Unified field theory.

Ilija Barukci¢ 1.2
! Internist, Horandstrasse, DE-26441 Jever, Germany
% Email: Barukcic@t-online.de

Submitted to viXra Friday, July 1, 2016. Accepted; Published

Copyright © 2016 by Ilija Barukcic, Jever, Germany.

Abstract

In the Einstein field equations the geometry or the curvature of space-time defined as depended
on the distribution of mass and energy principally resides on the left-hand side is set identical to a
nongeometrical tensorial representation of matter on the right-hand side. In one or another form,
general relativity accords a direct geometrical significance only to the gravitational field while the
other physical fields are not of spacetime, they reside only in spacetime. Less well known, though
of comparable importance is Einstein's dissatisfaction with the fundamental asymmetry between
gravitational and non-gravitational fields and his contributions to develop a completely relativ-
istic geometrical field theory of all fundamental interactions, a unified field theory. Of special note
in this context and equally significant is Einstein’s demand to replace the symmetrical tensor field
by a non-symmetrical one and to drop the condition gix = g for the field components. Historically,
many other attempts were made too, to extend the general theory of relativity's geometrization of
gravitation to non-gravitational interactions, in particular, to electromagnetism. Still, progress has
been very slow. It is the purpose of this publication to provide a unified field theory in which the
gravitational field, the electromagnetic field and other fields are only different components or
manifestations of the same unified field by mathematizing the relationship between cause and ef-
fect under conditions of general theory of relativity.
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1. Introduction

The historical development of physics as such shbasformerly unrelated and separated parts o$ipkycan

be fused into one single conceptual formalism. MalKestheory unified the magnetic field and theottizal
field once treated as fundamentally different. Eirss special relativity theory provided a unifican of the
laws of Newton’s mechanics and the laws of elecagmetism1]. Thus far, the electromagnetic and weak nu-
clear forces have been unified together as anrelgetk force. The unification with the strong ifmtetion
(chromodynamics) enabled the standard model of exfany particle physics. Meanwhile, the unificatioh
gravitation with the other fundamental forces ofuna is in the focus of much present research tilnst in
sight, a unification of all four fundamental intetians within one conceptual and formal framewoak not yet
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met with success. Even Einstein himself spent yeatsis life on the unificatiori2] of the electromagnetic
fields with the gravitational fields. In this comtgEinstein’s position concerning the unified figheory is strict
and clear.

“The theory we are looking for must therefore be a gdimation of the theory of the graviten-
al field. The first question is: What is the natigeneralization of the symmetrical tensor fieldhat
generalization of the field is going to provide thest natural theoretical system? The answer thais
the symmetrical tensor field must be replaced bpsymmetrical one. This means that the conditfon
Ok = gq for the field components must be droppe®]*

Figure 1.Einstein and the problem of the unified field theo

Despite of the many and different approaches ajribes worldwide spanning so many of years takedeteel-
op a unified field theory, to describe and to ustimd the nature at the most fundamental (quarneng) pro-
gress has been very slow. Thus far, a unificatfoalldour fundamental interactions within one ceptual and
formal framework has not yet met with success. Bseand very detailed reviews, some of them irhiyhly
and extraordinarysatisfying way3], of the various aspects of the conceptually véfferent approaches of the
unified field theories in the 20th century with aelb technical descriptions of the theories sugegstnd short
biographical notes are far beyond the scope ofatttisle and can be found in literature.

The main focus of this article lies on the conceptievelopment of the geometrization of the elentignetic
field, by also paying attention to the unificatiohthe electromagnetic and gravitational fields #mel unified
field theory as such. While the task to “geometrine electromagnetic field is not an easy one,edhod how
electromagnetic fields and gravitational fields &&njoined intaa new hyper-field4], will be developed, a new
common representation of all four fundamental extéons will be presented. As will be seen, witham to
unified field theories, formerly unrelated partspifysics will be fused into one single conceptuahfalism
while following a deductive-hypothetical approadtie briefly define and describe the basic matherahtib-
jects and tensor calculus rules needed to achieiieation. In this context, the point of departdoe a unified
field theory will be in accordance with generalatelity theory from the beginning. Still, in ordey decrease
the amount of notation needed, we shall restricselues as much as possibletwariantsecond rank tensors.

