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 In the paragraphs which follow we will prove a result which replaces the theorem 
of Euler: 
 “If (a,m) = 1 , then aϕ(m ) ≡ 1(mod m)" ,  
for the case when  a  and  m  are not relative prime. 

Introductory concepts.  
One supposes that m > 0 . This assumption will not affect the generalization, because 
Euler’s indicator satisfies the equality:  

( )m mϕ = ϕ(− ) (see [1]), and that the congruencies verify the following property: 
( )( )(mod ) moda b m a b m≡ ⇔ ≡ −  (see [1] pp 12-13).

 In the case of congruence modulo 0, there is the relation of equality.  One denotes 
(a,b)  the greater common factor of the two integers a  and b , and one chooses 
(a,b) > 0 . 

B -  Lemmas, theorem. 
 Lemma 1: Let be a  an integer and  m  a natural number > 0 . There exist d0 , m0  
from  N such that a = a0d0 , m = m0d0  and (a0 , m0 ) = 1 . 

Proof: 
 It is sufficient to choose d0 = (a, m) . In accordance with the definition of the 
greatest common factor (GCF), the quotients of a0 and m0  and of a  and m  by their 
TGFC are relative prime (of [3] pp 25-26). 

Lemma 2: With the notations of lemma 1, if d0 ≠ 1 and if: 
d0 = d0

1d1 , m0 = m1d1 , (d0
1, m1) = 1  and d1 ≠ 1 , then d0 > d1  and m0 > m1 , and if 

d0 = d1 , then after a limited number of steps  i  one has  d0 > di+1 = (di , mi ) . 

Proof: 

(0)
a = a0d0 ; (a0 , m0 ) = 1

m = m0d0 ; d0 ≠ 1

⎧
⎨
⎪

⎩⎪

(1)
d0 = d0

1d1 ; (d0
1, m1) = 1

m0 = m1d1 ; d1 ≠ 1

⎧
⎨
⎪

⎩⎪

From (0) and from (1) it results that  a = a0d0 = a0d0
1d1  therefore d0 = d0

1d1  thus 
d0 > d1  if d0

1 ≠ 1. 

From m0 = m1d1  we deduct that m0 > m1 . 
If d0 = d1  then m0 = m1d0 = k ⋅ d0

z  ( z ∈N* and d0 | k ). 
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Therefore m1 = k ⋅ d0
z−1 ; d2 = (d1, m1) = (d0 , k ⋅ d0

z−1) . After the i = z  step, it 
results di+1 = (d0 ,k) < d0 . 

Lemma 3: For each integer a  and for each natural number  m > 0  one can build 
the following sequence of relations: 

(0)
a = a0d0 ; (a0 , m0 ) = 1

m = m0d0 ; d0 ≠ 1

⎧
⎨
⎪

⎩⎪

(1)
d0 = d0

1d1 ; (d0
1, m1) = 1

m0 = m1d1 ; d1 ≠ 1

⎧
⎨
⎪

⎩⎪

……………………………………. 

(s − 1)
ds−2 = ds−2

1 ds−1 ; (ds−2
1 , ms−1) = 1

ms−2 = ms−1ds−1 ; ds−1 ≠ 1

⎧
⎨
⎪

⎩⎪

     (s)
ds−1 = ds−1

1 ds ; (ds−1
1 , ms ) = 1

ms−1 = msds ; ds ≠ 1

⎧
⎨
⎪

⎩⎪

Proof: 
One can build this sequence by applying lemma 1. The sequence is limited, 

according to lemma 2, because after  r1  steps, one has 
10 rd d>  and 

10 rm m> , and 

after  r2   steps,  one has 
1 1 2r r rd d +>  and  

1 1 2r r rm m +> , etc., and the mi  are natural 

numbers. One arrives at  ds = 1  because if  ds ≠ 1  one will construct again a limited 
number of relations  ( 1),..., ( )s s r+ +  with  ds+ r < ds . 

 Theorem:  Let us have ,a m ∈Z and  m ≠ 0 . Then  aϕ(ms ) + s ≡ as (mod m)  where s 
and ms  are the same ones as in the lemmas above. 

Proof: 
 Similar with the method followed previously, one can suppose m > 0  without 
reducing the generality. From the sequence of relations from lemma 3, it results that:  

   (0)  (1)     (2)          (3)    (s)  
a = a0d0 = a0d0

1d1 = a0d0
1d1

1d2 = ... = a0d0
1d1

1...ds−1
1 ds

and 
    (0)    (1)       (2)              (3)    (s) 
m = m0d0 = m1d1 d0 = m2d2d1 d0 = ... = msds ds−1...d1 d0

and  
msds ds−1...d1 d0 = d0d1...ds−1ds ms . 
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From (0) it results that d0 = (a,m) , and of  (i)  that  di = (di−1, mi−1) , for all i  from 
1,2,..., s{ }. 

d0 = d0
1d1

1d2
1.......ds−1

1 ds

1 1 1
1 1 2 1......... s sd d d d d−=

……………………. 
1

1 1s s sd d d− −=

ds = ds

Therefore d0d1 d2 .......ds−1ds = (d0
1 )1(d1

1)2 (d2
1 )3...(ds−1

1 )s (ds
1)s+1 = (d0

1 )1(d1
1)2 (d2

1 )3...(ds−1
1 )s

because  ds = 1 . 
Thus  m = (d0

1 )1(d1
1)2 (d2

1 )3...(ds−1
1 )s ⋅ ms ; 

therefore ms | m ; 
(s)             (s) 

