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Abstract  

The notion of interval valued neutrosophic sets is a generalization of fuzzy sets, 

intuitionistic fuzzy sets, interval valued fuzzy sets, interval valued intuitionstic fuzzy 

sets and single valued neutrosophic sets. We apply for the first time to graph theory 

the concept of interval valued neutrosophic sets, an instance of neutrosophic sets. We 

introduce certain types of interval valued neutrosophc graphs (IVNG) and investigate 

some of their properties with proofs and examples. 

Keyword  

Interval valued neutrosophic set, Interval valued neutrosophic graph, Strong  interval 

valued neutrosophic graph, Constant interval valued neutrosophic graph, Complete 

interval valued neutrosophic graph, Degree of interval valued neutrosophic graph. 

1 Introduction  

Neutrosophic sets (NSs) proposed by Smarandache [13, 14] are powerful  

mathematical tools for dealing with incomplete, indeterminate and 

inconsistent information in real world. They are a generalization of fuzzy sets 

[31], intuitionistic fuzzy sets [28, 30], interval valued fuzzy set [23] and 

interval-valued intuitionistic fuzzy sets theories [29].  

The neutrosophic sets are characterized by a truth-membership function (t), 

an indeterminacy-membership function (i) and a falsity-membership function 

(f) independently, which are within the real standard or nonstandard unit 

interval ]−0, 1+[. In order to conveniently practice NS in real life applications, 

Smarandache [53] and Wang et al. [17] introduced the concept of single-valued 

neutrosophic set (SVNS), a subclass of the neutrosophic sets.  

mailto:1broumisaid78@gmail.com
mailto:assiabakali@yahoo.fr
mailto:fsmarandache@gmail.com
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The same authors [16, 18] introduced as well the concept of interval valued 

neutrosophic set (IVNS), which is more precise and flexible than the single 

valued neutrosophic set. The IVNS is a generalization of the single valued 

neutrosophic set, in which three membership functions are independent, and 

their values included into the unit interval [0, 1].  

More on single valued neutrosophic sets, interval valued neutrosophic sets 

and their applications may be found in [3, 4, 5,6, 19, 20, 21, 22, 24, 25, 26, 27, 

39, 41, 42,  43, 44, 45, 49]. 

Graph theory has now become a major branch of applied mathematics and it 

is generally regarded as a branch of combinatorics. Graph is a widely used tool 

for solving a combinatorial problem in different areas, such as geometry, 

algebra, number theory, topology, optimization or computer science. Most 

important thing which is to be noted is that, when we have uncertainty 

regarding either the set of vertices or edges, or both, the model becomes a 

fuzzy graph.  

The extension of fuzzy graph [7, 9, 38] theory have been developed by several 

researchers, including intuitionistic fuzzy graphs [8, 32, 40], considering the 

vertex sets and edge sets as intuitionistic fuzzy sets. In interval valued fuzzy 

graphs [33, 34], the vertex sets and edge sets are considered as interval valued 

fuzzy sets. In interval valued intuitionstic fuzzy graphs [2, 48], the vertex sets 

and edge sets are regarded as interval valued intuitionstic fuzzy sets. In bipolar 

fuzzy graphs [35, 36], the vertex sets and edge sets are considered as bipolar 

fuzzy sets. In m-polar fuzzy graphs [37], the vertex sets and edge sets are 

regarded as m-polar fuzzy sets.  

But, when the relations between nodes (or vertices) in problems are 

indeterminate, the fuzzy graphs and their extensions fail. In order to overcome 

the failure, Smarandache [10, 11, 12, 51] defined four main categories of 

neutrosophic graphs: I-edge neutrosophic graph, I-vertex neutrosophic graph 

[1, 15, 50, 52], (t, i, f)-edge neutrosophic graph and (t, i, f)-vertex neutrosophic 

graph. Later on, Broumi et al. [47] introduced another neutrosophic graph 

model. This model allows the attachment of truth-membership (t), 

indeterminacy –membership (i) and falsity-membership (f) degrees both to 

vertices and edges. A neutrosophic graph model that generalizes the fuzzy 

graph and intuitionstic fuzzy graph is called single valued neutrosophic graph  

(SVNG). Broumi [46] introduced as well the neighborhood degree of a vertex 

and closed neighborhood degree of a vertex in single valued neutrosophic 

graph, as generalizations of neighborhood degree of a vertex and closed 

neighborhood degree of a vertex in fuzzy graph and intuitionistic fuzzy graph.  

In this paper, we focus on the study of interval valued neutrosophic graphs.  
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2 Preliminaries 

In this section, we mainly recall some notions related to neutrosophic sets, 

single valued neutrosophic sets, interval valued neutrosophic sets, fuzzy graph, 

intuitionistic fuzzy graph, single valued neutrosophic graphs, relevant to the 

present work. See especially [2, 7, 8, 13, 18, 47] for further details and 

background. 

Definition 2.1 [13] 

Let X  be a space of points (objects) with generic elements in X denoted by x;  

then the neutrosophic set A (NS A) is an object having the form A = {< x: TA(x), 

IA(x), FA(x)>, x ∈ X}, where the functions T, I, F: X→]−0,1+[  define respectively 

the a truth-membership function, an indeterminacy-membership function, 

and a falsity-membership function of the element x ∈ X to the set A with the 

condition: 

−0 ≤ TA(x)+ IA(x)+ FA(x)≤ 3+.                    

The functions TA(x), IA(x) and FA(x) are real standard or nonstandard subsets 

of ]−0,1+[. 

Since it is difficult to apply NSs to practical problems, Wang et al. [16] 

introduced the concept of a SVNS, which is an instance of a NS and can be used 

in real scientific and engineering applications. 

Definition 2.2 [17] 

Let X be a space of points (objects) with generic elements in X denoted by x. A 

single valued neutrosophic set A (SVNS A) is characterized by truth-

membership function TA(x) , an indeterminacy-membership function IA(x) , 

and a falsity-membership function FA(x). For each point x in X  TA(x), IA(x), 

FA(x) ∈ [0, 1]. A SVNS A can be written as  

A = {< x: TA(x), IA(x), FA(x)>, x ∈ X}                   

Definition 2.3 [7] 

A fuzzy graph is a pair of functions G = (σ, µ) where σ is a fuzzy subset of a non- 

empty set V and  μ  is a symmetric fuzzy relation on σ. i.e  σ : V → [ 0,1] and  μ: 

VxV→[0,1], such that μ(uv) ≤ σ(u) ⋀ σ(v)  for all u, v ∈ V where uv denotes the 

edge between u and v and σ(u) ⋀ σ(v) denotes the minimum of σ(u) and σ(v). 

σ is called the fuzzy vertex set of V and μ is called the fuzzy edge set of E. 
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Figure 1: Fuzzy Graph 

 

Definition 2.4 [7]  

The fuzzy subgraph H = (τ, ρ) is called a fuzzy subgraph of G = (σ, µ), if τ(u) ≤ 

σ(u) for all u ∈ V and ρ(u, v) ≤  μ(u, v) for all u, v ∈ V. 

Definition 2.5 [8]  

An Intuitionistic fuzzy graph is of the form G =(V, E ), where 

i. V={v1, v2,…., vn} such that 𝜇1: V→ [0,1] and 𝛾1: V → [0,1] denote the 

degree of membership and nonmembership of the element vi ∈ V, 

respectively, and 0 ≤ 𝜇1(vi) + 𝛾1(vi)) ≤ 1 , for every vi ∈ V, (i = 1, 2, 

……. n); 

ii.  E   ⊆  V x V where  𝜇2: VxV→[0,1] and  𝛾2: VxV→ [0,1] are such that 

𝜇2(vi, vj) ≤ min [𝜇1(vi), 𝜇1(vj)] and 𝛾2(vi, vj) ≥ max [𝛾1(vi), 𝛾1(vj)] 

and 0 ≤ 𝜇2(vi, vj) + 𝛾2(vi, vj) ≤ 1 for every (vi, vj) ∈ E, ( i, j = 1,2, ……. n) 

 

 
Figure 2: Intuitionistic Fuzzy Graph 

Definition 2.6 [2]  

An interval valued intuitionistic fuzzy graph with underlying set V is defined 

to be a pair G= (A, B), where  
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1)  The functions 𝑀𝐴 : V→ D [0, 1]  and 𝑁𝐴 : V→ D [0, 1] denote the degree of 

membership and non-membership of the element x ∈ V, respectively, such that 

0≤𝑀𝐴(x)+ 𝑁𝐴(x) ≤ 1 for all x ∈ V. 

2) The functions 𝑀𝐵 : E ⊆ 𝑉 × 𝑉 → D [0, 1]  and 𝑁𝐵 : : E ⊆ 𝑉 × 𝑉 → D [0, 1] are 

defined by:  

𝑀𝐵𝐿(𝑥, 𝑦))≤min (𝑀𝐴𝐿(𝑥), 𝑀𝐴𝐿(𝑦)), 

𝑁𝐵𝐿(𝑥, 𝑦)) ≥max (𝑁𝐴𝐿(𝑥), 𝑁𝐴𝐿(𝑦)), 

𝑀𝐵𝑈(𝑥, 𝑦))≤min (𝑀𝐴𝑈(𝑥), 𝑀𝐴𝑈(𝑦)), 

𝑁𝐵𝑈(𝑥, 𝑦)) ≥max (𝑁𝐴𝑈(𝑥), 𝑁𝐴𝑈(𝑦)),  

such that  

0≤𝑀𝐵𝑈(𝑥, 𝑦))+ 𝑁𝐵𝑈(𝑥, 𝑦)) ≤ 1, for all (𝑥, 𝑦) ∈ E. 

Definition 2.7 [47] 

Let A = (𝑇𝐴,  𝐼𝐴, 𝐹𝐴) and B = (𝑇𝐵,  𝐼𝐵, 𝐹𝐵)  be single valued neutrosophic sets on a 

set X. If A = (𝑇𝐴,  𝐼𝐴, 𝐹𝐴) is a single valued neutrosophic relation on a set X, then 

A =(𝑇𝐴,  𝐼𝐴, 𝐹𝐴) is called a single valued neutrosophic relation on B = (𝑇𝐵,  𝐼𝐵, 𝐹𝐵), 

if 

TB(x, y) ≤ min(TA(x), TA(y)), 

IB(x, y) ≥ max(IA(x), IA(y)), 

FB(x, y) ≥ max(FAx), FA(y)), 

for all x, y ∈ X.  

A single valued neutrosophic relation A on X is called symmetric if  

𝑇𝐴(x, y) = 𝑇𝐴(y, x), 𝐼𝐴(x, y) = 𝐼𝐴(y, x), 𝐹𝐴(x, y) = 𝐹𝐴(y, x)  

𝑇𝐵(x, y) = 𝑇𝐵(y, x), 𝐼𝐵(x, y) = 𝐼𝐵(y, x)  

𝐹𝐵(x, y) = 𝐹𝐵(y, x),  

for all x, y ∈ X. 

Definition 2.8 [47]  

A single valued neutrosophic graph (SVN-graph) with underlying set V is 

defined to be a pair G = (A,  B), where  

1) The functions TA:V→[0, 1], IA:V→[0, 1] and FA:V→[0, 1] denote the degree 

of truth-membership, degree of indeterminacy-membership and falsity-

membership of the element 𝑣𝑖 ∈ V, respectively,  and 

0≤ TA(vi) + IA(vi) +FA(vi) ≤3, 

for all  𝑣𝑖 ∈ V (i=1, 2, …, n). 
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2) The functions   TB: E ⊆ V x V →[0, 1],  IB:E ⊆ V x V →[0, 1] and FB: E ⊆ V x V 

→[0, 1] are defined by 

TB({vi, vj}) ≤ min [TA(vi), TA(vj)], 

IB({vi, vj}) ≥ max [IA(vi), IA(vj)], 

FB({vi, vj}) ≥ max [FA(vi), FA(vj)], 

denoting  the degree of truth-membership, indeterminacy-membership and 

falsity-membership of the edge (𝑣𝑖 , 𝑣𝑗) ∈ E respectively, where 

 0≤ 𝑇𝐵({𝑣𝑖 , 𝑣𝑗}) + 𝐼𝐵({𝑣𝑖 , 𝑣𝑗})+ 𝐹𝐵({𝑣𝑖 , 𝑣𝑗}) ≤3,  

for all  {𝑣𝑖 , 𝑣𝑗} ∈ E (i, j = 1, 2, …, n). 

We call A the single valued neutrosophic vertex set of V, and B the single valued 

neutrosophic edge set of E, respectively. Note that B is a symmetric single 

valued neutrosophic relation on A. We use the notation (𝑣𝑖 , 𝑣𝑗) for an element 

of E. Thus, G = (A, B) is a single valued neutrosophic graph of G∗= (V, E) if  

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) ≤ min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)], 

𝐼𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)], 

𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)] ,    

for all  (𝑣𝑖 , 𝑣𝑗) ∈ E. 

 

                                  Figure 3: Single valued neutrosophic graph 

Definition 2.9 [47] 

A partial SVN-subgraph of SVN-graph G= (A, B) is a SVN-graph H = ( 𝑽′, 𝑬′) 

such that  

(i)  𝑽′ ⊆ 𝑽, where  𝑻𝑨
′ (𝒗𝒊) ≤ 𝑻𝑨(𝒗𝒊),  𝑰𝑨

′ (𝒗𝒊) ≥ 𝑰𝑨(𝒗𝒊),  𝑭𝑨
′ (𝒗𝒊) ≥ 

𝑭𝑨(𝒗𝒊),   for all  𝒗𝒊 ∈ 𝑽. 

(ii)  𝑬′ ⊆ 𝑬, where 𝑻𝑩
′ (𝒗𝒊, 𝒗𝒋) ≤ 𝑻𝑩(𝒗𝒊, 𝒗𝒋),  𝐈𝑩𝒊𝒋

′  ≥ 𝑰𝑩(𝒗𝒊, 𝒗𝒋), 𝑭𝑩
′ (𝒗𝒊, 𝒗𝒋) 

≥ 𝑭𝑩(𝒗𝒊, 𝒗𝒋),  for all (𝒗𝒊 𝒗𝒋) ∈ 𝑬. 
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Definition 2.10 [47] 

A SVN-subgraph of SVN-graph G= (V, E) is a SVN-graph H = ( 𝑽′, 𝑬′) such that  

(i)  𝑽′ = 𝑽, where  𝑻𝑨
′ (𝒗𝒊) = 𝑻𝑨(𝒗𝒊),  𝑰𝑨

′ (𝒗𝒊) = 𝑰𝑨(𝒗𝒊),  𝑭𝑨
′ (𝒗𝒊) = 

𝑭𝑨(𝒗𝒊)for all  𝒗𝒊 in the vertex set of   𝑽′. 

(ii)  𝑬′ = 𝑬, where  𝑻𝑩
′ (𝒗𝒊, 𝒗𝒋) = 𝑻𝑩(𝒗𝒊, 𝒗𝒋),   𝑰𝑩

′ (𝒗𝒊, 𝒗𝒋) = 𝑰𝑩(𝒗𝒊, 𝒗𝒋),   

𝑭𝑩
′ (𝒗𝒊, 𝒗𝒋) = 𝑭𝑩(𝒗𝒊, 𝒗𝒋) for every (𝒗𝒊 𝒗𝒋) ∈ 𝑬 in the edge set of  𝑬′. 

Definition 2.11 [47] 

Let G= (A, B) be a single valued neutrosophic graph. Then the degree of any 

vertex v is the sum of degree of truth-membership, sum of degree of 

indeterminacy-membership and sum of degree of falsity-membership of all 

those edges which are incident on vertex v denoted by d(v) = ( 𝑑𝑇(𝑣) , 

𝑑𝐼(𝑣), 𝑑𝐹(𝑣)), where  

𝑑𝑇(𝑣)=∑ 𝑇𝐵(𝑢, 𝑣)𝑢≠𝑣  denotes degree of truth-membership vertex, 

 𝑑𝐼(𝑣)=∑ 𝐼𝐵(𝑢, 𝑣)𝑢≠𝑣  denotes degree of indeterminacy-

membership vertex, 

𝑑𝐹(𝑣)=∑ 𝐹𝐵(𝑢, 𝑣)𝑢≠𝑣  denotes degree of falsity-membership vertex. 

Definition 2.12 [47] 

A single valued neutrosophic graph G=(A, B) of 𝐺∗= (V, E) is called  strong 

single valued neutrosophic graph, if  

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) = min [𝑇𝐴(𝑣𝑖),  𝑇𝐴(𝑣𝑗)], 

 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) = max [𝐼𝐴(𝑣𝑖),  𝐼𝐴(𝑣𝑗)], 

 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) = max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)], 

for all (𝑣𝑖 , 𝑣𝑗) ∈ E. 

Definition 2.13 [47] 

A single valued neutrosophic graph G = (A, B) is called complete if   

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) = min [𝑇𝐴(𝑣𝑖),  𝑇𝐴(𝑣𝑗)], 

 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) = max [𝐼𝐴(𝑣𝑖),  𝐼𝐴(𝑣𝑗)], 

 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) = max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)],  

 for all 𝑣𝑖 , 𝑣𝑗 ∈ V. 
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Definition 2.14 [47] 

The complement of a single valued neutrosophic graph G (A, B) on  𝐺∗  is a 

single valued neutrosophic graph 𝐺̅ on 𝐺∗, where: 

1. 𝐴̅ =A 

2. 𝑇𝐴
̅̅̅(𝑣𝑖)= 𝑇𝐴(𝑣𝑖),  𝐼𝐴̅(𝑣𝑖)= 𝐼𝐴(𝑣𝑖),  𝐹𝐴

̅̅ ̅(𝑣𝑖) = 𝐹𝐴(𝑣𝑖), for all 𝑣𝑗 ∈ V. 

3. 𝑇𝐵
̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)] −  𝑇𝐵(𝑣𝑖 , 𝑣𝑗) 

𝐼𝐵̅(𝑣𝑖 , 𝑣𝑗)= max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)]   − 𝐼𝐵(𝑣𝑖 , 𝑣𝑗), and 

𝐹𝐵
̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)]   − 𝐹𝐵(𝑣𝑖 , 𝑣𝑗),   

for all (𝑣𝑖 , 𝑣𝑗) ∈ E. 

Definition 2.15 [18] 

Let X  be a space of points (objects) with generic elements in X denoted by x. 

An interval valued neutrosophic set (for short IVNS A) A in X is characterized 

by truth-membership function TA(x) , indeterminacy-membership function 

IA(x) and falsity-membership function  FA(x). For each point x in X, we have 

that TA(x)= [𝑇𝐴𝐿(x), 𝑇𝐴𝑈(x)], IA(x) = [𝐼𝐴𝐿(𝑥), 𝐼𝐴𝑈(𝑥)], FA(x) = [𝐹𝐴𝐿(𝑥), 𝐹𝐴𝑈(𝑥)] ⊆ 

[0, 1]  and  0 ≤  TA(x) + IA(x) + FA(x) ≤ 3. 

Definition 2.16 [18] 

An IVNS A is contained in the IVNS B, A ⊆ B, if and only if  𝑇𝐴𝐿(x) ≤ 𝑇𝐵𝐿(x),  

𝑇𝐴𝑈(x) ≤ 𝑇𝐵𝑈(x),  𝐼𝐴𝐿(x) ≥ 𝐼𝐵𝐿(x), 𝐼𝐴𝑈(x) ≥ 𝐼𝐵𝑈(x), 𝐹𝐴𝐿(x) ≥ 𝐹𝐵𝐿(x) and 𝐹𝐴𝑈(x) ≥ 

𝐹𝐵𝑈(x) for any x in X. 

Definition 2.17 [18] 

The union of two interval valued neutrosophic sets A and B is an interval 

neutrosophic set C, written as C = A ∪  B, whose truth-membership, 

indeterminacy-membership, and false membership are related to A and B by 

TCL(x) =  max (TAL(x),  TBL(x)) 

TCU(x) =  max (TAU(x),  TBU(x)) 

ICL(x) =  min (IAL(x),  IBL(x)) 

ICU(x) =  min (IAU(x),  IBU(x)) 

FCL(x) =  min (FAL(x),  FBL(x)) 

FCU(x) =  min (FAU(x),  FBU(x))   

for all x in X. 
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Definition 2.18 [18] 

Let X and Y be two non-empty crisp sets. An interval valued neutrosophic 

relation R(X, Y) is a subset of product space X × Y, and is characterized by the 

truth membership function TR(x, y), the indeterminacy membership function 

IR(x, y), and the falsity membership function FR(x, y), where x ∈ X and y ∈ Y 

and TR(x, y), IR(x, y), FR(x, y) ⊆ [0, 1]. 

3 Interval Valued Neutrosophic Graphs 

Throughout this paper, we denote 𝐺∗ = (V, E) a crisp graph, and G = (A, B) an 

interval valued neutrosophic graph. 

Definition 3.1 

By an interval-valued neutrosophic graph of a graph G∗ = (V, E) we mean a pair 

G = (A, B), where A =< [TAL,TAU], [IAL, IAU], [FAL, FAU]> is an interval-valued 

neutrosophic set on V; and B =< [TBL, TBU], [IBL, IBU], [FBL, FBU]> is an interval-

valued neutrosophic relation on E satisfying the following condition: 

1) V = { 𝑣1 ,  𝑣2  ,…,  𝑣𝑛 }, such that 𝑇𝐴𝐿 :V → [0, 1],  𝑇𝐴𝑈 :V → [0, 1], 𝐼𝐴𝐿 :V → [0, 

1], 𝐼𝐴𝑈:V→[0, 1] and 𝐹𝐴𝐿:V→[0, 1],  𝐹𝐴𝑈:V→[0, 1] denote the degree of truth-

membership, the degree of  indeterminacy-membership and falsity-

membership of the element 𝑦 ∈ V, respectively,  and 

0≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤3,  

for all  𝑣𝑖 ∈ V (i=1, 2, …,n) 

2) The functions  𝑇𝐵𝐿:V x V →[0, 1],  𝑇𝐵𝑈:V x V →[0, 1],  𝐼𝐵𝐿:V x V →[0, 1], 𝐼𝐵𝑈:V x V 

→[0, 1]  and 𝐹𝐵𝐿:V x V →[0,1],  𝐹𝐵𝑈:V x V →[0, 1] are such that 

𝑇𝐵𝐿({𝑣
𝑖
, 𝑣𝑗}) ≤ min [𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)], 

𝑇𝐵𝑈({𝑣
𝑖
, 𝑣𝑗}) ≤ min [𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)],                                                  

𝐼𝐵𝐿({𝑣
𝑖
, 𝑣𝑗}) ≥ max[𝐼𝐵𝐿(𝑣𝑖), 𝐼𝐵𝐿(𝑣𝑗)], 

𝐼𝐵𝑈({𝑣
𝑖
, 𝑣𝑗}) ≥ max[𝐼𝐵𝑈(𝑣𝑖), 𝐼𝐵𝑈(𝑣𝑗)], 

𝐹𝐵𝐿({𝑣𝑖 , 𝑣𝑗}) ≥ max[𝐹𝐵𝐿(𝑣𝑖), 𝐹𝐵𝐿(𝑣𝑗)], 

𝐹𝐵𝑈({𝑣𝑖 , 𝑣𝑗}) ≥ max[𝐹𝐵𝑈(𝑣𝑖), 𝐹𝐵𝑈(𝑣𝑗)], 

denoting the degree of truth-membership, indeterminacy-membership and 

falsity-membership of the edge (𝑣𝑖 , 𝑣𝑗) ∈ E respectively, where 

 0≤ 𝑇𝐵({𝑣𝑖 , 𝑣𝑗}) + 𝐼𝐵({𝑣𝑖 , 𝑣𝑗})+ 𝐹𝐵({𝑣𝑖 , 𝑣𝑗}) ≤3   

for all  {𝑣𝑖 , 𝑣𝑗} ∈ E (i, j = 1, 2,…, n). 
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We call A the interval valued neutrosophic vertex set of V, and B the interval 

valued neutrosophic edge set of E, respectively. Note that B is a symmetric 

interval valued neutrosophic relation on A. We use the notation (𝑣𝑖 , 𝑣𝑗) for an 

element of E. Thus, G = (A, B) is an interval valued neutrosophic graph of G∗= 

(V, E) if  

𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≤ min[𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)], 

𝑇𝐵𝑈(𝑣𝑖, 𝑣𝑗) ≤ min[𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)], 

𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≥ max[𝐼𝐵𝐿(𝑣𝑖), 𝐼𝐵𝐿(𝑣𝑗)],  

𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) ≥ max[𝐼𝐵𝑈(𝑣𝑖), 𝐼𝐵𝑈(𝑣𝑗)],  

𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≥ max[𝐹𝐵𝐿(𝑣𝑖), 𝐹𝐵𝐿(𝑣𝑗)], 

𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) ≥ max[𝐹𝐵𝑈(𝑣𝑖), 𝐹𝐵𝑈(𝑣𝑗)] — for all  (𝑣𝑖 , 𝑣𝑗) ∈ E. 

Example 3.2 

Consider a graph 𝐺∗, such that V = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, E = {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣1}. 

Let A be a interval valued neutrosophic subset of V and B a interval valued 

neutrosophic subset of E, denoted by  

 

 

Figure 4: G: Interval valued neutrosophic graph 

 𝑣1 𝑣2 𝑣3   v1v2 𝑣2𝑣3 𝑣3𝑣1 

𝑇𝐴𝐿 0.3 0.2 0.1  𝑇𝐵𝐿 0.1 

 

0.1 

 

0.1 

 

𝑇𝐴𝑈 0.5 0.3 0.3  𝑇𝐵𝑈 0.2 0.3 0.2 

𝐼𝐴𝐿 0.2 0.2 0.2  𝐼𝐵𝐿 0.3 0.4 0.3 

𝐼𝐴𝑈 0.3 0.3 0.4  𝐼𝐵𝑈 0.4 0.5 0.5 

𝐹𝐴𝐿 0.3 0.1 0.3  𝐹𝐵𝐿 0.4 0.4 0.4 

𝐹𝐴𝑈 0.4 0.4 0.5  𝐹𝐵𝑈 0.5 0.5 0.6 
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In Figure 4,  

(i)   (v1 , <[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]>) is an interval valued neutrosophic 

vertex or IVN-vertex. 

(ii) (v1v2, <[0.1, 0.2], [ 0.3, 0.4], [0.4, 0.5]>) is an interval valued neutrosophic 

edge or IVN-edge. 

(iii) (v1, <[0.3, 0.5], [ 0.2, 0.3], [0.3, 0.4]>) and (v2, <[0.2, 0.3],[ 0.2, 0.3],[0.1, 

0.4]>) are interval valued neutrosophic adjacent vertices. 

(iv) (v1v2, <[0.1, 0.2], [ 0.3, 0.4], [0.4, 0.5]>)  and (v1v3, <[0.1, 0.2],[ 0.3, 0.5], 

[0.4, 0.6]>)   are  an interval valued neutrosophic adjacent edge. 

Remarks 

(i) When  𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗)  = 𝑇𝐵𝑈(𝑣𝑖 , 𝑣𝑗)  = 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗)  = 𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗)  = 

𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) for some i and j, then there is no edge between vi and vj . Otherwise 

there exists an edge between vi and vj . 

(ii) If one of the inequalities is not satisfied in (1) and (2), then G is not an IVNG. 

