional limitations on initial solution posed by 
conditions А and В; here we take into account current oJ  and 
intensity oH  produced by it.

First of all, we shall prove that a solution of system (1-8) is exist 
with non-zero currents .,, zr JJJ 

For the sake of brevity further we shall use the following notations:  
)cos( zco   , (10)

)sin( zsi   , (11)

where  ,  – are certain constants. In the Appendix 1 it is shown that 
there exists a solution of the following form: 

 corjJ rr . , (12)

sirjJ )(.   , (13)
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sirjJ zz )(.  , (14)

 corhH rr . , (15)

sirhH )(.   , (16)

sirhH zz )(.  , (17)

where )(),( rhrj - certain function of the coordinate r . 
It can be assumed that the average speed of electrical charges 

doesn't depend on the current direction. In particular, for a fixed radius 
the way passed by the charge around a circle and the way passed by it 
along a vertical will be equal. Consequently, for a fixed radius it can be 
assumed that z . Based on this assumption we can build the 
trajectory of the charge motion according to the functions (10, 11).

The figure 2 shows three spiral lines for z , described by 
functions (10, 11) of the current: the thick line for 8.0,2   , the 
average line for 2,5.0    and a thin line for 
линия 6.1,2   . 

-1
-0.5

0
0.5

1

-1
-0.5

0

0.5
1
0

2

4

6

8

(TokPotok33.m)Fig. 2.

In Appendix 1 it is shown that the functions satisfy the following 
equations: 

 rrj ,,kh)(   , (25)

   )()(1 rjrrjrjr 
 , (26)


  )()( rjrrjz  , (27)
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0)( rhz , (28)
  ,/)(  rjrh r (29)

   /)(rjrhr  . (30)

This solution is analyzed below.
Example 1. On Fig. 3.1 the graphs of functions 

)(),(),(),(),(),( rhrhrhrjrjrj zrzr   are shown. These functions are 
calculated with given 10)0(,50,6.1   j  and wire radius 

1.0R . The first column shows functions )(),(),( rjrjrj zr  , the 
second - functions )(),(),( rhrhrh zr  , and the functions shown in the 
third column will be discussed later.
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Fig. 3.2 illustrates functions (12-14), when constz  . The fourth 
window shows function












.0),(if,0

,0),(if),,(
),(






rJ
rJrJ

rJp
z

zz
z

Let's determine current density in the wire of radius R:

  



 ,

2

1

r
zz ddrJ

R
J . (31)
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Taking into account (14), we find 

       







  

R

z
r

zz drdsirj
R

ddrsirj
R

J
0

2

0
2

,
2

11 









(32)

Taking into account (11), we find 

  





 

R

zz drz
c

z
c

rj
R

J
0

2 )2cos()22cos(1 


. (33)

From here it follows that total current zJ  is changed depending on z  
coordinate. However, total given current with density oJ  remains 
constant.

3. Energy Flows
The density of electromagnetic flow is Pointing vector 

HES  . (1)
The currents are being corresponded by eponymous electrical intensities, 
i.e.

JE   , (2)

where   is electrical resistivity. Combining (1, 2), we get:

BJHJS 

 . (3)
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Magnetic Lorentz force, acting on all the charges of the conductor 
per unit volume - the bulk density of magnetic Lorentz forces is equal to

BJF  . (4)
From (3, 4), we find:

 SF  . (5)
Therefore, in wire with constant current magnetic Lorentz force density 
is proportional to Poynting vector.

Example 1 To examine the dimension checking of the quantities 
in the above formulas - see Table 1 in system SI.

Table 1
Parameter Dimension

Energy flux density S kg·s−3

Current density J A·m−2

Induction B kg·s−2·A
Bulk density of magnetic Lorentz 
forces

F N·m-3=kg·s−3·m-2

Permeability  kg·s−2·m·A−2

Resistivity  kg·s−3·m3·A−2

  s·m-2

So, current with density J  and magnetic field is generated energy 
flux with density S , which is identical with the magnetic Lorentz force 
density F  - see (5). This Lorentz force acts on the charges moving in a 
current J , in a direction perpendicular to this current. So, it's fair to say 
that the Poynting vector produces an emf in the conductor. Another 
aspects of this problem are considered in work [19], where this emf is 
called the fourth type of electromagnetic induction.

In cylindrical coordinates zr ,,   the density flow of 

electromagnetic energy has three components zr SSS ,,  , directed along 
вдоль the axis accordingly.

3.1. In each point of a cylinder surface there are two 
electromagnetic fluxes directed radially to the center with densities

  HJSHJS zrzr  21 ,  (6)

- see Fig. 5. Total radially-directed flux density in each point of the 
cylinder surface,

  HJHJSSS zzrrr  21  (7)
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zJ
JH

2Sr

zH

1Sr

Fig. 5.

3.2. In each point of a cylinder surface there are two 
electromagnetic fluxes directed vertically with densities

  HJSHJS rzrz  21 ,  (8)

- see Fig. 6. Total vertically-directed flux density in each point of the 
cylinder surface,

 rrzzz HJHJSSS   21  (9)

rJ

J
H 2S z

rH

1S z

Fig. 6.

3.3. In each point of a cylinder surface there are two 
electromagnetic fluxes circumferentially directed with densities

,, 21 zrrz HJSHJS     (10)

- see Fig. 7. Total circumferentially directed flux density in each point of 
the cylinder surface,

 zrrz HJHJSSS   21  (11)

rJ

2S

rH

1SzH zJ

Fig. 7.
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In view of the above, we can write the equation for 
electromagnetic flux density in a direct current wire:

 

















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HJHJHJ

HJ
S
S
S

S . (12)

The third components in (12) appears due to the fact that energy fluxes 
are influenced by current density oJ  and intensity

rJH oo  (13)

- see (2.4). From (2.12-2.17, 12, 13) it follows that 
 
 
 
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rJcojcosihjhj

sihJcosihjhj
rJsihjhj

S
S
S

S
zr

orrr

zozrrz

ozz

z

r








































  







,,

22

. (14)

Fig. 3.1 the right-hand column shows the functions
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Fig. 3.3 shows the functions
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when constz  . In the fourth window shows the function
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Taking into account designations (15) and equations (2.28), from (14) we obtain:
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 
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Appendix 4 contains evaluations of the double integrals from 
equation (17). If we apply them for unit wire length 1oz , we obtain the 
following:
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 
, (18)

where




22
,

  o
z

zdzdV , (19)


1~

2 D , (20)

21
~22~ DD 


, (21)

23
~5.0

2
1~ DbbD  


 , (22)

b – number of helical trajectory per unit length. 

Through combining (18-22) we finally obtain:
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or 
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 . (24)

Second components in the first term of equation (24) is determined as
22
ow JRS  , (25)

which is exactly equal to thermal losses power per wire unit length. 
However, according to existing assumptions the wire unit length 
accommodates an external energy flux directed radially to the wire axis 
and determined by (25). Here we see that this flux is internal.

Obviously, these correlations remain the same for any z = 0 
position on oz axis.

So, fluxes (23) circulate in the wire. They are internal fluxes. They 
are produced by currents and magnetic intensities created by these 
currents. In turn, these fluxes generate currents such as Lorentz forces. 
In this case total energy of these fluxes is partially spent on thermal 
losses, but mainly goes to load.

Example 3. Let's consider the following example. Table 1 shows 
initial data and calculation results. Fig. 8 shows energy flux densities from 
(23) as function of radius. More specifically, the left windows show 
functions      rSSzrSSfrSSr zr  ,,  , and the right windows - 
functions 
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. (26)

Based on these functions we can calculate total energy fluxes (powers) 
Sr2full, Sf2full, Sz1full, Sz2full. 
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At the present time, the author of these paper has no regular 
calculation method. With certain design parameters (see column "Given") 
for modeling it's required to vary values of the parameters (see column 
"Determined"). Certainly, for this case it is necessary only to show that 
an admissible decision exists. 

From Table 1 it follows that transmitted power to thermal losses 
power ratio Sz2full/Sw=10-4. So, with given current density oJ  
transmitted power can take up almost any value depending on parameters 

 , , i.e. current helical trajectory density. Therefore, consumed power 
does not depend on current, and is determined by current helical 
trajectory density.

Table 1
Given Found Calculated

R 1 mm   100 Power loss in 
the wire

Sw 0.22 Wt

b 100  -1.6 Sr2full 5·10-9 Wt
oJ 2 А\mm2  -63 Sf2full 6·10-10 Wt

)0(j 2 Sz1full 4·10-9 Wt
Power 
transmitted to 
the load

Sz2full 2000 Wt
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4. Discussion
Thus, the energy flow along the wire's axis zS  is created by the 

currents and intensities directed along the radius and the circles. This 
energy flow is equal to the power released in the load HR  and in the wire 
resistance. The currents flowing along the radius and the circle are also 
creating heat losses. Their powers are equal to the energy flows SSr , , 
directed along radius and circle.

The question of the way by in which the electromagnetic energy 
creates current is considered in [19]. There it is shown that there exists a 
fourth electromagnetic induction created by a change in electromagnetic 
energy flow. Further we must find the dependence of emf of this 
induction from the electromagnetic flow density and from the wire 
parameters. There is a well-known experiment which can provide 
evidence for existence of this type of induction [17].

It is shown that direct current has a complex structure and extends 
inside the wire along a helical trajectory. In the case of constant current 
the density of helical trajectory decreases with the decrease of the 
remaining load resistance. There are two components of the current. The 
density of the first component oJ is permanent of the whole wire section. 
The density of the second component is changing along the wire section 
so that the current is spreading n a spiral. In cylindrical coordinates 

zr ,,  this second component has coordinates zr JJJ ,,  . They can 
be found as the solution of Maxwell equations.  

With invariable density of the main current in a wire the power 
transmitted by it depends on the structure parameters ( ,  ) which 
influence the density of the turns of helical trajectory. Thus, the same 
current in a wire can transmit various values of power (depending on the 
load).

Let us again look at the Fig 1. On segment AB the wire transmits 
the load energy P. It is corresponded by a certain values of ( ,  ) and 
the density of coils of the current's helical path. On the segment CD the 
wire transmits only small amount of energy. It corresponds to small value 
of   and small density of the coils of current's helical path. 

Naturally, the resistivity of the wire itself is also a load. Thus, as the 
current flows within the wire, the helic of the current's path straightens.

