Релятивистская механика в модели 4D-среды

В. Скоробогатов

http://vps137.narod.ru/physics.html vps137@yandex.ru

В модели четырехмерной среды определена функция Лагранжа для вихря, которая имеет тот же вид, что и функция Лагранжа свободной частицы в теории относительности. В дополнении приведена формула для общего выражения силы.

В работе [1] было показано, что вихрь в четырехмерной среде может служить моделью элементарной частицы, причем видимой скорости перемещения частицы по границе среды, т.е. в видимом трехмерном пространстве, соответствует наклон вихря относительно нормали к этой границе:

$$v = c \sin \alpha \tag{1}$$

где c - скорость света.

Это можно трактовать так, как будто вдоль вихря бежит световая волна и проекция скорости этой волны на границу соответствует скорости перемещения вихря. Массе элементарной частицы в такой модели пропорциональна кинетической энергии среды, образующей вихрь, и поэтому пропорциональна длине вихря. Если обозначить массу покоящейся частицы как m_0 , то ввиду наклона масса движущейся частицы возрастет и станет равной

$$m = \frac{m_0}{\cos \alpha} \tag{2}$$

При этом предполагается, что конец вихря, находящийся на достаточно большом расстоянии от поверхности в «недрах» среды, остается неподвижным. Выраженная через скорость с помощью (1) эта масса имеет вид $m_0/\sqrt{1-V^2/c^2}$ и носит название «релятивистской массы», а m_0 — «массы покоя».

Приведенные выше выражения позволяют определить импульс вихря в виде обычного для классической физики произведения массы на скорость mv или

$$p = m_0 c tg \alpha \tag{3}$$

При малых углах импульс кроме классического $m_0 v$ содержит дополнительно член, зависящий от куба скорости $\frac{m_0 v^3}{3\,c^2}$.

Как показано в [1], энергия покоящегося вихря E_0 при соответствующем выборе единиц равна

$$E_0 = m_0 c^2$$
 , (4)

а энергия движущегося вихря определяется как

$$E = mc^2 (5)$$

При малых углах мы имеем $E = m_0 c^2 + m_0 v^2/2 = m_0 c^2 + p^2/2 m_0$, т.е. известное в классической механике выражение.

Используя (2), (3) и (5) также нетрудно получить известное из специальной теории относительности (СТО) выражение для квадрата энергии

$$E^2 = m_0^2 c^4 + p^2 c^2 \quad , \tag{6}$$

которое по сути является следствием теоремы Пифагора при рассмотрении треугольника на рис.1. работы [1]. Исключая с помощью (2) и (5) массу покоя из последнего выражения, имеем выражение импульса через энергию и скорость

$$p = \frac{E \, v}{c^2} \tag{7}$$

что с учетом (5) снова приводит к классическому определению импульса p = mv .

Для изменения импульса во времени необходимо приложить силу, величина которой зависит от того, совпадает или нет ее направление с направлением движения. В первом случае производная импульса по времени определяется с помощью (1) и (3) как

$$\dot{p} = \frac{m_0 c^2 \dot{\alpha}}{\cos^2 \alpha} = \frac{m_0 \dot{v}}{\cos^3 \alpha} \tag{8}$$

Величина $m_0/\cos^3\alpha$ названа Лоренцем «продольной массой».

Во втором случае, если прилагаемая сила перпендикулярна скорости движения, то изменения угла $\,\alpha$ не происходит, поэтому вместо частного случая (3), когда имеется лишь одна компонента импульса, нужно использовать общее выражение

$$p = \frac{m_0 c}{\cos \alpha_4} \begin{pmatrix} \cos \alpha_1 \\ \cos \alpha_2 \\ \cos \alpha_3 \\ \cos \alpha_4 \end{pmatrix} , \tag{9}$$

