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SMARANDACHE TYPE FUNCTION OBTAINED BY DUALITY!

Abstract. In this paper we extended the Smarandache function from the set N* of
positive integers to the set @ of rationals.

Using the inversion formula this function is also regarded as a generating function.
We make in evidence a procedure to construct (numerical) function starting from a given
function in two particular cases. Also conections between the Smarandache function and

Euler’s totient function as with Riemaan’s zeta function a.re etablished.
1. Introduction

The Smarandache function [13] is a numerical function § : N* — N* defined by
S{(n) = min{m|m!is divisible by n}.
From the definition if results that if
n=pitpgteep (1)
is the decomposition of n into primes then

Stn) = max S(s) @

and moreover, if {ny,n] is the smallest common multiple of 7, and ng then

S(lr1, na]) = max{S(n1), S(ns)} t3)
The Smarandache function characterizes the prime in the sense that a positive integer p > 4
is prime if and only if it is a fixed point of S.
From Legendre’s formula:
m! =[] p2 4)

(-1
(r-1)

it results {2] that if a,(p) = and b,(p) = p” then considering the standard numerical

scale

{9l - bo(p). bu(p), - . ., Bulp), - ..

!Together with C.Dumitrescu, N.Virlan, $t. Zamfir, E.Ridescu and N.Ridescu
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and the generalized scale
7] : ao(p), a1(p); - -- > 8a(P); -
we have
5(") = o) (8)
that is §(p*) is calculated multiplying by p the number obtained writing the exponent a in the
generalised scale {p] aud “reading” it in the standard scale (p).

Let us observe that the calculus in the generalised scale [p] is essentilly different from the
calculus in the usual scale (p}, becuase the usual relationship bn41(p) = Pba(p) is modified in
ane1(p) = pan(p) + 1 (for more detals see {2}).

In the following let us note Sp(a) = S(p*). In [3] it is proved that

Sp(a) = (p — e+ op)(a) (6)

where op;3() is the sum of the digits of a written in the scale [p}, and also that

p—1)? -1
Sy(a) = ¢ - L (Bye) + o)+ 2 5 20)(%) + %) )
where o(»)(c) is the sum of the digits of a written in the standard scale (p) and E,{a) is the
exponent of p in the decomposition into primes of a! From (4) it results that E(a) = }, ; s
31
where [B] is the integral part of A. It is also said [11] that
By(e) = 22200 ®)

p—1
We can observe that this equality may be writen as

aa= (2], ).

that is the exponent of p in the decomposition into primes of o! is obtained writing the integral
part of a/p in the base (p) and reading in the scale [p]. .
Finally we note that in {1] it is proved that

sirs(o- (g +[2)

From the definition of S it results that S,(E;(a)) = p[%] = a — o, {0y is the remainder of
a with respect to the modulus m) and also that

Ey(Sy{a)) Z a5 Ep(Spla) —1) <a {10)
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Sp{a) — 0)(Sp{@)) N O —%)( Sole) -
rp—1 =% -1

Using (6) we obtain that S,() is the unique solutlon of the system

o)(z) £ opile) <oz —1) +1 (11)

2. Connections with classical numerical functions

It is said that Riemann’s zeta function is

We may establish a connection between the function S, and Riemann’s function as follows:

o
Proposition 2.1. Ifn = [] p{* is the dcomposition into primes of the pozitive integer n then
. =1

e=1) _ 5~ 15 SuleEn ) -
{(s) n>1i=1 o

Proof. We firs establish a connection with Euler’s totient function ¢. Let us observe that,
for @ 2 2,p°7 = (p— 1)aar(p) + 1, 50 op(p*!) = p. Then by means of (6) it results (for
o > 2) that

So(p™ ) = (p = 1p" + opy(p™ ) = ¢(5%) +p

' Using the well known relation between @ and { given by -

/(s—l

Z Y(n)
and (12) it results the required relation.