The interval valued neutrosophic graph G depicted in Figure 3 is represented 

by the following adjacency matrix 𝑴𝑮  — 

𝑴𝑮 = 

[

< [𝟎. 𝟑, 𝟎. 𝟓], [ 𝟎. 𝟐, 𝟎. 𝟑], [𝟎. 𝟑, 𝟎. 𝟒] > < [𝟎. 𝟏 , 𝟎. 𝟐], [𝟎. 𝟑 , 𝟎. 𝟒], [𝟎. 𝟒 , 𝟎. 𝟓] > < [𝟎. 𝟏 , 𝟎. 𝟐], [𝟎. 𝟑 , 𝟎. 𝟓], [𝟎. 𝟒 , 𝟎. 𝟔] >

< [𝟎. 𝟏 , 𝟎. 𝟐], [𝟎. 𝟑 , 𝟎. 𝟒], [𝟎. 𝟒 , 𝟎. 𝟓] > < [𝟎. 𝟐 , 𝟎. 𝟑], [𝟎. 𝟐 , 𝟎. 𝟑], [𝟎. 𝟏 , 𝟎. 𝟒] > < [𝟎. 𝟏 , 𝟎. 𝟑], [𝟎. 𝟒 , 𝟎. 𝟓], [𝟎. 𝟒 , 𝟎. 𝟓] >

< [𝟎. 𝟏 , 𝟎. 𝟐], [𝟎. 𝟑 , 𝟎. 𝟓], [𝟎. 𝟒 , 𝟎. 𝟔] > < [𝟎. 𝟏 , 𝟎. 𝟑], [𝟎. 𝟒 , 𝟎. 𝟓], [𝟎. 𝟒 , 𝟎. 𝟓] > < [𝟎. 𝟏 , 𝟎. 𝟑], [𝟎. 𝟐 , 𝟎. 𝟒], [𝟎. 𝟑 , 𝟎. 𝟓] >

] 

 

Definition 3.3 

A partial IVN-subgraph of IVN-graph G= (A, B) is an IVN-graph H = ( 𝑽′, 𝑬′) such 

that — 

(i)  𝑽′ ⊆  𝑽 , where  𝑻𝑨𝑳
′ (𝒗𝒊)  ≤  𝑻𝑨𝑳(𝒗𝒊) , 𝑻𝑨𝑼

′ (𝒗𝒊)  ≤  𝑻𝑨𝑼(𝒗𝒊) ,   𝑰𝑨𝑳
′ (𝒗𝒊)  ≥ 

𝑰𝑨𝑳(𝒗𝒊),  𝑰𝑨𝑼
′ (𝒗𝒊) ≥ 𝑰𝑨𝑼(𝒗𝒊), 𝑭𝑨𝑳

′ (𝒗𝒊) ≥ 𝑭𝑨𝑳(𝒗𝒊), 𝑭𝑨𝑼
′ (𝒗𝒊) ≥ 𝑭𝑨𝑼(𝒗𝒊),   for all  

𝒗𝒊 ∈ 𝑽. 

(ii)  𝑬′ ⊆  𝑬 , where  𝑻𝑩𝑳
′ (𝒗𝒊, 𝒗𝒋) ≤  𝑻𝑩𝑳(𝒗𝒊, 𝒗𝒋) , 𝑻𝑩𝑼

′ (𝒗𝒊, 𝒗𝒋) ≤  𝑻𝑩𝑼(𝒗𝒊, 𝒗𝒋) ,   

𝑰𝑩𝑳
′ (𝒗𝒊, 𝒗𝒋)  ≥ 𝑰𝑩𝑳(𝒗𝒊, 𝒗𝒋), 𝑰𝑩𝑼

′ (𝒗𝒊, 𝒗𝒋)  ≥ 𝑰𝑩𝑼(𝒗𝒊, 𝒗𝒋),  𝑭𝑩𝑳
′ (𝒗𝒊, 𝒗𝒋)  ≥ 𝑭𝑩𝑳(𝒗𝒊, 𝒗𝒋),  

𝐅𝐁𝐔
′ (𝒗𝒊, 𝒗𝒋) ≥ 𝑭𝑩𝑼(𝒗𝒊, 𝒗𝒋),   for all (𝒗𝒊 𝒗𝒋) ∈ 𝑬. 

Definition 3.4 

An IVN-subgraph of IVN-graph G= (V, E) is an IVN-graph H = ( 𝑽′, 𝑬′) such that  

(i)  𝑻𝑨𝑳
′ (𝒗𝒊) = 𝑻𝑨𝑳(𝒗𝒊), 𝑻𝑨𝑼

′ (𝒗𝒊) = 𝑻𝑨𝑼(𝒗𝒊),   𝑰𝑨𝑳
′ (𝒗𝒊) = 𝑰𝑨𝑳(𝒗𝒊), 𝑰𝑨𝑼

′ (𝒗𝒊) = 

𝑰𝑨𝑼(𝒗𝒊), 𝑭𝑨𝑳
′ (𝒗𝒊) = 𝑭𝑨𝑳(𝒗𝒊), 𝑭𝑨𝑼

′ (𝒗𝒊) = 𝑭𝑨𝑼(𝒗𝒊),  for all  𝒗𝒊 in the vertex set of   

𝑽′. 

(ii)  𝑬′ =  𝑬 , where  𝑻𝑩𝑳
′ (𝒗𝒊, 𝒗𝒋) =  𝑻𝑩𝑳(𝒗𝒊, 𝒗𝒋) , 𝑻𝑩𝑼

′ (𝒗𝒊, 𝒗𝒋) =  𝑻𝑩𝑼(𝒗𝒊, 𝒗𝒋) ,   
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𝑰𝑩𝑳
′ (𝒗𝒊, 𝒗𝒋)  =  𝑰𝑩𝑳(𝒗𝒊, 𝒗𝒋) , 𝑰𝑩𝑼

′ (𝒗𝒊, 𝒗𝒋)   = 𝑰𝑩𝑼(𝒗𝒊, 𝒗𝒋) ,  𝑭𝑩𝑳
′ (𝒗𝒊, 𝒗𝒋)  =  𝑭𝑩𝑳(𝒗𝒊, 𝒗𝒋) ,  

𝐅𝐁𝐔
′ (𝒗𝒊, 𝒗𝒋) =  𝑭𝑩𝑼(𝒗𝒊, 𝒗𝒋), for every (𝒗𝒊 𝒗𝒋) ∈ 𝑬 in the edge set of  𝑬′. 

Example 3.5 

𝐆𝟏 in Figure 5   is an IVN-graph, 𝐇𝟏 in Figure 6 is a partial IVN-subgraph and  𝐇𝟐 

in Figure 7  is a  IVN-subgraph of 𝐆𝟏. 

 

 

 

 

 

 

           

Figure 5: G1, an interval valued neutrosophic graph 

 

 

                                     

 

 

 

Figure 6: H1, a partial IVN-subgraph of  G1 

 

Figure 7: H2, an IVN-subgraph of  G1 

Definition 3.6 

The two vertices are said to be adjacent in an interval valued neutrosophic  

graph  G= (A,  B) if  — 

𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = min[𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)], 

𝑇𝐵𝑈(𝑣𝑖, 𝑣𝑗) = min[𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)], 

𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max[𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)] 

𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max[𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗)]  

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 

𝑣3 

<[0.2, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 
<[0.2, 0.3],[ 0.3, 0.4],[0.3, 0.6]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.6]> 

<[0.1, 0.2],[ 0.4, 0.5],[0.4, 0.6]> 

𝑣1 
𝑣2 

<[0.1, 0.2],[ 0.5, 0.6],[0.4, 0.7]> 
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 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max[𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)] 

𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max[𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)] 

In this case, 𝑣𝑖 and 𝑣𝑗 are said to be neighbours and (𝑣𝑖 , 𝑣𝑗) is incident at 𝑣𝑖 and 

𝑣𝑗 also. 

Definition 3.7 

A path P in an interval valued neutrosophic  graph G= (A, B) is a sequence of 

distinct vertices 𝑣0, 𝑣1, 𝑣3,… 𝑣𝑛 such that   𝑇𝐵𝐿(𝑣𝑖−1, 𝑣𝑖)  > 0,  𝑇𝐵𝑈(𝑣𝑖−1, 𝑣𝑖)  > 0,  

𝐼𝐵𝐿(𝑣𝑖−1, 𝑣𝑖)  > 0, 𝐼𝐵𝑈(𝑣𝑖−1, 𝑣𝑖)  > 0  and 𝐹𝐵𝐿(𝑣𝑖−1, 𝑣𝑖)  > 0, 𝐹𝐵𝑈(𝑣𝑖−1, 𝑣𝑖)  > 0      

for  0 ≤i ≤ 1. Here n ≥ 1 is called the length of the path P. A single node or 

vertex 𝑣𝑖 may also be considered as a path. In this case, the path is of the length 

([0, 0], [0, 0], [0, 0]). The consecutive pairs (𝑣𝑖−1, 𝑣𝑖)  are called edges of the 

path. We call P a cycle if 𝑣0= 𝑣𝑛 and n≥3. 

 

Definition 3.8 

An interval valued neutrosophic graph G= (A, B) is said to be connected if every 

pair of vertices has at least one interval valued neutrosophic path between 

them, otherwise it is disconnected. 

 

Definition 3.9 

A vertex vj ∈ V of interval valued neutrosophic graph G= (A, B) is said to be an 

isolated vertex if there is no effective edge incident at vj. 

 

 

 

 

 

 

 

 

 
Figure 8. Example of interval valued neutrosophic graph 

 

In Figure 8, the interval valued neutrosophic vertex v4 is an isolated vertex. 

 

Definition 3.10 

A vertex in an interval valued neutrosophic G = (A, B) having exactly one 

neighbor is called a pendent vertex. Otherwise, it is called non-pendent vertex. 

An edge in an interval valued neutrosophic graph incident with a pendent 

vertex is called a pendent edge. Otherwise it is called non-pendent edge. A 

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 

𝑣4 

<[0.1, 0.4],[ 0.2, 0.3],[0.4, 0.5]> 
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vertex in an interval valued neutrosophic graph adjacent to the pendent vertex 

is called a support of the pendent edge. 

Definition 3.11 

An interval valued neutrosophic graph G = (A, B) that has neither self-loops 

nor parallel edge is called simple interval valued neutrosophic graph. 

  

Definition 3.12 

When a vertex 𝐯𝐢 is end vertex of some edges (𝐯𝐢, 𝐯𝐣)  of any IVN-graph  G = (A, 

B). Then  𝐯𝐢 and (𝐯𝐢, 𝐯𝐣) are said to be incident to each other. 

 

 

 

 

 

 

 

 

                                                              
Figure 9.  Incident IVN-graph. 

 

In this graph v2v1, v2v3 and  v2v4 are incident on v2. 

Definition 3.13 

Let G = (A, B) be an interval valued neutrosophic graph. Then the degree of any 

vertex v is sum of degree of truth-membership, sum of degree of 

indeterminacy-membership and sum of degree of falsity-membership of all 

those edges which are incident on vertex v denoted by ― 

d(v)= ([𝑑𝑇𝐿(𝑣), 𝑑𝑇𝑈(𝑣)], [𝑑𝐼𝐿(𝑣), 𝑑𝐼𝑈(𝑣)], [𝑑𝐹𝐿(𝑣), 𝑑𝐹𝑈(𝑣)]),  

where: 

𝑑𝑇𝐿(𝑣)=∑ 𝑇𝐵𝐿(𝑢, 𝑣)𝑢≠𝑣  denotes the degree of lower truth-membership vertex; 

𝑑𝑇𝑈(𝑣) = ∑ 𝑇𝐵𝑈(𝑢, 𝑣)𝑢≠𝑣  denotes the degree of upper truth-membership 

vertex; 

 𝑑𝐼𝐿(𝑣) = ∑ 𝐼𝐵𝐿(𝑢, 𝑣)𝑢≠𝑣  denotes the degree of lower indeterminacy-

membership vertex; 

𝑑𝐼𝑈(𝑣) = ∑ 𝐼𝐵𝑈(𝑢, 𝑣)𝑢≠𝑣  denotes the degree of upper indeterminacy-

membership vertex; 

𝑑𝐹𝐿(𝑣) = ∑ 𝐹𝐵𝐿(𝑢, 𝑣)𝑢≠𝑣  denotes the degree of lower falsity-membership 

vertex; 

𝑑𝐹𝑈(𝑣) = ∑ 𝐹𝐵𝑈(𝑢, 𝑣)𝑢≠𝑣  denotes the degree of upper falsity-membership 

vertex. 

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 

𝑣4 

<[0.1, 0.4],[ 0.2, 0.3],[0.4, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 
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Example 3.14 

Let us consider an interval valued neutrosophic graph  G = (A, B) of  𝐺∗ = (V, E) 

where V = {v1, v2, v3, v4} and E = {v1v2, v2v3, v3v4 , v4v1}.  

 

 

 

 

 

 

 
Figure 10: Degree of vertex of interval valued neutrosophic graph 

We have the degree of each vertex as follows: 

𝑑(v1)= ([0.3, 0.6], [0.5, 0.9], [0.5, 0.9]), 𝑑(v2)= ([0.4, 0.6], [0.5, 1.0], [0.4, 0.8]), 

𝑑(v3)= ([0.4, 0.6], [0.6, 0.9], [0.4, 0.8]), 𝑑(v4)= ([0.3, 0.6], [0.6, 0.8], [0.5, 0.9]). 

Definition 3.15  

An interval valued neutrosophic graph G= (A, B) is called constant if degree of 

each vertex is k =([𝑘1𝐿 , 𝑘1𝑈], [𝑘2𝐿 , 𝑘2𝑈], [𝑘3𝐿 , 𝑘3𝑈]). That is d(𝑣) =([𝑘1𝐿 , 𝑘1𝑈], 

[𝑘2𝐿 , 𝑘2𝑈], [𝑘3𝐿 , 𝑘3𝑈]), for all 𝑣 ∈ V.  

Example 3.16 

Consider an interval valued neutrosophic graph G such that V = {v1, v2, v3, v4} 

and E = {v1v2, v2v3, v3v4 , v4v1}.  

 

 

 

 

 

 

                                          

 

 

                                               
Figure 11. Constant IVN-graph. 

 

𝑣4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.3],[ 0.3, 0.4],[0.2, 0.4]> 

𝑣3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0

.1
, 0

.3
],

[ 
0

.3
, 0

.4
],

[0
.3

, 0
.5

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

𝑣1 

<[0.2, 0.3],[ 0.2, 0.5],[0.2, 0.4]> 

𝑣2 

<[
0

.2
, 0

.3
],

[ 
0

.3
, 0

.5
],

[0
.2

, 0
.4

]>
 

𝑣4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.3],[ 0.2, 0.5],[0.2, 0.4]> 

𝑣3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0

.2
, 0

.3
],

[ 
0

.2
, 0

.5
],

[0
.2

, 0
.4

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

𝑣1 

<[0.2, 0.3],[ 0.2, 0.5],[0.2, 0.4]> 

𝑣2 

<[
0

.2
, 0

.3
],

[ 
0

.2
, 0

.5
],

[0
.2

, 0
.4

]>
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Clearly, G is constant IVN-graph since the degree of  𝒗𝟏, 𝒗𝟐, 𝒗𝟑 and 𝒗𝟒 is ([0.4, 

0.6], [0.4, 1], [0.4, 0.8]) 

Definition 3.17 

An interval valued neutrosophic graph G = (A, B) of 𝐺∗= (V, E) is called strong  

interval valued neutrosophic graph if 

𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = min[𝑇𝐴𝐿(𝑣𝑖),  𝑇𝐴𝐿(𝑣𝑗)], 𝑇𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = min[𝑇𝐴𝑈(𝑣𝑖),  

𝑇𝐴𝑈(𝑣𝑗)] 

 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max[𝐼𝐴𝐿(𝑣𝑖),  𝐼𝐴𝐿(𝑣𝑗)],  𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max[𝐼𝐴𝑈(𝑣𝑖),  

𝐼𝐴𝑈(𝑣𝑗)]  

 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max[𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)],  𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max[𝐹𝐴𝑈(𝑣𝑖), 

𝐹𝐴𝑈(𝑣𝑗)],    for all (𝑣𝑖 , 𝑣𝑗) ∈ E. 

Example 3.18 

Consider  a graph 𝐺∗ such that V = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, E = {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣1}. 

Let A be an interval valued neutrosophic subset of V and let B an interval 

valued neutrosophic subset of E denoted by: 

 𝑣1 𝑣2 𝑣3   𝑣1𝑣2 𝑣2𝑣3 𝑣3𝑣1 

𝑇𝐴𝐿 0.3 

 

0.2 

 

0.1 

 

 𝑇𝐵𝐿 0.2 

 

0.1 

 

0.1 

 

𝑇𝐴𝑈 0.5 0.3 0.3  𝑇𝐵𝑈 0.3 0.3 0.3 

𝐼𝐴𝐿 0.2 0.2 0.2  𝐼𝐵𝐿 0.2 0.2 0.2 

𝐼𝐴𝑈 0.3 0.3 0.4  𝐼𝐵𝑈 0.3 0.4 0.4 

𝐹𝐴𝐿 0.3 0.1 0.3  𝐹𝐵𝐿 0.3 0.3 0.3 

𝐹𝐴𝑈 0.4 0.4 0.5  𝐹𝐵𝑈 0.4 0.4 0.5 

 

 

 

 

 

 

 
Figure 12. Strong IVN-graph. 

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.2, 0.3],[ 0.2, 0.3],[0.3, 0.4]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.4]> <[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 
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By routing computations, it is easy to see that G is a strong interval valued 

neutrosophic of 𝐺∗. 

Proposition 3.19 

An interval valued neutrosophic graph is the generalization of interval valued 

fuzzy graph 

Proof 

Suppose G = (V, E) be an interval valued neutrosophic graph. Then by setting 

the indeterminacy-membership and falsity-membership values of vertex set 

and edge set equals to zero reduces the interval valued neutrosophic graph to 

interval valued fuzzy graph. 

Proposition 3.20 

An interval valued neutrosophic graph is the generalization of interval valued 

intuitionistic fuzzy graph 

Proof 

Suppose G = (V, E) is an interval valued neutrosophic graph. Then by setting 

the indeterminacy-membership  values of vertex set and edge set equals to 

zero reduces the interval valued neutrosophic graph to interval valued 

intuitionistic fuzzy graph. 

Proposition 3.21 

An interval valued neutrosophic graph is the generalization of intuitionistic 

fuzzy graph. 

Proof 

Suppose G = (V, E) is an interval valued neutrosophic graph. Then by setting 

the indeterminacy-membership, upper truth-membership and upper falsity-

membership values of vertex set and edge set equals to zero reduces the 

interval valued neutrosophic graph to intuitionistic fuzzy graph. 

Proposition 3.22 

An interval valued neutrosophic graph is the generalization of single valued 

neutrosophic graph. 

Proof 

Suppose G = (V, E) is an interval valued neutrosophic graph. Then by setting 

the upper truth-membership equals lower truth-membership, upper 
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indeterminacy-membership equals lower indeterminacy-membership and 

upper falsity-membership equals lower falsity-membership values of vertex 

set and edge set reduces the interval valued neutrosophic graph to single 

valued neutrosophic graph. 

Definition 3.23 

The complement of an interval valued neutrosophic graph G (A, B) on  𝐺∗ is 

an interval valued neutrosophic graph 𝐺̅ on 𝐺∗ where: 

1. 𝐴̅ =A 

2. 𝑇𝐴𝐿
̅̅ ̅̅ (𝑣𝑖)= 𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝑈

̅̅ ̅̅̅(𝑣𝑖)= 𝑇𝐴𝑈(𝑣𝑖), 𝐼𝐴𝐿
̅̅ ̅̅ (𝑣𝑖)= 𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝑈

̅̅ ̅̅ (𝑣𝑖)= 

𝐼𝐴𝑈(𝑣𝑖),  𝐹𝐴𝐿
̅̅ ̅̅ (𝑣𝑖) = 𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝑈

̅̅ ̅̅ ̅(𝑣𝑖) = 𝐹𝐴𝑈(𝑣𝑖),  

for all 𝑣𝑗 ∈ V. 

3. 𝑇𝐵𝐿
̅̅ ̅̅ (𝑣𝑖 , 𝑣𝑗)= min [𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)]  − 𝑇𝐵𝐿(𝑣𝑖, 𝑣𝑗), 

𝑇𝐵𝑈
̅̅ ̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= min [𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)] -𝑇𝐵𝑈(𝑣𝑖 , 𝑣𝑗), 

𝐼𝐵𝐿
̅̅ ̅̅ (𝑣𝑖 , 𝑣𝑗)= max [𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)]  −

 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗), 𝐼𝐵𝑈
̅̅ ̅̅ (𝑣𝑖 , 𝑣𝑗)= max [𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗)]  -𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗),   

and 

𝐹𝐵𝐿
̅̅ ̅̅̅(𝑣𝑖 , 𝑣𝑗)= max [𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)]  - 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗), 

𝐹𝐵𝑈
̅̅ ̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= max [𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)]  - 𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗),  

for all (𝑣𝑖 , 𝑣𝑗) ∈ E 

Remark 3.24 

If G = (V, E) is an interval valued neutrosophic graph on  𝐺∗. Then from above 

definition, it follow that 𝐺̅ ̅ is given by the interval valued neutrosophic graph  

G̅ ̅ = (V̅ ̅, E̅ ̅) on G∗ where V̅ ̅=V and ― 

TBL
̅̅ ̅̅̅̅̅ ̅̅̅(vi, vj)= min [TAL(vi), TA(vj)]-TBL(vi, vj), 

 TBU
̅̅ ̅̅ ̅̅̅ ̅̅ ̅(vi, vj)= min [TAU(vi), TA(vj)]-TBU(vi, vj), 

 IBL
̅̅ ̅̅̅̅ ̅̅ (vi, vj)= max [IAL(vi), IAL(vj)]-IBL(vi, vj),  

IBU
̅̅ ̅̅̅̅ ̅̅ (vi, vj)= max [IAU(vi), IAU(vj)]-IBU(vi, vj),   

and 

 FBL
̅̅ ̅̅̅̅̅ ̅̅̅(vi, vj) = max [FAL(vi), FAL(vj)]-FBL(vi, vj), FBU

̅̅ ̅̅ ̅̅̅ ̅̅ ̅(vi, vj) 

= max [FAU(vi), FAU(vj)]-FBU(vi, vj), For all (vi, vj) ∈ E. 
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Thus  𝑇𝐵𝐿
̅̅ ̅̅̅̅ ̅̅  =𝑇𝐵𝐿 , 𝑇𝐵𝑈

̅̅ ̅̅ ̅̅̅ ̅̅ ̅ =𝑇𝐵𝑈𝐿 ,  𝐼𝐵𝐿
̅̅ ̅̅̅̅ ̅̅  =𝐼𝐵𝐿 , 𝐼𝐵𝑈

̅̅ ̅̅̅̅ ̅̅  =𝐼𝐵𝑈 , and 𝐹𝐵𝐿
̅̅ ̅̅̅̅̅̅̅̅ =𝐹𝐵𝐿 ,  𝐹𝐵𝑈

̅̅ ̅̅ ̅̅̅ ̅̅ ̅ =𝐹𝐵𝑈  on V, 

where E =( [𝑇𝐵𝐿, 𝑇𝐵𝑈],  [𝐼𝐵𝐿 , 𝐼𝐵𝑈], [𝐹𝐵𝐿 , 𝐹𝐵𝑈]) is the interval valued neutrosophic 

relation on V. For any interval valued neutrosophic graph G, 𝐺̅  is strong 

interval valued neutrosophic graph and  G ⊆ 𝐺̅. 

Proposition 3.25 

G= 𝐺̅ ̅ if and only if G is a strong interval valued  neutrosophic graph.  

Proof  

It is obvious. 

Definition 3.26 

A strong interval valued neutrosophic graph G is called self complementary if 

G≅ 𝐺̅, where 𝐺̅ is the complement of interval valued neutrosophic graph G. 

Example 3.27 

Consider a graph 𝐺∗ = (V, E) such that V ={v1, v2, v3, v4}, E={v1v2, v2v3, v3v4, 

v1v4}. Consider an interval valued  neutrosophic graph G. 

 
Figure 13. G: Strong IVN- graph 

       
Figure 14. 𝐺̅ Strong IVN- graph 
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Figure  15. 𝐺̅ ̅ Strong IVN- graph 

Clearly, G≅ 𝐺̅ ̅, hence G is self complementary.  

Proposition 3.26 

Let G=(A, B) be a strong interval valued neutrosophic graph. If ― 

𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = min [𝑇𝐴𝐿(𝑣𝑖),  𝑇𝐴𝐿(𝑣𝑗)] 

𝑇𝐵𝑈(𝑣𝑖, 𝑣𝑗) = min [𝑇𝐴𝑈(𝑣𝑖),  𝑇𝐴𝑈(𝑣𝑗)] 

 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max [𝐼𝐴𝐿(𝑣𝑖),  𝐼𝐴𝐿(𝑣𝑗)]  

𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max [𝐼𝐴𝑈(𝑣𝑖),  𝐼𝐴𝑈(𝑣𝑗)]  

 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max [𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)]  

𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max [𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)]  

for all 𝑣𝑖 , 𝑣𝑗 ∈ V, then G is self complementary. 

Proof 

Let G = (A, B) be a strong interval valued neutrosophic graph such that ― 

𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = min [𝑇𝐴𝐿(𝑣𝑖),  𝑇𝐴𝐿(𝑣𝑗)]; 

𝑇𝐵𝑈(𝑣𝑖, 𝑣𝑗) = min [𝑇𝐴𝑈(𝑣𝑖),  𝑇𝐴𝑈(𝑣𝑗)]; 

 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max [𝐼𝐴𝐿(𝑣𝑖),  𝐼𝐴𝐿(𝑣𝑗)];  

𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max [𝐼𝐴𝑈(𝑣𝑖),  𝐼𝐴𝑈(𝑣𝑗)];  

 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max [𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)];  

𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max [𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)], 

for all 𝑣𝑖 , 𝑣𝑗 ∈ V, then G≈ 𝐺̅ ̅under the identity map I: V →V, hence G is self 

complementary. 

𝑣4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.3],[ 0.2, 0.4],[0.2, 0.3]> 

𝑣3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0

.3
, 0

.5
],

[ 
0

.2
, 0

.3
],

[0
.2

, 0
.4

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

𝑣1 

<[0.4, 0.6],[ 0.1, 0.3],[0.2, 0.4]> 

𝑣2 

<[
0

.2
, 0

.3
],

[ 
0

.2
, 0

.4
,[

0
.2

, 0
.3

]>
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Proposition 3.27 

Let G be a self complementary interval valued neutrosophic graph. Then ― 

∑ 𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗
 = 

1

2
 ∑ min [𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)]𝑣𝑖≠𝑣𝑗

 

∑ 𝑇𝐵𝑈(𝑣𝑖, 𝑣𝑗)𝑣𝑖≠𝑣𝑗
 = 

1

2
 ∑ min [𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)]𝑣𝑖≠𝑣𝑗

 

∑ 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗
 = 

1

2
 ∑ max [𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)]𝑣𝑖≠𝑣𝑗

 

∑ 𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗
 = 

1

2
 ∑ max [𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗)]𝑣𝑖≠𝑣𝑗

 

∑ 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗
 = 

1

2
∑ max [𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)]𝑣𝑖≠𝑣𝑗

 

∑ 𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗
 = 

1

2
∑ max [𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)]𝑣𝑖≠𝑣𝑗

. 

Proof 

If G be a self complementary interval valued neutrosophic graph. Then there 

exist an isomorphism  f: 𝑉1 → 𝑉1 satisfying   

𝑇𝑉1
̅̅ ̅̅ (𝑓(𝑣𝑖)) = 𝑇𝑉1

(𝑓(𝑣𝑖))  =  𝑇𝑉1
(𝑣𝑖) 

𝐼𝑉1
̅̅ ̅(𝑓(𝑣𝑖)) = 𝐼𝑉1

(𝑓(𝑣𝑖))  =  𝐼𝑉1
(𝑣𝑖) 

𝐹𝑉1
̅̅ ̅̅̅̅ ̅̅ (𝑓(𝑣𝑖)) = 𝐹𝑉1

(𝑓(𝑣𝑖))  =  𝐹𝑉1
(𝑣𝑖)    

for all 𝑣𝑖 ∈ 𝑉1, and ― 

𝑇𝐸1
̅̅ ̅̅ (𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) =𝑇𝐸1

(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) =𝑇𝐸1
(𝑣𝑖 , 𝑣𝑗) 

𝐼𝐸1
̅̅̅̅ (𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) =𝐼𝐸1

(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) =𝐼𝐸1
(𝑣𝑖 , 𝑣𝑗) 

 𝐹𝐸1
̅̅ ̅̅ (𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) =𝐹𝐸1

(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) =𝐹𝐸1
(𝑣𝑖 , 𝑣𝑗)  

for all (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸1. 