The dependence of current density and intensity density was 
considered in detail in [10]. Generally, the mathematical model presented 
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in [10] may be considered as a consequence of the described model for
0 .
Thus, it is shown that there exists such a solution of Maxwell 

equations for a wire with constant current which corresponds to the idea of
 law of energy preservation
 helical path of constant current in the wire, 
 energy transmission along and inside the wire, 
 the dependence of helical path density on the transmitted 

strength.

Appendix 1
Let us consider the solution of equations (2.5-2.9) in the form of 

(2.12-2.17). Further the derivatives of r  will be designated by strokes. We 
rewrite the equations (2.5-2.9) in the form

0)(
)(

)()(
 rj

r
rj

rj
r
rj

zr
r  ,  (1)

    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  ,  (2)

 ,)()(1 rjrhrh
r rz     (3)

  ),()( rjrhrh zr    (4)

  ,0)()(
)(

 rj
r
rhrh

r
rh

z
r 

  (5)

0)()(1
   rjrj

r z , (6)

  0)(  rjrj zr  , (7)

  0)(
)(

 


r
rjrj

r
rj r . (8)

We multiply (5) to   . Then we get:
  ,0)()(

)(






 rj

r
rhrh

r
rh

z
r 




 (9)

Comparing (1) and (9), we see that they are the same, if 
 ,)( rjrh r  (10)

  )(rjrhr   . (11)

It is important to note that this comparison is valid only for 0)( rjz . 
Equations (10, 11) coincide with (3, 4) for 0)( rhz . Consequently, if 
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0)( rjz  and 0)( rhz  equation (1) can be eliminated and the system 
(1-5) is simplified and takes the form

    0
)(

 

r
rh

rh
r
rh

r
r , (see (2)) (12)

 ,)( rjrh r  (see (10)) (13)

  )(rjrhr   , (see (11)) (14)

  )(1)(
)(

rjrh
r

rh
r
rh

zr  
 . (see (5)) (15)

Now consider the case when 0)( rjz . In this initial system will 
take the form:

0
)(

)()(
 

r
rj

rj
r
rj

r
r , (16)

    0)(
)(

 rh
r
rh

rh
r
rh

zr
r  , (17)

 ,)()(1 rjrhrh
r rz    (18)

  ),()( rjrhrh zr   (19)

  01)(
)(

 
 rh

r
rh

r
rh

r . (20)

Substituting (18, 19) in (16). Then we get:

   0)()()(1)(1)(1
2 

r
rhrhrhrh

r
rh

r
rh

r zrzz
 

or

  0)()(1)(1
2 

r
rhrhrh

r
rh

r rz
  (21)

Thus to calculate the three intensities obtain three equations (17, 20, 21). 
We exclude )(rh  from the (20, 21):

    0)(1)(1)(1
2 






 

r
rh

r
rhrh

r
rh

r
rh

r rrz
 

or

0)(1
2  rh
r z .

Thus, and when 0)( rjz  must comply with conditions 0)( rhz . 
Thus, the system of equations (12-15) is executed for any )(rjz  and 
wherein

0)( rhz . (22)
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So, equations (1-8) can be substituted for equations (22, 12-15, 6-
8). We rewrite them for readers' convenience:

,0)( rhz (22)

    0
)(

 

r
rh

rh
r
rh

r
r , (23)

 ,)( rjrh r  (24)

  )(rjrhr   , (25)

  )(1)(
)(

rjrh
r

rh
r
rh

zr  
 . (26)

0)()(1
   rjrj

r z (27)

  0)(  rjrj zr  (28)

  0)(
)(

 


r
rjrj

r
rj r (29)

When substituting (24, 25) into (29) we can notice that the 
equation obtained is the same as (23), and that's why equation (23) can be 
excluded from this system.

From (26, 27), we find:
 

)()()( 2

rjr
r
rj

rj
r
rj

r
r





  (35)

From (29), we find:

   )()(1 rjrrjrjr 
 (36)

   )()(21 rjrrjrjr 
 (37)

From (35, 36, 37), we find:
 

)()()( 2

rjr
r
rj

rj
r
rj

r
r





  (35)

   
)()()(21)(

)(1 2

rjr
r
rj

rjrrjrj
r
rj



















  (38)

The solution and analysis of it are described in Appendix 2. The 
solution therein has no analytical form. Let's designate this solution as 
function 

 rrj ,,kh)(   (39)

and derivative of this function - as function
 rrj ,,kh1)(   (40)
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When functions (39, 40) are given, all other functions can be found 
using (22, 27, 28, 36, 37, 24, 25). So, for determination of all the 
functions we have the following equations:

0)( rhz . (see (22)) (41)

 rrj ,,kh)(   (see (39)) (42)

 rrj ,,kh1)(   (see (40)) (43)


  )()( rjrrjz  (see (27)) (44)

 rjrj rz  )( (see (28)) (45)

   )()(1 rjrrjrjr 
 (see (36)) (46)

   )()(21 rjrrjrjr 
 (see (37)) (47)

  ,/)(  rjrh r (see (24)) (48)

   /)(rjrhr  . (см. (25)) (49)

Accuracy of the solution obtained is analyzed in Appendix 3.

Appendix 2. 
Consider the equation (38) of Appendix 1:
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To simplify it, we get:
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
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 rjrrjr
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









 . (2)

Equation (2) does not have an analytical solution. Although 
numerical technique allows to find functions

 rrj ,,kh)(   (3)

 rrj ,,kh1)(   (4)

 rrj ,,kh2)(   (5)
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For the case in Fig. 13 these functions are shown for 
 50,5.1    on radius 1.0R .
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Fig.13 (forFig13.m)

Appendix 3. 
Hereinafter, the equations are numbered according to Appendix 1. 

Let's consider accuracy of the solution of system (1-8). Substituting 
functions (41-49) in equations (1-8) we can calculate standard residual 
error of these equations. Fig. 14 illustrates a graph of these residual error 
when  50,5.1    on radius 1.0R . 

The standard residual error of these equations can be found as a 
function of a certain parameter. Fig. 130 illustrates a graph of the residual 
error as a function of   when 50  on radius 1.0R . Here, the 
upper window shows the value of residual error, and the lower window - 
logarithmic value of residual error.
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Appendix 4.
First, we find the following values:
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We shall find double integrals:
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When oo z,  are given, we can evaluate parameters C, D. From 
(1-3) it follows that mean modulus values of parameters A are as follows:


1~

A . (7)

From (4-7) we can evaluate parameter D:
 


 22sin~2~ 1

1  oAD . (8)
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Suppose
bo  2 , (11)

where b - the number of turns of the helical trajectory. Then




2
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3  bD . (12)

88



Chapter 6. Single-Wire Energy Emission and Transmission

Chapter 6. Single-Wire Energy 
Emission and Transmission

Contents
1. Wire Emission
2. Single-Wire Transmission of Energy
3. Experiments Review

1. Wire Emission
Once again (as in Chapter 2), we deal with an AC low-resistance   

wire. It incurs radiation loss, though loses no heat. Emission comes from 
the side surface of the wire. Vector of emission energy flux density is  
directed along the wire radius and has S value, see 2.4.4 – 2.4.6 in 
Chapter 2. So,

  



,

2

r
rr ddrsisS , (1)

where
  hehes zzr  (2)

or, with regard to formulas given in the Table 1 of Chapter 2,

  22
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 









 RRAReRRhRes zr , (3)

where R means a wire radius. In addition, consider formula (see (32) in 
the Appendix 1 of Chapter 2).


c

  или 
c

sign  )( , где 1)( sign . (4)

Thus, we obtain:
12

22)(  


 R
c

Asignsr , (5)

From (1,5) we obtain:
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
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With additional (1.4.2), we finally obtain:
12

2

2
)(  


 RAsignSr . (6)
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Obviously, the value must be positive, as emission does exist. By 
the way, this fact disproves a well-known theory of an energy flux 
propagating beyond the wire and entering it from the outside.

As value (6) is positive, condition
1)()(   signsign , (7)

must assert, i.e. values  ,  must be of opposite sign. In this 
connection, for later use we take formula of the type

12
2

2
 


 RASr . (8)

The formula calculates the amount of energy flux emitted by the wire of 
unit length. Correlate this formula with the one (2.4.15) for the density of 
energy flux flowing along the wire: 
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Consequently, 
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4cos1
124
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S

z

r . (10)

So, the wire emits a portion of a longitudinal energy flux of

zr SS   . (11)

Let energy flux is zoS  in the beginning of wire. Energy flux the 
wire emits along the L length, can be obtained from the following 
formula

 LzorL SS  1 . (12)

Energy flux remaining in the wire
  LzorLzozL SSSS  11 . (13)

Thus, we can calculate the length of wire where the flux remains 

zozL SS   . (14)

The length can be found from the expression
  L  11 ,

i.e.
     1ln1lnL . (15)

Example 1. With 1,1,2.1   , we obtain c 10 . If 
3103   so will 6103 1010310103  . The length of wire that 

keeps 1% of initial flux makes 
    99501ln01.01ln  L  sm.
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2. Single-Wire Transmission of Energy
A body of convincing experiments show the transmission of 

energy along one wire.
1. [29] analyses a transmitting antenna of long wire type that finds 

its use in amateur short-wave communication. The author says the 
antenna has “an adequate circular pattern that allows the communication to be 
established almost in all directions”, whereas in the direction of wire axis “a 
considerable amplification develops and grows as antenna length increases… As the 
length of the increases, the main lobe of the pattern tends to approach antenna axis as 
close as possible. In the process, emission directed towards the main lobe gets stronger”. 
Both from the fact that long wire emits in all directions and from the 
previous part it follows that energy flux flows along the wire. It is 
significant that energy flux exists without any external electrical voltage at 
the wire tips.

1

3

4

2

2

3

4

5

5

6

7

Рис. 1. 

2. S.V. Avramenko’s long-known experiment in single-wire 
transmission of electrical energy, also named Avramenko’s fork. First, it 
was described in [30] and then in [31] -see Fig.1. [30] reported that the 
experimental arrangement included a generator 2 up to 100 kWt of 
power to generate 8 kHz voltage that went to Tesla’s transformer. One 
tip of the secondary winding was loose, while the other end connected 
Avramenko’s fork. Avramenko’s fork was a closed circuit that included 
two series diodes 3 and 4 , whose common point was connected to the 
wire 1, and a load, with capacitor 5 connected in parallel to it. Several 
incandescent lamps – resistance 6 (alternative 1) or discharger (alternative 
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2) formed the load. Open circuit allowed Avramenko to transmit about 
1300 Wt of power between the generator and the load. Electrical bulbs 
glowed brightly. Wire current was very weak, and a thin tungsten wire in 
the line 1 did not even run hot. That was the main reason why the 
findings of the Avramenko’s experiment were difficult to explain.