Let us remark also that, if » is given by (1), then

pn) = 1:[1»0( )—H(Sp,(P""‘) i)

and

5(n) = max(e(p™*) + p:)
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Now it is said that 1+ (p;) + ... + o(p7*) = p" and then
a;—1
Y Spiph) = (i = Vs = pi".
k=1
Consequently we may write
ai—1
S(n) =max($ Y Spi(pf) — (e~ Dp)
=0

To establish a connection with Mangolt’s function let us note A = min,V = max, A =the
d
d
greatest common divisor and V=the smallest common muitiple.
4
We shall write also ny Ang = (n1,n2) and 1y V ng = [ny,n,).
d
d
The Smarandache function S may be regarded as function from the lattice Lo = (N*, A, V),
d

into lattice £ = (N*, A, V) so that

SV m)= ,V S(ni). 12)

Of course S is also order preserving in the sense that ny <gnz — S(n1) < S{ns).
It is said [10] that if (V, A, V) is a finite lattice, V = {z1,22,...,%x} with the induced order
<, then for every function f : V — N the asociated generating function is defined by
Fz)=3 fly) (13)

y<=z

Magolt’s function A is

lnpifn=7p
Amy={ "PETEP
0 otherwise

The generating function of A in the lattice Lq is

Finy= Y Alk)=inn (14)

k<gn
The last equality follows from the fact that
k<in e kAn=k & k\n(k divides n)
d
The generating function of A in the lattice £ is the function ¥

F(n)= 3" A() = ¥4y = InfL,2,...,n] (15)

k<n
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Then we have the diagram from below.
We observe that the defirition of S is in a closed connection with the equalities (1.1) and
(2.2) in this diagram. If we note the Mangolt’s function by f then the relations

[1,2,...,n] = F™) = fMf2) . 00) _ ¥(m)
n! = ef = FUWF@) .. Fin)
together with the definition of § suggest us to consider numerical functions of the from:
v(n) = min{m/n <4{1,2,...,m]} (16)

where will be detailed in section 5.

(1.2)
Fi(n)= ¥ A(k) = lun Fn)= T A(R) = ¥(n) |
k/n . - k<n ;
Ly L Ly L
(2.1) (2.2) (2.3) {2.4)
Fé= k| Fny= ¥ lnk=lanl V=T UE) | | U= 5 uk)
En e kn ! £<n
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3. The Smarandache function as generating function

Let V be a partitial order set. A function f:V — N may be obtained from its generating
function F, defined as in (15), by the inversion formula

fle) =3 F(2)u(z,7) 1n
2Lz
where p is Moebius functicn on V/, that is g VXV — N satisfies:

(1) p(z,y) =0 fzly
() plz,2) =1

(s) Y wlay)=0 ifz<z

=<y<s

It is said [10] that if V = {1,2,...,n} then for (V, <4) we have plz,y)=u (%), where u(k) is
the numerical Meobius function p(1) = 1,u(k) = (=1)' if k = pipz ... p and p(k) = 0 if kis
divisible by the square of an integer d > 1. )
¥ f is the Smarandache function it results
Fs(n) =Y S(n).
djn
Until now it is not known a closed formula for Fs, but inf8] it is proved that
(i)Fs(n) = n if and only if n is prime,n =9,n =16 orn = 24.
(i) Fs(n) > n if and only if n € {8,12,18, 20} or n = 2p with p a prime (hence it results
Fs(n) < n+4 for every pozxtlve integer n) and in [2] it is showed that
(@) F(pips - -2} = Z 2,
In this section we sha.ll regard the Smarandache function as a generating function that is
using the inversion formula we shall construct the function s so that
sy =T u@s () (18)
dfr
If n is given by (1) it results that
. n
o) = p,lp.z,:.ﬁ.p,-,(_l) s (Pﬁpiz .- ~Pi,) .