2. Material and Methods
2.1. Definitions

Definition: The Pythagorean Theorem

The Pythagorean (or Pythagoras') theorem is afefaching and fundamental importance in Euclideaanize

try and in science as such. In physics, the Pytteggo(or Pythagoras'’) theorem serves especialybasis for
the definition of distance between two points. bligally, it is difficult to claim with a great dege of credibil-

ity that Pythagoras (~560 - ~480 B.C.) or somedse fom his School was the first to discover thisorem.
There is some evidence, that the Pythagorean (iiaBgras’) theorem was discovered on a Babylomiblett

[5] circa 1900-1600 B.C. Meanwhile, there are morenth80 published approaches proving this theorem,
probably the most famous of all proofs of the Pgtiraan proposition is the first of Euclid's two @i® (1.47),
generally known as the Bride's Chair. The Pythagoier Pythagoras') theorem states that the syth®freas

of) the two small squares equals (the area ofpip@ne square. In algebraic terms we obtain

a+p==7 @

where c represents the length of the hypotenuseldthgest side within a right angled triangle) andnd b
represents the lengths of the triangle's other dides or legs (or catheti, singular: cathetus, Igrkéthetos).

O,
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Following Euclid (Elements Book I, Proposition 4)right-angled triangles the sum of the squarethersides
containing the right angle equals the square omsitle opposite the right angle.
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Definition: The normalization of the Pythagorean theorem

The normalization of the Pythagorean theorem igddfas

)

I
[ERN

+
ala

I8L=e

where c represents the length of the hypotenuseldtigest side within a right angled triangle) anand b rep-
resents the lengths of the triangle's other twesgldgs.

Definition: The negation due to the Pythagorean theorem

We define the negation of x, denoted as n(x), as

b? a _ X
nx)=s—=1-—== 3
) c? ¢ ¢ (3)
We define the negation of anti x, denoted as &),
2
a v X
nx)=l-nxX)s5=1—5=1== ()
In general, it is c C c
2
a o
n(x)+nQ()E?+§51 )

O,



[lija Baruk¢ic¢

Definition: The determination of the hypotenuse of a right angled triangle
In general, we define

X+X=C (6)

where x and x denotes the segments on the hypaenoka right angled triangle (c is the longedesiithin a
right angled triangle).

Scholium.

Form this follows that(CX X)+(C><l()= ¢ . Due to our definiton above, it i’ =(C>< X) and

b? = (Cxl() . The Pythagorean theorem is valid even if x=1 anrd+oo -1 while ¢ = +o. Under these as-
sumptions, the Pythagorean theorem is of use teepttee validity of the claim that +1 / +0 =c:

Definition: The Euclid's Theorem

According to Euclid's (ca. 360-280 BC) so calledmetric mean theorem oight triangle altitude theorenor
Euclid's theorem, published in Euclid’s Elementsicorollary to proposition 8 in Book VI, used iroposition
14 of Book I1[6] to square a rectangle too, it is

=N’ %

whereA denotes the altitude in a right triangle and x arttknotes the segments on the hypotenuse c ghta ri
angled triangle.

A

: C: i

Scholium.

The variance of a right angled triangle, denoted(a¥, can be defined as

o(x) = xxx _a’xb’ _A®
T@x? oxZ @ ®)

O,
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whereA denotes the altitude in a right triangle and x armknotes the segments on the hypotenuse c gha ri
angled triangle.

Definition: The gradient

The gradient, denoted gsad(a,b) a measure of how steep a slope or a line ifisell by dividing the verti-
cal height a by the horizontal distance b of atragigled triangle. In other words, we obtain

a _ Rise
d(a,pg—=——
grad(a, b b Run ©)

Scholium.
The following picture of a right angled triangle yridustrate the background of a gradient

1>
>

b

whereb denotes the rurg denotes the rise amddenotes the slope length. The gradient has sem@aihings. In
mathematics, the gradient is more or less sometlkag generalization of a derivative of a funatio one di-
mension to a function in several dimensions. Carsidn-dimensional manifold with coordinaigs,x, X. The
gradient of a function K, -x, x) is defined as

_ot

(of), = 10
n aux (10)

Due to our definition above it is equallyxeRx)=a2. In this case c2? is not identical to theexp of the light but
with the hypotenuse, the longest side within atragigled triangle. Equally, it isxA4(x)=b2. In general, it is true
that a2/b? = &&n(x)/ cxn(x) = n(x)/n(x). Theraise can be calculated asb = (n(x)/ n(x)) = ( n(x) / (1-n(x)) Jn
other words, it is a/b=y(x/c) or a/b= ((&x)/ (cxx))*? =((x)/(x))*>.

Einstein’s Special Theory Of Relativity

Definition: The relativistic energy rE (of a system)
In general, it is

r E =g mxc? (11)

wheregrE denotes the total (“relativistic”) energy of as@®m,rm denotes the “relativistic” mass and ¢ denotes

the speed of the light in vacuum.



Ilija Baruk¢ic¢

Scholium.
Einsteindefined the matter/mass - energy equivalaséllows:

“Gibt ein Korper die Energie L in Form von Strah-
lung ab, S0 verkleinert sich seine Masse um L/v2
Die Masse eines Korpers st ein Mafd far dessen

Energienhalt;” [7]

In other words, due to Einstein, energy and mas&quivalent.