We have  

𝑇𝐸1
̅̅ ̅̅ (𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) = min [𝑇𝑉1

̅̅ ̅̅ (𝑓(𝑣𝑖)), 𝑇𝑉1
̅̅ ̅̅ (𝑓(𝑣𝑗))] −  𝑇𝐸1

(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) 

i.e,  𝑇𝐸1
(𝑣𝑖 , 𝑣𝑗) = min [𝑇𝑉1

(𝑣𝑖), 𝑇𝑉1
(𝑣𝑗)] −  𝑇𝐸1

(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) 

𝑇𝐸1
(𝑣𝑖 , 𝑣𝑗) = min [𝑇𝑉1

(𝑣𝑖), 𝑇𝑉1
(𝑣𝑗)] − 𝑇𝐸1

(𝑣𝑖 , 𝑣𝑗). 

That is ― 

∑ 𝑇𝐸1
(𝑣𝑖, 𝑣𝑗)𝑣𝑖≠𝑣𝑗

 +∑ 𝑇𝐸1
(𝑣𝑖, 𝑣𝑗)𝑣𝑖≠𝑣𝑗

= ∑ min [𝑇𝑉1
(𝑣𝑖), 𝑇𝑉1

(𝑣𝑗)]𝑣𝑖≠𝑣𝑗
 

∑ 𝐼𝐸1
(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗

 +∑ 𝐼𝐸1
(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗

= ∑ max [𝐼𝑉1
(𝑣𝑖), 𝐼𝑉1

(𝑣𝑗)]𝑣𝑖≠𝑣𝑗
 

∑ 𝐹𝐸1
(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗

 +∑ 𝐹𝐸1
(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗

= ∑ max [𝐹𝑉1
(𝑣𝑖), 𝐹𝑉1

(𝑣𝑗)]𝑣𝑖≠𝑣𝑗
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2 ∑ 𝑇𝐸1
(𝑣𝑖, 𝑣𝑗)𝑣𝑖≠𝑣𝑗

 =  ∑ min [𝑇𝑉1
(𝑣𝑖), 𝑇𝑉1

(𝑣𝑗)]𝑣𝑖≠𝑣𝑗
 

2 ∑ 𝐼𝐸1
(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗

 =  ∑ max [𝐼𝑉1
(𝑣𝑖), 𝐼𝑉1

(𝑣𝑗)]𝑣𝑖≠𝑣𝑗
 

2∑ 𝐹𝐸1
(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗

 =  ∑ max [𝐹𝑉1
(𝑣𝑖), 𝐹𝑉1

(𝑣𝑗)]𝑣𝑖≠𝑣𝑗
. 

From these equations, Proposition 3.27 holds.  

Proposition 3.28 

Let 𝐺1  and 𝐺2  be strong interval valued neutrosophic graph, 𝐺1
̅̅ ̅  ≈  𝐺2

̅̅ ̅ 

(isomorphism). 

Proof 

Assume that 𝐺1 and 𝐺2 are isomorphic, there exists a bijective map  f: 𝑉1 → 𝑉2 

satisfying  

 𝑇𝑉1
(𝑣𝑖) =𝑇𝑉2

(𝑓(𝑣𝑖)),  

 𝐼𝑉1
(𝑣𝑖) =𝐼𝑉2

(𝑓(𝑣𝑖)), 

 𝐹𝑉1
(𝑣𝑖) =𝐹𝑉2

(𝑓(𝑣𝑖)),     

for all 𝑣𝑖 ∈ 𝑉1, and  

𝑇𝐸1
(𝑣𝑖 , 𝑣𝑗) =𝑇𝐸2

(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)), 

 𝐼𝐸1
(𝑣𝑖 , 𝑣𝑗) =𝐼𝐸2

(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)), 

 𝐹𝐸1
(𝑣𝑖 , 𝑣𝑗) = 𝐹𝐸2

(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)),  

for all (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸1. 

By Definition 3.21, we have  

𝑇𝐸1
̅̅ ̅̅ (𝑣𝑖 , 𝑣𝑗)= min [𝑇𝑉1

(𝑣𝑖), 𝑇𝑉1
(𝑣𝑗)] −𝑇𝐸1

(𝑣𝑖 , 𝑣𝑗) 

               = min [𝑇𝑉2
(𝑓(𝑣𝑖)),  𝑇𝑉2

(𝑓(𝑣𝑗))] −𝑇𝐸2
(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)), 

              = 𝑇𝐸2
̅̅ ̅̅ (𝑓(𝑣𝑖), 𝑓(𝑣𝑗)), 

  𝐼𝐸1
̅̅̅̅ (𝑣𝑖 , 𝑣𝑗)= max [𝐼𝑉1

(𝑣𝑖),  𝐼𝑉1
(𝑣𝑗)] −𝐼𝐸1

(𝑣𝑖 , 𝑣𝑗) 

               = max[𝐼𝑉2
(𝑓(𝑣𝑖)), 𝐼𝑉2

(𝑓(𝑣𝑗))] −𝐼𝐸2
(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)), 

              = 𝐼𝐸2
̅̅̅̅ (𝑓(𝑣𝑖), 𝑓(𝑣𝑗)), 

𝐹𝐸1
̅̅ ̅̅ (𝑣𝑖 , 𝑣𝑗)= min [𝐹𝑉1

(𝑣𝑖), 𝐹𝑉1
(𝑣𝑗)] −𝐹𝐸1

(𝑣𝑖 , 𝑣𝑗) 

               = min [𝐹𝑉2
(𝑓(𝑣𝑖)), 𝐹𝑉2

(𝑓(𝑣𝑗))] −𝐹𝐸2
(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)),  

              = 𝐹𝐸2
̅̅ ̅̅ (𝑓(𝑣𝑖), 𝑓(𝑣𝑗)), 

for all (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸1, hence 𝐺1
̅̅ ̅ ≈ 𝐺2

̅̅ ̅. The converse  is straightforward. 
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4 Complete Interval Valued Neutrosophic Graphs 

Definition 4.1 

An interval valued neutrosophic graph G= (A, B) is called complete if  

𝑇𝐵𝐿 ( 𝑣𝑖 , 𝑣𝑗) = min( 𝑇𝐴𝐿(𝑣𝑖 ), 𝑇𝐴𝐿(𝑣𝑗 )), 𝑇𝐵𝑈 ( 𝑣𝑖 , 𝑣𝑗) = min( 𝑇𝐴𝑈(𝑣𝑖 ), 

𝑇𝐴𝑈(𝑣𝑗)), 

 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max(𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)),   𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max(𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗)),  

and 

𝐹𝐵𝐿 ( 𝑣𝑖 , 𝑣𝑗) = max( 𝐹𝐴(𝑣𝑖 ), 𝐹𝐴(𝑣𝑗 )),  𝐹𝐵𝑈 ( 𝑣𝑖 , 𝑣𝑗) = max( 𝐹𝐴𝑈(𝑣𝑖 ), 

𝐹𝐴𝑈(𝑣𝑗)),  

for all 𝑣𝑖 , 𝑣𝑗 ∈ V. 

Example 4.2 

Consider a graph 𝐺∗ = (V, E) such that V = {v1, v2, v3, v4}, E = {v1v2, v1v3 , v2v3, 

v1v4, v3v4 , v2v4}, then  G = (A, B) is a complete interval valued  neutrosophic 

graph of 𝐺∗. 

 

 

 

 

 

 

 

 

    Figure17: Complete interval valued neutrosophic graph 

Definition 4.3 

The complement of a complete interval valued neutrosophic graph G = (A, B) 

of   𝐺∗= (V, E) is an interval valued neutrosophic complete graph 𝐺̅= (𝐴̅, 𝐵̅) on 

𝐺∗= (𝑉, 𝐸̅),  where 

1. 𝑉̅ =V 

2. 𝑇𝐴𝐿
̅̅ ̅̅ (𝑣𝑖)= 𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝑈

̅̅ ̅̅̅(𝑣𝑖)= 𝑇𝐴𝑈(𝑣𝑖), 𝐼𝐴𝐿
̅̅ ̅̅ (𝑣𝑖)= 𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝑈

̅̅ ̅̅ (𝑣𝑖)= 

𝐼𝐴𝑈(𝑣𝑖),  𝐹𝐴𝐿
̅̅ ̅̅ (𝑣𝑖) = 𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝑈

̅̅ ̅̅ ̅(𝑣𝑖) = 𝐹𝐴𝑈(𝑣𝑖), for all 𝑣𝑗 ∈ V. 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.4]> 

𝑢4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

𝑢3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0

.3
, 0

.5
],

[ 
0

.2
, 0

.3
],

[0
.2

, 0
.4

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

𝑢1 

<[0.4, 0.5],[ 0.1, 0.3],[0.2, 0.4]> 

𝑢2 

<[
0

.2
, 0

.3
],

[ 
0

.2
, 0

.4
,[

0
.2

, 0
.3

]>
 

<[0.2, 0.3],[ 0.2, 0.4],[0.2, 0.3]> 
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3. 𝑇𝐵𝐿
̅̅ ̅̅ (𝑣𝑖 , 𝑣𝑗)= min [𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)]  − 𝑇𝐵𝐿(𝑣𝑖, 𝑣𝑗), 

 𝑇𝐵𝑈
̅̅ ̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= min [𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)]  − 𝑇𝐵𝑈(𝑣𝑖 , 𝑣𝑗), 

𝐼𝐵𝐿
̅̅ ̅̅ (𝑣𝑖 , 𝑣𝑗)= max [𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)]   − 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗), 

 𝐼𝐵𝑈
̅̅ ̅̅ (𝑣𝑖 , 𝑣𝑗)= max [𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗)] − 𝐼𝐵𝑈(𝑣𝑖, 𝑣𝑗),   

and 

𝐹𝐵𝐿
̅̅ ̅̅̅(𝑣𝑖 , 𝑣𝑗)= max [𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)]   − 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗), 

 𝐹𝐵𝑈
̅̅ ̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= max [𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)]   − 𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗),  

for all (𝑣𝑖 , 𝑣𝑗) ∈ E. 

Proposition 4.4 

The complement of complete IVN-graph is a IVN-graph with no edge. Or if G 

is a complete, then in 𝐺̅ the edge is empty. 

Proof 

Let G = (A, B) be a complete IVN-graph. So  

𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = min(𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)), 𝑇𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = min(𝑇𝐴𝑈(𝑣𝑖), 

𝑇𝐴𝑈(𝑣𝑗)),   𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max (𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)), 𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max 

(𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗))  and 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max (𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)), 

𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max (𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)), for all 𝑣𝑖 , 𝑣𝑗 ∈ V 

Hence in 𝐺̅, 

 𝑇̅𝐵𝐿(𝑣𝑖 , 𝑣𝑗)= min(𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)) − 𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗)  for all i, j, ..., n 

        = min(𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)) − min(𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)) for all i, j, …, n 

       = 0      for all i, j, ..., n 

𝑇̅𝐵𝑈(𝑣𝑖 , 𝑣𝑗)= min(𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)) − 𝑇𝐵𝑈(𝑣𝑖 , 𝑣𝑗)  for all i, j, ..., n 

        = min(𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)) − min(𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)) for all i, j, ..., n 

       = 0      for all i, j, .., n. 

and 

 𝐼𝐵̅𝐿(𝑣𝑖 , 𝑣𝑗)= max(𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)) − 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗)  for all i, j, ..., n 

        = max(𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)) − max(𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)) for all i, j, …, n 

       = 0      for all i, j, .., n 
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𝐼𝐵̅𝑈(𝑣𝑖 , 𝑣𝑗)= max(𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗)) − 𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗)  for all i, j, .., n 

        = max(𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗)) − max(𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗)) for all i, j, …, n 

       = 0      for all i, j, ..., n. 

Also 

 𝐹̅𝐵𝐿(𝑣𝑖 , 𝑣𝑗)= max(𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)) − 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗)  for all i, j, ..., n. 

        = max(𝐹𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)) − max(𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)) for all i, j, …, n 

       = 0,     for all i, j, ..., n. 

𝐹̅𝐵𝑈(𝑣𝑖 , 𝑣𝑗)= max(𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)) − 𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗)  for all i, j, ..., n 

        = max(𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)) − max(𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)) for all i, j, ...,n 

       = 0,      for all i, j, ..., n. 

Thus  

([ 𝑇̅𝐵𝐿(𝑣𝑖 , 𝑣𝑗), 𝑇̅𝐵𝑈(𝑣𝑖 , 𝑣𝑗)],  [ 𝐼𝐵̅𝐿(𝑣𝑖 , 𝑣𝑗), 𝐼𝐵̅𝑈(𝑣𝑖 , 𝑣𝑗)],  

[ 𝐹̅𝐵𝐿(𝑣𝑖 , 𝑣𝑗), 𝐹̅𝐵𝑈(𝑣𝑖 , 𝑣𝑗)]) = ([0, 0], [0, 0], [0, 0]). 

Hence, the edge set of 𝐺̅ is empty if G is a complete IVN-graph. 

5 Conclusion 

Interval valued neutrosophic sets is a generalization of the notion of fuzzy sets, 

intuitionistic fuzzy sets, interval valued fuzzy sets, interval valued intuitionstic 

fuzzy sets and single valued neutrosophic sets.  

Interval valued neutrosophic model gives more precisions, flexibility and 

compatibility to the system as compared to the classical, fuzzy, intuitionistic 

fuzzy and single valued neutrosophic models.  

In this paper, we have defined for the first time certain types of interval valued 

neutrosophic graphs, such as strong interval valued neutrosophic graph, 

constant interval valued neutrosophic graph and complete interval valued 

neutrosophic graphs.  

In future study, we plan to extend our research to regular interval valued 

neutrosophic graphs and irregular interval valued neutrosophic. 
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Abstract  

Since the world is full of indeterminacy, the neutrosophics found their place into 

contemporary research. In neutrosophic set, indeterminacy is quantified explicitly 

and truth-membership, indeterminacy-membership and falsity-membership are 

independent. For that purpose, it is natural to adopt the value from the selected set 

with highest degree of truth-membership, indeterminacy membership and least 

degree of falsity-membership on the decision set. These factors indicate that a 

decision making process takes place in neutrosophic environment. In this paper, we 

introduce and study the probability of neutrosophic crisp sets. After giving the 

fundamental definitions and operations, we obtain several properties and discuss the 

relationship between them. These notions can help researchers and make great use 

in the future in making algorithms to solve problems and manage between these 

notions to produce a new application or new algorithm of solving decision support 

problems. Possible applications to mathematical computer sciences are touched upon.  

Keyword  

Neutrosophic set, Neutrosophic probability, Neutrosophic crisp set, Intuitionistic 

neutrosophic set. 

1 Introduction  

Neutrosophy has laid the foundation for a whole family of new mathematical 

theories generalizing both their classical and fuzzy counterparts [1, 2, 3, 22, 23, 

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 42] such as the neutrosophic 

set theory.  The fundamental concepts of neutrosophic set, introduced by 

Smarandache in [37, 38, 39, 40], and Salama et al. in [4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16, 17, 18, 19, 20, 21], provides a natural foundation for treating 

mathematically the neutrosophic phenomena which pervasively exist in our 

real world and for building new branches of neutrosophic mathematics.  
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In this paper, we introduce and study the probability of neutrosophic crisp sets. 

After giving the fundamental definitions and operations, we obtain several 

properties, and discuss the relationship between neutrosophic crisp sets and 

others.  

2 Terminology  

We recollect some relevant basic preliminaries, and in particular, the work of 

Smarandache in [37, 38, 39, 40], and Salama et al. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 

14, 15, 16, 17, 18, 19, 20, 21]. Smarandache introduced the neutrosophic 

components T, I, F ― which represent the membership, indeterminacy and 

non-membership values respectively, which are included into the 

nonstandard unit interval.  

2.1 Example 2.1 [37, 39]  

Let us consider a neutrosophic set, a collection of possible locations (positions) 

of particle x and let A and B two neutrosophic sets.  

One can say, by language abuse, that any particle x neutrosophically belongs to 

any set, due to the percentages of truth/indeterminacy/falsity involved, which 

varies between  1  and 0 . 

For example: x (0.5, 0.2, 0.3) belongs to A (which means a probability of 50% 

that the particle x is in A, a probability of 30% that x is not in A, and the rest is 

undecidable); or y (0, 0, 1) belongs to A (which normally means y is not for 

sure in A ); or z (0, 1, 0) belongs to A (which means one does know absolutely 

nothing about z affiliation with A). 

More general, x((0.2-0.3), (0.4—0.45) [0.50-0.51,{0.2,0.24,0.28}) belongs to 

the set, which means: with a probability in between 20-30%, the particle x is 

in a position of A (one cannot find an exact approximation because of various 

sources used); with a probability of 20% or 24% or 28%, x is not in A; the 

indeterminacy related to the appurtenance of x to A is in between 40-45% or 

between 50-51% (limits included).  

The subsets representing the appurtenance, indeterminacy, and falsity may 

overlap, and, in this case, n-sup = 30% + 51% + 28% > 100. 

Definition 2.1 [14, 15, 21] 

A neutrosophic crisp set (NCS for short) 321 ,, AAAA   can be identified to 

an ordered triple 321 ,, AAA  which are subsets on X, and every crisp set in X 

is obviously a NCS having the form 321 ,, AAA . 
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Definition 2.2 [21] 

The object having the form
 

321 ,, AAAA   is called  

1) Neutrosophic Crisp Set with Type I if it satisfies  21 AA ,  31 AA  

and  32 AA  (NCS-Type I for short).  

2) Neutrosophic Crisp Set with Type II  if it satisfies  21 AA ,  31 AA  

and  32 AA  and  1 2 3A A A X    (NCS-Type II for short).  

3) Neutrosophic Crisp Set with Type III  if it satisfies  321 AAA  and  

1 2 3A A A X    (NCS-Type III for short).  

Definition 2.3 

1. Neutrosophic Set [7]:  Let X be a non-empty fixed set. A neutrosophic set (NS 

for short) A  is an object having the form )(),(),( xxxA AAA  , where 

   xx AA  ,  and  xA  represent the degree of membership function (namely

 xA ), the degree of indeterminacy (namely  xA ), and the degree of non-

membership (namely  xA ) respectively of each element Xx  to the set A  

where  
  1)(),(),(0 xxx AAA   

and 
  3)()()(0 xxx AAA  . 

2. Neutrosophic Intuitionistic Set of Type 1 [8]:  Let X be a non-empty fixed set. 

A neutrosophic intuitionistic set of type 1 (NIS1 for short) set A  is an object 

having the form )(),(),( xxxA AAA  , where    xx AA  ,  and  xA  which 

represent the degree of membership function (namely  xA ), the degree of 

indeterminacy (namely  xA ), and the degree of non-membership (namely

 xA ) respectively of each element Xx  to the set A  where 

   1)(),(),(0 xxx AAA   

and the functions satisfy the condition  

      5.0 xxx AAA    

and  

  3)()()(0 xxx AAA  .  

3. Neutrosophic Intuitionistic Set of Type 2 [41]: Let X be a non-empty fixed set. 

A neutrosophic intuitionistic set of type 2 A  (NIS2 for short) is an object having 

the form )(),(),( xxxA AAA   where    xx AA  ,  and  xA  which 

represent the degree of membership function (namely  xA ), the degree of 
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indeterminacy (namely  xA ), and the degree of non-membership (namely

 xA ) respectively of each element Xx  to the set A  where 

)(),(),(5.0 xxx AAA   

and the functions satisfy the condition 

    ,5.0 xx AA    ,5.0)(  xx AA    ,5.0)(  xx AA    

and 

  2)()()(0 xxx AAA  .  

A neutrosophic crisp with three types the object 321 ,, AAAA   can be 

identified to an ordered triple 321 ,, AAA  which are subsets on X, and every 

crisp set in X is obviously a NCS having the form 321 ,, AAA . Every 

neutrosophic set )(),(),( xxxA AAA   on X  is obviously a NS having the 

form )(),(),( xxx AAA  . 

Salama et al in [14, 15, 21] constructed the tools for developed neutrosophic 
crisp set and introduced the NCS NN X,  in X. 

Remark 2.1 

The neutrosophic intuitionistic set is a neutrosophic set, but the neutrosophic 

set is not a neutrosophic intuitionistic set in general. Neutrosophic crisp sets 

with three types are neutrosophic crisp set. 

3 The Probability of Neutrosophic Crisp Sets 

If an experiment produces indeterminacy, that is called a neutrosophic 

experiment. Collecting all results, including the indeterminacy, we get the 

neutrosophic sample space (or the neutrosophic probability space) of the 

experiment. The neutrosophic power set of the neutrosophic sample space is 

formed by all different collections (that may or may not include the 

indeterminacy) of possible results. These collections are called neutrosophic 

events.  

In classical experimental, the probability is  










 trialsofnumber    total

occurs Aevent     timesofnumber  
. 

Similarly, Smarandache in [16, 17, 18] introduced the Neutrosophic 

Experimental Probability, which is: 
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








 trialsofnumber    total

occurnot    does Aevent    timesofnumber  
,

 trialsofnumber    total

occursacy  indetermin    timesofnumber  
,

 trialsofnumber    total

occurs  Aevent     timesofnumber   

Probability of NCS is a generalization of the classical probability in which the 
chance that an event 321 ,, AAAA   to occur is: 

)  false , P(A)  (A)  true, PP(A 321 ateindetermin ,  

on a sample space X, or )(),(),()( 321 APAPAPANP  .  

A subspace of the universal set, endowed with a neutrosophic probability 

defined for each of its subsets, forms a probability neutrosophic crisp space. 

Definition 3.1 

Let X be a non- empty set and A be any type of neutrosophic crisp set on a space 

X, then the neutrosophic probability is a mapping  31,0: XNP , 

)(),(),()( 321 APAPAPANP  , that is the probability of a neutrosophic crisp set 

that has the property that ― 

 










  if                       0

10    where
)(

321

321321

o,p,pp

, p),p,p(p
ANP

,,
 .  

Remark 3.1 

1. In case if 321 ,, AAAA  is NCS, then   

  3)()()(0 321 APAPAP .  

2. In case if 321 ,, AAAA  is NCS-Type I, then 2)()()(0 321  APAPAP . 

3. The Probability of NCS-Type II is a neutrosophic  crisp set where  
  2)()()(0 321 APAPAP . 

4. The Probability of NCS-Type III is a neutrosophic crisp set where 
  3)()()(0 321 APAPAP . 

Probability Axioms of NCS Axioms 

1. The Probability of neutrosophic crisp set and NCS-Type III  A on X 

)(),(),()( 321 APAPAPANP  where 0)(,0)(,0)( 321  APAPAP or  

 










  if                       0

10    where
)(

321

321321

o,p,pp

, p),p,p(p
ANP

,,
. 

2. The probability of neutrosophic crisp set and NCS-Type IIIs A on X 

)(),(),()( 321 APAPAPANP  where   3)()()(0 321 ApApAp . 
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3. Bounding the probability of neutrosophic crisp set and NCS-Type III 

)(),(),()( 321 APAPAPANP  where .0)(,0)(,0)(1 321  APAPAP  

4. Addition law for any two neutrosophic crisp sets or NCS-Type III 

),()()(()( 1111 BAPBPAPBANP 

),()()(( 2222 BAPBPAP    )()()(( 3333 BAPBPAP   

if   

NBA  , then )()( NNPBANP  . 

),()()(),()()()(
222111 NN NPBNPANPNPBNPANPBANP  

).()()(
333 NNPBNPANP   

Since our main purpose is to construct the tools for developing probability of 

neutrosophic crisp sets, we must introduce the following ― 

1. Probability of neutrosophic crisp empty set with three types ( )( NNP  for 

short) may be defined as four types: 

Type 1:  1,0,0)(),(),()( XPPPNP N  ; 

Type 2:  1,1,0)(),(),()( XPXPPNP N  ; 

Type 3:  0,0,0)(),(),()(  PPPNP N ; 

Type 4:  0,1,0)(),(),()(  PXPPNP N . 

2. Probability of neutrosophic crisp universal and NCS-Type III universal sets 

( )( NXNP for short) may be defined as four types ― 

Type 1:   0,0,1)(),(),()(  PPXPXNP N ;  

Type 2:  0,1,1)(),(),()( PXPXPXNP N ; 

Type 3:  1,1,1)(),(),()( XPXPXPXNP N ;  

Type 4:  1,0,1)(),(),()( XPPXPXNP N   . 

Remark 3.2 

,1)( NNXNP  NN ONP )( , where NN O,1  are in Definition 2.1 [6], or equals 

any type for N1 . 

Definition 3.2 (Monotonicity)  

Let X  be a non-empty set, and NCSS A  and B  in the form
321 ,, AAAA  ,

321 ,, BBBB   with  

)(),(),()( 321 APAPAPANP  , )(),(),()( 321 BPBPBPBNP  ,  
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then we may consider two possible definitions for subsets ( BA ) ― 

Type1:  

)()P(  and  )()(),()()()( 332211 BPABPAPBPAPBNPANP  , 

or Type2:  

)()P(  and  )()(),()()()( 332211 BPABPAPBPAPBNPANP  . 

Definition 3.3 

Let X be a non-empty set, and NCSs A  and B  in the form 321 ,, AAAA  ,

321 ,, BBBB   be NCSs.  

Then ― 

1. )( BANP   may be defined  two types as ― 

Type1: 

)(),(),()( 332211 BAPBAPBAPBANP  , or 

Type2: 

)(),(),()( 332211 BAPBAPBAPBANP  . 

2. )( BANP   may be defined two types as: 

Type1: 

)(),(),()( 332211 BAPBAPBAPBANP  , 

or Type 2: 

)(),(),()( 332211 BAPBAPBAPBANP  . 

3. )( cANP may be defined by three types: 

Type1:  

)(),(),()( 321
cccc APAPAPANP  =  )1(),1(),1( 321 AAA  

or Type2:  

)(),(),()( 123 APAPAPANP cc   

or Type3:  

)(),(),()( 123 APAPAPANP c  . 
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Proposition 3.1  

Let A  and B in the form 321 ,, AAAA  , 321 ,, BBBB  be NCSs on a non-

empty set X.   

Then ― 

 1 ,1 ,1()()( ANPANP c  or NNXNP 1)(  , or = any type of N1 . 

),()((),()(()( 222111 BAPAPBAPAPBANP 

 )()(( 333 BAPAP  





)(

)(
,

)(

)(
,

)(

)(
)(

33

3

22

2

11

1

BANP

ANP

BANP

ANP

BANP

ANP
BANP . 

Proposition 3.1  

Let A  and B in the form 321 ,, AAAA  , 321 ,, BBBB  are NCSs on a non-

empty set X and p  , Np  are NCSs.  

Then  

)(

1
,

)(

1
,

)(

1
)(

XnXnXn
pNP  ; 

)(

1
1,

)(

1
,0)(

XnXn
pNP N  . 

Example 3.1 

1. Let  dcbaX ,,,  and A , B are two neutrosophic crisp events on X defined 

by      dccbaA ,,,, ,      ccabaB ,,,, ,      dcap ,, then see that 

,5.0,5.0,25.0)( ANP ,25.0,5.0,5.0)( BNP ,25.0,25.0,25.0)( pNP one 

can compute all probabilities from definitions. 

2. If       ,,, cbA  and       ,, dB   are neutrosophic crisp sets on X. 

Then ―  

      ,, BA   and NBANP 00,0,0)(  ,   

      ,,,, dcbBA  and NBANP 00,75.0,0)(  . 