On the one hand, the structure offers quite an attractive method of 
electrical energy transmission, whereas, on the other hand, it apparently 
violates laws of electrical engineering. Since then, many authors 
experimented with that structure and offered theories to explain 
phenomena observed – see e.g. [32-34]. However, no theory has been 
universally accepted. the wire tips. Here also energy flux exists without 
any external electrical voltage at the wire tips. 

3. Laser beam should also be included in this list. Laser obviously 
directs energy flux into the laser beam. The energy, that may be rather 
considerable, incurs almost no loss when transmitted along the laser 
beam and, on its exit, is converted into the heat energy. 

4. Known are experiments by Kosinov [35] that showed the 
glowing of the burned incandescent lamps. It was reported that 
“incandescent lamps burned most often in more than two places, with not only spiral, 
but current conductors of the lamp burning. With the first circuit break took place, 
over some time lamps light was even brighter than one produced before burning. The 
lamps kept glowing until burning of the next portion of the circuit. In this experiment, 
inner circuit of one lamp burned in as many as four places! Spiral burned in two 
places, as well as both lead electrodes in the lamp. The lamp went off no sooner than 
the fourth leg of the circuit burned, i.e. the electrode where the spiral is attached”. 
Here, too, energy flux exists with no external electrical voltage at the wire 
tips. It is significant that burned lamp consumes even more power 
sufficient to burn the next leg of the spiral.

Consideration of equation for the electromagnetic wave in the wire 
cannot reveal physical nature of the wave existence: any component of 
intensity, current and density of energy flux can be seen as an exposure 
governing all the rest. A longitudinal electrical intensity is accepted to be 
such an exposure. Facts reported earlier testify possible exceptions, e.g. 
when exposure is an energy flux at the wire inlet. [19,17] show that 
energy flux can be viewed as fourth electromagnetic induction. 

Thus, inlet energy flux propagates along the wire, and, (almost with 
no loss, see pp.2.3.4) reaches its distant end. Current can propagate 
alongside with the energy flux. Yet, this correlation does not need to be 
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(see pp. 2,3 above). It is significant output energy flux can be rather 
considerable and make a part of the load. The lack of energy flux –to-
current correlation was approached and explained in the Section 2.5.

3. Experiments Review
Return to "long-wire" antenna. It emits in all directions. As is 

obvious from the Section 1, rS energy flux emitted makes a part of a 
longitudinal zS  energy flux, see (1.11). Their coefficient of 
proportionality  relies, in its turn, on frequency  - see Example 1. 
Because of this, reduction of frequency  drops emission of energy flux 

rS .
Section 2.5. considered and correlated currents and energy fluxes in 

the wire. It showed that, generally, currents and energy fluxes inside the 
wire exist as "jets" of opposite direction. This fits with the existence of 
active and re-active energy fluxes.
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Fig.9. (SSMB)Sminus

Formation of such "jets" may be assumed in the “long wire”. If 
“long wire” emits all the incoming energy, then one of the fluxes (active 
power flux) prevails, and the generator wastes its energy to support it. If 
“long wire” does NOT emit, energy flux flowing in one direction returns 
the opposite way, the generator SAVES the energy (re-active power flux 
circulates), and no current forms in the wire. Clearly, there are some 
intermediate cases when “long wire” emits only a part of energy it 
receives.

93



Chapter 6. Single-Wire Energy Emission and Transmission

With some combinations of parameters, total currents in opposing 
jets have are equal in absolute value, and, as well as total energy fluxes of 
opposing jets. For the sake of reader’s convenience, Fig.9 from the 
Section 4 is replicated above. It shows the functions of the opposing jets:

plusS - energy flux jet directed from the energy source;
minusS  - energy flux jet directed to the energy flux;

For illustration, functions plots are shown with the opposite sign. They 
obey the following relationships between integrals of sectional area, Q, of 
the wire:

 
QQ

dQSdQS minusplus ,

 
QQ

dQJdQJ minusplus .

As follows from experiments (later considered in more details),  
currents and jets can complete at the broken wire – see Fig.3, where 1 
means a wire, 2 means a direct “jet”, 3 means a reverse “jet”, and 4 
means a closing circuit. In this case, there arises the question of the 
nature of electromotive force that makes the current to overcome the 
spark gap. [19,17] show that energy flux can be viewed as fourth 
electromagnetic induction. 

1 2

3 4
Рис. 3.

Consider these experiments. Prominent experiments by Kosinov 
[35] evidently prove the hypothesis offered: the arch that forms at the 
broken spiral is to have a beginning and an end. Electromotive force 
should be applied between them. When expanding arch reaches the next 
leg of the spiral, this leg, together with connecting arch, joins a long line 
etc. Kosinov observed as many as eight such legs. 
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Avramenko’s fork is a circuit that includes two series diodes and a 
load – see Fig.1. The circuit forms the arch shown in Fig.3. An air gap of 
discharger 7 can serve as a load, an equivalent of arch from Kosinov’s 
experiments. Resistor 6 – energy receiver in single-wire energy 
transmission system – can, too, serve as a load. Wire 1 of this structure 
can be identified with “long wire”. In this case (at low frequency of 8 
kHz) the wire 1 does not emit. Consequently, it carries two opposing 
energy fluxes but no current. 

Which means single-wire energy transmission follows from 
Maxwell’s equations without any contradiction. 
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Chapter 7. Solution of Maxwell's 
equations for a capacitor in constant 
circuit. Nature of potential energy of 

capacitor.

Contents
1. Introduction
2. System of Equation Solution
3. Intensities and Energy Flows 
4. Discussion

1. Introduction
The electromagnetic field of a capacitor in an alternative current 

circuit is investigated in [1]. Below the electromagnetic field in a capacitor 
being charged as well as the field existing in the charged capacitor are 
examined.

We use the Maxwell equations in the GHS system of unit written 
in the following form with  ,  differing from 1:

  0rot 




t
H

c
E  , (a)

  0rot 




t
E

c
H  , (b)

  )(div tQE  , (c)
  0div H , (d)

where 
EH ,  - are the current, the magnetic field strength, and the electric 

field strength, respectively;
 ,  - are the dielectric permeability and the magnetic permeability, 

respectively,
)(tQ  - charge on capacitor plate, which appears and accumulates 

during charging.
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This system of partial differential equations has a solution represented by 
the sum of a particular solution of this system and a general solution of 
the corresponding homogeneous system of equations. Homogeneous 
system of equations can be written as follows:

  0rot 




t
H

c
E  , (1)

  0rot 




t
E

c
H  , (2)

  0div E , (3)
  0div H , (4)

i.e. it differs from the system (a-d) by the absence of term )(tQ . 
Particular solution with given t  is a solution, which associates electric 
intensity )(tEz  between the capacitor plates with electric charge )(tQ . If 

)(tEz  varies with time, then a solution of the system of equations (1-4) 
shall exist at given )(tEz . Exactly this solution we're going to seek further 
on.

Electromagnetic wave propagation in charging capacitor is 
shown, and mathematical description of this wave is proved to be a 
solution of Maxwell's equations (1-4). It was shown that a charged 
capacitor accommodates a stationary flux of electromagnetic energy, and 
the energy contained in the capacitor, which was considered to be 
electric potential energy, is, indeed, electromagnetic energy stored in the 
capacitor in the form of the stationary flux.

2. System of Equation Solution
Let us consider a solution to the Maxwell equations (1.1-1.4). In 

the cylindrical coordinate system zr ,,   these equations take the 
form:
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where 
cv  , (9)

cq  , (10)

 zr EEE ,,    are the electric intensities; 
 zr HHH ,,    are the magnetic intensities.

The solution shall be found for non-zero intensity zE . 
For brevity, the following abbreviated forms will be used below:

)cos( zco   , (11)
)sin( zsi   , (12)

where  ,  are constants. Let us write the unknown functions in the 
following form:

   1)exp(.  tcorhH rr  , (13)

 1)exp()(.  tsirhH  , (14)

 1)exp()(.  tsirhH zz  , (15)

   )exp(1. tsireE rr  , (16)

 )exp(1)(. tcoreE   , (17)

 )exp(1)(. tcoreE zz  , (18)

where )(),( rerh - some functions of coordinate r . Here, the bias 
current is

)exp()( tcoreE
dt
dJ zzz   (19)

Fig. 1 shows these variables as a function of time and their time 
derivatives for 300 : zH  is shown with solid lines, zE  with dashed 
lines, and zJ  with a dotted line. This provides good evidence that in the 
system of equations (1-8) the amplitudes of all strength components 
simultaneously approach a constant value and the current amplitude 
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tends to zero with t . These conditions correspond to the capacitor 
charging via a fixed resistor.
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Fig.1. (SSMB6.1)

After the capacitor becomes charged, the current stops to flow. 
However, as shown below, the stationary flow of electromagnetic energy 
persists. 

Direct substitution of functions (13-18) makes it possible to 
transform the system of equations (1-8) with four arguments tzr ,,,   
into a system of equations with one argument r  and unknown functions 

)(),( rerh . This system of equations has the form:

0)(
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  0)()(
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z
r 

 . (28)

It is identical to the similar system of equations for a capacitor in 
an alternative current circuit – see chapter 2. The solution of this system 
is also identical to the solution obtained in chapter 2 and has the 
following form:

 rre ,,kh)(   , (30)

   )()(1 rerrerer 
 , (31)


qrerrez )()(  , (32)
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1)( re
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rh r , (33)

   
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

1re
c

rhr  , (34)

0)( rhz . (35)
where kh()  is the function determined in chapter 2,
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Thus, the solution of the Maxwell equations for a capacitor being 
charged and for a capacitor in a sinusoidal current circuit differs only in 
that the former includes exponential functions of time and the latter 
contains sinusoidal time-functions. 