Let us consider S{n) = max S(p{") = § (p, ). We distinguish the following cases:
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(@) if 5(p°) > S(p?*) foe all i # iy then we observe that the divisors d for which u(d) # 0
are of the form d = 1 or d = p;, Piy ---Pi,. A divisor of the last form may contain Pi, OF not, so
using (2) it results
s(n) = S )(1=Cii 4 CLi+. . +(-1) N+ S ™) -1+ CL, —Cli+. +(-1)C))
that is s(n) = 0if t > 2 or 5(p'-"°_1) and s(n) = p;, otherwise.

{a2} if there exists, jo so that S(pj° ") < S(pz®) an

S5y > S(p%) for i % g, jo

we also suppose that §(p;*) = max{S(p")/S(p a-u—l) < S}
Then

s(n) = S(pa{”)’l—cl

it Oy — o+ (F1FT O+
SN+ Cly = Oy — .+ (-1) 1020+
TV(PJ i 1)(1 —2 + Ct—z -+ (‘1)!—20:—-3

sos(n)=0ift>3or S(Da"’ ]) = S(p;®) and s(n) = —pj, otherwise.

Consequently, to obtain s(n) we construct as above a maximal sequence i;,14s,...,i; , 5o
that S(n) = S(p"), S(pi ') < S(p;‘;=), VST < S{p;;*) and it results that s(n) = 0
ift>k+1or S(pi*) = S(pa"’ ) and s(n) = (—1)**1 otherwise. ’

Let us observe that
5(%) = S(°) & (p=Tjatop(a) = (p-1)(a~1) +opila—1) © oyyla—1)—op(a) = p—1.
Otherwise we have op(a — 1) — op{a) = ~1. So we may write

(n) oiftZk+1oro'[,,](ak—l)—a[,,](ak)zp—l
s(n) =
(=1)**1p; otherwise

Application. It is said {10] that (ViA,V) is a finit lattice, with the indused order < and
for the function f: V — N we consider the generating function F defined as in (15) then if
9i; = F(zi Az;) it results detg,; = f(z,) - f(za}-...- f(zn). Tn [10] it is shown also that this
assertion may be generalized for partial ordered set by defining

gi; = Z f(z)

z<z;
z<z;
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Using these results, if we denote by (i,7) the greatest common divisor of ¢ and j, and
A(r) = det(S5((s,7))) for 3,7 = 1,7 then Alr) = s{1)-s(2) - ... - s(r). That is for a suffisient
large r we have A(r) = 0 (in fact for r > 8). Moreover, for every n there exists a sufficient

large r so that A(n,r) = det(S(n+i,n+73)) =0, for i,7 = 1,r because A{n,r) = ﬁ S(n+1).
=1
4. The extension of S to the rational numbers

To obtain this extension we shalll define first a dual function of the Smarandache function.

In 4] and [6] a duality principale is used to obtain, starting from a given lattice on the
unit interval, other lattices on the same set. The results are used to propose a definition-of
bitopological spaces and to introduce a new point of view for studying the fuzzy sets. In {5]
the method to obtain news lattices on the unit interval is generalised for an arbitrary lattice.

In the following we adopt a method from {5] to comstruct all the functions tied in a certain
sense by duality to the Smarandache function.

Let us observe that if we note Re(n) = {m/n <a mi}, Li(n) = {m/m! <4 n},R(n) =
{m/n < mi}.L(r) = {m/m! < n} ther we may say that the function S is defined by the
triplet (A, €, Ra), because S(n) = A{m/m € R4(n)}. Now we may investigate all the functions
defined by means of a triplet (a,b, c), where a is one of the symbols V, A, ;\,V,b is one of the
symbols € and ¢, and ¢ is one of the sets Ra(n), Li(n), R(n), L(n) defined ab;ve.

Not ail of these functions are non-trivial. As we have aiready seen the triplet (A, €,Ry)
defined the function S;{n} = S(n), but the thriplet (A, €, Ls) defines the function Sy(n) .=
A{m/m! <4 n}, wich is identically one.