Example 3.2 

Let },,,,,{ fedcbaX  ,  

}{},{},,,,{ fedcbaA  , },{},,{},,{ dfcebaD   be a NCS-Type 2, 
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 }{},{},,,{ edcbaB   be a NCT-Type I but not NCS-Type II, III,  

},,{},,{},,{ afedcbaC   be a NCS-Type III, but not NCS-Type I, II,  

,},,{},,{},,,,,{ afedcedcbaE   

 
},,,,,{,},,,,,{ bcdafeedcbaF  .

 

We can compute the probabilities for NCSs by the following: 

,
6

1
,

6

1
,

6

4
)( ANP  

,
6

2
,

6

2
,

6

2
)( DNP  

,
6

1
,

6

1
,

6

3
)( BNP  

,
6

3
,

6

2
,

6

2
)( CNP  

,
6

3
,

6

2
,

6

4
)( ENP  

5 6
( ) ,0, .

6 6
NP F   

Remark 3.3 

The probabilities of a neutrosophic crisp set are neutrosophic sets. 

Example 3.3 

Let },,,{ dcbaX  , }{},{},,{ dcbaA  , },{},{},{ bdcaB   are NCS-Type I on X 

and },{},,{},,{1 dadcbaU  , }{},{},,,{2 dccbaU  are NCS-Type III on X; then  

we can find the following operations ― 

1. Union, intersection, complement, difference and its probabilities. 

a) Type1: },{},{},{ bdcaBA  , }5.0,25.0,25.0)(  BANP  and 

Type 2,3: },{},{},{ bdcaBA  ,  }5.0,25.0,25.0)(  BANP . 

2. )( BANP  may be equals. 

Type1:  0,0,25.0)( BANP ,  Type 2:  0,0,25.0)( BANP , 

Type 3:  0,0,25.0)( BANP ,   

b) Type 2: }{},{},,{ dcbaBA  , }25.0,25.0,5.0)(  BANP and 

Type 2: }{},{},.{ dcbaBA   }25.0,25.0,5.0)(  BANP . 
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 c) Type1: cA },,{},,,{,},{ cbadbadc NCS-Type III set on X, 

75.0,75.0,5.0)( cANP . 

 Type2: },{},,,{,}{ badbadAc   NCS-Type III on X,  

5.0,75.0,25.0)( cANP . 

 Type3: },{},{,}{ bacdAc   NCS-Type III on X,  

5.0,75.0,75.0)( cANP . 

 d) Type 1: cB },{},,,{},,,{ cadbadcb be NCS-Type III on X , 

)( cBNP 5.0,75.0,75.0  

Type 2: cB }{},{},,{ acdb NCS-Type I on X, and )( cBNP

25.0,25.0,5.0 . 

Type 3: cB }{},,,{},,{ adbadb NCS-Type III on X and )( cBNP

25.0,75.0,5.0 . 

 e) Type 1: ,},{},,{},,,{21 dadccbaUU  NCS-Type III, 

,5.0,5.0,75.0{)( 21 UUNP  

Type 2: ,},{},{},,,{21 daccbaUU   
1 2( ) {0.75,0.25,0.5 .NP U U    

 f) Type1: ,},{},,{},,{21 dadcbaUU   NCS-Type III, 

,5.0,5.0,5.0)( 21 UUNP  

Type2: ,},{},{},,{21 dacbaUU   NCS-Type III, and

,5.0,25.0,5.0)( 21 UUNP  

 g)  Type 1: },{},,{},,{1 bcbadcU
c
 , NCS-Type III and

5.0,5.0,5.0)( 1 
c

UNP  

Type 2: },{},,{},,{1 badcdaU
c
 , NCS-Type III and 

5.0,5.0,5.0)( 1 
c

UNP   

Type3: },{},,{},,{1 babadaU
c
 , NCS-Type III and 

5.0,5.0,5.0)( 1 
c

UNP . 

 h) Type1: },,{},,,{},{2 cbadbadU
c
  NCS-Type III and

75.0,75.0,25.0)( 2 
c

UNP ,              Type2: },,{},{},{2 cbacdU c   

NCS-Type III and 75.0,25.0,25.0)( 2 
c

UNP , Type3:

},,{},,,{},{2 cbadbadU c   NCS-Type III. 75.0,75.0,25.0)( 2 
c

UNP . 
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3. Probabilities for events. 

25.0,25.0,5.0)( ANP , 5.0,25.0,25.0)( BNP , 5.0,5.0,5.0)( 1 UNP , 

25.0,25.0,75.0)( 2 UNP   

5.0,5.0,5.0)( 1 
c

UNP , 75.0,75.0,25.0)( 2 
c

UNP . 

e)  cBA )( },{},,,{},,,{ cadbadcb  be a NCS-Type III.

25.0,75.0,75.0)(  cBANP  be a neutrosophic set. 

f) 75.0,75.0,5.0)()(  cc BNPANP , 

5.0,75.0,75.0)()(  cc BNPANP  

g) )()()()( BANPBNPANPBANP  }25.0,25.0,5.0  

h) 25.0,25.0,5.0)( ANP , 75.0,75.0,5.0)( cANP , 

5.0,25.0,25.0)( BNP , 5.0,75.0,75.0)( cBNP  

4. Probabilities for Products. The product of two events given by ― 

)},(),,{()},,{()},,(),,{( bdddccabaaBA  ,  

and 16
2

16
1

16
2 ,,)(  BANP  

)},(),,{()},,{()},,(),,{( dbddccbaaaAB   

and
16

2
16

1
16

2 ,,)(  ABNP  

)},(),,{()},,(),,{()},,(),,(),,(),,{(1 addddcccbbbaabaaUA  , 

and
16

2
16

2
16

4
1 ,,)( UANP  

)},(),,{()},,(),,{()},,(),,(),,(),,(),,(),,{(21 daddcdcccbcabbbaabaaUU 

and
16

2
16

2
16

6
21 ,,)( UUNP . 

Remark 3.4 

The following diagram represents the relation between neutrosophic crisp 

concepts and neutrosphic sets:    

Probability of Neutrosophic Crisp Sets 

 

 

 

 

Generalized Neutrosophic Set  Intuitionistic Neutrosophic Set 

 

 

 

 

          Neutrosophic Set 
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Abstract 

In this paper, we discuss a subclass of interval valued neutrosophic graphs called 

strong interval valued neutrosophic graphs, which were introduced by Broumi et al. 

[41]. The operations of Cartesian product, composition, union and join of two strong 

interval valued neutrosophic graphs are defined. Some propositions involving strong 

interval valued neutrosophic graphs are stated and proved.  

Keyword  

Single valued neutrosophic graph, Interval valued neutrosophic graph, Strong 

interval valued neutrosophic graph, Cartesian product, Composition, Union, Join. 

1 Introduction  

Neutrosophic set proposed by Smarandache [13, 14] is a powerful tool to deal 

with incomplete, indeterminate and inconsistent information in real world. It 

is a generalization of the theory of fuzzy set [30], intuitionistic fuzzy sets [27, 

29], interval-valued fuzzy sets [22] and interval-valued intuitionistic fuzzy sets 

[28]. The neutrosophic set is characterized by a truth-membership degree (t), 

an indeterminacy-membership degree (i) and a falsity-membership degree (f) 

independently, which are within the real standard or nonstandard unit 

interval ]−0, 1+[. Therefore, if their range is restrained within the real standard 

unit interval [0, 1], the neutrosophic set is easily applied to engineering 

problems. For this purpose, Smarandache [48] and Wang et al. [17] introduced 

the concept of a single valued neutrosophic set (SVNS) as a subclass of the 

mailto:1broumisaid78@gmail.com
mailto:assiabakali@yahoo.fr
mailto:fsmarandache@gmail.com


50 

 

 

Said Broumi,  Mohamed Talea,  Assia Bakali,  Florentin Smarandache 

On Strong Interval Valued Neutrosophic Graphs 

Critical Review. Volume XII, 2016 

neutrosophic set. The same authors introduced the notion of interval valued 

neutrosophic sets [18] as subclass of neutrosophic sets in which the value of 

truth-membership, indeterminacy-membership and falsity-membership 

degrees are intervals of numbers instead of the real numbers. Recently, the 

concept of single valued neutrosophic set and interval valued neutrosophic 

sets have been applied in a wide variety of fields including computer science, 

enginnering, mathematics, medicine and economics [3, 4, 5, 6, 16, 19, 20, 21, 

23, 24, 25, 26, 32, 34, 35, 36, 37, 38, 43]. 

Lots of works on fuzzy graphs and intuitionistic fuzzy graphs [7, 8, 9, 31, 33] 

have been carried out and all of them have considered the vertex sets and edge 

sets as fuzzy and /or intuitionistic fuzzy sets. But, when the relations between 

nodes (or vertices) in problems are indeterminate, the fuzzy graphs and 

intuitionistic fuzzy graphs fail.  

For this purpose, Smarandache [10, 11] defined  four main categories of 

neutrosophic graphs. Two are based on literal indeterminacy (I), called I-edge 

neutrosophic graph and I-vertex neutrosophic graph; these concepts are 

studied deeply and has gained popularity among the researchers due to their 

applications via real world problems [1, 12, 15, 44, 45, 46]. The two others 

graphs are  based on (t,  i,  f) components and are called (t, i, f)-edge 

neutrosophic graph and (t, i, f)-vertex neutrosophic graph; these concepts are 

not developed at all. Later on, Broumi et al. [40] introduced a third 

neutrosophic graph model combining the (t, i, f)-edge and and the (t, i, f)-vertex 

neutrosophic graph, and investigated some of their properties. The third 

neutrosophic graph model is called single valued neutrosophic graph (SVNG 

for short).  

The single valued neutrosophic graph is the generalization of fuzzy graph and 

intuitionistic fuzzy graph. The same authors [39] introduced neighborhood 

degree of a vertex and closed neighborhood degree of vertex in single valued 

neutrosophic graph as a generalization of neighborhood degree of a vertex and 

closed neighborhood degree of vertex in fuzzy graph and intuitionistic fuzzy 

graph. Broumi et al. [41] introduced the concept of interval valued 

neutrosophic graph, which is a generalization of fuzzy graph, intuitionistic 

fuzzy graph, interval valued fuzzy graph, interval valued intuitionistic fuzzy 

graph and single valued neutrosophic graph. Also, Broumi et al. [42] studied 

some operations on interval valued neutrosophic graphs.  

In this paper, motivated by the operations on (crisp) graphs, such as Cartesian 

product, composition, union and join, we define the operations of Cartesian 

product, composition, union and join on strong interval valued neutrosophic 

graphs and investigate some of their properties.  
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2 Preliminaries 

In this section, we mainly recall some notions related to neutrosophic sets, 

single valued neutrosophic sets, interval valued neutrosophic sets, fuzzy graph 

and  intuitionistic fuzzy graph, interval valued intuitionstic fuzzy graph and 

interval valued neutrosophic graph, relevant to the present work.  

See especially [2, 7, 8, 13, 17, 40, 41] for further details and background. 

Definition 2.1 [13] 

Let X  be a space of points (objects) with generic elements in X denoted by x;  

then the neutrosophic set A (NS A) is an object having the form A = {< x: TA(x), 

IA(x), FA(x)>, x ∈ X}, where the functions T, I, F: X→]−0,1+[ define respectively 

the a truth-membership function, an indeterminacy-membership function, 

and a falsity-membership function of the element x ∈ X to the set A with the 

condition:  

−0 ≤ TA(x)+ IA(x)+ FA(x)≤ 3+.                  (1) 

The functions TA(x), IA(x) and FA(x) are real standard or nonstandard subsets 

of ]−0,1+[. 

Since it is difficult to apply NSs to practical problems, Smarandache [48] and 

Wang et al. [16] introduced the concept of a SVNS, which is an instance of a NS 

and can be used in real scientific and engineering applications. 

Definition 2.2 [17] 

Let X  be a space of points (objects) with generic elements in X denoted by x. A 

single valued neutrosophic set A (SVNS A) is characterized by truth-

membership function TA(x) , an indeterminacy-membership function IA(x) , 

and a falsity-membership function FA(x).  

For each point x in X  TA(x), IA(x), FA(x) ∈ [0, 1].  

A SVNS A can be written as ― 

 A = {< x: TA(x), IA(x), FA(x)>, x ∈ X}.                  (2) 

Definition 2.3 [7] 

A fuzzy graph is a pair of functions G = (σ, µ) where σ is a fuzzy subset of a non 

empty set V and  μ  is a symmetric fuzzy relation on σ. i.e  σ : V → [ 0,1] and μ: 

VxV→[0,1] such that μ(uv) ≤ σ(u) ⋀ σ(v)  for all u, v ∈ V where uv denotes the 

edge between u and v and σ(u) ⋀ σ(v) denotes the minimum of σ(u) and σ(v). 

σ is called the fuzzy vertex set of V and μ is called the fuzzy edge set of E. 
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Figure 1. Fuzzy Graph 
 

Definition 2.4 [7] 

The fuzzy subgraph H = (τ, ρ) is called a fuzzy subgraph of G = (σ, µ), if τ(u) ≤ 

σ(u) for all u ∈ V and ρ(u, v) ≤  μ(u, v)  for all u, v ∈ V. 

Definition 2.5 [8] 

An intuitionistic fuzzy graph is of the form G = (V, E ), where 

i. V={v1, v2, ..., vn} such that μ1: V→ [0,1] and γ1: V → [0,1] denote the 

degree of membership and nonmembership of the element vi ∈ V, 

respectively, and 0 ≤ μ1(vi) + γ1(vi)) ≤ 1   for every   vi ∈ V, (i = 1, 2, 

…, n), 

ii. E   ⊆  V x V where  μ2: VxV→[0,1] and  γ2: VxV→ [0,1] are such that 

μ2(vi, vj) ≤ min [μ1(vi), μ1(vj)] and γ2(vi, vj) ≥ max [γ1(vi), γ1(vj)] 

and 0 ≤ μ2(vi, vj) + γ2(vi, vj) ≤ 1 for every (vi, vj) ∈ E, ( i, j = 1,2, …, n) 

 
 
 
 
 
 

 

 

 
 

Figure 2. Intuitionistic Fuzzy Graph 

 

Definition 2.6 [40] 

Let A = (TA,  IA, FA) and B = (TB,  IB, FB)  be single valued neutrosophic sets on 

a set X. If A = (TA,  IA, FA) is a single valued neutrosophic relation on a set X, 
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then A =(TA,  IA, FA) is called a single valued neutrosophic relation on B = (TB, 

 IB, FB) if  

TB(x, y) ≤ min(TA(x), TA(y))  

IB(x, y) ≥ max(IA(x), IA(y)) and 

FB(x, y) ≥ max(FAx), FA(y))  

for all x, y ∈ X.  

A single valued neutrosophic relation A on X  is called symmetric if TA(x, y) = 

TA(y, x), IA(x, y) = IA(y, x), FA(x, y) = FA(y, x) and TB(x, y) = TB(y, x), IB(x, y) = 

IB(y, x) and FB(x, y) = FB(y, x), for all x, y ∈ X. 

Definition 2.7 [2] 

An interval valued intuitionistic fuzzy graph with underlying set V is defined 

to be a pair G = (A, B), where  

1)  The functions MA : V→ D [0, 1]  and NA : V→ D [0, 1] denote the degree of 

membership and non membership of the element  x ∈ V, respectively, such that 

0 such that  0≤MA(x)+ NA(x) ≤ 1 for all x ∈ V. 

2) The functions MB : E ⊆ V × V → D [0, 1]  and NB : E ⊆ V × V → D [0, 1] are 

defined by  

MBL(x, y))≤min (MAL(x), MAL(y)) and NBL(x, y)) ≥max (NAL(x), 

NAL(y)), 

MBU(x, y))≤min (MAU(x), MAU(y)) and NBU(x, y)) ≥max (NAU(x), 

NAU(y)), 

such that 

0 ≤ MBU(x, y)) + NBU(x, y)) ≤ 1,  

for all (x, y) ∈ E. 

Definition 2.8 [41] 

By an interval-valued neutrosophic graph of a graph G∗ = (V, E) we mean a pair 

G = (A,  B), where A = <[TAL, TAU], [IAL, IAU], [FAL, FAU]> is an interval-valued 

neutrosophic set on V and B =< [TBL, TBU], [IBL, IBU], [FBL, FBU]> is an interval-

valued neutrosophic relation on E satisfies the following conditions: 

1. V= { 𝑣1 ,  𝑣2 , …,  𝑣𝑛 } such that 𝑇𝐴𝐿 :V → [0, 1],  𝑇𝐴𝑈 :V → [0, 1], 𝐼𝐴𝐿 :V → [0, 

1], 𝐼𝐴𝑈:V→[0, 1]    and 𝐹𝐴𝐿:V→[0, 1],  𝐹𝐴𝑈:V→[0, 1] denote the degree of truth-

membership, the degree of indeterminacy-membership and falsity-

membership of the element 𝑦 ∈ V, respectively,  and 

0 ≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤ 3 for all  𝑣𝑖 ∈ V (I = 1, 2, …, n). 
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2. The functions  𝑇𝐵𝐿:V x V →[0, 1],  𝑇𝐵𝑈:V x V →[0, 1],  𝐼𝐵𝐿:V x V →[0, 1], 𝐼𝐵𝑈:V x 

V →[0, 1]  and 𝐹𝐵𝐿:V x V →[0,1],  𝐹𝐵𝑈:V x V →[0, 1] are such that  

𝑇𝐵𝐿({𝑣𝑖 , 𝑣𝑗}) ≤ min [𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)], 

𝑇𝐵𝑈({𝑣𝑖 , 𝑣𝑗}) ≤ min [𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)],                                                        

𝐼𝐵𝐿({𝑣𝑖 , 𝑣𝑗}) ≥ max[𝐼𝐵𝐿(𝑣𝑖), 𝐼𝐵𝐿(𝑣𝑗)],  

𝐼𝐵𝑈({𝑣𝑖 , 𝑣𝑗}) ≥ max[𝐼𝐵𝑈(𝑣𝑖), 𝐼𝐵𝑈(𝑣𝑗)],  

FBL({vi, vj}) ≥ max[FBL(vi), FBL(vj)], 

FBU({vi, vj}) ≥ max[FBU(vi), FBU(vj)], 

denote  the degree of truth-membership, indeterminacy-membership and 

falsity-membership of the edge (𝑣𝑖 , 𝑣𝑗) ∈ E respectively, where 

 0≤ 𝑇𝐵({𝑣𝑖 , 𝑣𝑗}) + 𝐼𝐵({𝑣𝑖 , 𝑣𝑗})+ 𝐹𝐵({𝑣𝑖 , 𝑣𝑗}) ≤3, 

for all  {𝑣𝑖 , 𝑣𝑗} ∈ E (i, j = 1, 2,…, n). 

We call A the interval valued neutrosophic vertex set of V, B the interval valued 

neutrosophic edge set of E, respectively. Note that B is a symmetric interval 

valued neutrosophic relation on A. We use the notation (𝑣𝑖 , 𝑣𝑗) for an element 

of E. Thus, G = (A, B) is a interval valued neutrosophic graph of G∗= (V, E) if ― 

𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≤ min [𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)], 

𝑇𝐵𝑈(𝑣𝑖, 𝑣𝑗) ≤ min [𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)],                                                        

𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≥ max[𝐼𝐵𝐿(𝑣𝑖), 𝐼𝐵𝐿(𝑣𝑗)],  

𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) ≥ max[𝐼𝐵𝑈(𝑣𝑖), 𝐼𝐵𝑈(𝑣𝑗)],  

𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≥ max[𝐹𝐵𝐿(𝑣𝑖), 𝐹𝐵𝐿(𝑣𝑗)], 

𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) ≥ max[𝐹𝐵𝑈(𝑣𝑖), 𝐹𝐵𝑈(𝑣𝑗)],   for all  (𝑣𝑖 , 𝑣𝑗) ∈ E. 

Hereafter, we use the notation xy for (x, y) an element of  E. 

3 Strong Interval Valued Neutrosophic Graph 

Throught this paper, we denote 𝐺∗ = (V, E) a crisp graph, and G = (A, B) an 

interval valued neutrosophic graph. 

Definition 3.1  

An interval valued neutrosophic graph G = (A, B) is called strong interval 

valued neutrosophic graph if  

𝑇𝐵𝐿(𝑥𝑦)= min (𝑇𝐴𝐿(𝑥), 𝑇𝐴𝐿(𝑦)),  𝐼𝐵𝐿(𝑥𝑦) =max (𝐼𝐴𝐿(𝑥), 𝐼𝐴𝐿(𝑦)) and  

𝐹𝐵𝐿(𝑥𝑦) =max (𝐹𝐴𝐿(𝑥), 𝐹𝐴𝐿(𝑦)) 
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𝑇𝐵𝑈(𝑥𝑦)= min (𝑇𝐴𝑈(𝑥), 𝑇𝐴𝑈(𝑦)),  𝐼𝐵𝑈(𝑥𝑦) = max (𝐼𝐴𝑈(𝑥), 𝐼𝐴𝑈(𝑦)) 

and  𝐹𝐵𝑈(𝑥𝑦) =max (𝐹𝐴𝑈(𝑥), 𝐹𝐴𝑈(𝑦)) such that  

0≤𝑇𝐵𝑈(𝑥, 𝑦))+ 𝐼𝐵𝑈(𝑥, 𝑦))+ 𝐹𝐵𝑈(𝑥, 𝑦)) ≤ 3, for all 𝑥, 𝑦 ∈ E. 

Example 3.2  

Figure 1 is an example for IVNG, G=(A, B) defined on a graph 𝐺∗ = (V, E)  such 

that V = {x, y, z}, E = {xy, yz, zx}, A is an interval valued neutrosophic set of V. 

A={<x, [0.5, 0.7], [0.2, 0.3], [0.1, 0.3]>,<y, [0.6, 0.7], [0.2, 0.4], [0.1, 

0.3]>, <z, [0.4, 0.6], [0.1, 0.3], [0.2, 0.4],>}, 

B={< xy, [0.3, 0.6], [0.2, 0.4], [0.2, 0.4]>, <yz, [0.3, 0.5], [0.2, 0.3], 

[0.2, 0.4]>, <xz, [0.3, 0.5], [0.1,  0.5], [0.2, 0.4]>}. 

 

 

 

 

 

 

Figure 3. Interval valued neutrosophic graph 

Example 3.2  

Figure 2 is a SIVNG  G = (A, B), where  

A={<x, [0.5, 0.7], [0.1, 0.4], [0.1, 0.3]>, <y, [0.6, 0.7],[0.2, 0.3], [0.1, 

0.3]>, <z, [0.4, 0.6],[0.2, 0.3], [0.2, 0.4],>}, 

B={< xy, [0,5, 0.7], [0.2 0.4], [0.1, 0.3]>, <yz, [0.4, 0.6],[0.2, 0.3], [0.2, 

0.4]>, <xz, [0.4, 0.6], [0.2,  0.4], [0.2, 0.4]>} 

 

 

 

 

 

 

Figure 4. Strong Interval valued neutrosophic graph. 

 

𝑦 

<[0.5, 0.7],[ 0.1, 0.4],[0.1, 0.3]> 
<[0.4, 0.6],[ 0.2, 0.3],[0.2, 0.4]> 

<[0.6, 0.7],[ 0.2, 0.3],[0.1, 0.3]> 

<[0.4, 0.6],[ 0.2, 0.4],[0.2, 0.4]> 

𝑥 
𝑧 

<[0.4, 0.6],[ 0.2, 0.3],[0.2, 0.4]> <[0.5, 0.7],[ 0.2, 0.4],[0.1, 0.3]> 

𝑦 

<[0.5, 0.7],[ 0.2, 0.3],[0.1, 0.3]> 
<[0.4, 0.6],[ 0.1, 0.3],[0.2, 0.4]> 

<[0.6, 0.7],[ 0.2, 0.4],[0.1, 0.3]> 

<[0.3, 0.5],[ 0.1, 0.5],[0.2, 0.4]> 

𝑥 
𝑧 

<[0.3, 0.5],[ 0.2, 0.3],[0.2, 0.4]> <[0.3, 0.6],[ 0.2, 0.4],[0.2, 0.4]> 
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Proposition 3.3 

A strong interval  valued neutrosophic graph is the generalization of strong  

interval valued fuzzy graph. 

Proof 

Suppose G=(V, E) is a strong interval valued neutrosophic graph. Then, by 

setting the indeterminacy-membership and falsity-membership values of 

vertex set and edge set equals to zero, the strong interval valued neutrosophic 

graph is reduced to strong interval valued fuzzy graph. 

Proposition 3.4  

A strong interval valued neutrosophic graph is the generalization of  strong 

interval valued intuitionistic fuzzy graph. 

Proof 

Suppose G=(V, E) is a strong interval valued neutrosophic graph. Then by 

setting the indeterminacy-membership values of vertex set and edge set  

equals to zero reduces the strong interval valued neutrosophic graph to strong 

interval valued intuitionistic fuzzy graph. 

Proposition 3.5  

A strong  interval  valued neutrosophic graph is the generalization of strong 

intuitionistic fuzzy graph. 

Proof 

Suppose G=(V, E) is a strong interval valued neutrosophic graph. Then by 

setting the indeterminacy-membership, upper truth-membership and upper 

falsity-membership  values of vertex set and edge set  equals to zero reduces 

the strong interval valued neutrosophic graph to strong intuitionistic fuzzy 

graph. 

Proposition 3.6 

A strong  interval  valued neutrosophic graph is the generalization of strong 

single neutrosophic graph. 

Proof 

Suppose G = (V, E) is a strong  interval valued neutrosophic graph. Then by 

setting the upper truth-membership equals lower truth-membership, upper 

indeterminacy-membership equals lower indeterminacy-membership and 
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upper falsity-membership equals lower falsity-membership values of vertex 

set and edge set  reduces the strong interval valued neutrosophic graph to  

strong single valued neutrosophic graph. 

Definition 3.7  

Let 𝐴1and 𝐴2 be interval-valued neutrosophic subsets of 𝑉1and 𝑉2 respectively. 

Let 𝐵1and 𝐵2  interval-valued neutrosophic subsets of 𝐸1 and 𝐸2 respectively. 