“Eines der wichtigsten Resultate  der Relativitatstheorie ist die
Erkenntnis, daf jegliche Energie E eine ihr proportionale
Tragheit (E/c?) besitzt.8]

It was equally correct by Einstein to point outtthratter/mass and energye equivalent.

“Da Masse und Energie nach den Ergebnissen der spezi-
ellen Relativitatstheorie das Gleiche sind und die Energie
formal durch den symmetrischen  Energietensor ) beschrieben
wird, o) besagt dies, daB das G-Geld [gravitational fiel&uthod
durch den Energietensor der evlat bedingt und bestimmt
ist.” [9]

The termrelativistic masgm was coined by Gilbert and TolmarD].

Definition: Einstein’s Mass-Energy Equivalence Relation

The Einsteiniarmatter/mass - energy equivaleri¢é lies at the core of today physics. In general, ugin-

stein’s special theory of relativity it is
V2
oMm=g Mx2 1—; 12)

oE =, mxc2=, rn><03<‘2/ 1——E Bx 2 %— (13)

X C2 2
O_E:LCZ:ZJ_—V_Z (14)
rE  rMxcC c

or equally
or equally

whereqE denotes the “rest” energyom denotes the “rest” mas& denotes the “relativistic” energymn de-
notes the “relativistic” mass, v denotes the retatrelocity between the two observers and c dertbespeed
of light in vacuum.

©
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Definition: Normalized Relativistic Energy-Momentum Relation

The normalized relativistic energy momentum retafic)], a probability theory consistent formulation ofhEi
stein’s energy momentum relation, is determined as

2

7t ot (15)

om
rM

while the “particle-wave-dualism’[10] is determined as

2

m 2 m2x 2% 2 2% 2)( 2 E X C2 E E
0—2+V—EO X VXM X7 o +F<p2 Cootiwtoy (16)
<m*> c2 _nfxcxc2 ckx, mxc2 E _E _E . E

wherewE = (gp X ¢ )denoteghe energy of an electro-magnetic warelzp denotes the “relativistic’ momen-
tum while c is the speed of the light in vacuum.

Definition: The relativistic potential energy

Following Einstein in his path of thoughts, we defihe relativistic potential energye [10] as

2
PEE&EO_EXOEE Zfl—v—XOE 17)
RE RE c
Scholium.

The definition of the relativistic potential energly is supported by Einstein's publication in 190isEein
himself demands that there is something like aiwdéc potential energy.

“Jeglicher Energie E kommt also im Gravitationsfelde eine
Energie der Lage Zu, die bereso grof3 ist, wie die
Energie der Lage einer ‘ponderablen’ Masse von der Grolie
E/c2” [12]

Translated into English:

‘Thus, to each energy E in the gravitational Idfiethere corresponds an energy of positiont tha
equals the potential energy of a ‘ponderable’ nedissagnitude E/c2.’

The relativistic potential energf can be viewed as the energy which is determiyeanbobserver P which is
at rest relative to the relativistic potential emerThe observer which is at rest relative to lativistic poten-
tial energy will measure its own time, the relatfic potential timet.

Definition: The relativistic Kinetic energy (the ‘vis viva’)

The relativistic kinetic energyE is defined 10] in general as

_wEXyW E

e e MXVXCy X, MX VX C_
K=" 2
<E rMXxC

=, PXV=, mxV (18)

wheregm denotes the ‘relativistic mass’ and v denoteg¢faive velocity. In general, it is

O
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rE=Sf HE, E+, E=, H+ H (19)

where ;E denotes the relativistic potential energi, denotes the relativistic kinetic energiy denotes the
Hamiltonian of the relativistic potential energy denotes the Hamiltonian of the relativistic kinetnergy.
Multiplying this equation by the wave functigi’, we obtain relativity consistent form of Schréding equa-
tion as

REx W=, HxRLIJE( PExRLP)+( KElelJ) E( oHx RLIJ)+( HX RllJ) (20)

Scholium.

The historical background dfie relativistic kinetic energyE is backgrounded by the long lasting and very fa-
mous dispute between Leibniz (1646-1716) and NeWi6d2-1726). In fact, the core of this controverss
the dispute about the question, what is presetwaaigh changes. Leibnitz himself claimed, thas vivd [13],

[14] or the relativistic kinetic energyE -rm x v x v was preserved through changes. In cantoakeibnitz,
Newton was of the opinion that the momentymzm x v was preserved through changes. The obsertviehw
is at rest relative to the relativistic kinetic egyewill measure its own time, the relativistic &iic time,t.

Definition: Einstein’s Relativistic Time Dilation Relation

An accurate clock in motion slow down with respadtationary observer (observer at rest). The pripe ot
of a clock moving at constant velocity v is relatech stationary observer's coordinate tighby Einstein’s rel-

ativistic time dilation15] and defined as
V2
Ot :R tx‘z}l_a (21)

wherect denotes the “proper” timgt denotes the “relativistic” (i. e. stationary avordinate) time, v denotes
the relative velocity and ¢ denotes the speedybt in vacuum.