Many of the functions obtained by this method are step functions. For instance let S .be
the function defined by (A, €,R). We have S3(n) = A{m/n < m!} so S3(n) = m if only if
n € {{m — 1)1+ 1,m!]. Let us focus the attention on the function defined by (A, €, L4)

54(4) = \/{m/m! <4} (19)
where there is, in a certain sense, the dual of Smumd@e function.
Proposition 4.1. The function S, satisfies
Salny Y nz) = Su(na) V/ Se(n2) {20)

so is a morphism from (N‘,\d/) to (N=,V)

120

e



Proof. Let us denote by p;, ps, ..., Pi; ... the sequence of the prime numbers and let

=I5, na = [] .

The ny Any = [JpP0®) Se(niVn2) = m, Ss(n;) = my, for i = 1,2 and we suppose
m; <y t}:en the right hand in (22) is 7:11 Amz = m. By the definition S; we have E, (m) <
min{ey, 5;) for i > 1 and there exists j so that Ep{m + 1) > min(e;, 5;). Then oy > E,.(m)
and 3; > E, (m) for all i > 1. We also wave Epi(m,) < o for 7 = 1,2. In addition there exist
h and k so that E,, (m+1) > ap ep(m+1) > a;.

Then min(es, 5;) > min(e,, (my), gy (ms)) = Ep{m,), because m; < my,som—1<m. If
we assume my < it results that m! < n;, so it exists A that E,.(m) > o, and we have the

contradiction E;,(m) > min{ay, 8} Of course S¢{2n + 1).= 1 and
S4(n) > 1 if and only if  is even. (21)
Proposition 4.2. Let p;,p;,...,p;,... be the sequence of all consecutive primes and
n=p 'pf"--~-pi‘ @by g

the decomposition of n € N* inie primes such that the first part of the decompesition contains

the (eventualy) consecutive primes, and let

. { S(E) ~ 14 En(S()) >
SGE) +pi =1 i En(SG) = o

then Su(n) = min{t;, ts,. .., ¢k, prys — 1}.

(22)

Proof. If E,,(S(p¥}} > a, then from the definition of the function S results that S(pf)-1
is the greatest positive integer m much than Ep(m) < . Abso if E,,(S(p¥)) = o then
S(p¥) + p; — 1 is the greatest integer m with the property that E,.(m) = a;. .

It results that min{t;, 23, ..., ¢, prss — 1} is the greatest integer m much that Epi(m!) < a,
fori=1,2,... k.

Proposition 4.3. The function S, satisfies

Ss((r1 + r2)) A Sellma, na) = Sa(ni) A Sefn2)

for all positive integers ny and n,.
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Proof. The equality results using (22) from the fact that (ry + n, {n1,n2]) = (n1,n2)).
We point out now some morphism properties of the functions defined bu a triplet (a,b,¢)

as above.
d
Proposition 4.4. (i) The functions S5 : N* = N*, S5(n) =V {m/m! <4 n} satisfies

Ss(n1 4\ nz) = Ss(n1) /d\ S5(na2) = Ss(n1) /\ Ssina) (23)

(i3] The function Se : N* — N*, Se(n) =V {m/n <; m!} satisfies
ot/ 72) = Se(m) V/ Se(na) (29

(ii6) The function S» : N* = N, Sy(n) =V {m/m! < n} satisfies
Sa(ns A na) = Srim) A\ Se(nas Se(ns \ mz) = Selm) V/ Se(na). (25)

PI‘OOf. (l) Let A = {a,/a,-! Sd nl},B = {b]/b]l Sg n;} and C = {ck/ck! Sd nl\[ng}.
L

a; < a;p;and b; < biui. Then if a5 < b, it resulis that a; < b, for 1 = 1,k so a;! <z b,! <4 mo.

That minds A C B. Analogously, if b, < ay it results B C A. Of course we have C = AUB

so if A C B it results
é

Ss{n /;\ n2) =\d/ e =\ a; = Sg(m1) = min{Ss(n1), Ss(n2)} = Ss(m1) /4\ S5(n2)

From (25) it results that Ss is order preserving in L4 (but not in £, becuase m! < m!+1
but Ss(m!) = [1,2,...,m] and Ss(m!+ 1) =1, because m! +1 is odd).