3. Intensities and Energy Flows 
As in chapter 2, the density of energy flows along the coordinates 

can be determined by the formula: 
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where
 
 
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zrrz

zzr

hehes
hehes
hehes






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

, (2)

 4c . (3)
Let us consider functions (2) and )(),(),( rerere zr  , 

)(),(),( rhrhrh zr  . Fig. 2 shows, for example, these functions plotted 

for 300,50,2,1,5.5,1  A . The conditions of 
this example differ from conditions of a similar example in chapter 2 for 
a capacitor in an alternative current circuit only in the value of parameter 
ω which is equal to 300  in this paper ( 300  in chapter 2). It is 
evident that these functions differ only in sign. 

It must be emphasized once again that these functions are not zero 
at any time moment, i.e. after charging of the capacitor the electric and 
magnetic intensities remain and take stationary, but non-zero values. 
Only magnetic intensity 0)( rH z  permanently equals zero, and when 
charging is completed, offset current interrupts.

The stationary electromagnetic energy flow is also retained. Its 
existence does not contradict our physical understanding [3]. The 
presence of this flow in a static system was studied by Feynman [13]. He 
provides an example of an energy flow in a system consisting of an 
electric charge and a permanent magnet which are fixed and closely 
spaced. 
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Other experiments [38] demonstrating this effect are also available. 
Fig. 2 shows an electromagnet which retains its attractive force after the 
current is switched off. Edward Leedskalnin is assumed to use such 
electromagnets in constructing the famous Coral Castle, see Fig. 3 [38]. 
In these electromagnets (or solenoids), the electromagnetic energy in not 
zero at the instant the current is switched off. This energy can be 
dissipated by radiation and heat loss. However, if these factors are not 
significant (at least at the initial phase), the electromagnetic energy must 
be conserved. With electromagnetic oscillations, the electromagnetic 
energy flow must be induced and propagate WITHIN the solenoid 
structure. This flow can be interrupted by destructing the structure. In 
this case, according to the energy conservation law, the work should be 
done equal to the electromagnetic energy which dissipates on destruction 
of the solenoid structure. This means that a "destructor" should 
overcome a force. It is this fact that is demonstrated in the above-
specified experiments. Mathematical models of similar solenoid 
structures based on the Maxwell equations are examined in [39]. The 
conditions are identified which are to be met to maintain the 
electromagnetic energy flow for an unlimited time period. 

Рис. 2. Рис. 3.

Thus, a stationary electromagnetic energy flow is formed in a 
capacitor. Let us consider the structure of this flow in more details. From 
(2.11, 2.12, 3.1) it follows that at each point in the dielectric the 
components of energy flows can be determined using the formula:
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where, as it follows from (2.30-2.35, 3.2),
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For example, let us consider a development of a cylinder with a 
given radius r . At the circle of this radius vector S always points in the 
direction of a radius increase and oscillates in value as )(sin 2 z  . 
The total vector  zSS   is always at an angle of  sszarctg  to the 
radius line and its value oscillated as  )(2sin z  . Fig. 4 shows the 
vector field  zSS   for 50,35.1   . Here, the horizontal line 
and the vertical line correspond to coordinates z,  
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Fig.4. (SSMB.88)

4. Discussion
It is demonstrated that an electromagnetic wave propagates 

through a capacitor as it is being charged, and the mathematical 
description of this wave is a solution of the Maxwell equations. In this 
case, in the dielectric body (i.e. where the field intensities ze  does exist) 
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the electric and the magnetic field intensities components exist. There are 
also present:

 the circumferential energy flow S , which changes its sign 
depending on  ,

 the vertical energy flow zS , which changes its sign depending 
on  ,

 the radial energy flow rS , always directed from the center. 
This means that the charged capacitor radiates via the side 
surface. 

The energy flow still persists in the charged capacitor as a 
stationary electromagnetic energy flow. It is this flow where the 
electromagnetic energy stored in the capacitor circulates. Hence, the 
energy which is contained in the capacitor and which is considered to be 
the electrical potential energy, is the electromagnetic energy stored in the 
capacitor in the form of the stationary flow. 

There are experiments exist for detection of magnetic field 
between charged plates of a capacitor using a compass [49, 50]. 
According to the above, in a round capacitor the compass needle shall 
deflect perpendicularly to capacitor radius. The observed deflection of 
the compass needle from capacitor axis can be explained by non-uniform 
charge distribution over the square plate.
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Chapter 7а. Solution of Maxwell's 
equations around the end of a 

magnet

Above we consider a capacitor with electric charge, where an 
electric intensity exist between its plates.

Let's now consider a gap in an annular magnet. There is a 
magnetic intensity between the planes forming this gap.

Due to the symmetry of Maxwell's equations, an electromagnetic 
field shall exist in the "gap" of a magnet, similar to the electric field in the 
gap of a charged capacitor. The difference between these fields is that in 
the field equations electric and magnetic components of intensity change 
places. In particular, in a charged round capacitor an electric intensity 
 0zE  exists, and there is no magnetic intensity  0zH . In non-
charged capacitor with a magnet a magnetic intensity exists  0zH , 
and there is no electric intensity  0zE .

Similar to (7.2.30-7.2.35) we obtain:
 rrh ,,kh)(   , (1)

   )()(1 rhrrhrhr 
 , (2)


qrhrrhz )()(  , (3)

 





1)( rh
c

re r , (4)

   





1rh
c

rer  , (5)

0)( rez . (6)
Here, the same as in capacitor, parameter   is included into 

exponential factor )exp( t , which characterizes the process of 
magnetizing permanent magnet during its formation ("charging" – similar 
to capacitor)
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Thus, the electric and magnetic intensities exist in the gap of our 
magnet (i.e. where intensity zh  exists). 

При существовании этих напряженностей in the gap of our 
magnet формируется стационарный поток электромагнитной 
энергии. Напомним формулу (7.3.4), которая в данном случае 
определяет проекции потоков энергии определяются по формуле:
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where, as it follows from (1-6, 7.3.2),
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Отсюда следует, что существуют
 the circumferential energy flow S , which changes its sign 

depending on  ,
 the vertical energy flow zS , which changes its sign depending 

on  ,
 the radial energy flow rS , always directed from the center. 

As it was shown in Section 1.5, together with these energy flows 
the momentums directed along the radius, circumferentially and along 
the axis also exist within the electromagnetic wave. There are also the 
angular momentums about any radius, any circle and about the axis. 

Obviously, these conclusions do not depend on the gap length. 
Therefore, we can say that

energy flows, momentums and angular momentums exist around 
the end of a magnet.

As it was shown in (1.5.6), angular momentum about the axis of 
the magnet in this point of the "gap"  zr ,,

  crSzrL zz ,, (9)
or, taking (7, 8) into account,
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where   )(, rhrhr   are determined by (1, 2). Total angular momentum 
along the entire circle of a given radius and at a given distance from the 
end

       









dzrhrh
c
rdzrLL rzzr  

2

0

22
2

2

0

)(2sin)(
2

,, .(11)

Here all the parameters can be found experimentally, and they are 
currently unknown. However, it can be said that at non-integer   

0zrL  always exists.

Appendix
The existence of the angular momentum about the axis of a 

magnet could be confirmed experimentally. But the necessary facilities 
are not available for the author. That's why we offer to consider the 
experiments, which (probably!) demonstrate the existence of angular 
momentum about the axis of a magnet. 

1. The experiment widely known in the Internet, is shown in Fig. 1, 
where 

 М - magnet with induction В,
 К - iron ring with a gap V (which is required in order to exclude 

the assumption of current in the ring),
 N – thread,
 L, D, A, C, d – dimensions.
When the ring is lowered, at a certain position it starts to rotate fast 

and rotates for some time T, then it stops and starts to rotate in the 
opposite direction. This rotation lasts for a time t<<T. Rotations with 
alternating direction repeat 3-5 times and then stop.

The author carried out this experiment as follows:
Variant 1: В = 1 Tesla, T = 30 sec,

(L, D, A, C, d)=(200, 15, 10, 15, d) mm;
Variant 2: В = 1 Tesla, T = 20 sec,

(L, D, A, C, d)=(200, 20, 05, 15, d) mm.
This experiment can be explained by the existence of a torque, 

which in the steady state is equilibrated by the torque of the thread. In 
another way this experiment is explained by changing of the thread 
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torque, when it is pulled due to attraction of the ring K to the magnet M. 
This explanation seems to be unconvincing, when doing the experiment 
yourself.

L

D

A

C

d

B

N

K

M

V

Fig. 1.

2. In the Internet [46] another experiment is demonstrated — see 
Fig. 2, where 

 М - magnet,
 К – magnet in the shape of an iron ring,
 S – wooden rod,
 S - holder of the rod S.
The ring К is held at a certain distance from the end of the magnet 

M and rotates on the wooden rod S. The idea of this experiment can be 
used for precise experimental proof of existence of the angular 
momentum about the axis of a magnet.
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Fig. 2.
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Chapter 8. Solution of Maxwell's 
Equations for Spherical Capacitor

Contents
1. Introduction
2. Solution of the Maxwell Equations in the Spherical 

Coordinate System
3. The solution of Maxwell's equations for the vacuum
5. Energy fluxes
6. An Electromagnetic Wave in a Charged Spherical 

Capacitor 
7. Electromagnetic wave around spherical charge
Appendix 1. Solution of Maxwell's equations for the medium
Appendix 2. Solution of Maxwell's equations for conductive 

dielectric

1. Introduction
The electromagnetic wave in a capacitor in an alternating current or 

constant current circuit is investigated in главах 2 и 7. In this paper, a 
spherical capacitor in a sinusoidal current circuit or an constant current 
circuit is considered. The capacitor electrodes are two spheres having the 
same center and radii 12 RR  . 

2. Solution of the Maxwell Equations in the 
Spherical Coordinate System 
Let us first consider a spherical capacitor in a sinusoidal current 

circuit. Fig. 1 shows the spherical coordinate system (  ,, ). 
Expressions for the rotor and the divergence of vector Е in these 
coordinates are given in Table 1 [4]. The following notation is used: 

E  - electrical intensities,
H  - magnetic intensities,
  - absolute magnetic permeability,
  - absolute dielectric constant.
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Fig. 1.

Table 1.
1 2 3
1  Erot

    











sintg
EEE

2  Erot
  









 EEE
sin

3  Erot











EEE

4  Ediv
    
















sintg
EEEEE

With no charge on and no current between the spherical capacitor 
electrodes, the Maxwell equations in the spherical coordinate system take 
the form presented in Table 2. 