Scholium.

Coordinate systems can be chosen freely, deepepioig circumstances. In many coordinate systemeyant
can be specified by one time coordinate and thpa&a coordinates. The time as specified by thre tcoordi-
nate is denoted as coordinate time. Coordinate knthstinguished from proper time. The conceppafper
time, introduced by Hermann Minkowski in 1908 arehoted ast, incorporates Einstein’s time dilation effect.
In principle, Einstein is defining time exclusivdly every place where a watch, measuring this timcated.

! Definition der Zeit far den Ort,
an welchem sich die Uhr ... befindet...” [15]

In general, a watch is treated as being at reativelto the place, where the same watch is located

“Es werde ferner mittels der im ruhenden System befindlichen
ruhende Uhren die Zeit t [i. g, author] des ruhenden Systems
. bestimmt, ebenso werde die Zeit T [ot, author] des beweg-
ten System, in welchen sich relativ. zu letzterem ruhende
Uhren befinden, bestimmt [15]

Due to Einstein, it is necessary to distinguishiMeein clocks as such which are qualified to marktitie gt
when at rest relatively to the stationary systemar] the timet when at rest relatively to the moving system O.
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“Wir denken uns ferner eine r de Uhren, welche relativ
zum ruhenden System ruhend die Zeit t &k, author], relativ
zum bewegten System ruhend die Zeit T [ot, author] anzugeben
befahigt sind . "[15]

In other words, we have to take into account thuh kzlocks i.e. observers have at least one poinbmmon,
the stationary observer R and the moving observareCat rest, but at rest relative to what? Thiosiary ob-
server R is at rest relative to a stationary caratg system R, the moving observer O is at rdative to a
moving co-ordinate system O. Both co-ordinate systean but must not be at rest relative to eacéroirhe
time gt of the stationary system R is determined by cdowskich are at rest relatively to that stationarstem R.
Similarly, the timegt of the moving system O is determined by clockscitare at rest relatively to that the
moving system O. In last consequence, due to Emsttheory of special relativity, a moving clockt) will
measure a smaller elapsed time between two eveatsa non-moving (inertial) clockt] between the same
two events.

Definition: The Normalized Relativistic Time Dilation Relation

As defined above, due to Einstein’s special reigtivt is

Ot =R tx ‘2!1_5

wherect denotes the “proper” timgt denotes the “relativistic” (i. e. stationary avordinate) time, v denotes
the relative velocity and ¢ denotes the speedybt in vacuum. Equally, it is

t V2
O—t = ‘2/1—5 (23)
R

or
t c? v?
S x—=21-— (24)
cz it c?
or
of g ¥ 2
g 12 c?
The normalized relativistic time dilatiaa defined as
t2 v2
o + —=
(26)
R t2 C2
In general, under conditions of the special thedmelativity, we define
RSE=, E+t (27)
and
0C=, E+ it (28)
and
0C =y E+  t=AE+At (29)
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Scholium.
The following 2x2 table may illustrate the relatships beforeT{ablel).

Table 1The unified field under conditions of the specka@dry of relativity.

Curvature
yes no
Energy / yes 0 E OE =AE R E
momentum . ot OI - At Rt
0 C og R S

The special theory of relativity.

The causal relationship[k6] under conditions of special theory of relativity €i the particle-production appa-
ratus) follows as

k(oC’RE):((RSXOE)_(O(>< RE))

(30)
(\Z/OCX 02 =t t)
Under condition$17] where
REX ot=Hx W (31)
there is a relationship between the causal relstiprk the Schrodinger equation in the form
2
((5%0B)~(s <= B)
_ RV7 0 0 R
Hx W (32)

(€% oCxk(,C.rBx K ,C.g B)

Einstein’s general theory of relativity

Definition: The general Kronecker delta

The general Kronecker deldg,,, named after Leopold Kronecker, is +1 if the Vialég m and n are equal, and
+0 otherwise.

Scholium.

For convenience, the restriction to positive intege common, but not necessary. The general Kianatelta,
running from 1 to 4, denoted &g, can be displayed in matrix form as

1000
s /0100 (33)
™00 10

0001

The anti general Kronecker delta denoted.ass defined a®mn, = 1nn — Omn
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Definition: The Special Kroneker Delta

The special Kronecker delti,j) .., named after Leopold Kronecker, is +1 if and ahiyp=i and if n=j and +0
otherwise.

Scholium.