(ds , ms ) = (1, ms ) and 1
1( , ) 1s sd m− =  

 (s-1) 
1 = (ds−2

1 , ms−1) = (ds−2
1 , msds )  therefore 1

2( , ) 1s sd m− =   
(s-2) 

1 1 1
3 2 3 1 1 3 11 ( , ) ( , ) ( , )s s s s s s s s sd m d m d d m d d− − − − − − −= = =  therefore 1

3( , ) 1s sd m− =  
……….. 
(i+1) 

1 = (di
1, mi+1) = (di

1, mi+1di+2 ) = (di
1, mi+ 3di+ 3di+2 ) = ... =

  = (di
1, msdsds−1...di+2 )   thus (di

1, ms ) = 1 , and this is for all i  from 0,1,..., s − 2{ }. 
……….. 
   (0) 
1 = (a0 , m0 ) = (a0 ,d1...ds−1dsms )  thus  (a0 , ms ) = 1 . 
From the Euler’s theorem results that: 
(di

1)ϕ(ms ) ≡ 1(mod ms )  for all  i  from 0,1,..., s{ },  

0 1(mod )sm
sa mϕ( ) ≡  

but a0
ϕ(ms ) = a0

ϕ(ms ) (d0
1 )ϕ(ms ) (d1

1)ϕ(ms ) ...(ds−1
1 )ϕ(ms ) 

therefore  
1

1........1(mod )sm
s

s times

a mϕ( ) 

+

≡ �	
  

1(mod )sm
sa mϕ( ) ≡ . 

a0
s (d0

1 )s−1(d1
1)s−2 (d2

1 )s− 3...(ds−2
1 )1 ⋅ a ϕ(ms ) ≡ a0

s (d0
1 )s−1(d1

1)s−2 ...(ds−2
1 )1 ⋅1(mod ms ) . 

Multiplying by: 

(d0
1 )1(d1

1)2 (d2
1 )3...(ds−2

1 )s−1(ds−1
1 )s  we obtain: 

1 1 1 1
0 0 1 2 1( ) ( ) ...( ) ( ) sms s s s s

s sa d d d d a ϕ( ) 
− − ≡

1 1 1 1 1 1 1
0 0 1 2 1 0 1( ) ( ) ...( ) ( ) (mod( ) ...( ) )s s s s s s

s s s sa d d d d d d m− − −≡  
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but  a0
s (d0

1 )s (d1
1)s ...(ds−1

1 )s ⋅ a ϕ(ms ) = a ϕ(ms )+ s  and a0
s (d0

1 )s (d1
1)s ...(ds−1

1 )s = as  therefore 
(mod )sm s sa a mϕ( )+  ≡ , for all a,m  from Z (m 0)≠ . 

Observations:  

If (a,m) = 1  then d = 1 . Thus s = 0 , and according to the theorem one has 
0 0 0 (mod )ma a mϕ( )+  ≡ therefore a ϕ(m0 )+0 ≡ 1(mod m) . 

But m = m0d0 = m0 ⋅1 = m0 . Thus: 
a ϕ(m ) ≡ 1(mod m) , and one obtains Euler’s theorem. 
Let us have a  and m  two integers, m ≠ 0  and 0( , ) 1a m d= ≠ , and 0 0m m d= . If 
(d0 , m0 ) = 1 , then  a ϕ(m0 )+1 ≡ a(mod m) . 
Which, in fact, it results from the theorem with  s = 1  and  m1 = m0 . 
This relation has a similar form to Fermat’s theorem: 
a ϕ( p)+1 ≡ a(mod p) . 

C – AN ALGORITHM TO SOLVE CONGRUENCIES 
 One will construct an algorithm and will show the logic diagram allowing to 
calculate s  and ms  of the theorem. 

Given as input: two integers a  and m ,  0m ≠ . 
It results as output:  s  and ms  such that  
aϕ(ms ) + s ≡ as (mod m) . 

Method:  
(1)  A := a  
M := m   
i := 0  
(2) Calculate d = (A, M )  and  M ' = M / d . 
(3) If d = 1  take S = i  and ms = M '  stop. 
 If d ≠ 1  take  A := d , M = M '
 i := i + 1 , and go to (2). 
Remark: the accuracy of the algorithm results from lemma 3 end from the  theorem. 
See the flow chart on the following page. 
In this flow chart, the SUBROUTINE LCD calculates D = (A, M )  and 
chooses D > 0 . 

 Application: In the resolution of the exercises one uses the theorem and the 
algorithm to calculate s  and ms . 

 Example: 625604 ≡ ?(mod105765)  
One cannot apply Fermat or Euler because (6,105765)=3 ≠ 1 . One thus applies the 
algorithm to calculate s  and  ms  and then the previous theorem:  
d0 = (6,105765) = 3          m0 = 105765 / 3 = 35255  
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i = 0;3 ≠ 1 thus  i = 0 + 1 = 1, d1 = (3,35255) = 1 , m1 = 35255 /1 = 35255 . 
Therefore 6ϕ(35255)+1 ≡ 61(mod105765)  thus 625604 ≡ 64 (mod105765) . 

* 
*          * 

*
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Flow chart: 

  

 

 

 

    
 

     

 

 
  

 
 

 

 START 

READ A1, M1 

      A := A1 

      M := M1 

      I := 0 

SUBROUTINE  
LCD (A,M,D) 

NO

  D=1 

      I := I+1 

      M := M/D 

YES
      S = I 

      MS = M 

WRITE S, MS 

  STOP 

A := D
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