The Cartesian product of two SIVNGs 𝐺1 and 𝐺2is denoted by  𝐺1×𝐺2 = (𝐴1×𝐴2 , 

𝐵1×𝐵2 ) and is defined as follows:  

1)  (𝑇𝐴1𝐿 × 𝑇𝐴2𝐿) (𝑥1, 𝑥2) = min (𝑇𝐴1𝐿(𝑥1), 𝑇𝐴2𝐿(𝑥2)) 

(𝑇𝐴1𝑈 × 𝑇𝐴2𝑈) (𝑥1, 𝑥2) = min (𝑇𝐴1𝑈(𝑥1), 𝑇𝐴2𝑈(𝑥2)) 

(𝐼𝐴1𝐿 × 𝐼𝐴2𝐿) (𝑥1, 𝑥2) = max (𝐼𝐴1𝐿(𝑥1), 𝐼𝐴2𝐿(𝑥2)) 

(𝐼𝐴1𝑈 × 𝐼𝐴2𝑈) (𝑥1, 𝑥2) = max (𝐼𝐴1𝑈(𝑥1), 𝐼𝐴2𝑈(𝑥2)) 

(𝐹𝐴1𝐿 × 𝐹𝐴2𝐿) (𝑥1, 𝑥2) = max (𝐹𝐴1𝐿(𝑥1), 𝐹𝐴2𝐿(𝑥2)) 

(𝐹𝐴1𝑈 × 𝐹𝐴2𝑈) (𝑥1, 𝑥2) = max (𝐹𝐴1𝑈(𝑥1), 𝐹𝐴2𝑈(𝑥2)) for all ( 𝑥1, 𝑥2) ∈ 𝑉 

 

2) (𝑇𝐵1𝐿 × 𝑇𝐵2𝐿) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐴1𝐿(𝑥), 𝑇𝐵2𝐿(𝑥2𝑦2)) 

(𝑇𝐵1𝑈 × 𝑇𝐵2𝑈) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐴1𝑈(𝑥), 𝑇𝐵2𝑈(𝑥2𝑦2)) 

(𝐼𝐵1𝐿 × 𝐼𝐵2𝐿) ((𝑥, 𝑥2)(𝑥, 𝑦2)) =max (𝐼𝐴1𝐿(𝑥), 𝐼𝐵2𝐿(𝑥2𝑦2)) 

(𝐼𝐵1𝑈 × 𝐼𝐵2𝑈) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐴1𝑈(𝑥), 𝐼𝐵2𝑈(𝑥2𝑦2)) 

(𝐹𝐵1𝐿 × 𝐹𝐵2𝐿) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = max (𝐹𝐴1𝐿(𝑥), 𝐹𝐵2𝐿(𝑥2𝑦2)) 

(𝐹𝐵1𝑈 × 𝐹𝐵2𝑈 ) ((𝑥 , 𝑥2 )(𝑥 , 𝑦2 )) = max(𝐹𝐴1𝑈(𝑥 ), 𝐹𝐵2𝑈(𝑥2𝑦2 )) ∀ x ∈

𝑉1and ∀ 𝑥2𝑦2 ∈ 𝐸2 

 

3)  (𝑇𝐵1𝐿 × 𝑇𝐵2𝐿) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝐵1𝐿(𝑥1𝑦1), 𝑇𝐴2𝐿(𝑧)) 

(𝑇𝐵1𝑈 × 𝑇𝐵2𝑈) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝐵1𝑈(𝑥1𝑦1), 𝑇𝐴2𝑈(𝑧)) 

(IB1L × IB2L) ((x1, z) (y1, z)) = max (IB1L(x1y1), IA2L(z)) 

(𝐼𝐵1𝑈 × 𝐼𝐵2𝑈) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐼𝐵1𝑈(𝑥1𝑦1), 𝐼𝐴2𝑈(𝑧)) 

(𝐹𝐵1𝐿 × 𝐹𝐵2𝐿) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐹𝐵1𝐿(𝑥1𝑦1), 𝐹𝐴2𝐿(𝑧)) 

(𝐹𝐵1𝑈 × 𝐹𝐵2𝑈) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐹𝐵1𝑈(𝑥1𝑦1), 𝐹𝐴2𝑈(𝑧)) ∀ z ∈ 𝑉2 

and ∀  𝑥1𝑦1 ∈ 𝐸1 

Proposition 3.7  

If 𝐺1  and 𝐺2 are the strong interval valued neutrosophic graphs, then the 

cartesian product 𝐺1x 𝐺2is a strong interval valued neutrosophic graph. 

Proof 

Let 𝐺1 and 𝐺2 are SIVNGs, there exist  𝑥𝑖 , 𝑦𝑖 ∈ 𝐸𝑖 , i= 1, 2 such that  

𝑇𝐵𝑖𝐿(𝑥𝑖, 𝑦𝑖) = min (𝑇𝐴𝑖𝐿(𝑥𝑖), 𝑇𝐴𝑖𝐿(𝑦𝑖)), i =1, 2. 
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𝑇𝐵𝑖𝑈(𝑥𝑖 , 𝑦𝑖) = min (𝑇𝐴𝑖𝑈(𝑥𝑖), 𝑇𝐴𝑖𝑈(𝑦𝑖)), i =1, 2. 

𝐼𝐵𝑖𝐿(𝑥𝑖 , 𝑦𝑖) = max (𝐼𝐴𝑖𝐿(𝑥𝑖), 𝐼𝐴𝑖𝐿(𝑦𝑖)), i =1, 2. 

𝐼𝐵𝑖𝑈(𝑥𝑖, 𝑦𝑖) = max (𝐼𝐴𝑖𝑈(𝑥𝑖), 𝐼𝐴𝑖𝑈(𝑦𝑖)), i =1, 2. 

𝐹𝐵𝑖𝐿(𝑥𝑖 , 𝑦𝑖) = max (𝐹𝐴𝑖𝐿(𝑥𝑖), 𝐹𝐴𝑖𝐿(𝑦𝑖)), i =1, 2. 

𝐹𝐵𝑖𝑈 (𝑥𝑖 , 𝑦𝑖) = max (𝐹𝐴𝑖𝑈(𝑥𝑖), 𝐹𝐴𝑖𝑈(𝑦𝑖)), i =1, 2. 

Let E= {(𝑥, 𝑥2) (𝑥, 𝑦2) /𝑥 ∈ 𝑉1, 𝑥2𝑦2 ∈ 𝐸2}∪{(𝑥1, 𝑧) (𝑦1, 𝑧) /𝑧 ∈ 𝑉2, 𝑥1𝑦1 ∈ 𝐸1}. 

Consider, (𝑥, 𝑥2) (𝑥, 𝑦2) ∈ 𝐸, we have  

(𝑇𝐵1𝐿 × 𝑇𝐵2𝐿) ((𝑥, 𝑥2) (𝑥, 𝑦2))  = min (𝑇𝐴1𝐿(𝑥),  𝑇𝐵2𝐿(𝑥2𝑦2)) 

                                                          = min (𝑇𝐴1𝐿(𝑥), 𝑇𝐴2𝐿(𝑥2), 𝑇𝐴2𝐿(𝑦2)) 

Similarly, 

(𝑇𝐵1𝑈 × 𝑇𝐵2𝑈) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = min (𝑇𝐴1𝑈(𝑥), 𝑇𝐵2𝑈(𝑥2𝑦2)) 

= min (𝑇𝐴1𝑈(𝑥), 𝑇𝐴2𝑈(𝑥2), 𝑇𝐴2𝑈(𝑦2)) 

(𝑇𝐴1𝐿 × 𝑇𝐴2𝐿) (𝑥1, 𝑥2) = min (𝑇𝐴1𝐿(𝑥1), 𝑇𝐴2𝐿(𝑥2)) 

(𝑇𝐴1𝑈 × 𝑇𝐴2𝑈) (𝑥1, 𝑥2) = min (𝑇𝐴1𝑈(𝑥1), 𝑇𝐴2𝑈(𝑥2)) 

(𝑇𝐴1𝐿 × 𝑇𝐴2𝐿) (𝑥1, 𝑦2) = min (𝑇𝐴1𝐿(𝑥1), 𝑇𝐴2𝐿(𝑦2)) 

(𝑇𝐴1𝑈 × 𝑇𝐴2𝑈) (𝑥1, 𝑦2) = min (𝑇𝐴1𝑈(𝑥1), 𝑇𝐴2𝑈(𝑦2)) 

Min ((𝑇𝐴1𝑈 × 𝑇𝐴2𝑈) (𝑥, 𝑥2), (𝑇𝐴1𝑈 × 𝑇𝐴2𝑈) (𝑥, 𝑦2)) 

                           = min (min (𝑇𝐴1𝑈(𝑥), 𝑇𝐴2𝑈(𝑥2)), min (𝑇𝐴1𝑈(𝑥), 𝑇𝐴2𝑈(𝑦2))) 

                           = min (𝑇𝐴1𝑈(𝑥), 𝑇𝐴2𝑈(𝑥2), 𝑇𝐴1𝑈(𝑦2)) 

Hence  

(𝑇𝐵1𝐿 × 𝑇𝐵2𝐿) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = min ((𝑇𝐴1𝐿 × 𝑇𝐴2𝐿) (𝑥, 𝑥2), (𝑇𝐴1𝐿 ×

𝑇𝐴2𝐿) (𝑥, 𝑦2))  

(𝑇𝐵1𝑈 × 𝑇𝐵2𝑈) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = min ((𝑇𝐴1𝑈 × 𝑇𝐴2𝑈) (𝑥, 𝑥2), (𝑇𝐴1𝑈 ×

𝑇𝐴2𝑈) (𝑥 ,𝑦2)). 

Similarly, we can show that ― 

(𝐼𝐵1𝐿 × 𝐼𝐵2𝐿) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = max ((𝐼𝐴1𝐿 × 𝐼𝐴2𝐿) (𝑥, 𝑥2), (𝐼𝐴1𝐿 × 𝐼𝐴2𝐿) 

(𝑥, 𝑦2)) 

(𝐼𝐵1𝑈 × 𝐼𝐵2𝑈) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = max ((𝐼𝐴1𝑈 × 𝐼𝐴2𝑈) (𝑥, 𝑥2), (𝐼𝐴1𝑈 ×

𝐼𝐴2𝑈) (𝑥, 𝑦2)). 

And also  
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 (𝐹𝐵1𝐿 × 𝐹𝐵2𝐿) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = max ((𝐹𝐴1𝐿 × 𝐹𝐴2𝐿) (𝑥, 𝑥2), (𝐹𝐴1𝐿 ×

𝐹𝐴2𝐿) (𝑥, 𝑦2)) 

(𝐹𝐵1𝑈 × 𝐹𝐵2𝑈) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = max ((𝐹𝐴1𝑈 × 𝐹𝐴2𝑈) (𝑥, 𝑥2), (𝐹𝐴1𝑈 ×

𝐹𝐴2𝑈) (𝑥, 𝑦2)). 

Hence, 𝐺1x 𝐺2 strong interval valued neutrosophic graph. This completes the 

proof. 

Proposition 3.8  

If 𝐺1 x 𝐺2 is strong interval valued neutrosophic graph, then at least 𝐺1  or 

𝐺2must be strong. 

Proof 

Let 𝐺1 and 𝐺2 be no strong interval valued neutrosophic graphs; there exists 

𝑥𝑖 , 𝑦𝑖 ∈ 𝐸𝑖 , I = 1, 2, such that  

𝑇𝐵𝑖𝐿(𝑥𝑖, 𝑦𝑖) < min (𝑇𝐴𝑖𝐿(𝑥𝑖), 𝑇𝐴𝑖𝐿(𝑦𝑖)), i =1, 2. 

𝑇𝐵𝑖𝑈(𝑥𝑖 , 𝑦𝑖) < min (𝑇𝐴𝑖𝑈(𝑥𝑖), 𝑇𝐴𝑖𝑈(𝑦𝑖)), i =1, 2. 

𝐼𝐵𝑖𝐿(𝑥𝑖 , 𝑦𝑖) > max (𝐼𝐴𝑖𝐿(𝑥𝑖), 𝐼𝐴𝑖𝐿(𝑦𝑖)), i =1, 2. 

𝐼𝐵𝑖𝑈(𝑥𝑖, 𝑦𝑖) > max (𝐼𝐴𝑖𝑈(𝑥𝑖), 𝐼𝐴𝑖𝑈(𝑦𝑖)), i =1, 2. 

𝐹𝐵𝑖𝐿(𝑥𝑖 , 𝑦𝑖) > max (𝐹𝐴𝑖𝐿(𝑥𝑖), 𝐹𝐴𝑖𝐿(𝑦𝑖)), i =1, 2. 

𝐹𝐵𝑖𝑈 (𝑥𝑖 , 𝑦𝑖) > max (𝐹𝐴𝑖𝑈(𝑥𝑖), 𝐹𝐴𝑖𝑈(𝑦𝑖)), i =1, 2. 

Let E= {(𝑥, 𝑥2) (𝑥, 𝑦2) /𝑥 ∈ 𝑉1, 𝑥2𝑦2 ∈ 𝐸2}∪{(𝑥1, 𝑧) (𝑦1, 𝑧) /𝑧 ∈ 𝑉2, 𝑥1𝑦1 ∈ 𝐸1} 

Consider, (𝑥, 𝑥2) (𝑥, 𝑦2) ∈ 𝐸, we have  

(𝑇𝐵1𝐿 × 𝑇𝐵2𝐿) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = min (𝑇𝐴1𝐿(𝑥),  𝑇𝐵2𝐿(𝑥2𝑦2)) 

                                                < min (𝑇𝐴1𝐿(𝑥), 𝑇𝐴2𝐿(𝑥2), 𝑇𝐴2𝐿(𝑦2)). 

Similarly ― 

(𝑇𝐵1𝑈 × 𝑇𝐵2𝑈) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = min (𝑇𝐴1𝑈(𝑥), 𝑇𝐵2𝑈(𝑥2𝑦2)) 

                                                < min (𝑇𝐴1𝑈(𝑥), 𝑇𝐴2𝑈(𝑥2), 𝑇𝐴2𝑈(𝑦2)) 

(𝑇𝐴1𝐿 × 𝑇𝐴2𝐿) (𝑥1, 𝑥2) = min (𝑇𝐴1𝐿(𝑥1), 𝑇𝐴2𝐿(𝑥2)) 

(𝑇𝐴1𝑈 × 𝑇𝐴2𝑈) (𝑥1, 𝑥2) = min (𝑇𝐴1𝑈(𝑥1), 𝑇𝐴2𝑈(𝑥2)) 

(𝑇𝐴1𝐿 × 𝑇𝐴2𝐿) (𝑥1, 𝑦2) = min (𝑇𝐴1𝐿(𝑥1), 𝑇𝐴2𝐿(𝑦2)) 

(𝑇𝐴1𝑈 × 𝑇𝐴2𝑈) (𝑥1, 𝑦2) = min (𝑇𝐴1𝑈(𝑥1), 𝑇𝐴2𝑈(𝑦2)) 

min ((𝑇𝐴1𝑈 × 𝑇𝐴2𝑈) (𝑥, 𝑥2), (𝑇𝐴1𝑈 × 𝑇𝐴2𝑈) (𝑥, 𝑦2)) 

= min (min (𝑇𝐴1𝑈(𝑥), 𝑇𝐴2𝑈(𝑥2)), min (𝑇𝐴1𝑈(𝑥), 𝑇𝐴2𝑈(𝑦2))) 

= min (𝑇𝐴1𝑈(𝑥), 𝑇𝐴2𝑈(𝑥2), 𝑇𝐴1𝑈(𝑦2)). 
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Hence  

(𝑇𝐵1𝐿 × 𝑇𝐵2𝐿) ((𝑥, 𝑥2) (𝑥, 𝑦2)) < min ((𝑇𝐴1𝐿 × 𝑇𝐴2𝐿) (𝑥, 𝑥2), (𝑇𝐴1𝐿 ×

𝑇𝐴2𝐿) (𝑥, 𝑦2)), 

(𝑇𝐵1𝑈 × 𝑇𝐵2𝑈) ((𝑥, 𝑥2) (𝑥, 𝑦2)) < min ((𝑇𝐴1𝑈 × 𝑇𝐴2𝑈) (𝑥, 𝑥2), (𝑇𝐴1𝑈 ×

𝑇𝐴2𝑈) (𝑥 ,𝑦2)). 

Similarly, we can show that  

(𝐼𝐵1𝐿 × 𝐼𝐵2𝐿) ((𝑥, 𝑥2) (𝑥, 𝑦2)) > max ((𝐼𝐴1𝐿 × 𝐼𝐴2𝐿) (𝑥, 𝑥2), (𝐼𝐴1𝐿 × 𝐼𝐴2𝐿) 

(𝑥, 𝑦2)), 

(𝐼𝐵1𝑈 × 𝐼𝐵2𝑈) ((𝑥, 𝑥2) (𝑥, 𝑦2)) > max ((𝐼𝐴1𝑈 × 𝐼𝐴2𝑈) (𝑥, 𝑥2), (𝐼𝐴1𝑈 ×

𝐼𝐴2𝑈) (𝑥, 𝑦2)). 

And also  

 (𝐹𝐵1𝐿 × 𝐹𝐵2𝐿) ((𝑥, 𝑥2) (𝑥, 𝑦2)) > max ((𝐹𝐴1𝐿 × 𝐹𝐴2𝐿) (𝑥, 𝑥2), (𝐹𝐴1𝐿 ×

𝐹𝐴2𝐿) (𝑥, 𝑦2)), 

(𝐹𝐵1𝑈 × 𝐹𝐵2𝑈) ((𝑥, 𝑥2) (𝑥, 𝑦2)) > max ((𝐹𝐴1𝑈 × 𝐹𝐴2𝑈) (𝑥, 𝑥2), (𝐹𝐴1𝑈 ×

𝐹𝐴2𝑈) (𝑥, 𝑦2)). 

Hence, 𝐺1 x 𝐺2  is not strong interval valued neutrosophic graph, which is a 

contradiction. This completes the proof. 

Remark 3.9  

If 𝐺1is a SIVNG and 𝐺2 is not a SIVNG, then 𝐺1 x 𝐺2 is need not be an SIVNG. 

Example 3.10  

Let 𝐺1= (𝐴1,𝐵1) be a SIVNG, where 𝐴1= {< a, [0.6, 0.7], [0.2, 0.5], [0.1, 0.3]> ,< b, 

[0.6, 0.7], [0.2, 0.5], [0.1, 0.3]>} and 𝐵1= {< ab, [0.6, 0.7], [0.2, 0.5], [0.1, 0.3]>} 

 

 

 

Figure 5. Interval valued neutrosophic  𝐺1. 

𝐺2= (𝐴2,𝐵2) is not a SIVNG, where 𝐴2= {< c, [0.4, 0.6], [0.2, 0.4], [0.1, 0.3]>, < d, 

[0.4, 0.6], [0.1,0.3], [0.2, 0.4] >} and 𝐵2= < cd, [0.3,0.5], [0.1, 0.2], [0.3, 0.5]>}. 

 

 

 

Figure 6.  Interval valued neutrosophic  𝐺2. 

𝑎 

<[0.6, 0.7],[ 0.2, 0.5],[0.1, 0.3]> <[0.6, 0.7],[ 0.2, 0.5],[0.1, 0.3]> 

<[0.6, 0.7],[ 0.2, 0.5],[0.1, 0.3]> 

𝑏 𝐺1 

𝑐 

<[0.4, 0.6],[ 0.2, 0.4],[0.1, 0.3]> <[0.4, 0.6],[ 0.1, 0.3],[0.2, 0.4]> 

<[0.3, 0.5],[ 0.1, 0.3],[0.3, 0.5]> 

𝑑 𝐺2 
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𝐺1x 𝐺2= (𝐴1x 𝐴2, 𝐵1x 𝐵2) is not a SIVNG, where 

𝐴1x 𝐴2= {< (a, c), [0.4, 0.6],[ 0.2, 0.3], [0.2, 0.4]>, < (a, d), [0.4, 0.6], [0.2, 0.3], 

[0.2, 0.4]>, < (b, c), [0.4, 0.6], [0.2, 0.6], [0.2, 0.4]>, < (b, d), [0.4, 0.6], [0.3, 0.4], 

[0.2, 0.4]>}, 

 𝐵1x 𝐵2= {< ((a, c), (a, d)), [0.3, 0.5], [0.3, 0.5], [0.3, 0.5] >, < ((a, c), (b, c)), [0.4, 

0.6], [0.1, 0.4], [0.3, 0.4]  >, < ((b, c), (b, d)), [0.4, 0.6], [0.2, 0.4], [0.2, 0.4]  >, < 

((a, d), (b, d)),[0.4, 0.6], [0.2, 0.4], [0.2, 0.4] >}. In this example, 𝐺1 is a SIVNG 

and 𝐺2is not a SIVNG, then 𝐺1x 𝐺2is not a SIVNG. 

 

 

 

 

 

 

                                                            

 

Figure 7. Cartesian product  𝐺1x 𝐺2 

Example 3.11  

Let 𝐺1= (𝐴1, 𝐵1) be a SIVNG, where 𝐴1= {< a, [0.4, 0.6], [0.2, 0.4], [0.1, 0.3]  >, < 

b, [0.4, 0.6], [0.2, 0.4], [0.1, 0.3]>} and 𝐵1={< ab, [0.4, 0.6], [0.2, 0.4], [0.1, 0.3] >,  

 

 

   

Figure 8.  Interval valued neutrosophic  𝐺1. 

𝐺2= (𝐴2, 𝐵2) is not a SIVIFG, where 𝐴2= {< c, [0.6, 0.7], [0.1, 0.3], [0.1, 0.3] >, < 

d, [0.6, 0.7], [0.1, 0.3], [0.2, 0.4] >} and 𝐵2= {< cd, [0.5, 0.6], [0.2, 0.4], [0.2, 0.4]>}, 

 

 

 

Figure 9. Interval valued neutrosophic  𝐺2. 

 𝐺1x 𝐺2= (𝐴1x 𝐴2, 𝐵1x 𝐵2) is a SIVNG, where  

<a, [.4, .6], [.2, .4], [.1, .3]> 
<b, [.4, .6], [.2, .4], [.1, .3]> 

<ab, [.4, .6], [.2, .4], [.1, .3]> 𝐺1 

<c, [.6, .7], [.1, .3], [.1, .3]> 
<d, [.6, .7], [.1, .3], [.2, .4]> 

<cd, [.5, .6], [.2, .4], [.2, .4]> 𝐺2 

𝑎𝑑 

<[0.4, 0.6],[ 0.3, 0.4],[0.2, 0.4]> 

<[0.4, 0.6],[ 0.2, 0.4],[01, 0.3]> 

𝑏𝑑 

<[0.4, 0.6],[ 0.2, 0.3],[0.2, 0.4]> 

<[
0

.3
, 0

.5
],

[ 
0

.3
, 0

.5
],

[0
.3

, 0
.5

]>
 

<[0.4, 0.6],[ 0.2, 0.6],[0.2, 0.4]> <[0.4, 0.6],[ 0.2, 0.3],[0.2, 0.4]> 

𝑎𝑐 

<[0.4, 0.6],[ 0.1, 0.4],[0.3, 0.4]> 

𝑏𝑐 

<[
0

.4
, 0

.6
],

[ 
0

.2
, 0

.4
,[

0
.2

, 0
.4

]>
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 𝐴1x 𝐴2= {< (a, c), [0.4, 0.6], [0.2, 0.4], [0.1, 0.3] >, < (a, d), [0.4, 0.6], [0.2, 0.4], 

[0.2, 0.4] >, < (b, c), [0.4, 0.6], [0.2, 0.4], [0.1, 0.3] >, < (b, d), [0.4, 0.6], [0.2, 

0.4], [0.2, 0.4] >} and 

𝐵1x 𝐵2= {< ((a, c), (a, d)), [0.4, 0.6], [0.2, 0.4], [0.2, 0.4] >, < ((a, c), (b, c)), [0.4, 

0.6], [0.2, 0.4], [0.1, 0.3] >, < ((b, c), (b, d)), [0.4, 0.6], [0.2, 0.4], [0.2, 0.4] >, < 

((a, d), (b, d)), [0.4, 0.6], [0.2, 0.4], [0.2, 0.4]>}. In this example, 𝐺1is a SIVNG 

and 𝐺2is not a SIVNG, then 𝐺1x 𝐺2is a SIVNG.  

 

 

 

 

 

               

 

Figure 10. Cartesian product 

Proposition 3.12 

Let 𝐺1be a strong interval valued neutrosophic graph. Then for any  interval 

valued neutrosophic graph 𝐺2,𝐺1x 𝐺2 is strong interval valued neutrosophic 

graph iff  

𝑇𝐴1𝐿(𝑥1) ≤ 𝑇𝐵1𝐿(𝑥2𝑦2), 𝐼𝐴1𝐿(𝑥1) ≥ 𝐼𝐵1𝐿(𝑥2𝑦2) and  𝐹𝐴1𝐿(𝑥1) ≥

𝐹𝐵1𝐿(𝑥2𝑦2),  

𝑇𝐴1𝑈(𝑥1) ≤ 𝑇𝐵1𝑈(𝑥2𝑦2), 𝐼𝐴1𝑈(𝑥1) ≥ 𝐼𝐵1𝑈(𝑥2𝑦2) and  𝐹𝐴1𝑈(𝑥1) ≥

𝐹𝐵1𝑈(𝑥2𝑦2), ∀ 𝑥1 ∈ 𝑉1 ,𝑥2𝑦2 ∈ 𝐸2. 

Definition 3.13  

Let 𝐴1and 𝐴2be interval valued neutrosophic subsets of 𝑉1and 𝑉2respectively. 

Let 𝐵1and 𝐵2  interval-valued neutrosophic subsets of 𝐸1  and 𝐸2 respectively. 

The composition of two strong interval valued neutrosophic graphs 𝐺1  and 

𝐺2is denoted by 𝐺1[ 𝐺2] = (𝐴1 ∘ 𝐴2, 𝐵1 ∘ 𝐵2 )  and is defined as follows  

1) (𝑇𝐴1𝐿 ∘ 𝑇𝐴2𝐿) (𝑥1, 𝑥2) = min (𝑇𝐴1𝐿(𝑥1), 𝑇𝐴2𝐿(𝑥2)) 

(𝑇𝐴1𝑈 ∘ 𝑇𝐴2𝑈) (𝑥1, 𝑥2) = min (𝑇𝐴1𝑈(𝑥1), 𝑇𝐴2𝑈(𝑥2)) 

(𝐼𝐴1𝐿 ∘ 𝐼𝐴2𝐿) (𝑥1, 𝑥2) = max (𝐼𝐴1𝐿(𝑥1), 𝐼𝐴2𝐿(𝑥2)) 

(𝐼𝐴1𝑈 ∘ 𝐼𝐴2𝑈) (𝑥1, 𝑥2) = max (𝐼𝐴1𝑈(𝑥1), 𝐼𝐴2𝑈(𝑥2)) 

<ad, [.4, .6], [.2, .4],[.2, .4]> 

<bc, [.4, .6], [.2, .4],[.1, .3]> 

<bd, [.4, .6], [.2, .4],[.2, .4]> 

<ac, [.4, .6], [.2, .4],[.1, .3]> 
<(ac,bc), [.4, .6], [.2, .4],[.1, .3]> 

<
(b

d
,b

c)
, 
[.

4
, 
.6

],
 [

.2
, 
.4

],
[.

2
 .

4
]>

 

 

<(ad,bd), [.4, .6], [.2, .4],[.2, .4]> 

<
(a

d
,a

c)
, 
[.

4
, 
.6

],
 [

.2
, 
.4

],
[.