Example. The special Kronecker deda=1, j=1).,, for m=i=1 and n=j=1, running from 1 to 4, can bspthyed
in matrix form as

5(i=1,j=1) = (34)

o O O B+
o O O O
o O O ©o
o O O O

Theanti specialKronecker delta denoted &6,j) ., and defined a&(i,j) mn = mn — 8(i,j) mn for m=i=1 and n=j=1,
running from 1 to 4, can be displayed as

d(i=1j=1) = (35)

B P RO
e
e
[ e =

The special Kronecker delta is not grounded onetipgality thatm=n but on the fact, the m equal to a certain
value i and that n is equal to another certainevalin other words, it im=i andn=j.

Definition: The Metric Tensor gy

In the following, let us define the following. Let

a®=d,xxd, x+ ..+ d x d, > (36)
and

?=d,xxd, x (37)

In Euclidean coordinates for an n-dimensional sgheeformula for the length ds2 of an infinitesinfiae seg-
ment due to the Pythagorean theorem follows as

c?=dsS=(dxxdX+(d xd x .+ ¢ x ¢ X (38)

C "x

a= d2x
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or

(39)

c=dé=) (43

i=l

In general, a coordinate system can be changedthrerRuclidean X's to some coordinate system ofhéa

40
dmngmxxdry o
and 2
41
d,x=2t%xd,y -
2.y
The Pythagorean theorem is defined as
42
CZEdSZEZZ drnqu1)0<6mnzzz aamxxdrwgnxx dSY(Emn (42)
m n m n ry Sy
While using Einstein’'s summation convention, a. f)@sition dependehimetric tensor g(x), is defined as
43
0(x),, =8 x 220X “
o 0y 0y
anda curved space compatible formulation of the Pytiiagn theorenfollows as
44
¢ =d¥ =28, xS x 08 g yed v o Y, d v d 0
r Sy

Scholium.

The metric tensor generalizése Pythagorean theorem of flat space in a manifalth curvature The metric
tensor can be decomposed in many different waysgl.e= n,, + n,, where g, is the metric tensor of general
relativity, n,, is the tensor of special relativity ang|, is the anti tensor of general relativity. In geaieheory of
relativity, the scalar Newtonian gravitational putel is replaced by the metric tensor. “In paréeuin general
realtivity, the gravitational potential is replackd the metric tensor,g” [18] In last consequence, the gravita-
tional potential is something like a feature of thetric tensor. Following Renn et al, the metricstar is “... the
mathematical representation of the gravitationa¢ptial ...” [19] On this account it is necessary to make a dis-
tinction between a gravitational potential and avgational field. Due to Einstein, “... the intnaction of inde-
pendent gravitational fields is considered judtifeven though no masses generating the field dieede’ [2]
The question is, can a gravitational potential tesin though no masses generating the gravitdgmantial
are defined?

Definition: The normalized metric tensor n(X),v

In the following, we define the normalized metensor p,, while using Einstein’s summation convention, as

n

Xamsxa X (45)

The line element follows in general as

P=dl=5 xamsxanx
™ 0s 0.s

r S

®

(46)

xdxds ) ds d
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Scholium.
The normalized metric tensor is not based on tlaglignt. The metric tensor passes over into the alared
metric tensor and vice versa. We obtain

g(x),,xd yxdsy=n(x) xd s d: (47)
or
_d yxdyy (48)

”(X)uv =mx9(x)uv

Definition: Einstein’s field equations

Einstein field equations (EFE), originally0] published[21] without the extra ‘cosmological’ terixg,, [22]
may be written in the form

R R 4X2X7[Xy
G +Ax = - X + A X = - —x AR = —  ‘x
W Oy = Ry > G 4= R (2 d ELJ X Ox Ox G J o (49)

where G, is the Einsteinian tensor,Jis the stress-energy tensor of matter (still &lfaevoid of any geomet-
rical significance), R, denotes the Ricci tensor (the curvature of sp&aenotes the Ricci scalar (the trace of
the Ricci tensor)/\ denotes the cosmological “constant” ang denotes the metric tensor (a 4x4 matrix) and
whereTtis Archimedes' constanitE 3.14159265358979323846264338327950288419716953938209...),
yis Newton'’s gravitational “constant” and the speétight in vacuum is ¢ = 299 792 458 [m/s] inl Sunits.

Scholium.

The stress-energy tensoy,.Tstill a tensor devoid of any geometrical sigrfice, contains all forms of energy
and momentum which includes all matter presentdfudourse any electromagnetic radiation too. O&lijn
Einstein’s universe was spatially closed and finite1917, Albert Einstein modified his own fieldjuations
and inserted the cosmological constaAnidenoted by the Greek capital letter lambda) hisotheory of general
relativity in order to force his field equationspcedict a stationary universe.

“Ich komme namlich zZu der Meinung, dafid die von
mir bisher vertretenen Feldgleichemg der Gravitation noch ei-
ner kleinen Modifikation bedurfen ...” [22]

By the time, it became clear that the universe sxgmnding instead of being static and Einstein dbaad the
cosmological constanf. “Historically the term containing the ‘cosmologlicconstant’A was introduced into
the field equations in order to enable us to acttheoretically for the existence of a finite medemnsity in a
static universe. It now appears that in the dynahtase this end can be reached without the inttaztuof A“
[23] But lately, Einstein's cosmological constant isivett by scientists to explain a mysterious forcarter-
acting gravity called dark energy. In this conti#xs important to note that Newton’'s gravitatiorfabnstant”
big G is not24], [25] a constant.