Table 2.
1 2
1.

0rot 




t
E

c
H 




2.
0rot 





t
E

c
H 



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3.
0rot 





t
E

c
H 




4.
0rot 





t
H

c
E 




5.
0rot 





t
H

c
E 




6.
0rot 





t
H

c
E 




7.   0div E
8.   0div H

Below the solution will be sought for in form of functions HE, , 
which presented in Table. 3, where the functions of the form  E  to 
be calculated. It is important to note that

• these functions are independent of the argument  ;
• if     sinE , then

   


cos2
tg






EE

. (11)

Table 3.
1 2

    )sin(cos tEE  

    )sin(sin tEE  

    )sin(sin tEE  

    )cos(cos tHH  

    )cos(sin tHH  

    )cos(sin tHH  

We substitute the functions HE,  from the Table 3 in Table 1 
and take into account (11). Then we obtain Table 4.

112



Chapter 8. Solution of Maxwell's Equations for Spherical Capacitor

Table 4.
1 2 3
1  Erot

)cos(
2




E  )sin( t

2  Erot
)sin(















EE

 )sin( t

3  Erot
)sin(















EE

 )sin( t

4  Ediv
)cos(

2


























EEE

 )sin( t

Expressions for the rotor and divergence function H  differ from 
those shown in the Table. 4 only in that instead of factors )sin( t  are 
factors )cos( t . Substituting the expression for the curl and divergence 
in Maxwell's equations (see Table 2), differentiating with respect to time 
and reducing common factors, we obtain a new form of Maxwell's 
equations - see Table. 5.

Table 5.
1 2
1


E2


 H
c

 =0

2













 EE


 H
c

 =0

3













 EE


 H
c

 =0

4























 EEE 2

=0

5
0

2
 

 


E
c

H

6
0











 

 


E
c

HH
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7
0











 

 


E
c

HH

8
0

2
























 HHH

3. The solution of Maxwell's equations for the 
vacuum
First, we consider the equations for a vacuum where in the GHS 

system we have: 1  . At the same table. 5 takes the following 
form:

Table 5а.
1 2
1


E2

qH =0

2













 EE

qH =0

3













 EE

qH =0

4























 EEE 2

=0

5
0

2
 




qE

H

6
0











 




qE

HH

7
0











 




qE

HH

8
0

2
























 HHH

where 

c
q 
 . (12)
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Then Maxwell's equations are completely symmetrical with respect to the 
intensities E and H. Find the sum pairs of (1-4) and (5-8). Then we get:

0
2

 



qW

W
, (13)

0










 




qW

WW
, (14)

0










 




qW

WW
, (15)
























 WWW 2

=0, (16)

where
HEW  . (17)

The system of 4 equations (13-16) defines 3 unknown functions - 
the system is overdetermined. We show that there is a solution that 
satisfies all equations

Direct substitution can be seen that the equations (14, 15) has the 
following solution:

  
 


 RiqiAW exp , (18)

  
  RiqAW exp1

, (19)

where cRA ,,,,   - constants. We find from equations (13, 18):

  



  Riq

q
AcW

W exp22
2 , (20)

  


 












Riq
q
iA

W
exp22

23 . (21)

Substituting equations (19-21) to (16), we see that equation (16) 
turns into the identical relation 0=0. Therefore, three functional relations 
(18-20) comply with four equations (13-16), which was to be proved.

The decision does not change if instead of (17) will be used 
condition

  iHEW



1

2
. (22)

Next, we will look for a solution in which
iHE  . (23)
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From (76, 77), we find:

    H
i

HiW 2
1

21 


 (24)

or
2WH  . (25)

From (77, 79), we find:
2WiE  . (26)

From (18-20, 79, 80), we find:

  
 


 RiqAiH exp

2
, (27)

  
 


 RiqAH exp

2
, (28)

  
 


 Riq
q
AH exp2 , (29)

  
  RiqAE exp

2
, (30)

  
 


 RiqAiE exp

2
, (31)

  
 


 Riq
q
AiE exp2 . (32)

The solution obtained is a complex value. It is known that the real 
part of a complex solution is also a solution. It follows that one can take 
the real parts of functional relations (27-32) as a solution instead of these 
functional relations:

  
  RqAH sin

2
, (33)

  
 


 RqAH cos

2
, (34)

  
 


 Rq
q
AH cos2 , (35)

  
  RqAE cos

2
, (36)

  
  RqAE sin

2
, (37)
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  
  Rq
q
AE sin2 , (38)

To check this solution, one can substitute these functions into 
equations in Table 3 to make sure that these equations become equalities. 

Thus, the solution of Maxwell's equations for the spherical vacuum 
capacitor has the form of equations (33-38).

To find all these functions, it suffices to know the values of 
constants cRA ,,,,  . This solution means that an 
electromagnetic wave does exist in the spherical capacitor in a 
sinusoidal current circuit.

The solution of Maxwell's equations for the case when the 
dielectric is not a vacuum is given in Appendix 1 and for the case when 
the dielectric has some electrical conductivity – in Appendix 2.

4. Electric and magnetic intensities
Let us consider a point T with coordinates ,  on a sphere of 

radius   .Vectors H  and H , going from this point are in plane P, 
tangent to this sphere at point  ,T  - see Fig. 2. These vectors are 
perpendicular to each other. Hence, at each point  ,  the sum vector 

 HHH   (39)

is in plane Р and has an angle of   to a parallel line. As it follows from 
(33, 34) and the Table 3, the module of this vector H  and the angle 
  defined by the following formulas:

  )cos(sinH tH   ,             (39а)

 2
H A

 (40)

    





  



 R
c

H
sin

H
cos

or

    R
c2

. (41)
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 ,T





E

E

H

H

H


E




e

Fig. 2.

Similarly, the same relationships exist for the vectors E  and E . 
At each point  ,  the total vector 

 EEE   (42)

lies in the plane P and is directed at an angle e  to a line parallel. It 
follows from (36, 37) and Table 3, the module of this vector and the 
angle e  defined by the following formulas:

 2
E A

 (43)

    





  



 R
c

E
e cos

E
cos

or

    R
ce (44)

or

 
2e . (45)

The angle between H  и E  in the plane P is straight.
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Therefore, in a spherical capacitor we can consider only one vector 
of the electrical field intensities E  and only one vector of the magnetic 
field intensities H . As these vectors lie on the sphere, they will be 
called spherical vectors. 

 ,T H


E


2/

H


2/

2/

E


Fig. 3.

In Fig. 3 shows the vectors H  and E  lying in the plane P, and 
vectors H  and E  lying on a radius.

Note that there are many solutions distinguished by value  . This 
fact reflects the arbitrary rule in the choice of mathematical coordinate 
axes.

Angle   (30) is constant for all vectors H  for a given radius  . 
This means that the directions of all vectors H  constitute the same 
angle   with all parallels on a sphere with a radius of  . This implies in 
turn that there are the magnetic equatorial plane inclined to the 
mathematical equatorial plane at angle  , magnetic axis, magnetic poles, 
and magnetic meridians, along which vectors H  are directed – see Fig. 
4, where thin lines mark the mathematical meridional grid, thick lines 
mark the magnetic meridional grid, the mathematical axis mm, and 
magnetic axis aa and electric axis bb are shown. It is important to note 
that the magnetic axis aa, electric axis bb and all vectors E  и H  are 
perpendicular. 

When 0
c
  and 0  the magnetic axis coincides with the 

mathematical axis.
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
m

m

a

a

b

b

Fig. 4.

Spherical vectors depend on  sin . Radial vectors depend on 
 cos – see Table 3. Therefore, there are the radial intensities only in 

locations where the spherical intensity is zero. 

5. Energy fluxes
Similarly to Chapter 1, density of electromagnetic energy flux is Poynting 

vector
HES  , (1)

where 
 4c . (2)

In spherical coordinates  ,,  density of electromagnetic 
energy flux has three components  SSS ,, , along radial, 
circumferential and axial directions, respectively. They can be determined 
as follows:

 























































HEHE
HEHE
HEHE

HE
S
S
S

S . (4)
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From this and Table 3 it follows that 
   
   

   
   

   
    











































































)cos(sin)sin(sin
)cos(sin)sin(sin

)cos(cos)sin(sin
)cos(sin)sin(cos

)cos(sin)sin(cos
)cos(cos)sin(sin

tHtE
tHtE

tHtE
tHtE

tHtE
tHtE

S



























.

or
     
     
    


























)cos()sin(sin

)cos()sin(cossin
)cos()sin(cossin)

2 ttHEHE

ttHEHE
ttHEHE

S















or
     
     
    








































2sin

cossin
cossin)

)cos()sin(

HEHE

HEHE
HEHE

ttS

or
   
   
   








































2sin2

2sin
2sin

)2sin(
4

HEHE

HEHE
HEHE

tS . (5)

Let's define
    Rq . (6)

Substituting (3.33-3.38, 6) into (5) we obtain the following:
   
   
    































222

22

2

sin)(cos)(sin2
2sin)sin()cos()sin()cos(

2sin)(sin)(cos

2
)2sin(

4 q
AAtS

or
 

 
















































2
3

2

sin2
0

2sin
)2sin(

8
t

q
A

S
S
S

S . (7)
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Therefore, in spherical capacitor with sinusoidal characteristic of 
voltage there are two energy fluxes — meridional and radial with 
densities, respectively:

 



 2sin)2sin(

8 3

2

t
q
AS 

 , (8)

 





2
3

2

sin)2sin(
4

t
q
AS  . (9)

6. An Electromagnetic Wave in a Charged 
Spherical Capacitor 
A solution of the Maxwell equations for a parallel-plate capacitor 

being charged (see chapter 7) systems from a solution of these equations 
for a parallel-plate capacitor in a sinusoidal current circuit (see chapter 3). 
In this paper the method described in chapter 7 will be used in solving 
the Maxwell equations for a spherical capacitor being charged. 

Electromagnetic wave propagation in charging spherical capacitor 
is shown, and mathematical description of this wave is proved to be a 
solution of Maxwell's equations. It was shown that a charged spherical 
capacitor accommodates a stationary flux of electromagnetic energy, and 
the energy contained in the capacitor, which was considered to be 
electric potential energy, is, indeed, electromagnetic energy stored in the 
capacitor in the form of the stationary flux.