2
.4

]>
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(𝐹𝐴1𝐿 ∘ 𝐹𝐴2𝐿) (𝑥1, 𝑥2) = max (𝐹𝐴1𝐿(𝑥1), 𝐹𝐴2𝐿(𝑥2)) 

(𝐹𝐴1𝑈 ∘ 𝐹𝐴2𝑈) (𝑥1, 𝑥2) = max (𝐹𝐴1𝑈(𝑥1), 𝐹𝐴2𝑈(𝑥2))  ∀ 𝑥1 ∈ 𝑉1, 𝑥2 ∈ 𝑉2 

 

2) (𝑇𝐵1𝐿 ∘ 𝑇𝐵2𝐿) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐴1𝐿(𝑥), 𝑇𝐵2𝐿(𝑥2𝑦2)) 

(𝑇𝐵1𝑈 ∘ 𝑇𝐵2𝑈) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐴1𝑈(𝑥), 𝑇𝐵2𝑈(𝑥2𝑦2)) 

(𝐼𝐵1𝐿 ∘ 𝐼𝐵2𝐿) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐴1𝐿(𝑥), 𝐼𝐵2𝐿(𝑥2𝑦2)) 

(𝐼𝐵1𝑈 ∘ 𝐼𝐵2𝑈) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐴1𝑈(𝑥), 𝐼𝐵2𝑈(𝑥2𝑦2)) 

(𝐹𝐵1𝐿 ∘ 𝐹𝐵2𝐿) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = max (𝐹𝐴1𝐿(𝑥), 𝐹𝐵2𝐿(𝑥2𝑦2)) 

(𝐹𝐵1𝑈 ∘ 𝐹𝐵2𝑈 ) ((𝑥 , 𝑥2 )(𝑥 , 𝑦2 )) = max (𝐹𝐴1𝑈(𝑥), 𝐹𝐵2𝑈(𝑥2𝑦2 ))  ∀ 𝑥 ∈

𝑉1, ∀ 𝑥2𝑦2 ∈ 𝐸2 

 

3) (𝑇𝐵1𝐿 ∘ 𝑇𝐵2𝐿) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝐵1𝐿(𝑥1𝑦1), 𝑇𝐴2𝐿(𝑧)) 

(𝑇𝐵1𝑈 ∘ 𝑇𝐵2𝑈) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝐵1𝑈(𝑥1𝑦1), 𝑇𝐴2𝑈(𝑧)) 

(IB1L ∘ IB2L) ((x1, z) (y1, z)) = max (IB1L(x1y1), IA2L(z)) 

(IB1U ∘ IB2U) ((x1, z) (y1, z)) = max (IB1U(x1y1), IA2U(z)) 

(FB1L ∘ FB2L) ((x1, z) (y1, z)) = max (FB1L(x1y1), FA2L(z)) 

(FB1U ∘ FB2U) ((x1, z) (y1, z)) = max (FB1U(x1y1), FA2U(z)) ∀ z ∈ V2, ∀ 

x1y1 ∈ E1 
 

4) ( TB1L ∘ TB2L ) (( x1 , x2 ) ( y1 , y2 )) = min ( TA2L(x2 ), TA2L(y2 ), 

TB1L(x1y1)) 

( 𝑇𝐵1𝑈 ∘ 𝑇𝐵2𝑈 ) (( 𝑥1 , 𝑥2 ) ( 𝑦1 , 𝑦2 )) = min ( 𝑇𝐴2𝑈(𝑥2 ), 𝑇𝐴2𝑈(𝑦2 ), 

𝑇𝐵1𝑈(𝑥1𝑦1)) 

(𝐼𝐵1𝐿 ∘ 𝐼𝐵2𝐿) ((𝑥1, 𝑥2) (𝑦1, 𝑦2)) = max(𝐼𝐴2𝐿(𝑥2), 𝐼𝐴2𝐿(𝑦2), 𝐼𝐵1𝐿(𝑥1𝑦1)) 

(𝐼𝐵1𝑈 ∘ 𝐼𝐵2𝑈) ((𝑥1, 𝑥2) (𝑦1, 𝑦2))= max (𝐼𝐴2𝑈(𝑥2), 𝐼𝐴2𝑈(𝑦2), 𝐼𝐵1𝑈(𝑥1𝑦1)) 

(𝐹𝐵1𝐿 ∘ 𝐹𝐵2𝐿) ((𝑥1, 𝑥2) (𝑦1, 𝑦2)) = max(𝐹𝐴2𝐿(𝑥2), 𝐹𝐴2𝐿(𝑦2), 𝐹𝐵1𝐿(𝑥1𝑦1)) 

( 𝐹𝐵1𝑈 ∘ 𝐹𝐵2𝑈 )(( 𝑥1 , 𝑥2 ) ( 𝑦1 , 𝑦2 )) = max ( 𝐹𝐴2𝑈(𝑥2 ), 𝐹𝐴2𝑈(𝑦2 ), 

𝐹𝐵1𝑈(𝑥1𝑦1)) 

  ∀( 𝑥1 , 𝑥2)( 𝑦1 , 𝑦2) ∈ 𝐸0 -E , where 𝐸0 = E ∪  { ( 𝑥1 , 𝑥2) ( 𝑦1 , 𝑦2) 

|𝑥1𝑦1 ∈ 𝐸1, 𝑥2 ≠  𝑦2}. 

The following propositions are stated without their proof. 

Proposition 3.14 

If 𝐺1  and 𝐺2 are the strong interval valued neutrosophic graphs, then the 

composition 𝐺1[ 𝐺2] is a strong interval valued neutrosophic graph. 

Proposition 3.15 

If 𝐺1[ 𝐺2]  is strong interval valued neutrosophic graphs, then at least 

composition 𝐺1 or 𝐺2 must be strong. 
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Example 3.16 

Let 𝐺1= (𝐴1,𝐵1)  be a SIVNG, where 𝐴1= {< a, [0.6, 0.7], [0.2, 0.3], [0.1, 0.3], > ,< 

b, [0.6, 0.7], [0.2, 0.3], [0.1, 0.3] >} and 𝐵1= {< ab, [0.6, 0.7], [0.2, 0.3], [0.1, 0.3]>}. 

 

 

 

Figure 11.  Interval valued neutrosophic  𝐺1. 

 𝐺2= (𝐴2,𝐵2) is not a SIVNG, where 𝐴2= {< c, [0.4, 0.6], [0.2, 0.4], [0.1, 0.3] >, < 

d, [0.4, 0.6], [0.2, 0.4], [0.1, 0.3] >} and 𝐵2=<cd, [0.3, 0.5], [0.2, 0.5], [0.3, 0.5]>}. 

 

 

                            

Figure 12. Interval valued neutrosophic  𝐺2. 

𝐺1[𝐺2]= (𝐴1o𝐴2, 𝐵1o𝐵2) is not a SIVNG, where  

 𝐴1o𝐴2= {< (a,c), [0.4, 0.6], [0.2, 0.4], [0.1, 0.3] >, < (a,d), [0.4, 0.6], [0.2, 0.4], 

[0.1, 0.3]  >, < (b, c), [0.4, 0.6], [0.2, 0.4], [0.1, 0.3] >, < (b, d), [0.4, 0.6], [0.2, 0.4], 

[0.1, 0.3] >}, 

 𝐵1o𝐵2= {< ((a, c), (a, d)), [0.3, 0.5], [0.2, 0.4], [0.3, 0.5] >, < ((a, c), (b, c)), [0.4, 

0.6], [0.2, 0.4], [0.1, 0.3]>, < ((b, c), (b, d)),[0.3, 0.5], [0.2, 0.4], [0.3, 0.5] >, < ((a, 

d), (b, d)), [0.4, 0.6], [0.2, 0.4], [0.1, 0.3]  >, < ((a, c), (b, d)), [0.4, 0.6], [0.2, 0.4], 

[0.1, 0.3] >, < ((a, d), (b, c)), [0.4, 0.6], [0.2, 0.4], [0.1, 0.3] >}. In this example, 𝐺1 

is a SIVNG and 𝐺2is not a SIVNG, then 𝐺1[𝐺2] is not a SIVNG. 

 

 

 

 

 

 

 

Figure 13. Composition 

 

 

<ad, [.4, .6], [.2, .4],[.1, .3]> 

<bc, [.4, .6], [.2, .4],[.1, .3]> 

<bd, [.4, .6], [.2, .4],[.1, .3]> 

<ac, [.4, .6], [.2, .4],[.1, .3]> 
<(ac,bc), [.4, .6], [.2, .4],[.1, .3]> 

<
(b

d
,b

c)
, 
[.

3
, 
.5

],
 [

.2
, 
.4

],
[.

3
, 

.5
]>

 

<(ac,bd), [.4, .6], [.2, .4],[.1, .3]> 

<(ad,bd), [.4, .6], [.2, .4],[.1, .3]> 

<
(a

d
,a

c)
, 
[.

3
, 
.5

],
 [

.2
, 
.4

],
[.

3
, 

.5
]>

 

<(ad,bc), [.4, .6], [.2, .4],[.1, .3]> 

<a, [.6, .7], [.2, .3],[.1, .3]> 
<b, [.6, .7], [.2, .3],[.1, .3]> 

<ab, [.6, .7], [.2, .3],[.1, .3]> 𝐺1 

<c, [.4, .6], [.2, .4], [.1, .3]> 
<d, [.4, .6], [.2, .4], [.1, .3]> 

<cd, [.3, .5], [.2, .4], [.3, .5]> 𝐺2 
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Example 3.17 

Let 𝐺1= (𝐴1,𝐵1)  be a SIVNG, where 𝐴1= {< a, [0.4, 0.6], [0.2, 0.4], [0.2, 0.4]  >, < 

b, [0.4, 0.6], [0.2, 0.4], [0.2, 0.4] >}and 𝐵1={<ab, [0.4, 0.6], [0.2, 0.4], [0.2, 0.4] >}.    

 

 

                             

Figure 14. Interval valued neutrosophic  𝐺1. 

𝐺2= (𝐴2,𝐵2) is not a SIVNG, where 𝐴2= {< c, [0.6, 0.7], [0.1, 0.3], [0.1, 0.3] >, <d, 

[0.6, 0.7], [0.2, 0.4], [0.1, 0.3] >} and 𝐵2={< c d, [0.5, 0.6], [0.2, 0.4], [0.2, 0.4] >}. 

 

 

 

Figure 15. Interval valued neutrosophic 𝐺2. 

𝐺1[𝐺2] = (𝐴1o𝐴2, 𝐵1 o𝐵2) is a SIVNG, where  

𝐴1o𝐴2= {< (a, c), [0.4, 0.6], [0.2, 0.4], [0.2, 0.4] >, < (a, d), [0.4, 0.6], [0.2, 0.4], 

[0.2, 0.4] >, < (b, c), [0.4, 0.6], [0.2, 0.4], [0.2, 0.4] >, < (b, d), [0.4, 0.6], [0.2, 

0.4],[0.2, 0.4] >} and 

𝐵1 o𝐵2= {< ((a, c), (a, d)), [0.4, 0.6], [0.2, 0.4]  [0.2, 0.4] >, < ((a, c), (b, c)), [0.4, 

0.6], [0.2, 0.4], [0.2, 0.4] >, < ((b, c), (b, d)), [0.4, 0.6], [0,2, 0.4]  [0.2, 0.4] >, < ((a, 

d), (b, d)), [0.4, 0.6], [0.2, 0.4], [0.2, 0.4] >, < ((a, c), (b, d)), [0.4, 0.6], [0.2, 0.4] 

[0.2, 0.4]>, < ((a, d), (b, c)), [0.4, 0.6], [0.2, 0.4], [0.2, 0.4]>}. In this example, 𝐺1is 

an SIVIFG and 𝐺2is not a SIVNG, then 𝐺1[𝐺2] is a SIVNG. 

 

 

 

 

 

 

                     

                                              

Figure 16. Composition of 𝐺1 and 𝐺2. 

 

<a, [.4, .6], [.2, .4], [.2, .4]> 
<b, [.4, .6], [.2, .4], [.2, .4]> 

<ab, [.4, .6], [.2, .4], [.2, .4]> 

 
𝐺1 

<c, [.6, .7], [.1, .3], [.1, .3]> 
<d, [.6, .7], [.2, .4], [.1, .3]> 

<cd, [.5, .6], [.2, .4], [.2, .4]> 𝐺2 

<ad, [.4, .6], [.2, .4],[.2, .4]> 

<bc, [.4, .6], [.2, .4],[.2, .4]> 

<bd, [.4, .6], [.2, .4],[.2, .4]> 

<ac, [.4, .6], [.2, .4],[.2, .4]> 
<(ac,bc), [.4, .6], [.2, .4],[.2, .4]> 

<
(b

d
,b

c)
, 
[.

4
 .
6

],
 [

.2
, 
.4

],
[.

2
, 

.4
]>

 

<(ac,bd), [.4, .6], [.2, .4],[.2, .4]> 

<(ad,bd), [.4, .6], [.2, .4],[.2, .4]> 

<
(a

d
,a

c)
, 
[.

4
, 
.6

],
 [

.2
, 
.4

],
[.

2
, 

.4
]>

 

<(ad,bc), [.4, .6], [.2, .4],[.2, .4]> 
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Proposition 3.18 

Let 𝐺1be a strong interval valued neutrosophic graph. Then for any interval valued 

neutrosophic graph 𝐺2,𝐺1[𝐺2] is strong interval valued neutrosophic graph iff ― 

𝑇𝐴1𝐿(𝑥1) ≤ 𝑇𝐵1𝐿(𝑥2𝑦2), 𝐼𝐴1𝐿(𝑥1) ≥ 𝐼𝐵1𝐿(𝑥2𝑦2) and 𝐹𝐴1𝐿(𝑥1) ≥

𝐹𝐵1𝐿(𝑥2𝑦2),  

𝑇𝐴1𝑈(𝑥1) ≤ 𝑇𝐵1𝑈(𝑥2𝑦2), 𝐼𝐴1𝑈(𝑥1) ≥ 𝐼𝐵1𝑈(𝑥2𝑦2) and  𝐹𝐴1𝑈(𝑥1) ≥

𝐹𝐵1𝑈(𝑥2𝑦2), ∀ 𝑥1 ∈ 𝑉1 ,𝑥2𝑦2 ∈ 𝐸2. 

Definition 3.19 

Let A1and A2 be interval valued neutrosophic subsets of V1and V2 respectively. 

Let B1and B1 interval valued neutrosophic subsets of E1  and E2 respectively. 

The join of two strong interval valued neutrosophic graphs G1  and G2  is 

denoted by G1 +  G2= (A1 + A2, B1 + B2) and is defined as follows  

1)  (𝑇𝐴1𝐿 + 𝑇𝐴2𝐿)(𝑥) ={

(𝑇𝐴1𝐿 ∪ 𝑇𝐴2𝐿)(𝑥)     if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝑇𝐴1𝐿(𝑥)                      if 𝑥 ∈ 𝑉1

𝑇𝐴2𝐿(𝑥)                      if 𝑥 ∈ 𝑉2

  

   (𝑇𝐴1𝑈 + 𝑇𝐴2𝑈)(𝑥) = {

(𝑇𝐴1𝑈 ∪ 𝑇𝐴2𝑈)(𝑥)     if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝑇𝐴1𝑈(𝑥)                      if 𝑥 ∈ 𝑉1

𝑇𝐴2𝑈(𝑥)                      if 𝑥 ∈ 𝑉2

 

 (𝐼𝐴1𝐿 + 𝐼𝐴2𝐿) (𝑥) = {

(𝐼𝐴1𝐿 ∩ 𝐼𝐴2𝐿)(𝑥)     if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝐼𝐴1𝐿(𝑥)                      if 𝑥 ∈ 𝑉1

𝐼𝐴2𝐿(𝑥)                      if 𝑥 ∈ 𝑉2

 

 (𝐼𝐴1𝑈 + 𝐼𝐴2𝑈) (𝑥) = {

(𝐼𝐴1𝑈 ∩ 𝐼𝐴2𝑈)(𝑥)     if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝐼𝐴1𝑈(𝑥)                      if 𝑥 ∈ 𝑉1

𝐼𝐴2𝑈(𝑥)                      if 𝑥 ∈ 𝑉2

 

(𝐹𝐴1𝐿 + 𝐹𝐴2𝐿) (𝑥) = {

(𝐹𝐴1𝐿 ∩ 𝐹𝐴2𝐿)(𝑥)     if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝐹𝐴1𝐿(𝑥)                      if 𝑥 ∈ 𝑉1

𝐹𝐴2𝐿(𝑥)                      if 𝑥 ∈ 𝑉2

 

(𝐹𝐴1𝑈 + 𝐹𝐴2𝑈) (𝑥) = {

(𝐹𝐴1𝑈 ∩ 𝐹𝐴2𝑈)(𝑥)     if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝐹𝐴1𝑈(𝑥)                      if 𝑥 ∈ 𝑉1

𝐹𝐴2𝑈(𝑥)                      if 𝑥 ∈ 𝑉2

 

 

2)  (𝑇𝐵1𝐿 + 𝑇𝐵2𝐿) (𝑥y) = {

(𝑇𝐵1𝐿 ∪ 𝑇𝐵2𝐿)(xy)     if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝑇𝐵1𝐿(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸1

𝑇𝐵2𝐿(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸2

 

 

(𝑇𝐵1𝑈 + 𝑇𝐵2𝑈) (𝑥y) ={

(𝑇𝐵1𝑈 ∪ 𝑇𝐵2𝑈)(xy)     if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝑇𝐵1𝑈(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸1

𝑇𝐵2𝑈(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸2
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(𝐼𝐵1𝐿 + 𝐼𝐵2𝐿) (𝑥y) = {

(𝐼𝐵1𝐿 ∩ 𝐼𝐵2𝐿)(xy)     if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝐼𝐵1𝐿(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸1

𝐼𝐵2𝐿(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸2

 

(𝐼𝐵1𝑈 + 𝐼𝐵2𝑈) (𝑥y) = {

(𝐼𝐵1𝑈 ∩ 𝐼𝐵2𝑈)(xy)     if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝐼𝐵1𝑈(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸1

𝐼𝐵2𝑈(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸2

 

(𝐹𝐵1𝐿 + 𝐹𝐵2𝐿) (𝑥y) = {

(𝐹𝐵1𝐿 ∩ 𝐹𝐵2𝐿)(xy)     if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝐹𝐵1𝐿(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸1

𝐹𝐵2𝐿(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸2

 

(𝐹𝐵1𝑈 + 𝐹𝐵2𝑈) (𝑥 y) = {

(𝐹𝐵1𝑈 ∩ 𝐹𝐵2𝑈)(xy)     if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝐹𝐵1𝑈(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸1

𝐹𝐵2𝑈(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸2

 

 

3) (𝑇𝐵1𝐿 + 𝑇𝐵2𝐿) (𝑥 y) = min (𝑇𝐵1𝐿(𝑥), 𝑇𝐵2𝐿(𝑥)) 

(𝑇𝐵1𝑈 + 𝑇𝐵2𝑈) (𝑥y) = min (𝑇𝐵1𝑈(𝑥), 𝑇𝐵2𝑈(𝑥)) 

(𝐼𝐵1𝐿 + 𝐼𝐵2𝐿) (𝑥y) = max (𝐼𝐵1𝐿(𝑥), 𝐼𝐵2𝐿(𝑥)) 

(𝐼𝐵1𝑈 + 𝐼𝐵2𝑈) (𝑥 y) = max (𝐼𝐵1𝑈(𝑥), 𝐼𝐵2𝑈(𝑥) 

(𝐹𝐵1𝐿 + 𝐹𝐵2𝐿) (𝑥y) =max (𝐹𝐵1𝐿(𝑥), 𝐹𝐵2𝐿(𝑥)) 

(FB1U + FB2U) (xy) = max (FB1U(x), FB2U(x)) if xy ∈  E′, where E′ is the set of 

all edges joining the nodes of V1 and V2 and where we assume V1 ∩ V2= ∅. 

4 Conclusion 

Interval valued neutrosophic set is a generalization of fuzzy set and 

intuitionistic fuzzy set, interval valued fuzzy set, interval valued intuitionstic 

fuzzy set and single valued neutrosophic  set. Interval valued neutrosophic 

model gives more precisions, flexibility and compatibility to the system as 

compared to the classical, fuzzy, intuitionistic fuzzy and single valued 

neutrosophic models. In this paper, we have discussed a subclass of interval 

valued neutrosophic graph called strong interval valued neutrosophic graph, 

and we have introduced some operations, such as Cartesian product, 

composition and join of two strong interval valued neutrosophic graph, with 

proofs. In future studies, we plan to extend our research to regular interval 

valued neutrosophic graphs and irregular interval valued neutrosophic 

graphs. 
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Abstract 

In this paper, we introduce the concept of neutrosophic less than or equal to. 

The neutrosophy considers every idea < A >  together with its opposite or 

negation < antiA >  and with their spectrum of neutralities < neutA >  in 

between them (i.e. notions or ideas supporting neither < A > nor < antiA >). 

The < neutA >  and < antiA >  ideas together are referred to as < nonA > . 

Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set 

and respectively fuzzy logic (especially of intuitionistic fuzzy set and 

respectively intuitionistic fuzzy logic) [5]. In neutrosophic logic, a proposition 

has a degree of truth (T), a degree of indeterminacy (I), and a degree of falsity 

(F), where T, I, F are standard or non-standard subsets of  ]-0, 1+[.  Another 

purpose of this article is to explain the mathematical theory of neutrosophic 

geometric programming (the unconstrained posynomial case). It is necessary 

to work in fuzzy neutrosophic space FNs = [0,1] ∪ [0, nI], n ∈ [0,1]. The theory 

stated in this article aims to be a complementary theory of neutrosophic 

geometric programming.      

Keywords 

Neutrosophic Less Than or Equal To, Geometric Programming (GP), Signomial 

Geometric Programming (SGP), Fuzzy Geometric Programming (FGP), Neutrosophic 

Geometric Programming (NGP), Neutrosophic Function in Geometric Programming. 
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 1 Introduction 

The classical Geometric Programming (GP) is an optimization technique 

developed for solving a class of non-linear optimization problems in 

engineering design. GP technique has its origins in Zener’s work (1961). Zener 

tried a new approach to solve a class of unconstrained non-linear optimization 

problems, where the terms of the objective function were posynomials. To 

solve these problems, he used the well-known arithmetic-geometric mean 

inequality (i.e. the arithmetic mean is greater than or equal to the geometric 

mean). Because of this, the approach came to be known as GP technique. Zener 

used this technique to solve only problems where the number of posynomial 

terms of the objective function was one more than the number of variables, 

and the function was not subject to any constraints. Later on (1962), Duffin 

extended the use of this technique to solve problems where the number of 

posynomial terms in the objective function is arbitrary. Peterson (1967), 

together with Zener and Duffin, extended the use of this technique to solve 

problems which also include the inequality constraints in the form of 

posynomials. As well, Passy and Wilde (1967) extended this technique further 

to solve problems in which some of the posynomial terms have negative 

coefficients. Duffin (1970) condensed the posynomial functions to a monomial 

form (by a logarithmic transformation, it became linear), and particularly 

showed that a "duality gap" function could not occur in geometric 

programming. Further, Duffin and Peterson (1972) pointed out that each of 

those posynomial programs GP can be reformulated so that every constraint 

function becomes posy-/bi-nomial, including at most two posynomial terms, 

where posynomial programming - with posy-/mo-nomial objective and 

constraint functions - is synonymous with linear programming.  

As geometric programming became a widely used optimization technique, it 

was desirable that an efficient and highly flexible method of solutions were 

available. As the complexity of prototype geometric programs to be solved 

increased, several considerations became important. Canonically, the degree 

of problem difficulty and the inactive constraints reported an algorithm 

capable of dealing with these considerations. Consequently, McNamara (1976) 

proposed a solution procedure for geometric programming involving the 

formulation of an augmented problem that possessed zero degree of difficulty.  

Accordingly, several algorithms have been proposed for solving GP (1980’s). 

Such algorithms are somewhat more effective and reliable when they are 

applied to a convex problem, and also avoid difficulties with derivative 

singularities, as variables raised to fractional powers approach zero, since logs 

of such variables will approach  −∞ , and large negative lower bounds should 

be placed on those variables.  
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In the 1990’s, a strong interest in interior point (IP) algorithms has spawned 

several (IP) algorithms for GP. Rajgopal and Bricker (2002) produced an 

efficient procedure for solving posynomial geometric programming. The 

procedure, which used the concept of condensation, was embedded within an 

algorithm for a more general (signomial) GP problem. The constraint structure 

of the reformulation provides insight into why this algorithm is successful in 

avoiding all of the computational problems, traditionally associated with dual-

based algorithms.  

Li and Tsai (2005) proposed a technique for treating (positive, zero or negative) 

variables in SGP. Most existing methods of global optimization for SGP actually 

compute an approximate optimal solution of a linear or convex relaxation of 

the original problem. However, these approaches may sometimes provide an 

infeasible solution, or might form the true optimum to overcome these 

limitations.  

A robust solution algorithm is proposed for global algorithm optimization of 

SGP by Shen, Ma and Chen (2008). This algorithm guarantees adequately to 

obtain a robust optimal solution which is feasible and close to the actual 

optimal solution, and is also stable under small perturbations of the 

constraints [6].   

In the past 20 years, FGP has developed extensively. In 2002, B. Y. Cao 

published the first monography of fuzzy geometric programming as applied 

optimization. A large number of FGP applications have been discovered in a 

wide variety of scientific and non-scientific fields, since FGP is superior to 

classical GP in dealing with issues in fields like power system, environmental 

engineering, postal services, economical analysis, transportation, inventory 

theory; and so more to be discovered.  

Arguably, fuzzy geometric programming potentially becomes a ubiquitous 

optimization technology, the same as fuzzy linear programming, fuzzy 

objective programming, and fuzzy quadratic programming [2]. 

This work is the first attempt to formulate the neutrosophic posynomial 

geometric programming (the simplest case, i.e. the unconstrained case). A 

previous work investigated the maximum and the minimum solutions to the 

neutrosophic relational GP [7,8]. 

2 Neutrosophic Less than or Equal To 

In order to understand the concept of neutrosophic less than or equal to in 

optimization, we begin with some preliminaries which serve the subject. 
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 Definition 2.1 

Let 𝑋 be the set of all fuzzy neutrosophic variable vectors 𝑥𝑖 , 𝑖 = 1,2,… ,𝑚 , i.e. 

𝑋 = {(𝑥1, 𝑥2, … , 𝑥𝑚)
T│𝑥𝑖 ∈ FNs}. The function g(𝑥): 𝑋 →  R ∪ I is said to be the 

neutrosophic GP function of 𝑥 , where g(𝑥) = ∑ ck
J
k=1 ∏ xl

γklm
l=1 ,   ck ≥ 0  are 

constants, γkl - are arbitrary real numbers. 

Definition 2.2 

Let g(𝑥) be any linear or non-linear neutrosophic function, and let A0 be the 

neutrosophic set for all functions g(𝑥) that are neutrosophically less than or 

equal to 1. 

A0 = { g(𝑥) < ₦1, 𝑥𝑖 ∈ FNs}

=  { g(𝑥) < 1, anti( g(𝑥)) > 1, neut( g(𝑥)) = 1, 𝑥𝑖 ∈ FNs}. 

Definition 2.3 

Let g(𝑥) be any linear or non-linear neutrosophic function, where 𝑥𝑖 ∈ [0,1] ∪

[0, nI] and 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚)
T  a m-dimensional fuzzy neutrosophic variable 

vector. 

We have the inequality 

 g(𝑥) < ₦  1                     (1) 

where " < ₦" denotes the neutrosophied version for  " ≤ " with the linguistic 

interpretation being "less than (the original claimed), greater than (the anti-

claim of the original less than), equal (neither the original claim, nor the anti-

claim)". 

The inequality (1) can be redefined as follows:  

  
g(x) < 1

anti (g(x)) > 1

neut( g(x)) = 1

}                 (2) 

Definition 2.4 

Let A0  be the set of all neutrosophic non-linear functions that are 

neutrosophically less than or equal to 1. 

A0 = { g(𝑥) < ₦  1, 𝑥𝑖 ∈ FNs}

=  { g(𝑥) < 1, anti( g(𝑥)) > 1, neut( g(𝑥)) = 1, 𝑥𝑖 ∈ FNs}. 

It is significant to define the following membership functions: 

μAo( g(x)) = {
1                                                                                            0 ≤ g(x) ≤ 1

(e
−1

do
(g(x)−1)

+ e
−1

do
(anti( g(x))−1)

− 1) ,          1 < g(x) ≤ 1 − do ln 0.5
          (3) 
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μAo(anti( g(x))) = {
0                                                                                            0 ≤ g(x) ≤ 1

(1 − e
−1

do
(anti( g(x))−1)

− e
−1

do
(g(x)−1)

) , 1 − do ln 0.5 ≤ g(x) ≤ 1 + do
       (4) 

It is clear that μAo(neut( g(𝑥))) consists of intersection the following functions: 

  e
−1

do
(g(x)−1)

,    1 − e
−1

do
(anti( g(x))−1)

 

i.e. 

μAo(neut( g(x))) = {
1 − e

−1

do
(anti( g(x))−1)

   1 ≤ g(x) ≤ 1 − do ln 0.5

e
−1

do
(g(x)−1)

                1 − do ln 0.5 < g(x) ≤ 1 + do

            (5) 

Note that do > 0 is a constant expressing a limit of the admissible violation of 

the neutrosophic non-linear function g(𝑥) [3]. 

2.1        The relationship between g(x), anti g(x) in NGP 

1. At    
 1 < g(x) ≤ 1 − do ln 0.5  
μAo( g(x) ) > μAo(anti( g(x) )                                                             (see Figure 1) 

e
−1

do
(g(x)−1)

> 1 − e
−1

do
(anti( g(x) )−1)

  

e
−1

do
(anti( g(x) )−1)

> 1 − e
−1

do
(g(x)−1)

  
−1

do
(anti( g(x) ) − 1) > ln(1 − e

−1

do
(g(x)−1)

)  

anti( g(x) ) < 1 − do  ln(1 − e
−1
do
(g(x)−1)

) 

2. Again at 
  1 − do ln 0.5 < g(x) ≤ 1 + do 

μAo( g(x)) < μAo(anti( g(x)))  

 ∴   anti( g(x) ) > 1 − do  ln(1 − e
−1
do
(g(x)−1)

) 

3 Neutrosophic Geometric Programming (the unconstrained case) 

Geometric programming is a relative method for solving a class of non-linear 

programming problems. It was developed by Duffin, Peterson, and Zener 

(1967) [4]. It is used to minimize functions that are in the form of posynomials, 

subject to constraints of the same type.   