где $\cos \alpha_i$ — направляющее косинусы четырехмерного вектора $p = \{p_i\}$ (i=1,2,3,4), $\alpha_4 = \alpha$. Четырехмерная скорость в этом случае определится как

$$v = \{c \cos \alpha_i\} \tag{10}$$

По модулю она равна с. Без ущерба общности примем, что скорость вихря по границе среды имеет направление в плоскости образованной осями 1 и 2, а изменение импульса происходит вдоль оси 3. Тогда из определения (9) получится выражение с «поперечной массой» $m_0/\cos\alpha$, величина которой равна релятивистской,

$$\dot{p}_3 = \frac{m_0 \dot{v}_3}{\cos \alpha} \tag{11}$$

Из классической механики известно, что функцию Лагранжа можно представить в виде

$$L = \vec{p} \cdot \vec{V} - E \quad , \tag{12}$$

где стрелки над символами означают трехмерные векторы. Подставляя сюда значения из (4),(9) и (10), мы получим

$$L = -m_0 c^2 \cos \alpha \tag{13}$$

Используя определение скорости (1), это выражение примет тот же вид, что и функция Лагранжа для свободной частицы в специальной теории относительности:

$$L = -m_0 c^2 \sqrt{1 - \frac{V^2}{c^2}} \quad . \tag{14}$$

Таким образом, релятивистская механика может быть изложена на более простом геометрическом языке, не требующем введения понятия интервала, которое используется при выводе выражения (10) в теории относительности.

Конечно, уравнение (9) не является точным, поскольку не учитывает поверхностные эффекты, существующие вблизи выхода вихря на граничную гиперповерхность среды и которые, очевидно, играют важную роль в динамике вихря. Поэтому его надо рассматривать как приближение такого же рода, каким является специальная теория относительности при описании движения материальной точки. Однако, как было показано в предыдущих работах, в отличии от последней здесь нет необходимости использовать время иным способом, чем оно используется в классической физике.

Также следует заметить, что зависимость массы от скорости в виде (2) и импульса в виде (3) позволяет получить выражения для энергии (5),(6) и (7), согласующиеся с теми, которые получаются в СТО. Это говорит о том, что возражения Л.В.Окуня против релятивистской массы [2] несущественны в предлагаемом рассмотрении.

Дополнение.

Не трудно вывести и общее выражение для силы \dot{p} , используя представление импульса в виде, который указан в (9). Мы получим

$$\dot{p}_i = m_0 \left(\frac{\partial_t \cos \alpha_i}{\cos \alpha_4} - \frac{\cos \alpha_i \partial_t \cos \alpha_4}{\cos^2 \alpha_4} \right) = m \left(a_i + \frac{v_i v_k a_k}{c^2 (1 - v^2 / c^2)} \right)$$
 (15)

где $a_i = \dot{v}_i$. Таким образом, мы имеем следующее выражение

$$\dot{\mathbf{p}} = m \left(\mathbf{a} + \frac{\mathbf{v} \cdot \mathbf{a}}{c^2 - \mathbf{v}^2} \mathbf{v} \right) \tag{16}$$

Второе слагаемое исчезнет, если направления скорости и ускорения перпендикулярны друг другу, и тогда мы получим (11). Если эти направления совпадают и направлены в одну и ту же сторону, то после приведения к общему знаменателю мы получим (8). Следовательно, полученное выражение не противоречит выводу для временной производной импульса, указанной в литературе по СТО, например, в «Теории поля» Ландау и Лифшица.

.Понятия продольной и поперечной масс имеют лишь исторической значение, поскольку в общем случае невозможно выделить множитель при ускорении в выражении (16).

Автор выражает благодарность участнику форума на сайте www,sciteclibrary,ru **rustot5**, который помог мне разобраться с выводом последнего выражения.

[1] В.Скоробогатов. О массе в модели 4D-эфира article7.html 2007

[2] П.В. Окунь. Понятие массы. (Масса, энергия, относительность) Успехи физических наук, <u>158</u>, (3), 511-530.