For charged spherical capacitor the system of Maxwell's equations 
shown in Table 2 shall be changed so that instead of equation (7) the 
following equation is used: 

  )(div tQE  , (a)
where )(tQ  - charge on capacitor plate, which appears and accumulates 
during charging. The system of partial differential equations obtained in 
such a way has a solution represented by the sum of a particular solution 
of this system and a general solution of the corresponding homogeneous 
system of equations. Homogeneous system is shown in Table 2, i.e. it 
only differs from this new system by the absence of term )(tQ . 
Particular solution with given t  is a solution, which associates electric 
intensity )(tE  between the capacitor plates with electric charge )(tQ . If 

)(tE  varies with time, then a solution of the system of equations from 
Table 2 shall exist at given )(tEz . Exactly this solution we're going to 
seek further on.
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Let us consider the field intensities in the form of functions 
presented in Table 6. These functions differ from functions of Table 3 
only by the type of time dependence: in Table 3, E and H functions 
depend on time as )cos(),sin( tt  , respectively, while in Table 6, E 

and H functions depend on time as    1)exp(,)exp(1  tt  , 
respectively. Although the indicated substitution, the solution of 
Maxwell's equations remain unchanged.

Table 6.
1 2

    )exp(1cos tEE  

    )exp(1sin tEE  

    )exp(1sin tEE  

    1)exp(cos  tHH 

    1)exp(sin  tHH 

    1)exp(sin  tHH 
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400
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(t)
, H
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(t)

Fig.6. (SSMB6.1)

Bias Current

    )exp(cos tEE
dt
dJ    (46)
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Fig. 6 presents intensities components and their time derivatives as 
well as the bias current as a function of time for 300 : H  is shown 
with a solid line, with a dashed line, and J  with dotted line. It is evident 
that with t  the amplitudes of all intensities components tend to a 
constant together, while the current amplitude approaches zero. This 
corresponds to the capacitor charging via a fixed resistor. 

Similar to (39а, 40, 41) we can write equations for vector H , 

modulus of this vector H  and angle  :

  1)exp(sinH  tH  , (47)

 2
H A

 , (48)

    R
c2

, (49)

where cRA ,,,,   – constants which can be determined 
experimentally, R  - radius of the external sphere of the capacitor. 

Constant 


 1
 , where   - time constant in the capacitor charge 

circuit.
The structure of the electromagnetic wave remains the same - see 

Section 3. As it was shown in this section, electromagnetic wave existing 
in a spherical capacitor has only spherical E , H  and radial E , H  
vectors. 

Thus, it's fare to say, that spherical capacitor is a device which is 
equivalent to both - magnet and, at the same time, electret which axes are 
perpendicular. 

Let's consider energy fluxes in a charged spherical capacitor. 
Similarly to Section 5, we can calculate densities of energy fluxes

 























































HEHE
HEHE
HEHE

HE
S
S
S

S . (50)

From this and Table 6 it follows that 
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     
     

     
     

     
      











































































1)exp(sin)exp(1sin
1)exp(sin)exp(1sin

1)exp(cos)exp(1sin
1)exp(sin)exp(1cos

1)exp(sin)exp(1cos
1)exp(cos)exp(1sin

tHtE
tHtE

tHtE
tHtE

tHtE
tHtE

S



























.

or

 
     
     
    








































2

2

sin

cossin
cossin)

)exp(1

HEHE

HEHE
HEHE

tS

or

 
   
   
   








































2

2

sin2

2sin
2sin

)exp(1
2

HEHE

HEHE
HEHE

tS . (51)

From this, similarly to Section 5, we can obtain:

 
 

 
















































2

2
3

2

sin2
0

2sin
)exp(1

2
t

q
A

S
S
S

S . (52)

Therefore, in charged spherical capacitor there are two energy 
fluxes — meridional and radial with densities, respectively:

   



 2sin)exp(1

2
2

3

2

t
q
AS 


 , (53)

   





22
3

2

sin)exp(1 t
q
AS  . (54)

When the capacitor has been charged, current interrupts. However, 
stationary fluxes of electromagnetic energy remain. When t , from 
(53, 54) it follows that in charged spherical capacitor two energy fluxes 
exist — meridional and radial with densities, respectively:

 



 2sin

2 3

2

q
AS 

 , (55)

 





2
3

2

sin
q
AS  . (56)
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Thus, the solution of the Maxwell equations for a capacitor being 
charged and for a capacitor in a sinusoidal current circuit differs only in 
that the former includes exponential functions of time and the latter 
contains sinusoidal time-functions. 

7. Electromagnetic wave around spherical 
charge
Single spherical charge can be considered as a spherical capacitor 

with infinitely large radius of external sphere. In this case, all the 
properties of charged spherical capacitor are true for this type of charge. 
Therefore, we can conclude that around solitary spherical charge exist the 
following: 

 stationary Coulomb (electric) field,
 electromagnetic and almost stationary field — see (6.47-6.48),
 electromagnetic energy fluxes — meridional and radial with 

densities in the form (6.55, 6.56), respectively.
Exactly within this flux electromagnetic energy of the electric 

charge circulates. Thus, energy of an electric charge, which was 
considered to be electric potential energy, is indeed, electromagnetic 
energy accumulated around the charge in the form of stationary flux.

Appendix 1. Solution of Maxwell's equations 
for the medium
The solution of equations for the vacuum was considered above, 

where in the GHS system, 1  . At this time, we take a look at the 
more general case, where   . 

We consider again Table 5. We shall call
EgE  , (60)

g . (61)

Then Table 5 becomes Table 7. We perform simple transforms in Table 
7 and get Table 8. In Table 5a:

 In lines 1, 2, 3, 4 the equations are divided by g, 
 At the same time, in lines 1, 2, 3 before variable H  appears 

coefficient 


c

g
c

q  ,            (62а)

 In lines 5, 6, 7 the coefficient before variable E  is replaced with 
for 
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
c

g
c

q  .           (62в)

Therefore, in this case the solution also has the form (33-38). The 
only difference is in the value of coefficient q: compare (12) and (62). 
Next, intensities Е are defined by (60). Thus, in this case equations (33-
38) become:

  
  RqAH sin

2
, (63)

  
 


 RqAH cos

2
, (64)

  
 


 Rq
q
AH cos2 , (65)

  
  RqAgE cos

2
, (66)

  
  RqAgE sin

2
, (67)

  
  Rq
q
AgE sin2 . (68)

Table 7.
1 2
1

g
E


2


 H
c

 =0

2
g

EE




















 H
c

 =0

3
g

EE



















 H
c

 =0

4
g

EEE







 

















 2

=0

5
0

2
 gE

c
H


 


6

0










 gE

c
HH


 

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7
0











 gE

c
HH


 


8
0

2
























 HHH



 tJH cos

   tE cos

 tsin

     ,0if,cos tE

  





  0,

2
if,sin tE

    sinsin tEim 

    coscos tEr 

Fig. 11.

Appendix 2. Solution of Maxwell's equations 
for conductive dielectric
In Application 1 was considered the solution of equations for the 

dielectric, which was   . Next, assume that the dielectric has a certain 
electrical conductivity  . In this case, the equation of the form

0rot 




t
E

c
H 

(71)

is replaced by the equation of the form

0rot 



 E
t
E

c
H 

(72)

Instead Table 3 in this case we use the Table 9, where   - the phase 
angle between the magnetic and electric field intensities – see Fig. 11. 

Table 9.
1 2

    )cos()cos()sin()sin(cos ttEE  

    )cos()cos()sin()sin(sin ttEE  
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    )cos()cos()sin()sin(sin ttEE  

    )cos(cos tHH  

    )cos(sin tHH  

    )cos(sin tHH  

At the same time the system of Maxwell's equations can be 
replaced by two independent systems of equations: in the first system is 
used the term )sin()sin( t  from the Table 9, and in the second system 
- the term )cos()cos( t  from the Table 9. After receiving the 
decision of the system the general solution is defined as the sum of the 
solutions found (by the linearity of systems). The solution of the first 
system is given in Appendix 1.

Table. 5 for the second system takes the form of Table 10 
(modified formulas (5-7)). Next will also argue, as in Application 1. Let

EgE  . (73)
when

 

cos

g . (74)

Then the Table 10 takes the form of the Table 11 (similar 
transformations are presented in Table 7), and again we obtain Table 5а:

 In lines 1, 2, 3, 4 the equations are divided by g, 
 At the same time, in lines 1, 2, 3 before variable H  appears 

coefficient 

  cos
c

g
c

q , (75)

 In lines 5, 6, 7 the coefficient before variable E  is replaced with 
for 

    coscos 
c

gq . (76)

Therefore, in this case the solution also has the form (33-38). The 
only difference is in the value of coefficient q: compare (12) and (75). 
Next, intensities Е are defined by (73). Therefore, in this case the 
solution also has the form (63-68). The only difference is in the value of 
coefficient g  - compare (61) and (74).

By combining this solution of the second system with the solution 
the first system, we finally obtain:
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  
  Rq
q
AgE sin2 . (77)

      2211 sinsin
2


  RqRqAH , (78)

      2211 coscos
2


 


 RqRqAH , (79)

     










 22

2
11

1
2 cos1cos1 

 Rq
q

Rq
q

AH , (80)

      222111 coscos
2


  RqgRqgAE , (81)

      222111 sinsin
2


  RqgRqgAE , (82)

      2221112 sinsin 
  RqwRqwAE , (83)

where


c

q 1 , (84)

  cos2 
c

q . (85)




1g , (86)

 

cos2 

g , (87)





 c

cq
gw 








1

1
1 , (88)

     





cos
cos

cos2

2
2 







 




c
cq

gw . (89)

Table 10.
1 2
1


E2


 H
c

 =0

2













 EE


 H
c

 =0
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3













 EE


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c
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






















 EEE 2 =0

5   0cos
2

 
 


E

H
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  0cos 











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HH
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  0cos 


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



 

 
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HH

8
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


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
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
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Table 11.
1 2
1


 


H
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g

E


2
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2
g

EE














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c

 =0
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g
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



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










 H
c

 =0
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g

EEE























 2
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  0cos
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 gE
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

 

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  0cos 




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



 gE
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HH
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 
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


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

















 HHH
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Chapter 9. The Nature of Earth's 
Magnetism

It is known that the Earth electrical field can be considered as a 
field "between spherical capacitor electrodes" [51]. These electrodes are 
the Earth surface having a negative charge and the ionosphere having a 
positive charge. The charge of these electrodes is maintained by 
continuous atmospheric thunderstorm activities. 