Inspired by Zadeh's fuzzy sets theory, fuzzy geometric programming emerged 

from the combination of fuzzy sets theory with geometric programming.  

Fuzzy geometric programming was originated by B.Y. Cao in the Proceedings 

of the second IFSA conferences (Tokyo, 1987) [1].  

In this work, the neutrosophic geometric programming (the unconstrained 

case) was established where the models were built in the form of posynomials. 
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 Definition 3.1 

Let  

N
(P)

          g(x)min
N  

xi ∈ FNs

} .                                                                                                              (6)     

The neutrosophic unconstrained  posynomial  geometric programming , where 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚) 
T  is a m-dimensional fuzzy neutrosophic variable vector, 

"T"  represents a transpose symbol, and g(𝑥) = ∑ ck
J
k=1 ∏ xl

γklm
l=1  is a 

neutrosophic posynomial GP function of 𝑥 , ck ≥ 0 a constant , γkl an arbitrary 

real number,  g(𝑥) < ₦ z → g(𝑥)min
N  ; the objective function g(𝑥) can be written 

as a minimizing goal in order to consider 𝑧  as an upper bound; 𝑧  is an 

expectation value of the objective function g(𝑥) , " < ₦ "  denotes the 

neutrosophied version of " ≤ "  with the linguistic interpretation (see 

Definition 2.3), and do > 0 denotes a flexible index of g(𝑥). 

Note that the above program is undefined and has no solution in the case of  

γkl < 0 with some xl′s taking indeterminacy value, for example, 

          g(𝑥)min
N  = 2𝑥1

−.2x2
.3𝑥4

1.5 + 7𝑥1
3x2

−.5𝑥3,  

where  𝑥𝑖 ∈ FNs, 𝑖 = 1,2,3,4. 

This program is not defined at 𝑥 = (.2I, .3, .25, I)T ,  g(𝑥) = 2(. 2I)−.2(. 3).3I1.5 +

7(. 2I)3(. 3)−.5(.25) is undefined at  𝑥1 = .2I with  γ1 = −0.2. 

Definition 3.2 

Let A0  be the set of all neutrosophic non-linear functions g(𝑥)  that are 

neutrosophically less than or equal to 𝑧, i.e.  

A0 = {  g(x) < ₦ z, xi ∈ FNs}.  

The membership functions of g(𝑥) and  anti(g(𝑥)) are:  

μAo( g(x)) = {
1                                                                                           0 ≤ g(x) ≤ z

(e
−1

do
(g(x)−z)

+ e
−1

do
(anti (g(x))−z)

− 1) ,      z < g(x) ≤ z − do ln 0.5
          (7) 

μAo(anti( g(x))) = {
0                                                                                            0 ≤ g(x) ≤ z

(1 − e
−1

do
(anti (g(x))−z)

− e
−1

do
(g(x)−z)

) , z − do ln 0.5 ≤ g(x) ≤ z + do
        (8) 

Eq. (6) can be changed into  

g(x) < ₦   z,       x = (x1, x2, … , xm), xi ∈ FNs               (9) 

The above program can be redefined as follow: 
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g(x) < z                                      

anti( g(x)) > z                         

neut( g(x)) = z                        

x = (x1, x2, … , xm), xi ∈ FNs}
 
 

 
 

                               (10) 

It is clear that μAo(neut( g(𝑥))) consists from the intersection of the following 

functions: 

e
−1

do
(g(x)−z)

      &  1 − e
−1

do
(anti(g(x))−z)

           

μAo(neut( g(x))) = {
1 − e

−1

do
(anti( g(x))−z)

            z ≤ g(x) ≤ z − do ln 0.5

e
−1

do
(g(x)−z)

                    z − do ln 0.5 < g(x) ≤ z + do

                            (11) 

Definition 3.3 

Let Ñ be a fuzzy neutrosophic set defined on [0,1] ∪ [0, nI], 𝑛 ∈ [0,1]; if there 

exists a fuzzy neutrosophic optimal point set Ao
∗  of g(𝑥) such that  

Ñ(𝑥) =
min{μ(neut g(x))}

x = (x1, x2, … , xm), xi ∈ FNs
            (12) 

Ñ(x) = e
−1

do
(∑ ck

J
k=1

∏ x
l

γklm
l=1 −z)

Ʌ  1 − e
−1

do
(anti( ∑ ck

J
k=1

∏ x
l

γklm
l=1 )−z)

, 

then maxÑ(𝑥)  is said to be a neutrosophic geometric programming (the 

unconstrained case) with respect to Ñ(𝑥) of g(𝑥)  .  

Definition 3.4 

Let 𝑥∗ be an optimal solution to Ñ(𝑥), i.e.   

Ñ(x∗) = maxÑ(x) , x = (x1, x2, … , xm), xi ∈ FNs ,             (13) 

and the fuzzy neutrosophic set  Ñ  satisfying (12) is a fuzzy neutrosophic 

decision in (9). 

Theorem 3.1 

The maximum of Ñ(x) is equivalent to the program: 

maxα                                                       
g(x) < z − do ln α                              

anti g(x) > z − do ln(1 − α)           

x = (x1, x2, … , xm), xi ∈ FNs , do > 0 

     }               (14) 

Proof 

It is known by definition (3.4) that 𝑥∗  satisfied eq. (12), called an optimal 

solution to (9). Again, 𝑥∗  bears the similar level for g(𝑥) ,

anti(g(𝑥)) &  neut(g(𝑥)).  Particularly, 𝑥∗  is a solution to neutrosophic 



79 

 

 
Critical Review. Volume XII, 2016 

Florentin Smarandache, Huda E. Khalid, Ahmed K. Essa, Mumtaz Ali 

The Concept of  Neutrosophic  Less Than or Equal To: A New Insight in 

Unconstrained Geometric Programming 

 posynomial geometric programming (6) at Ñ(𝑥∗) = 1 . However, when g(𝑥) <

𝑧 and anti(g(𝑥)) > 𝑧, there exists  

Ñ(x) = e
−1

do
(∑ ck

J
k=1

∏ x
l

γklm
l=1 −z)

Ʌ  1 − e
−1

do
(anti (∑ ck

J
k=1

∏ x
l

γklm
l=1 )−z)

 , 

given α = Ñ(x). Now,  ∀ α ∈ FNs; it is clear that  

e
−1

do
(∑ ck

J
k=1

∏ x
l

γklm
l=1 −z)

≥ α                 (15) 

1 − e
−1

do
(anti (∑ ck

J
k=1

∏ x
l

γklm
l=1 )−z)

≥ α                (16) 

From (15), we have 

−1

do
(∑ ck

J
k=1 ∏ xl

γklm
l=1 − z) ≥ ln α  

g(x) = (∑ ck
J
k=1 ∏ xl

γklm
l=1 ) ≤ z − do ln α .             (17) 

From (16), we have  

1 − α ≥ e
−1

do
(anti (∑ ck

J
k=1

∏ x
l

γklm
l=1 )−z)

  

→ anti (∑ ck
J
k=1 ∏ xl

γklm
l=1 ) − z ≥ −do ln(1 − α)             (18) 

anti (g(x)) ≥ z − do ln(1 − α).   

Note that, for the equality in (17) & (18), it is exactly equal to  neut g(𝑥). 

Therefore, the maximization of Ñ(𝑥) is equivalent to (14) for arbitrary α ∈ FNs, 

and the theorem holds. 

 

Figure 1. The orange color means the region covered  by μAo( g(𝑥)), the red color 

means the region covered by  μAo(anti( g(𝑥))), and the yellow color means the region 

covered by  μAo(neut( g(𝑥))). 
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4 Conclusion 

The innovative concept and procedure explained in this article suit to the 

neutrosophic GP. A neutrosophic less than or equal to form can be completely 

turned into classical less than, greater than and equal forms. The feasible 

region for unconstrained neutrosophic GP can be determined by a fuzzy 

neutrosophic optimal point set in the fuzzy neutrosophic decision region 

Ñ(x∗) . 
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Abstract 

The purpose of this paper is to present an alternative of a hybrid method based on 

Saaty’s Analytical Hierarchy Process and on the Technique for Order Preference by 

using the Similarity to Ideal Solution method (AHP-TOPSIS) and, based on the AHP 

and its use of pairwise comparisons, to extend it to a new method called α-D MCDM-

TOPSIS (α-Discounting Method for multi-criteria decision making-TOPSIS). The new 

method overcomes the limits of AHP, which works only for pairwise comparisons of 

criteria, to any-wise (n-wise) comparisons, with crisp coefficients or with interval-

valued coefficients. An extended MCMD method (called Extended α-D MCDM) of α-D 

MCDM, introduced by Smarandache to solve decision making problems, is developed. 

α-D MCDM-TOPSIS and Extended α-D MCDM are verified on several examples, to 

demonstrate how they work with consistent, weak inconsistent or strong 

inconsistent problems. Finally, we discuss and compare all methods. 

Keyword  

Decision making, Extended α-D MCDM, Consistency, Inconsistency, n-wise criteria 

comparisons, AHP TOPSIS. 

1 Introduction  

Many economic, social or technological problems have been widely discussed 

and resolved in recent years by multi-criteria decision making methods [8]. 

However, the quantity of data, the complexity of the modern world and the 

recent technological advances have made obviously that MCDM methods are 

more challenging than ever, hence the necessity of developing other methods, 

able to give quality solutions. 
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Among MCDM methods, the most often used to improve the reliability of the 

decision making process is the combined method AHP-TOPSIS [12], [3], [2], 

[8], [10], [11] and [4]. 

AHP-TOPSIS is indeed a useful MCDM method to resolve difficult decision 

making problems and to select the best of the alternatives. Its applications 

are significant [8]: a support for management and planning of flight mission 

at NASA [12]; a method to study how the traffic congestion of urban roads is 

evaluated [3]; choosing logistics service provider in the mobile phone 

industry domains [10]; summarizing an e-SCM performance for management 

of supply chain [11]; evaluating faculty performance in engineering 

education, or sharing capacity assessment knowledge of supply chain [4]. 

Our paper is organized as follows. In the next section (Section 2), a literature 

survey for consistency problems is given. Section 3 and Section 4 focus on 

AHP-TOPSIS, and on the proposed α-D MCDM-TOPSIS model, respectively. 

The proposed method is tested on consistent, weak inconsistent and strong 

inconsistent examples (in Section 5). AHP method employed to rank the 

preferences is considered in Section 6. An extended α-D MCDM is introduced 

in Section 7, and it is shown how it can be applied for ranking preferences. 

We discuss developments via the use of an example to compare all methods. 

Finally, we draw conclusions and envisage some perspectives. 

2 Comparison of characteristics between AHP  

and α-D MCDM: Consistency 

2.1 A brief overview of Analytic Hierarchy Process (AHP)  

AHP, introduced by the Saaty [6], is one of the most complete methods of 

multi-criteria decision making technique, determining the weights of criteria 

and ranking alternatives. The use of AHP only, or its hybrid use with other 

methods, proved its capacity to solve MCDM problems and to be a popular 

technique for determining weights — see more than a thousand references in 

[9]. Besides the performance of AHP and its added value at both levels, 

theoretical and practical, this method functions only if the problem is 

perfectly consistent, which is rarely checked in real MCDM problems. 

2.2 Description of α-D MCDM 

α-D MCDM (α-Discounting Method for Multi-Criteria Decision Making) was 

introduced by Smarandache — see [7]. The new method overcomes the limits 

of AHP, which work only for pairwise comparisons of criteria, expanding to 

any-wise (n-wise) comparisons.  
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Smarandache used the homogeneous linear mathematical equations to 

express the relationship between criteria with crisp coefficients or with 

interval-valued coefficients also for non-linear equations, with crisp 

coefficients or with interval-valued coefficients. 

The two aims of α-D MCDM method were: firstly, to transform the equations 

of each criterion with respect to other criteria that has only a null solution 

into a linear homogeneous system having a non-null solution by multiplying 

each criteria of the right hand by non-null positive parameters ; 

secondly, to apply the “Fairness Principle” on the general solution of the 

above system by discounting each parameter by the same value 

( ). 

2.2.1 α-D MCDM method 

The general idea of the -D MCDM is to transform any MCDM inconsistent 

problem (in which AHP does not work) to a MCDM consistent problem, by 

discounting each coefficient by the same percentage. 

Let us assume that  1 2= , , , nC C C C , with 2n  , is a set of criteria, and let’s 

construct a linear homogeneous system of equations. 

Each criterion  can be expressed as linear homogeneous equation, or as 

non-linear equation, with crisp coefficients or with interval-valued 

coefficients of other criteria  — 

.   

Consequently, a comparisons matrix associated to this linear homogeneous 

system is constructed. 

To determine the weights  of the criteria, we solve the previous system. 

The α-D MCDM method is not designed to rank preferences iP  based on iC  

criteria, as AHP method does, but to determine only the weights of criteria in 

any type of problems (consistent, inconsistent). 

AHP as cited above is a complete method designed to calculate the weights of 

criteria iC  and to rank the preferences iP . In addition, when the AHP is used 

with TOPSIS, or other MCDM method, we just benefit from the part of weight 

calculation criteria and we use TOPSIS to rank preferences — or other MCDM 

methods. 

The same for α-D MCDM: firstly, it is just used to calculate the weight of 

criteria, that will be used later by TOPSIS to rank preferences, and, secondly, 
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the α-D MCDM is extended to a complete method, in order to rank the 

preferences. 

Therefore, we use α-D MCDM for calculating the weight of criteria iC  and not 

to rank iP  preferences.  

We have — 

= ({ }\ )i iC f C C . 

Then, criteria iC  is a linear equation of 
jC  such as — 

=1

=
n

i ij j

j j i

C x C


 . 

So, the comparisons criteria matrix has the number of criteria by rows and 

columns (rows number n  = number of criteria, and columns number m = 

number of equations). In the result, we have a square matrix ( ), 

consequently we can calculate the determinant of this matrix. At this point, 

we have an n n  linear homogeneous system and its associated matrix — 

1,1 1 1,2 2 1,

,1 1 ,2 2 ,

= 0

= 0

n n

n m n n n

x w x w x w

x w x w x w

   


   

 

1,1 1,

,1 ,

=

n

n n n

x x

X

x x

 
 
 
 
 

. 

The difference between AHP and -D MCDM is the ability of the latter to work 

with consistent and inconsistent problems, and if the problem is inconsistent, 

-D MCDM method transforms it in a consistent problem, while AHP is 

unable to do that, managing strictly consistent problems. 

In the following, we deal with the relationship between determinant of 

matrix and consistency, and the parameterization of system by  in order to 

get a consistent problem. 

Property 1 

— If ( ) = 0det X , the system has a solution (i.e. MCDM problem is consistent).  

— If ( ) 0det X  , the system has only the null solution (i.e. MCDM problem is 

inconsistent). 
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If the problem is inconsistent, then one constructs the parameterized matrix, 

denoted , by parameterizing the right-hand in order to get 

 and use Fairness principe (set equal parameters to all criteria 

). To get priority vector, one resolves the new 

system obtained and set 1 to secondary variable, then normalize the vector 

by dividing the sum of all components. 

2.3 Consistency of decision making problems 

In this section, we discuss the consistency of the MCDM problems for both 

methods ( -D MCDM and AHP). 

For resolving a linear system of equations, in mathematics we use raw 

operations, such as substitution, interchange, … . 

Definition 1 [7] 

Applying any substitution raw operations on two equations, if it does not 

influence the system consistency and there is an agreement of all equations, 

we say that the linear system of equations (of the linear MCDM problem) is 

consistent. 

Definition 2 [7] 

Applying any substitution raw operations on two equations, if equation result 

is in disagreement with another, we say that the linear system of equations 

(of the linear MCDM problem) is weakly consistent. 

Definition 3 [7] 

Applying any substitution raw operations on two equations, if equation result 

is in opposition with another, we say that the linear system of equations (of 

the linear MCDM problem) is strongly inconsistent. 

2.4 Consistency 

AHP provides the decision maker with a way of examining the consistency of 

entries in a pairwise comparison matrix; the problem of accepting/rejecting 

matrices has been largely discussed [5], [1], [13], especially regarding the 

relation between the consistency and the scale used to represent the decision 

maker’s judgments. AHP is too restrictive when the size of the matrix 

increases, and when order n  of judgment matrix is large; the satisfying 

consistency is more difficult to be met [5], [1]. 
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This problem may become a very difficult one when the decision maker is not 

perfectly consistent, moreover, it seems impossible (AHP does not work) 

when there are not pairwise comparisons, but all kind of comparisons 

between criteria, such as n  wise, because there is set a strict consistency 

condition in the AHP, in order to keep the rationality of preference intensities 

between compared elements. 

In addition, the inconsistency exists in all judgments [5]; comparing three 

alternatives — or more, it is possible that inconsistency exists when there are 

more than 25  percent of the 3 3by   reciprocal matrices with a consistency 

ratio less than or equal to ten percent. Consequently, as the matrix size 

increases, the percentage of inconsistency decreases dramatically [1], [5]. 

Furthermore, the AHP method sets a consistency ratio (CR) threshold 

( ( ) > 0.1CR X ), which should not be exceeded, by examining the 

inconsistency of the pairwise comparison matrix, but this requirement for 

the Saaty’s matrix is not achievable in the real situations. 

In order to overcome this deficiency, instead of the AHP we suggest 

employing an α-D MCDM, which is very natural and more suitable for the 

linguistic descriptions of the Saaty’s scale and, as a result of it, it is easier to 

reach this requirement in the real situations. 

Moreover, the attractiveness of -D MCDM is due to its potential to overcome 

limits of AHP, which works only for pairwise comparisons of criteria, 

expanding to n -wise (with 2n  ) comparisons, with crisp coefficients or 

with interval-valued coefficients. Therefore, α-D MCDM method works for 

inconsistent, weak inconsistent and strong inconsistent problems. 

As previously shown, in α-D MCDM method, in order to transform a 

inconsistent MCDM problem to a consistent problem — we multiply each 

criteria of the right hand by non-null positive parameters  and 

we use “Fairness Principle” assigning to each parameter the same value 

( ). 

Property 2 

In α-D MCDM (and Fairness-Principle for coefficients ), the parameter  (or 

 ) signifies the degree of consistency and  ( ) represents the 

degree of inconsistency. 

— If , then  and  represent the degree of consistency 

and the degree of inconsistency, respectively, of the decision-making 

problem.  
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— If , then  and  represent the degree of consistency and the 

degree of inconsistency, respectively, of the decision-making problem.  

Property 3 

In AHP method, RI — consistency index, CR — consistency ratio and  (  

largest) — the eigenvalue of the   pairwise comparison matrix. 

— We say that MCDM problem is consistent (pairwise comparison matrix  

is consistent), if  and  (ideal case). 

— We say that MCDM problem is consistent too (pairwise comparison matrix 

 is consistent), if consistency ratio , , where 

, and RI values are given (simulation parameter). 

— If ,  the MCDM problem is inconsistent and the pairwise 

comparison matrix should be improved.  

 

  Characteristics AHP  -D MCDM 

Weight elicitation Pairwise comparison n -wise comparison ( 2n  ) 

Number of attributes 

accommodated 
7 2  Large inputs 

Consistent problems Provided 
Not provided and α-D MCDM  

gives same result as AHP 

Weakly inconsistent problems Does not work Justifiable results 

Strongly inconsistent problems Does not work Justifiable results 

 
Table 1: Comparison of characteristics of both methods (AHP, α-D MCDM) 

3 Description of data structure decision problems  

under consideration 

Taking into account that pertinent data is frequently very high-priced to 

collect, we can’t change real life problems to obtain a specific form of data. In 

addition, information from real world certainly includes imperfection — such 

as uncertainty, conflict, etc. 

Hence, the choice of the MCDM method is based, firstly, on the structure of 

decision problem considered, secondly, on the types of data that can be 

obtained, and, finally, on the capability to get accurate results. For this reason, 



88 

 

 

A. Elhassouny, Florentin Smarandache 

Multi-Criteria Decision Making Method for n-wise Criteria Comparisons 

and Inconsistent Problems 

Critical Review. Volume XII, 2016 

we detail the different types of all data structure decision problem, for 

example:   

— If decision matrix illustrates the importance of alternatives with respect of 

criteria, the pairwise (or n -wise) comparison can’t be used directly in the 

hybrid AHP-TOPSIS approach. Firstly, priority weights for criteria are 

calculated using AHP technique, and then the alternatives are prioritized 

using TOPSIS approach. 

The derivation of weights is a central step in eliciting the decision-maker’s 

preferences, but the hybrid AHP-TOPSIS method is more difficult to be met: 

on one hand, AHP does not work in inconsistent problems, on the other hand 

it cannot be employed for the n -wise comparisons criteria cases. 

The problem can be abstracted as how to derive weights for a set of activities 

according to their impact on the situation and the objective of decisions to be 

made. 

Hence, this study will extend AHP-TOPSIS to a MCDM to fit real world. A 

complete and efficient procedure for decision making will then be provided. 

The developed model has been analyzed to select the best alternative using 

α-D MCDM and the technique for order preference by similarity to ideal 

solution (TOPSIS) as a hybrid approach. 

Let us assume that  1 2= , , , nC C C C  is a set of Criteria, with 2n  , and 

 1 2= , , , mA A A A  is the set of Preferences (Alternatives), with 1m .  

1

1,1 1, 1

,1 ,

n

n

n n n n

C C

x x C

x x C

 

  
 
 
   

 

 

 1C  2C   nC  

 1w  2w   nw  

1A  11a  12a   1na  

2A  21a  22a   2na  

     

mA  1ma  2ma   mna  

Table 2: Decision matrix 
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If the data cannot be obtained directly to construct the decision matrix 

= ( )ijA a  above, we should have, for each criteria iC , a pairwise (or n -wise) 

comparison matrix of the preferences (not just for the criterion). 

The comparison matrix of the preferences gives the relative importance (
ijb ) 

of each alternative iA  compared with another 
jA  with respect to criterion kC . 

As mentioned, the comparison matrices of the preferences should be given, 

but for comparing the results, we will demonstrate how we can obtain it from 

decision matrix. 

For each criterion kC , the comparison matrix of the preferences is defined by 

= ( )k ijB b  such as = ik
ij

jk

a
b

a
, with = 1,2 ,i n  (for each criterion a comparison 

matrix of preferences, consequently n  comparisons preferences matrices will 

be constructed). 

iC  1A  2A   
nA  

1A  11b  12b   
1mb  

2A  21b  22b   
2mb  

     

mA  1mb  2mb    
mmb   

Table 3: Relative importance of alternative comparison matrix 

Hence, we need to construct n  (number of criteria) matrices with pairwise or 

n -wise comparisons of size m m  each, with m  the number of preferences, in 

these cases we can use AHP or  -D MCDM. 

In this case, AHP method is used both to calculate the weights of criteria and 

to ranking preferences by calculate the priority. 

AHP being more difficult to be met, we will extend  -D MCDM to work for 

the calculation of the weights criteria and ranking preferences.  

4 AHP-TOPSIS method 

In the real word decisions problems (case 1, Section 3) we have multiple 

preferences and diverse criteria. The MCDM problem can be summarized as 

it follows:  

— Calculate weights iw  of criteria iC ; 

— Rank preferences (alternatives) iA .  
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Let us assume there are n  criteria and their pairwise relative importance is 

ijx . 

TOPSIS assumes that we have n  alternatives (preferences) ( =1,2, , )iA i m  

and n  attributes/criteria ( =1,2, , )jC j n  and comparison matrix 
ija  of 

preference i  with respect to criterion j . 

The AHP-TOPSIS method is described in the following steps: 

Step 4.1. Construct decision matrix denoted by = ( )ij m nA a 
 

 
1C  2C   

nC  

 
1w  2w   

nw  

1A  11a  12a   
1na  

2A  21a  22a   
2na  

     

mA  1ma  2ma    
mna   

Table 4: Decision matrix  

Step 4.2. Determine weights ( ) of each criterion using AHP Method, where  

=1

=1, =1,2, ,
n

j

j

w j n . 

Step 4.2.1. Build a pairwise comparison matrix of criteria 

The pairwise comparison of criterion i  with respect to criterion j  gives a 

square matrix ) where 
ijx  represents the relative importance of 

criterion i  over the criterion j . In the matrix, =1ijx  when =i j  and 

=1/ij jix x . So, we get a n n  pairwise comparison matrix . 

Step 4.2.2. Find the relative normalized weight (
jw ) of each criterion defined 

by following formula — 

1/

=1

1/

=1

( )

=

( )

n
n

ij

j

j n
n

ij

j

x

w

x




 

Then, get iw  weight of the  criterion. 
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Step 4.2.3. Calculate matrix  and  — such that  and where 

 — 

1 22 = [ , , , ]T

jX w w w . 

Step 4.2.4. Find the largest eigenvalue of pairwise comparison matrix 

For simplified calculus, the largest eigenvalue of pairwise comparison matrix 

is the average of . Furthermore, according to the Perron-Frobenius 

theorem, principal eigenvalue max  always exists for the Saaty’s matrix and it 

holds max n  ; for fully consistent matrix =max n . 

Consistency check is then performed to ensure that the evaluation of the 

pair-wise comparison matrix is reasonable and acceptable. 

Step 4.2.5. Determine the consistency ratio (CR ) 

After calculation consistency ratio (RC) using equation (eq.), and in order to 

verify the consistency of the matrix that is considered to be consistent if CR is 

less than threshold and not otherwise, according to Saaty and search. At this 

point, we have the weights of criteria and if the consistency is checked, we 

will be using TOPSIS to rank preferences. 

Step 4.3. Normalize decision matrix 

The normalize decision matrix is obtained, which is given here with 
ijr  

0.5

2

=1

= / ; =1,2, , ; =1,2 ,
m

ij ij ij

i

r a a j n i m
 
 
 
 . 

Step 4.4. Calculate the weighted decision matrix 

Weighting each column of obtained matrix by its associated weight.  

= ; =1,2, , ; =1,2 ,ij j ijv w r j n i m . 

Step 4.5. Determine the positive ideal solution (PIS) and negative ideal solution 

(NIS) 

      1 2= ( , , , ) = | , |n i ij i ijA v v v max v j B min v j C      ; 

      1 2= ( , , , ) = | , |n i ij i ijA v v v min v j B max v j C      . 

The benefit and cost solutions are represented by B  and C  respectively. 

Step 4.6. Calculate the distance measure for each alternative from the PIS and 

NIS 
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The distance measure for each alternative from the PIS is — 

0.5

2

=1

= ( ) ; =1,2 ,
n

i ij j

j

S v v i m 
 

 
 
  

Also, the distance measure for each alternative from the NIS is — 

0.5

2

=1

= ( ) ; =1,2 ,
n

i ij j

j

S v v i m 
 

 
 
  

Step 4.7. Determine the values of relative closeness measure 

For each alternative we calculate the relative closeness measure as it follows: 

= ; =1,2 ,
( )

i
i

i i

S
T i m

S S



 
. 

Rank alternatives set according to the order of relative closeness measure 

values . 

5 α-D MCDM-TOPSIS method 

The MCDM problem description is the same as the one used in AHP-TOPSIS 

method (Section 4), but in this case we have n -wise comparisons matrix of 

criteria. Let us assume that  1 2= , , , nC C C C , with 2n  , and  1 2, , , mA A A , 

with 1m , are a set of criteria and a set of preferences, respectively. Let us 

assume that each criterion iC  is a linear homogeneous equation of the other 

criteria 1 2, , , nC C C :  

= ({ }\ )i iC f C C . 