(i) Let us observe that Se{n) =\d/ {m/3i € T,T so that E, (m) < a:}. a =V{m/n <aml}
then n <g (a+ 1)t and a +1 = A{m/n <am!} = 5(n), so Se(n) = [1,2,... ,S5(n) — 11

Then we have Sg(n1 \7 ny) = {1,2,...,8(n €/ ng) — 1} =[1,,2....S(n1) V S{nz) — 1} and
Selm) ¥ So(ma) = 1,2, ..., Se(mr) — 11, (1,2, ., Selma) = L] = [1,2,. .-, So{m) V Sa(na) — 1}

(iii) The relations (27) result from the fact that Sr{n) = [1,2,...,m] if and only if n €
Iml, (m+ 1) -1}

Now we may extend the Smarandache function to the rational numbers. Every positive

rational number a possesses a unique prime decomposition of the form
a=]]r" (26)
P
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with integer exponents @, of which only finitely many are nonzero. Multiplication of
rational numbers is reduced to addition of their integer exponent systems. As a consequence
of this reduction questions concerning divisibility of rational numbers are reduced to questions
concerning ordering of the corresponding exponent systems. That is if b = H P5 then b divides
a if and only if §, < a, for all p. The greatest common divisors d a.nd the least common

multiple e are given by
= (@b,..) = [[ /o), ¢ = [a,b,.. ] = [[ plomis @7)
P P

Futhermore, the least coomon multiple of nonzero numbers (multiplicatively bounded above)

is reduced by the rule

. 1
[a,b,...]—“—(#%’.“) (28)

to the greatest common divisor of their reciprocals (multiplicatively bounded below).
Of course we may write every positive rational a under the form a = n/n;, with n and n;

positive integers.
Definition 4.5. The eztencion S : Q% — Q3 of the Smarandache function is defined by

s(m) = sS:((:l)) | @9)

A consequence of this definition is that if ny and n, are positive integers then

s (ni\d/ni) s(Zvs(z)- (30)

141 1 1 1 1 1
] (n—x v :l;) =7 (nl {i\nz) T Si(m /4\"2) " Su(n)ASalnz) ~ Si(ny) v Sina)

=s(;)vs(3)

and we can imediately deduce that

s (—"— v mﬁ) =SV (s(=) Vs ) (31)

ny
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It results that function 5 defined by S(a) = 11 satisfies
5(=)
a

S(n, é\nz) = S’(nl)/\g(nz) and

(1A2)=s(D)As()

172 N2 \7y

for every positive integers ny and ny. Moreover, it results that

~ { Ny ng ~ =~ <~ (1 =/ 1\
(mz /d\m2> ( \”1)/\ (n2)) my A ™ )
and of course the restriction of § to the positive integers is Sy. The extention of § to all the

rationals is given by S{—a) = S(a).

5. Numerical functions inspired from the definition

of the Smarandache function

We shali use now the equality (21) and the relation (18) to consider numerical functions as
the Smarandache function.

We may say that m! is the product of all positive “smaller” than m in the lattice L.
Analogously the product pr, of ali the divisors of m is the product of all the elements "smaller”

than m in the lattice £. So we may consider functions of the form

8(n) = A{mln 24 p(m)}. (33)

It is said that if m = p?* - pI? -

V'm @ where T(m) = (23 + 1)(z3 + 1)...(z: + 1) is the number of all the divisors of m.

.- p°* then the product of all the divisors of m is p(m) =

If n is giver. as in (1) then n >4 p(m) id and only if

g =a(zy +1){z2+ 1) (2 + 1) =21 20
g2 =22{z1 + D{z2+1) .. (2e+1) — 20, >0 (34)
g=z:i(y + 1){zz+1) .. {2 +1) =20, 2 0

so ©(n) may be obtained solving the problem of non linear programming
(min)f =pi* - pg* - P (35)
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under the restrictions (37).