Definition: General tensors

Independently of the tensors of the theory of galnelativity, we introduce by definition the folleng covari-
ant second rank tensors of yet unknown structureseitproperties we leave undetermined as well. Vilaade
the following covariant second rank tensors ofwm@tnown structure as

Apv’ pr’ va’ Dpv 'R Upv ’RLJuv ’OV\{N ’prv ’R\/\ﬁv (50)

Tensor can be decomposed (sometimes in many differays). In the following of this publication wefthe

the following relationships. It is



[lija Baruk¢ic¢

Apv + Buv = RUpv (51)
Cuv + Duv = Rgpv (52)
Auv + va = OWuv (53)
Buv + Duv = Ov_vpv (54)
A + B + C + D = qu +Rgpv = Ova +0va = RWuv (55)
Scholium
The following 2x2 table may illustrate the relatships aboveTable 2).
Table ZThe unified fieldgW .
Curvature
yes no
Energy / ‘ g AW BUV R UUV
t
momentum ‘ o Cuv Duv ng
OWuv Owuv RWuv

The unified field.

These tensors above may have different meaningsndém upon circumstances. The unified fighd,,, can be
decomposed into several (sub-) fieldgs,”B,., G Dy In order to achieve unification between geneesdtiv-
ity theory and quantum (field) theory the (subéelds A, B,., C... D,y can denotehe four basic fields of na-
ture. The idea of quantum field theory is to describpagticle as a manifestation of an abstract figtdthis
context the particle;@an be associated with the fielg,Athe particle bcan be associated with the field,Bthe
particle ¢ can be associated with the field,Cthe particle dcan be associated with the fielg,DThus far, we
can define something like A= a x (A, and B, = b x (B, and G,= G x C,, and Q,,= d x ¢D,,, where the
subscript: can denote an individual particle field. Under ditions of general relativityinstein field equation
can be rewritten (using the tensors above) as

Ova +/\xguv = R Upv (56)
R _ 2XAXTIXY
here W, =G, =R ——X andxU,, =————xT,, . From an epistemological point
Wi 0" "pv uv Hv q,lv R CXCX CcX C pi gl poi
of view g Uu is the tensor of the cause (in German: Ursache Itljl)ewO v is the tensor of the effect (in

German: Wirkung W). As we will see, from the defion U, + U, = OWW + oW, =W, follows
that Axg,, = U, =W, =W, —gU, =W, - W, -gU

uv 0" "uv v v uv 0" "pv
constant\ cannot{26] be treated as a constant.

w even if Einstein’s cosmological
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Unified field theory
Definition: The tensor of Planck’s constant h

Planck defined in 1901 the constant of proportibypaP 7] as h. As long as Planck’s constant h is a conssant,
tensor form of this constant is not needed. Wendetlie co-variant second rank tensor of Planck'stmigh,,
as

he Ny, hy, N
h = he hy hy, hy (57)
R
hy, h,, h,, h
h, hy, h

h30

Definition: The tensor of Dirac’s constant

We define the co-variant second rank tensor ofsraonstant as

Moy Tigr Tigy Mgy
h — th hll h 12 h 13
R v
. Tpg Ty g g (58)
Scholium.
In general it is known that Ryg Ny Ty Ny
thv = 2\.1v N RTEJV n thv (59)
Definition: The tensor of speed of the light rcy
We define the co-variant second rank tensor ogied of the lighic,, , denoted by small letter c, as
Coo Cor Co2 Cos
Co Cu Cp Gy (60)

wheregf,,, denotes the stress energy tensor of frequencyapdenotes the wave-length tensor.

Scholium.

Following Einstein’s own position, the constancytleé speed of the light ¢ is something relative aathing
absolute. Theoretically, circumstances are possillere the speed of the light not constant. Einshéinself
linked the constancy of the speed of the light a tmnstant gravitational potential.

“Dagegen bin ich der Ansicht, dai das Prinzip der
Konstanz der Lichtgeschwindigkeit sich nur insoweit aufrecht
erhalten lafnt, als man sich auf raum-zeitliche Gebiete von
konstantem Gravitationspotential beschrankt. Hier liegt nach  meiner
Meinung die Grenze der Gultigke des Prinzips der
Konstanz der Lichtgeschwindigkeit dun damit unserer heutigen

Relativitétstheorie.” [8]
Thus far a tensor of the speed of the light iss#f to face this theoretical possibilities.