It is also known that there is the Earth magnetic field. However, in 
this case no generally accepted explanation of the source of this field is 
available. "The problem of the origin and retaining of the field has not 
been solved as yet." [52].

It was shown above that there are the magnetic equatorial plane, 
magnetic axis, magnetic poles and magnetic meridians, along which 
vectors H  are directed – see Fig. 4 in chapter 8. The angle between the 
magnetic axis and the axis of the mathematical model can not be 
determined from the mathematical model. Moreover, not determined 
angle between the magnetic axis and the Earth's physical axis of rotation.

Spherical vectors depend on  sin . Radial vectors depend on 
 cos  – see table 6 in chapter 8. Therefore, there are the radial 

intensities only in locations where the spherical intensity is zero. We find 
the angle   of inclination. From Table 6 and the formulas (47-49) in 
chapter 8 it follows that 

 
 

 
 

2cos

sin
2

H
H

2











 tg
Ac

A

tg 
 . (50)

It flows from the above mentioned that the Earth electrical field 
is responsible for the Earth magnetic field. 

Let us consider this problem in more details. 
The vector field H  in a diametral plane passing through the 

magnetic axis is shown in Fig. 8. Here, .1;7.0H    The vector 
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field H  in a diametral plane passing through the magnetic axis is shown 

in Fig. 9. Here, .1;4.0H    The vector field  HHH   in a 
diametral plane passing through the magnetic axis is shown in Fig. 10. 
Here, .1;2.0H;3.0H  
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Similarly, can be described the electric field of the Earth. 
Importantly, the electric field and the magnetic field are perpendicularly.

Once again, the very existence of the electric field is not in doubt, 
and the charge of “Earth's spherical capacitor” is supported by the 
thunderstorm activity [51, 52].

Also consider the comparative quantitative estimates of magnetic 
and electric intensity of the Earth's field.

In a vacuum, where 1  , there is a relation between the 
magnetic and electric intensity in any direction in the GHS system [51]

HE  . (9)
This relation is true if these intensities are measured in the GHS system 
at a given point in the same direction. To go to the SI system, one shall 
take into account that 

for Н: 1 GHS unit = 80 A/m
for Е: 1 GHS unit = 30,000 B/m

Hence, the equation (9) takes the following form in the SI system:
HE 803000  (10)

or
HE 03.0 . (11)

or
)(tg30  EH . (12)
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An additional argument in favor of the existence of the electric 
field of the structure specified is the existence of the telluric currents [2]. 
There is no generally accepted explanation of their causes. On the basis 
of the foregoing, it shall be assumed that these currents must have the 
largest value in the direction of the parallels.

It is possible that the electric field of the Earth can be detected 
using a freely suspended electric dipole, made in the form of a long 
isolated rod with metal balls at the ends. It is also possible that 
oscillations of the rod will be recorded at the low frequency of changing 
in dipole charges.

Based on the hypothesis suggested, it can be assumed that the 
magnetic field shall be observed among planets with an atmosphere. 
Indeed, the Moon and Mars, free of the atmosphere, lack the magnetic 
field. However, there is no magnetic field at Venus. This may be due to 
the high density and conductivity of the atmosphere – it cannot be 
considered as an insulating layer of the spherical capacitor.
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Chapter 10. Solution of Maxwell's 
Equations for Ball Lightning

Contents
1. Introduction
2. The solution of Maxwell equations in spherical 

coordinates
3. Energy
4. The Energy Flow

4.1. Radial Energy Flux
4.2. Spherical Energy Flux
4.3. Total Energy Flux

5. About Ball Lightning Stability
6. About Luminescence of the Ball Lightning
7. About the Time of Ball Lightning Existence 
8. About a Possible Mechanism of Ball Lightning Formation 

1. Introduction
The hypotheses that were made about the nature of ball lightning are 
unacceptable because they are contrary to the law of energy 
conservation. This occurs because the luminescence of ball lightning is 
usually attributed to the energy released in any molecular or chemical 
transformation, and so it is suggested source of energy, due to which 
the ball lightning glows is located in it.

Kapitsa P.L. 1955 [41]

This assertion (as far as the author knows) is true also today. It is 
reinforced by the fact that the currently estimated typical ball lightning 
contains tens of kilojoules [42], released during its explosion.

It is generally accepted that ball lightning is somehow connected 
with the electromagnetic phenomena, but there is no rigorous description 
of these processes.

A mathematical model of a globe lightning based on the Maxwell 
equations, which enabled us to explain many properties of the globe 
lightning, is proposed in [55]. However, this model turned out be quite 
intricate as to the used mathematical description. Another model of the 
ball lightning which is substantiated to a greater extent and make is 
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possible to obtain less intricate mathematical description is outlined 
below [56]. Moreover, this model agrees with the model of a spherical 
capacitor – see chapter 8.

When constructing the mathematical model, it will be assumed that 
the globe lighting is plasma, i.e. gas consisting of charged particles – 
electrons, and positive charged ions, i.e. the globe lightning plasma is 
fully ionized. In addition, it is assumed that the number of positive 
charges equal to the number of negative charges, and, hence, the total 
charge of the globe lightning is equal to zero. For the plasma, we usually 
consider charge and current densities averaged over an elementary 
volume. Electric and magnetic fields created by the average “charge” 
density and the “average” current density in the plasma obey the Maxwell 
equations [62]. The effect of particles collision in the plasma is usually 
described by the function of particle distribution in the plasma. These 
effects will be accounted for the Maxwell equations assuming that the 
plasma possesses some electric resistance or conductivity. 

And so on based on the Maxwell's equations and on the 
understanding of the electrical conductivity of the body of ball lightning, 
a mathematical model of ball lightning is built; the structure of the 
electromagnetic field and of electric current in it is shown. Next it is 
shown (as a consequence of this model) that in a ball lightning the flow 
of electromagnetic energy can circulate and thus the energy obtained by a 
ball lightning when it occurs can be saved. Sustainability, luminescence, 
charge, time being, the mechanism of formation of ball lightning are 
briefly discussed.

2. The solution of Maxwell equations in 
spherical coordinates 
Fig. 1 shows a system of spherical coordinates (  ,, ) and the 

Table 1 gives the expressions for rotor and divergence of vector Е in 
these coordinates [4]. Here and further

E  - intensity of electric field,
H  - intensity of magnetic field,
J -   currents density,
   - absolute permeability,
  -  absolute dielectric permittivity,
  - conductivity.
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Fig. 1.
Table 1.

1 2 3
1  Erot

    










sintg

EEE

2  Erot
  









 EEE
sin

3  Erot











EEE

4  Ediv
    















sintg

EEEEE

The Maxwell equations in the spherical coordinates in the GHS 
system without any non-compensated charges are presented in Table 2. 

Table 2.
1 2
1.

0rot 



 


  J
t

E
H

2.
0rot 




 


  J
t

EH

3.
0rot 




 


  J
t

E
H
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4.
0rot 





t

H
E 

 

5.
0rot 





t

HE 
 

6.
0rot 





t

H
E 

 

7.   0div E
8.   0div H



 tJH cos

   tE cos

 tsin

     ,0if,cos tE

  





  0,

2
if,sin tE

    sinsin tEim 

    coscos tEr 

Fig. 2.

A monochromatic solution to these equations will be sought for 
below. For this purpose, let us write the functions JHE ,,  in the time 
domain in the following form:

 
        
   ,coscos

,coscossinsin

,cos







tEJ
ttEE

tHH

o

o

o







where   is the phase angle between the electric and the magnetic 
strength - see Fig. 2. Considering this assumption, the solution to the 
Maxwell equations will be sought for in the form of functions 

JHE ,,  presented in Table 3, where the functions of type  E  are 
to be determined. It should be noted here that these functions are 
independent of the argument  . 
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Table 3.
1 2

    )cos()cos()sin()sin(cos ttEE  

    )cos()cos()sin()sin(sin ttEE  

    )cos()cos()sin()sin(sin ttEE  

    )cos(cos tHH  

    )cos(sin tHH  

    )cos(sin tHH  

It is demonstrated in chapter 8 that this solution exists with 

      2211 sinsin
2


  RqRqAH , (1)

      2211 coscos
2


 


 RqRqAH , (2)

     










 22

2
11

1
2 cos1cos1 

 Rq
q

Rq
q

AH , (3)

      222111 coscos
2


  RqgRqgAE , (4)

      222111 sinsin
2


  RqgRqgAE , (5)

      2221112 sinsin 
  RqwRqwAE , (6)

where


c

q 1 , (7)

  cos2 
c

q . (8)




1g , (9)

 

cos2 

g , (10)
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
cw 1 , (11)

  cos2 


cw . (12)

21,, A  are the constants.
It is demonstrated in chapter 8 that instead of the pair of vectors 

H  and H  we can consider a single sum vector 

 HHH  , (13)

which is in the plane tangent to the sphere of radius   and has an 
angle Ψ to the parallel line. The module of this vector and angle   can 
be determined from the following correlations:

 2
H A

 , (14)

    R
c2

, (15)

where R  is the radius of the sphere, and 21   . From (14) and 
Table 3 it follows that 

    )cos(sin
2

)cos(sinH tAtH 


  . (16)

Similar correlations do exist for the vectors E  and E , namely:

 2
E A

 , (17)

    R
ce (18)

or

 
2e . (19)

From (17) and Table 3 it follows that 

  )cos()cos()sin()sin(sin
2

ttAE 
  . (20)

Fig. 3 shows vectors H , H , E , E , H , E  going from 
point Т with coordinates  , . The angle between the vectors H  и 

E   in the plane Р is right. 
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Thus, in a sphere we may consider only one vector of the electrical 
field strength E  and only one vector of the magnetic field strength 

H . As these vectors lie on sphere, we shall call them spherical vectors. 
Hence, only spherical H  and E  and radial H  and E  strength 
components exist in the sphere. Fig. 4 shows vectors H  and E   lying 
in the plane Р and vectors H  and E  lying along the radius. 
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Fig. 3.