The α-D MCDM-TOPSIS method is described in the following steps: 

Step 5.1. Construct decision matrix denoted by = ( )ij m nA a 
    

   
1C  2C   

nC  

 
1w  2w   

nw  

1A  11a  12a   
1na  

2A  21a  22a   
2na  

     

mA  1ma  2ma    
mna   

Table 5: Decision matrix  
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Step 5.2. Determine weights ( ) of each criterion using -D MCDM Method 

Step 5.2.1. Using -D MCDM to determine the importance weight ( )iw  of the 

criteria, where —  

=1

=1, =1,2, ,
n

j

j

w j n . 

Step 5.2.2. Build a system of equations and its associated matrix 

To construct linear system of equations, each criterion iC  is expressed as a 

linear equation of 
jC  such as —  

=1

=
n

i ij j

j j i

C x C


  

Consequently, we have a system of n linear equations (one equation of each 

criterion) with n variables (variable  is weight of criterion). 

1,1 1 1,2 2 1,

,1 1 ,2 2 ,

= 0

= 0

n n

n m n n n

x w x w x w

x w x w x w

   


   

 

In mathematics, each linear system can be associated to a matrix, in this case, 

denoted by = ( )ijX x , 1 i n   and 1 j n   where — 

1,1 1,

,1 ,

=

n

n n n

x x

X

x x

 
 
 
 
 

. 

Step 5.2.3. Solve system of equation using whose associated matrix 

Solve the system of equation; the different cases are discussed in Property 1 

in that we compute the determinant of  (find strictly positive solution 

). 

Solving this homogeneous linear system, in different cases above the general 

solution that we set as a solution vector — 

 1 2= , , , nS s s s  

and set 1 to secondary variable, we get —       

 1 2= , , , nW w w w . 
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Dividing each vector element on sum of all components of vector to get 

normalized vector, where — 

=1

= ; =1,2 ,
j

j n

k

k

s
w i n

s
. 

Step 5.2.4. Build a pairwise comparison matrix of criteria 

The pairwise comparison of criterion i  with respect to criterion j  gives a 

square matrix ) where 
ijx  represents the relative importance of 

criterion i  over the criterion j . In the matrix, =1ijx  when =i j  and 

=1/ij jix x . So we get a n n  pairwise comparison matrix . 

Step 5.2.5. Find the relative normalized weight (
jw ) of each criterion defined 

by the following formula — 

1/

=1

1/

=1

( )

=

( )

n
n

ij

j

j n
n

ij

j

x

w

x




. 

Then, get iw  weight of the  criterion. 

Step 5.2.6. Calculate matrix  and  — such that  and where 

 — 

1 22 = [ , , , ]T

jX w w w . 

Step 5.2.7. Find the largest eigenvalue of pairwise comparison matrix 

For simplifying the calculus, the largest eigenvalue of pairwise comparison 

matrix is the average of . Furthermore, according to the Perron-Frobenius 

theorem, principal eigenvalue max  always exists for the Saaty’s matrix and it 

holds max n  ; for fully consistent matrix =max n . 

Consistency check is then performed to ensure that the evaluation of the 

pair-wise comparison matrix is reasonable and acceptable. 

Step 5.2.8. Determine the consistency ratio (CR ) 

After calculating consistency ratio (RC) using equation (eq.), and in order to 

verify the consistency of the matrix that is considered to be consistent if CR is 

less than threshold and not otherwise, according to Saaty and search. 
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At this point, we have the weights of criteria and if the consistency is checked, 

we will be using TOPSIS to rank preferences. 

Step 5.3. Normalize decision matrix 

The normalized decision matrix is obtained, which is given here with 
ijr  

0.5

2

=1

= / ; =1,2, , ; =1,2 ,
m

ij ij ij

i

r a a j n i m
 
 
 
 . 

Step 5.4. Calculate the weighted decision matrix 

Weighting each column of obtained matrix by its associated weight —  

= ; =1,2, , ; =1,2 ,ij j ijv w r j n i m . 

Step 5.5. Determine the positive ideal solution (PIS) and negative ideal solution 

(NIS) 

      1 2= ( , , , ) = | , |n i ij i ijA v v v max v j B min v j C      ; 

      1 2= ( , , , ) = | , |n i ij i ijA v v v min v j B max v j C      . 

 The benefit and cost solutions are represented by B  and C , respectively. 

Step 5.6. Calculate the distance measure for each alternative from the PIS and 

NIS 

The distance measure for each alternative from the PIS is — 

0.5

2

=1

= ( ) ; =1,2 ,
n

i ij j

j

S v v i m 
 

 
 
 . 

Also, the distance measure for each alternative from the NIS is — 

0.5

2

=1

= ( ) ; =1,2 ,
n

i ij j

j

S v v i m 
 

 
 
 . 

Step 5.7. Determine the values of relative closeness measure  

For each alternative, we calculate the relative closeness measure as it 

follows:  

= ; =1,2 ,
( )

i
i

i i

S
T i m

S S



 
. 

Rank alternatives set according to the order of relative closeness measure 

values . 
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6 Numerical examples 

We examine a numerical example in which a synthetic evaluation desire to 

rank four alternatives 1A , 2A , 3A  and 4A  with respect to three benefit 

attribute 1C , 2C  and 3C .   

    
1C  2C  3C  

 
1w  2w  3w  

1A  7  9  9  

2A  8 7 8 

3A  9  6 8 

4A  6  7 8  

Table 6: Decision matrix 

In the examples below, we use α-D MCDM and AHP (if it works) to calculate 

the weights of the criteria 1w , 2w  and 3w . After we used TOPSIS to rank the 

four alternatives, the decision matrix (Table 6) is used for the three following 

examples.  

6.1 Consistent Example 1 

We use the  -D MCDM. Let the Set of Criteria be  1 2 3, ,C C C  with 

 and . 

Let us consider the system of equations associated to MCDM problem and its 

associated matrix.   

4

3

12

x y

y z

x
z


 




 


    

1 4 0

1 = 0 1 3

1
0 1

12

X

 
 
 
 
 
 
 

.

 

We calculate  (in this case, equal = 0); then MCDM problem is 

consistent; we solve the system; we get the following solution —  

 = 12 3S z z z . 

Setting 1 to secondary variable, the general solution becomes — 

 = 12 3 1S , 

and normalizing the vector (dividing by sum=12+3+1), the weights vector is: 
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12 3 1
=

16 16 16
W

 
 
 

. 

Using AHP, we get the same result. 

The pairwise comparison matrix of criteria is:  

1 4 12

1
1= 1 3

4

1 1
1

12 3

X

 
 
 
 
 
 
 
 

, 

whose maximum eigenvalue is = 3max  and its corresponding normalized 

eigenvector (Perron-Frobenius vector) is — 

12 3 1
=

16 16 16
W

 
 
 

. 

We use TOPSIS to rank the four alternatives.   

   2

ija   1C  2C  3C  

iw  12/16 3/16 1/16 

1A  49 81 81 

2A  64 49 64 

3A  81 36 64 

4A  36 49 64 

2

=1

n

iji
a  

230  215 273  

Table 7: Calculate 
2( )ija  for each column  

   
ijr   

1C  2C  3C  

iw  12/16 3/16 1/16 

1A  0.4616 0.6138  0.5447 

2A  0.5275  0.4774 0.4842 

3A  0.5934  0.4092 0.4842 

4A  0.3956  0.4774 0.4842 

2

=1

n

iji
a  230  215 273  

Table 8: Divide each column by 
2 1/2

=1
( )

n

iji
a  to get 

ijr  
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ijv   

1C  2C  3C  

iw  12/16 3/16 1/16 

1A  0.3462 0.1151 0.0340 

2A  0.3956  0.0895 0.0303 

3A  0.4451  0.0767 0.0303 

4A  0.2967  0.0895 0.0303 

maxv  0.4451 0.1151 0.0340 

minv  0.2967  0.0767  0.0303  

Table 9: Multiply each column by 
jw  to get 

ijv     

Alternative  
iS  

iS   iT  Rank 

1A  0.0989 0.0627 0.3880 3 

2A  0.0558 0.0997  0.6412 2 

3A   0.0385 0.1484 0.7938 1 

4A   0.1506 0.0128  0.0783 4  

Table 10: The separation measure values and the final rankings  

for decision matrix (Table 4) using AHP-TOPSIS and α-D MCDM-TOPSIS 

Table 10 presents the rank of alternatives ( 1A , 2A , 3A , 4A ) and separation 

measure values of each alternative from the PIS and from NIS in which the 

weighted values are calculated by AHP or α-D MCDM. Both methods, AHP and 

α-D MCDM with Fairness Principle, give the same weights as proven above 

methods together give same result in consistent problem. 

6.2 Weak inconsistent Example 2 where AHP does not work 

Let us consider another example investigated by [7] for which AHP does not 

work (i.e. AHP-TOPSIS does not work too); we use the α-D MCDM to calculate 

the weights values and ranking the four alternatives by TOPSIS (see Table 14). 

Let the Set of Criteria be  1 2 3, ,C C C  with  and 

. Let us consider the system of equations associated to MCDM 

problem and its associated matrix.  

2 3

2

3

x y z

x
y

x
z


  









  



99 

 

 
Critical Review. Volume X, 2015 

A. Elhassouny, Florentin Smarandache 

Multi-Criteria Decision Making Method for n-wise Criteria Comparisons 

and Inconsistent Problems 

1 2 3

1
1= 1 0

2

1
0 1

3

X

 
  
 
 

 
 
 
 

. 

The solution of this system is ; be the sum of weights = 1, then 

this solution is not acceptable. 

Parameterizing the right-hand side coefficient of each equation by  we get: 

 

We solve the system and we get the following solution — 

    or 3 4=
2 3

x x
S x

  
 
 

.

 
Setting 1 to secondary variable, the general solution becomes — 

3 4= 1
2 3

S
  

 
 

.
 

Applying Fairness Principle, then replacing 1 2 3 4= = = =     , whence 

2
=

2
  . 

2 2
= 1

4 6
S

 
 
 

. 

Normalizing vector (dividing by sum), the weights vector is: 

 = 0.62923 0.22246 0.14831W . 

TOPSIS is used to rank the four alternative: application of TOPSIS method is in 

the same manner as in the previous example (the four alternatives ( Ai ) are 

ranked in the following Table 14). 
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2

ija   1C  2C  3C  

 0.62923 0.22246  0.14831 

1A  49 81 81 

2A  64 49 64 

3A  81 36 64 

4A  36 49 64 

2

=1

n

iji
a  

230  215 273  

Table 11: Calculate 
2( )ija  for each column 

  
ijr   

1C  2C  3C  

 0.62923 0.22246  0.14831 

1A   0.4616  0.6138  0.5447 

2A   0.5275  0.4774  0.4842 

3A   0.5934  0.4092  0.4842 

4A   0.3956  0.4774  0.4842 

2

=1

n

iji
a  

230  215 273  

Table 12: Divide each column by 
2 1/2

=1
( )

n

iji
a  to get 

ijr     

  
ijv   

1C  2C  3C  

 0.62923 0.22246  0.14831 

1A   0.2904  0.1365  0.0808 

2A   0.3319  0.1062  0.0718 

3A   0.3734  0.0910  0.0718 

4A   0.2489  0.1062  0.0718 

maxv   0.3734  0.1365  0.0808 

minv   0.2489  0.0910  0.0718  

Table 13: Multiply each column by 
jw  to get 

ijv     

  
Alternative  

iS  
iS    iT   Rank 

1A  0.0830  0.0622  0.4286  3 

2A  0.0522  0.0844  0.6178  2 

3A  0.0464  0.1245  0.7285  1 

4A  0.1284  0.0152  0.1057  4 

Table 14: The separation measure values and the final rankings  

for decision matrix (Table 4) using  -D MCDM-TOPSIS 

 



101 

 

 
Critical Review. Volume X, 2015 

A. Elhassouny, Florentin Smarandache 

Multi-Criteria Decision Making Method for n-wise Criteria Comparisons 

and Inconsistent Problems 

6.3 Jean Dezert’s strong inconsistent Example 3 

Smarandache [7] introduced a Jean Dezert’s Strong Inconsistent example. Let 

us consider the system of equations associated to MCDM problem and its 

associated matrix.  

1
1 9

9

1
= 1 9

9

1
9 1

9

X

 
 
 
 
 
 
 
 
 

         

9 , >

1
, <

9

9 , >

x y x y

x z x z

y z y z










 

We follow the same process as in the example above to get the general 

solution: 

1 81 6561
=

6643 6643 6643
W

 
 
 

. 

We use TOPSIS to rank the four alternatives. 

 

     
2

ija   
1C  2C  3C  

 0.0002  0.0122  0.9877 

1A  
 49  81  81 

2A  
 64  49  64 

3A  
 81  36  64 

4A  
 36  49  64 

2

=1

n

iji
a  230  215 273  

Table 15: Calculate 
2( )ija  for each column 

    
ijr   

1C  2C  3C  

 0.0002  0.0122  0.9877 

1A  
 0.503  0.699  0.623 

2A  
 0.574  0.543  0.553 

3A  
 0.646  0.466  0.553 

4A  
 0.431  0.543  0.553 

2

=1

n

iji
a  230  215 273  

Table 16: Divide each column by 2 1/2

=1
( )

n

iji
a  to get 

ijr  
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ijv   

1C  2C  3C  

 0.0002  0.0122  0.9877 

1A  
 0.0001  0.0075  0.5380 

2A  
 0.0001  0.0058  0.4782 

3A  
 0.0001  0.0050  0.4782 

4A  
 0.0001  0.0058  0.4782 

maxv  
 0.0001  0.0075  0.5380 

minv  
 0.0001  0.0050  0.4782  

Table 17: Multiply each column by 
jw  to get 

ijv   

  
Alternative  

iS  
iS   

 iT  
 Rank 

1A  
0.0000  0.0598  

0.999668 
 1 

1A  
0.0598  0.0008  

0.013719 
 2 

1A  
0.0598  0.0000  

0.000497  
4 

1A  
0.0598  0.0008  

0.013715 
 3 

Table 18: The separation measure values and the final rankings  

for decision matrix (Table 4) using α-D MCDM-TOPSIS 

7 AHP method 

As we proved in Section 3. Description of data structure decision problems 

under consideration, AHP method can be used in the second case, in which 

data is structured as pairwise comparisons of matrices of preferences. 

Let us assume that X  is the comparison matrix of criteria; for each criterion 

kC  ( = 1,2, ,k n ) we have a comparison matrix of preferences kB  and the 

consistency condition is perfect. 

We use AHP to determine the importance weight ( )iw  of the criteria. 

We apply again AHP method for each comparison matrices of preferences kB  

to determine the maximum eigenvalue and its associate eigenvector (same 

that is used to determine the weights of criteria). 

For each matrix kB  (associated to kC ), we calculate the max  and priority 

vector (eigenvector). 
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iC   1A  2A  
 

nA  
Priority vector 

1A  11a  12a  
 

1ma  1ip  

2A  21a  22a  
 

2ma  2ip  

      

mA  1ma  2ma   
 

mma  mip   

Table 19: Comparison matrix of the preferences with priority vector in latest column  

We get a decision matrix (different from the decision matrix above), formed 

using priority vectors, in which the entries of the decision matrix are 
ijp , and 

not 
ija .     

     

 
1w  2w  

 
nw  

 
11p  12p  

 
1np  

 
21p  22p  

 
2np  

       

 
1mp  2mp   

 
mnp  

Table 20: Decision matrix of priority of preferences 

The last step of AHP method is to rank the preferences using the following 

formula — 

=1

n

j ij

j

w p . 

       

 
1w  2w  

 
nw  

 

 
11p  12p  

 
1np  1=1

n

j jj
w p  

 
21p  22p  

 
2np  2=1

n

j jj
w p  

        

 
1mp  2mp   

 
mnp  =1

n

j mjj
w p   

Table 21: Ranking decision matrix 

7.1 Numerical examples 

Let us consider the three numerical examples (Section 6) and the decision 

matrix mentioned above. 
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For weak inconsistent and strong inconsistent examples, AHP does not work, 

as proved above, consequently the AHP method will be applied on consistent 

example 1. 

The weights of criteria are calculated by using AHP (consistent example 1, 

Section 6). 

As mentioned above (case 2, Section 3), for applying AHP we need to 

construct three pairwise comparisons matrices of size 4 4  each.   

       

 1 7/8 7/9 7/6 

 8/7 1 8/9 8/6 

 9/7 7/8 1 9/6 

 6/7 7/8 6/9 1 

 

       

 1 9/7 9/6 9/7 

 7/9 1 7/6 1 

 6/9 6/7 1 6/7 

 7/9 1 7/6 1 

 

       

 1 9/8 9/8 9/8 

 8/9 1 1 1 

 8/9 1 1 1 

 8/9 1 1 1 

Table 22: Relative importance comparison matrix of alternatives for each criteria 

We apply AHP method on three pairwise comparison matrices to rank the 

preferences, and calculate priority (i.e., normalized eigenvector), consistency 

index (CI) and consistency ratio (CR) for each matrix. 

The eigenvalue, consistency index (CI) and consistency ratio (CR) for each 

matrix are: C1 — (CR =0, CI=0, λ = 4), C2 — (CR =0, CI=0, λ = 4) and C3 — (CR 

=0, CI=0, λ = 4). 

The priority vectors for three matrices are listed respectively in Table 23. 

       Priority vector 

 1 7/8 7/9 7/6 0.2333 

 8/7 1 8/9 8/6 0.2667 

 9/7 7/8 1 9/6 0.3000 

 6/7 7/8 6/9 1 0.2000 

       Priority 
vector 

 1 9/7 9/6 9/7 0.3103 
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 7/9 1 7/6 1 0.2414 

 6/9 6/7 1 6/7 0.2069 

 7/9 1 7/6 1 0.2414  

 

       Priority 
vector 

 1 9/8 9/8 9/8 0.2727 

 8/9 1 1 1 0.2424 

 8/9 1 1 1 0.2424 

 8/9 1 1 1 0.2424  

Table 23: Relative importance comparison matrix of alternatives for each criteria 

The last step of AHP method is applying it to rank the preferences using the 

following formula  (resulted as listed in the last column of the 

matrix above). 

    
  

Rank 

 12/16 3/16 1/16   

 0.2333 0.3103 0.2727 0.2502  3 

 0.2667 0.2414 0.2424 0.2604 2 

 0.3000 0.2069 0.2424 0.2789 1  

 0.2000 0.2414  0.2424  0.2104  4 

Table 24: Decision matrix of priority of preferences and its ranking 

8 Extended α-D MCDM 

α-D MCDM introduced by Smarandache is not designed to rank preferences, 

but only for generating the weights for preferences or criteria, based on their 

-wise matrix comparison. Hence, we proposed above a new method, called 

α-D MCDM-TOPSIS, employed to calculate the criteria weights for pairwise 

comparison matrices and for -wise comparison matrices of criteria, in which 

α-D MCDM is used for calculate criteria weights, and TOPSIS — to rank the 

preferences. 

In this section, we do not focus on criteria weights problem of -D MCDM, as 

discussed above and calculated for the three examples, but we propose an 

extension of α-D MCDM benefiting the skills of α-D MCDM to calculate 

maximum eigenvalue and its associate eigenvector of -wise comparison 

matrix, in order to apply it again on -wise matrices of preferences. 

An extended -D MCDM can be described as it follows: 
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Let us consider the second case of data structure decision problem (Section 

3) — for each criterion  corresponds a pairwise (or n-wise) comparison 

matrix of preferences and criteria. 

Step 8.1 We use -D MCDM to calculate the weight ( ) of the criteria 

Step 8.2 We apply again α-D MCDM method for each comparison matrices of 

preferences  to determine the maximum eigenvalue and its associate 

eigenvector (the same that is used to determine the weights of criteria). 

For each matrix  (associated to ), we calculate the  and priority 

vector (eigenvector). 

We get — 

iC   1A  2A  
 

nA  
Priority vector 

1A  11a  12a  
 

1ma  1ip  

2A  21a  22a  
 

2ma  2ip  

      

mA  1ma  2ma   
 

mma  mip   

Table 25: Comparison matrix of the preferences with priority vector in latest column 

Step 8.3 We get a decision matrix (different from the decision matrix above), 

formed using priority vectors, in which the entries of the decision matrix are 

, and not . 

     

 
1w  2w  

 
nw  

 
11p  12p  

 
1np  

 
21p  22p  

 
2np  

       

 
1mp  2mp   

 
mnp  

Table 26: Decision matrix of priority of preferences 

Step 8.4 We employ the following formula (simple additive weighting) to rank 

the preferences — 

=1

n

j ij

j

w p . 

  



107 

 

 
Critical Review. Volume X, 2015 

A. Elhassouny, Florentin Smarandache 

Multi-Criteria Decision Making Method for n-wise Criteria Comparisons 

and Inconsistent Problems 

   
 

  

 
1w  2w  

 
nw  

 

 
11p  12p  

 
1np  1=1

n

j jj
w p  

 
21p  22p  

 
2np  2=1

n

j jj
w p  

        

 
1mp  2mp   

 
mnp  =1

n

j mjj
w p   

Table 27: Ranking decision matrix 

8.1 Numerical examples 

Let us consider the three examples mentioned above (numerical consistent, 

weak inconsistent and strong inconsistent examples (Section 6). 

We do not repeat the calculation of weights criteria by using α-D MCDM, 

because it was already done in Section 6, and we got the following priority 

vectors of criteria: 

Consistent example 1 — 

12 3 1
=

16 16 16
W

 
 
 

. 

Weak inconsistent example 2 — 

 = 0.62923 0.22246 0.14831W . 

Strong inconsistent example 3 — 

1 81 6561
=

6643 6643 6643
W

 
 
 

. 

We construct three comparisons matrices of size 4 4  each (or three linear 

homogeneous systems), based on decision matrix of Section 6, and apply 

extended α-D MCDM to the three examples. 

Let  

1( ) =m A x  , 2( ) =m A y  , 3( ) =m A z  and 4( ) =m A t . 

For criteria 1C   — 

    • 2A  is 8  seventh as important as 1A  , 
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    • 3A  is 9  seventh as important as 1A  , 

    • 4A  is 6  seventh as important as 1A  . 

 The linear homogeneous system associated is — 

8

7

9

7

6

7

y x

z x

t x












 

and its general solution is —  

7 8 9 6
=

30 30 30 30
W

 
 
 

. 

For criteria 2C  — 

    • 1A  is 9  sixth as important as 3A  , 

    • 3A  is 7  sixth as important as 3A  , 

    • 4A  is 7  sixth as important as 3A  . 

The linear homogeneous system associated is — 

9

6

7

6

7

6

x z

y z

t z












 

and its general solution is — 

9 7 6 7
=

29 29 29 29
W

 
 
 

. 

For criteria 3C   — 

    • 1A  is 9  eighth as important as 2A  , 

    • 2A , 3A  and 4A  have the same importance. 
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The associated linear homogeneous system is — 

9

8
x y

y z

t z









 

and its general solution is —  

9 8 8 8
=

33 33 33 33
W

 
 
 

. 

 

The results of extended α-D MCDM are summarized in the Table 24:   

Consistent example 1 — 

       Rank 

 12/16 3/16 1/16   

 7/30 9/29 9/33 0.2502  3 

 8/30 7/29 8/33 0.2604 2 

 9/30 6/29 8/33 0.2789 1  

 6/30 7/29 8/33 0.2104  4 

Weak inconsistent example 2 — 

     

  

Rank 

 0.62923 0.22246  0.14831   

 7/30 9/29 9/33 0.2563  3 

 8/30 7/29 8/33 0.2574 2 

 9/30 6/29 8/33 0.2707 1  

 6/30 7/29 8/33 0.2155 4 

Strong inconsistent example 3 — 

     

  

Rank 

 1/6643 81/6643 6561/6643   

 7/30 9/29 9/33 0.27318 1 

 8/30 7/29 8/33 0.24242  2 

 9/30 6/29 8/33 0.24200 4  

 6/30 7/29 8/33 0.24241 3 

Table 24: Decision matrix of priority of preferences and its ranking using Extended -DMCDM 
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Example Alternative 
AHP-

TOPSIS 

-DMCDM-

TOPSIS 
AHP 

Extended -

DMCDM 

Consistent 

example 1 

 0.3880 3  0.3880 3  0.2502 3 0.2502 3 

 0.6412 2 0.6412 2 0.2604 2 0.2604 2 

 0.7938 1 0.7938 1 0.2789 1 0.2789 1 

 0.0783 4  0.0783 4  0.2104 4 0.2104 4 

Weak 

Inconsistent 

Example 2 

 

Does not 

works 

0.3880 3  

Does not 

works 

0.2563  3 

 0.6412 2 0.2574 2 

 0.7938 1 0.2707 1 

 0.0783 4  0.2155 4  

Strong 

Inconsistent 

Example 3 

 

 

Does not 

works 

0.999668 1 

Does not 

works 

0.27318 1 

 0.013719 2 0.24242  2 

 0.000497  4 0.24200 4 

 0.013715 3  0.24241 3  

Table 25: Summary of the results of three examples of all methods 

For the three examples presented in this paper, the Table 25, summarizing all 

results of all methods, illustrates that the AHP and AHP-TOPSIS methods 

work just for the first example, in which criteria and alternatives are 

consistent in their pairwise comparisons. Our proposed methods — 

Extended α-D MCDM and α-D MCDM-TOPSIS — work not only for consistent 

example 1, giving the same results as AHP and AHP-TOPSIS methods, but also 

for weak inconsistent and strong inconsistent examples. 

In the example 1, it is recorded that the alternative A3 has the first rank with 

the value (0.2789), the alternative A2 gets second rank with the coefficient 

value (0.2604), the alternative A1 realizes following rank with value (0.2502) 

and the alternative A4 lowers rank with the coefficient (0.2104), by using the 

AHP and our proposed method Extended α-DMCDM. Results indicate that all 

considered alternatives have near score values, for example 0.0685 

((A3)0.2789 - (A4) 0.2104). As a difference between the first and the latest 

ranking alternative, it is not sufficient to make a founded decision making, 

hence that can have a strong impact in practice to choose the best 

alternatives. 

The results claimed that AHP-TOPSIS and our α-D MCDM-TOPSIS methods 

preserves the ranking order of the alternatives and overcome the near score 

values problem. By using AHP-TOPSIS and our α-D MCDM-TOPSIS methods, 

the score value of A3 was changed from 0.2789 to 0.7938, the score value of 

A2 was changed from 0.2604 to 0.6412, and the score value of A4 was 

changed from 0.2104 to 0.0783.  
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The bigger differences between the score values of alternatives 0.7155 ((A3) 

0.7938 - (A4) 0.0783) is also subject to gain additional insights. 

In the two last examples (weak inconsistent and strong inconsistent), one 

sees that the importance of discounting in our approaches suggest that they 

can be used to solve real-life problems in which criteria are not only pairwise, 

but n-wise comparisons, and the problems are not perfectly consistent. It is 

however worth to note that the ranking order of the four alternatives 

obtained by both methods is similar, but score values are slightly different. 

Both Extended α-D MCDM and α-D MCDM-TOPSIS methods allow taking into 

consideration any numbers of alternatives and any weights of criteria. 

9 Conclusions 

We have proposed two multi-criteria decision making methods, Extended α-

D MCDM and α-D MCDM-TOPSIS models that allow to work for consistent 

and inconsistent MCDM problems. In addition, three examples have 

demonstrated that the α-D MCDM-TOPSIS model is efficient and robust. 

Our approaches, Extended α-D MCDM and α-D MCDM-TOPSIS, give the same 

result as AHP-TOPSIS and AHP in consistent MCDM problems and elements 

of decision matrix are pairwise comparisons, but for weak inconsistent and 

strong inconsistent MCDM problems in which AHP and AHP-TOPSIS are 

limited and unable, our proposed methods — Extended α-D MCDM and α-D 

MCDM-TOPSIS — give justifiable results.  

Furthermore, our proposed approaches — α-D MCDM-TOPSIS and Extended 

α-D MCDM — can be used to solve real-life problems in which criteria are not 

only pairwise, but n-wise comparisons, and the problems are not perfectly 

consistent. 
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