®
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Definition: The tensor of Newton'’s gravitational ‘constant’ ry,,

We define the co-variant second rank tensor of Naeigtgravitational constagt,, as

Yoo Yor Yoz Yos
Yo Y Yo Y3 (61)

Rypv =
y20 y21 y22 y23
y30 y31 y32 y33
Scholium.
Newton’s gravitational constant is not for sureoastant. Therefore, we prefer to use the sameeirichm of a
tensor.

Definition: The tensor of Archimedes ‘constant’ grTj.

We define the co-variant second rank tensor of i#neldes constamir,, as

Ty T Ty, Tigg

T, T4y T4, Tl (62)
. Thy, TGy T, Ty

Scholium.

Archimedes of Syracuse (ca. 287 BC — ca. o Bﬁgkelf Wese ableato finat ,the circumference of a circle
with diameter 1 commonly approximated as 3.1416999.9% accuracy about 2000 years ago. Archimedes
constantrt is an irrational numbery never settles into a permanent repeating pattieerngecimal representation

of Archimedes constamt never ends.

Ry =

Definition: The tensor of imaginary number i,

We define the co-variant second rank tensor ofrttaginary number,j, as
g g9 14, 1
i = .10 . 1 112 . 13 (63)

Definition: The tensor of space

We define the second ratdnsor of spacef yet unknown structure as

=Sy =W, =U, n(g,ng,) (64)

Under conditions of general relativitit is

RSuv = vauv = Ri\l (65)
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where R, denotes the Ricci tensor, the tensor of the cureadf spaceUnder conditions different form general
relativity, rS,v can be determined in a different way. It is impattto note theU,,, is not identical with L.

Definition: The tensor of energy

Similar to general theory of relativity, it is atgsent appropriate to introduce a correspondingerggn tensor,

a tensor which represents the amounts of rggnenomentum, pressure, stress et cetera in the
space, a tensor which describes the energigfraomentum et cetera distribution (at each @viant
space. The energy tensor expressed mathematigaflysymmetrical tensor of the second rank of ydénomwn
structure is defined as

LE, = H =.U (66)

uv uv uv

Ipso facto, the same tensor is determined by altemaresent but of course any electromagneticatadi too.
Under conditions of general relativitye define

4 N N
= R qu = 2“ R HV R yll\/ n -I-uv (67)
chvnRva RQ{VOR (EIV

To assure compatibility with quantum theory, weimkef

uv

4 N N
iﬂRhﬂLﬁ;J ﬂRth(aj = 2w O Ty O Yo nT, =gE, =gH,=xU, (68)
(1)

Due to this d ion we obtain ot RGw Nr Qv Nr Qv Nr Gy
(2) = 1 X A% 2% WX ) xT = 1“" X 4 n 2“ MR T O R Y nT (69)
: W )
at I\ InRh RCXRCXRCXRC IuVmRhuV R(Elv RGV Rﬁ\/m R&/

The tensor of probability of energy follows as

4 nzp mR Hv Rypv
Rcuv nRle R QN mR (EIV .

P(xEw)=p(rHy)=PrU,)= - (70)

pv

General relativity's geometry of space and timerie but not the only one geometry of space and. tiftape-
cially general relativity’s stress - energy tenagrthe source - term of Einstein's field equatiarsill a field
devoid of any geometrical significance. A geometriensorial representation of the stress enenggoteof en-
ergy is possible as

4 02 nR7t11\)mRyp\1 -
(Rcw RanRquR%”TWJ‘( )Ry =p{e Hy)n Ry =p(aUu) Ry (1)

®
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Definition: The tensor of frequency

In general, we define the covariant second rankaeaf frequencyf,,, as

— 4X2X7TXV xT = 4pv02uvnR7TuvnRypv

= TETRTF = NT (72)
hxcxexexe ™ o hng gNg GNg GN R G,

R " pv v

To assure compatibility with quantum theory, weimkefthe inverse tensaqy,, of the covariant second rank
tensor of frequencyf,, as

— luv =thXCxCxCxi=h_1vnRvachpvnRCan RCuv (73)

T = =
R “pv
wa AX2X Xy Tuv 4uvn ZUVan“Vn RyuvnTw

Per definition it follows that

Hv N Rfuv Eluv (74)

Definition: The tensor o,y

In general, we define the covariant second rankdeyy,, as

O('ouv = 2|1v n R n-uv n Rfuv (75)

Scholium.
The tensor of frequenagf,,, and theyw,, tensor are related. Under circumstances of genelatlvity, there are
conditions where

oW, =2, N, N waz%n(qw—/\xqw) (76)

R pv

Definition: The tensor of matter M,y

The matter tensor expressed mathematically by arstncal tensor of the second rank of yet unknotmcs
ture is defined as