The solutions of this problem may be obtained applying the algorithm SUMT (Sequendial
Unconstrained Minimization Techniques) due to Fiacco and Mc Cormick 7.

Examples .

1. For n = 3%. 512, (37) and (38) become (min)f(z) = 3*:5% with zi(z +1)(z2 +1 > 8),
z2{z1+1){z2+1) > 24. Considering the function U(z,n) = f(z)- rzkjl In ¢1(z), and the system

oUfoz, =0, oUfoz, =0 (36)

in [7] it is showed that if the solution zy(r), z2{r) can’t be explained from the system we
can make r — 0. Then the system becomes z,(z; + ez +1) =8, za(31 + 1) (a2 + 1) = 24
with the (real) solution z; = 1,1z, = 3.

So we have min{m/3*-5'% < p(m)} = mo = 3 - 5°.

Indeed p(mo) = m; ™M = mi = 34. 512 =

2. For n = 32567, from the system (39) it results for z, the equation 2234922 +72,—98 = 0,
with th real solution z; € (2,3). It results z; € (4/6,5/7). Cousidering z; = 1, we observe
that for z; = 2 the pair (z1,22) is not an admissible solution of the problem, but z, = 3 give
8(3-57) = 31. 512,

3. Generaly for n = p2' - p3°, from the system {39) it results the equation
3 Va2 2 _
Ty +{on +ag) - 25+ axz, — 202 = 0

with solutions given by Cartan’s formula.

Of course, using "the method of the triplets”, as for the Smarandache function, many other
functions may be associated to ©.

For the function v given by (18) it is also possible to generate a class of function by means
of such triplets.

In the sequel we’ll focus the aitention on the analogous of the Smarandache function an
on his dual in this case. ’
Proposition 5.1. If n has the decomposition into primes given by (1) then

(i) v(n) = maxpf*

(i) v(n, \d/ n2) = v{n1}Vu(ny)
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Proof.

(i) Let maxpf* = pZ+. Then pf* < p&* for all T.%, s0 pi* <a {1,2,...p*}. But (o, 7)Y =1
for i # 7 and then n <4 [1,2,...p5].

Now if for some m < p* we bave n <4 [1,2,. ..,m], it results the contradiction pi* <4
i1,2,...,m}.

(ii) If ny = [1p%, ny =1 p% then my C/ ny = [ p==lorPs) so0

4
i ) = e — s s ).

The function v; = v is defined by means of the triplet (V, €, Riy) where Ry = {m/n <4

i1,2,...,m]}. His dual, in the sense of above section, is the function defined by the triplet
(V, €, Lygy). Let us note v this function

va(n) = \/{ml1,2,... ,m} <an}

That is ve(n) is the greatest natural number with the property that all m < vy(n) divide n.
Let us observe that necessary and sufficient condition to have va(n) > 1is to exist m > 1
so that every prime p < m devides n. From the definition of v it also results that wu{n) =m

if and only if n is divisible by every i < n and not by m + L.
Proposition 5.2. The function v, satisfies

d
va(n \/ na) = ve{ny) /\u4(nz)

d
Proof. Let us note n = ny A na, va(n) = m, ve{n;) = m; for i = 1,2. ¥my=mAm;

than we prove that m = m,. From the definition of v it results
va(ni) = m; ¢ [Vi < m; = n is divisible by ¢ but not by m + 1}

Fm<mthenm+1<m < m so m -+ 1 divides n; and no. That is m + 1 divides n.
If m > m; then my + 1 < n, so m; + 1 divides n. But n divides n,, so my + 1 divides n;.
I 4, = max{iij < i = n divides n} then vy(n) may be obtained solving the integer linear
programming problem o
(max)f = 21 z;lnp

;<o fori=114 (37)
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o
Yozilnpg < Inpyyy.

i=1.
¥ fo is the maximal value of f for above problem, then v4(n) = efo.
For instance 1,(2%-32.5.11) = 6.
Of course, the function v may be extinded to the rational numbers in the same way as
Smarandache function.
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