Bear in mind that this solution has been obtained under the 
following assumptions: the sphere is conductive and neutral (does not 
have any uncompensated charges). Obviously, this solution is not unique. 
Its existence means only that in a conductive and neutral sphere, an 
electromagnetic wave can exist, and currents can circulate. 

 ,T H


E


2/

H


2/

2/

E


Fig. 4.
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3. Energy
From Table 3 follows that a globe lightning contains the following 

energy components 
 Active loss energy aW  – see the second term in the expression for 

the electric strength:
 Reactive electric energy eW  – see the first term in the expression 

for the electric strength:
 Reactive magnetic energy hW  – see the expression for the 

magnetic strength

Let us write these characteristics
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Obviously, the amplitudes of energies eW  and hW  can be equal 
when the 21,, A  - see (1–6) have certain values. In this case, the 
energies eW  and hW  transform into each other – see multipliers 

 2)sin( t  and  2)cos( t  in correlations (22, 23). Thus, the 
energy conservation law is fulfilled for the globe lighting as a whole in 
the obtained solution. 

At the same time, Table 3 demonstrates that the energy 
conservation law is not met at each point of the sphere. Hence, there are 
energy flows between sphere points. This fact will be proved rigorously 
below. 

4. The Energy Flow
4.1. Radial Energy Flux
There is an electromagnetic energy flux along the radius at each 

point of the sphere, see Fig. 5.  The density vector of this flux is equal to 
 HES  . (24)
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Fig. 5.

As the vectors  E,H  are perpendicular, from (16, 20) it 
follows that:
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In particular, for 0  we have: 1)sin(   and

  )2sin(sin
8

S 2
2

2

tA 
  . (26)

4.2. Spherical Energy Flux
At each point of the sphere, there are two fluxes of the 

electromagnetic energy tangent to the sphere, see Fig. 6. The density 
vector of these fluxes can be written as 

 HES1  , (27)

 EHS2  . (28)
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As the multiplied vectors are perpendicular, from (14, 16, 20) and Table 3 
we can obtain:
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As these fluxes are perpendicular, the module of their sum can be 
determined by the formula 
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Considering (3, 6), for 0 we have
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4.3. Total Energy Flux
Let us find the electromagnetic energy flux divergence for 

0 from (26, 30):
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Considering (7), we obtain that 12

1


q

. Then, from (32) one can find 

that:
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This divergence of the total electromagnetic energy flux is not zero 
at many points of the sphere. This means that the energy flux passing 
through a point is not generally equal to zero. Hence, there is energy 
exchange between the sphere points. However, the energy conservation 
law is met for the overall sphere (see above). Thus, in the globe lightning: 

 the energy conservation law is met,
 there is an electromagnetic energy flux.
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5. About Ball Lightning Stability
The question of stability for bodies, in which a flow of 

electromagnetic energy is circulating, has been treated in [43]. Here we 
shall consider only such force that acts along the diameter and breaks the 
ball lightning along diameter plane perpendicular to this diameter. In the 
first moment it must perform work 

dt
dRFA  . (34)

This work changes the internal energy of the ball lightning, i.e.

dt
dWA  . (35)

Considering (34, 35) together, we find: 

dt
dR

dt
dWF  . (36)

If the energy of the global lightning is proportional to the volume, i.e. 
3aRW  . (37)

where a – is the coefficient of proportionality, then

dt
dRaR

dt
dW 23 . (38)

Thus,

R
WaR

dt
dR

dt
dWF 33 2  . (39)

Thus, the internal energy of  a ball lightning is equivalent to the 
force creating the stability of ball lightning. 

6. About Luminescence of the Ball Lightning
The problem was solved above considering the electric resistance 

of the globe lightning. Naturally, it is nor zero, and when current flows 
through it, thermal energy is released. This thermal energy is radiated that 
is the cause of globe lighting illumination. 

7. About the Time of Ball Lightning 
Existence 
We can assume that the globe lightning energy is equal to the 

amplitude of the electric energy, i.e. according to (22), 
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The heat loss power is equal to the derivative of the heat loss 
energy with respect to time. Expression (23) gives the instantaneous 
energy of heat losses. Therefore, 
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The existence time of the globe lightning is equal to the time the 
electrical energy transforms into the heat losses, i.e.

P
W

 . (42)

From (40-42) we can obtain:

  2

2

2

2

2
)(

)cos(2
)(sin





 tg

 . (43)

8. About a Possible Mechanism of Ball 
Lightning Formation 
The leader of a linear lightning, meeting a certain obstacle, may 

alter the motion trajectory from linear to circular. This may become the 
cause of the emergence of the described above electromagnetic fields and 
currents. 

In [44] this process was described as follows:
Another strong bolt of lightning, simultaneous with a bang, illuminated the 

entire space. I can see how a long and dazzling beam in the color of sun beam 
approaches to me right in the solar plexus.  The end of it is sharp as a razor, but 
further it becomes thicker and thicker, and reaches something like 0,5 meter. Further I 
can't see, as I am staring at a downward angle. 

Instant thought that it is the end. I see how the tip of the beam approaches. 
Suddenly it stopped and between the tip and the body began to swell a ball the size of a 
large grapefruit. There was   a thump as if a cork popped from a bottle of champagne. 
The beam flew into a ball. I see the blindingly bright ball, color of the sun, which 
rotates at a breakneck pace, grinding the beam inside. But I do not feel any touch, any 
heat.

The ball grinds the ray and increases in size. ... The ball does not issue any 
sounds. At first it was bright and opaque, but then begins to fade, and I see that it is 
empty. Its shell has changed and it became like a soap bubble. The shell rotates, its 
diameter remained stable, but the surface was with metallic sheen.
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General conclusions
“To date, whatsoever effect that would request a modification of 

Maxwell’s equations escaped detection” [36]. Nevertheless, recently 
criticism of validity of Maxwell equations is heard from all sides. This 
criticism is based mainly on the fact that the known solution of Maxwell's 
equations describing the electromagnetic wave, has the following two 
properties:

• it does not satisfy the law of conservation of energy, because the 
electromagnetic energy flux density pulsating harmonically,

• it prove phase synchronism of electrical and magnetic 
components of intensities in an electromagnetic wave ; but this  is 
contrary to the idea of constant transformation of electrical and magnetic 
components of energy in an electromagnetic wave.

These properties of known solutions are clearly visible in Fig. 1.

Fig. 1.

Such results following from the known solution of Maxwell 
equations allow doubting the authenticity of Maxwell equations. 
However, we must stress that these results follow only from the found 
solution. But this solution, as has been stated above, can be different (in 
their partial derivatives, equations generally have several solutions). 
Above shows another solution of Maxwell's equations. Electric and 
magnetic intensities in Cartesian coordinates, obtained as a result of this 
decision, are shown in Fig. 2.
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The resulting solution describes a wave. The main distinctions 
from the known solution are as follows:

1. Instantaneous (and not average by certain period) energy 
flow does not change with time, which complies with the 
Law of energy conservation.

2. Magnetic and electrical intensities on one of the coordinate 
axes phase-shifted by a quarter of period.

3. The vectors of electrical and magnetic intensities are 
orthogonal.

4. The flow of electromagnetic energy propagates along a 
wave (not only in vacuum but also in the wire).

In addition, consider an electromagnetic wave in wire. With an 
assumed negligibly low voltage, Maxwell’s equations for this wave literally 
coincide with those for the wave in vacuum. Yet, electrical engineering 
eludes any known solution and employs the one that connects an 
intensity of the circular magnetic field with the current in the wire (for 
brevity, it will be referred to as “electrical engineering solution”).  This 
solution, too, satisfies the Maxwell’s equations. However, firstly, it is one 
more solution of those equations (which invalidates the theorem of the 
only solution known). Secondly, and the most important, electrical 
engineering solution does not explain the famous experimental fact.



General conclusions

151

The case in point is skin-effect. Solution to explain skin-effect 
should contain a non-linear radius-to-displacement current (flowing 
along the wire) dependence. According to Maxwell’s equations, such 
dependence should fit with radial and circular electrical and magnetic 
intensities that have non-linear dependence from the radius. Electrical 
engineering solution offers none of these. Explanation of skin-effect 
bases on the Maxwell’s equations, yet it does not follow from electrical 
engineering solution. It allows the statement that electrical engineering 
solution does not explain the famous experimental fact.

Now, refer to energy flux in wire. The existing idea of energy 
transfer through the wires is that the energy in a certain way is spreading 
outside the wire [13]. Such theory contradicts the Law of energy 
conservation. Indeed, the energy flow, travelling in the space must lose 
some part of the energy. But this fact was found neither experimentally, 
nor theoretically. But, most important, this theory contradicts the 
following experiment. Let us assume that through the central wire of 
coaxial cable runs constant current. This wire is isolated from the 
external energy flow. Then whence the energy flow compensating the 
heat losses in the wire comes? With the exception of loss in wire, the flux 
should penetrate into a load, e.g. winding of electrical motors covered 
with steel shrouds of the stator. This matter is omitted in the discussions 
of the existing theory.

The obtained solution of Maxwell's equations simulate a structure 
of an electromagnetic wave, in which there is a flow of electromagnetic 
energy propagating in and along the wire.

The resulting solution describes the electromagnetic wave
 in vacuum, 
 in wire with alternating and constant current, 
 in magnetic circuit of alternating current,
 in charging and charged capacitor – flat and spherical,
 in ball lightning,
 in the vicinity of solitary electrical charge.

The resulting solution allows us to explain
 twisted of light,
 single-wire transmission of energy,
 nature of the Earth's magnetism,
 nature of energy stored in a charged capacitor,
 nature of the energy stored in ball lightning, and some of its 

properties,
 functioning Milroy engine.
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The solution obtained shows that path of the point, which moves 
along a cylinder of given radius in such a manner, that each intensity 
value varies harmonically with time, is described by a helix. This 
statement is true for an electromagnetic wave in the wire, in any 
environment, in vacuum - Fig. 4.

-1
-0.5

0
0.5

1

-1
-0.5

0

0.5
1

-2000

-1500

-1000

-500

0

(TokPotok33.m)Fig. 4.

At each point, which moves along this helix, vectors of magnetic 
and electric intensities: 

 exist only in the plane which is perpendicular to the helix axis, 
i.e. there only two projections of these vectors exist,

 vary in a sinusoidal manner,
 are shifted in phase by a quarter-period.

Resultant vectors:
 rotate in these plane,
 have constant moduli,
 are orthogonal to each other.
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