(77)
R Mpv = 1|JV N REpv
chv N R QN
Under conditions of general relativity, we define
4 N n n
My, 571‘” N rE, 571‘” ngH, = iy n— 2w M- T N T nT, (78)
Rcuvaqu RQI\IHRQIV R(&vnRg\z Rﬁ;mR&/nR&;mR&
Scholium.
This definition is based atme equivalence of mass/matter and enehgg to Einstein’s special theory of relativ-
ity.
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“Da Masse und Energie nach den Ergebnissen der ezisp
ellen Relativitatstheorie das Gleiche sind und die Energie
formal durch den symmetrischen Energietensor ) beschrie-
ben wird, o) besagt dies, dafi das G-Geldréavitational
field, authot durch den Energietensor er d Materie bedingt
und bestimmt ist[9]

Definition: The tensor of ordinary energy oE,,

We define the second raténsor of ordinary energyE,, of yet unknown structure as
oEw EA, (79)
Scholium.

Under some well defined circumstancgts,, can denote¢he unity of strong interaction and weak interantio
Under conditions of general relativity, it is

4x2x7xy L 1 ’
E = - =— — = I xT —|| —2—|x|(F.xF°¢-|=xqg xF xF% 80

0w = /B ~ ok cxcxexec M [4xnw ( e vy ) 4 G P (80)
The associated probability tensor can be achiesed a

‘WWXTW_( b ]x((FHCXFf)—[lxgwxFWXF”VD
(REpv_oEuv) gxexexc 4x”uv 4

R R

uv uv

(81)

Definition: The tensor of ‘ordinary’ matter (M,

Thetensor of ordinary mateexpressed mathematically as a covariant secoridafayet unknown structure is
defined as

_ L _ L
OI\/Ipv=—m OE E——nN OHpv (82)
Rcuv N R QN
Definition: The anti tensor of ‘ordinary’ matter (E,

We define the second raakiti tensorE,, of the tensogE,, as

OEp\I = Oﬂpv = pr (83)
Under conditions of general relativity, whef,, is tensor of ordinary energy/matter, the electromesig field
is an anti tensor of ordinary energy/matter. Urmt@rditions of general relativity, the tensor of #ectromag-
netic field is determined by an anti-symmetric setorder tensor known as the electromagnetic fiekdaday)
tensor F. In general, under conditions of geneghtivity, the second rank covariant tensor of ¢électromag-
netic field in the absence of ‘ordinary’ matter,iatis different from the electromagnetic field $¢en F, is de-

fined by
I O (1 y (84)
oEw = oHy =BW =[(4X7r X (FHCXFV )_ nguvx Fa % F*
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where F is the electromagnetic field tensor andsgthe metric tensor.

Scholium.
The associated probability tensor is determined as

[(%Jx((ﬁc xF, ) —(ix g, X Fyy X F D] o

Hy

P(oEn)=p(oH.)=p(B,)

The geometric formulation of the stress-energyden$the electromagnetic field follows as

4x T

Definition: The tensor My

ThetensorgM,is defined as

. oEw _ oHy _ By = Lo Ly x xF ¢ —(Ex xF, x d"]
OMW_RCWORQW_RQWORQN_RgvnRgv _{RE\}OR &}Jﬂ[[‘hvaﬁwj ((Fuc F\; ) 4 guv de F (87)

Definition: The decomposition of the tensor of energy

A portion of the tensor of energy is due to thesterof theelectromagnetic fieldanother portion of the tensor
of energy is due to the tensoraflinary energy Before going on to discuss this topic in moreadetve define
in general

REUVEOELN-'-O—EJVEO|_Lv+0—|_LVEAJ\)+Bp\) (88)

Under conditions of general relativity, we define

E4><2><7[><y>(_|_ .
cxcxexe W (89)

REpv = OEuv +O_Euv = Ol_Lv +O_|_Lv

Scholium.

The stress-energy tensor of the electromagnetid ieequivalent to the portion of the stress-epdsnsor of
energy due to the electromagnetic field. In thiprapch, we are followinyranceanuin his position, that the
energy tensor J can be treated as the sum of two tensors one ishvigidue to the electromagnetic field.

“On peut aussi supposer que le tenseur d’'énergie
Tu soit la somme de xdeu tenseurs dont un
da au champ électromagnétique ..." [28]

In English:

“One can also assume that the energy tengdoelthe sum of two tensors one of which is duehéodlectro-
magnetic field”

Einstein himself demanded something similar.

“Wir unterscheiden im folgenden zwischen ‘Gravitationsfeld’
und ‘Materie’ in dem Sinne, daf alles aulBer
dem Gravitationsfeld als ‘Matérie bezeichnet wird, also
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nicht nur die ‘Materie’ im Ublichen Sinne sondern
auch das elektromagnetische Feld.” [21]

Definition: The tensor of time gty

We define the second ratdnsor of timeof yet unknown structure as

Rtuv = REpv = Rgpv = R%\; R EIV (90)

Scholium.
All but energy is time, there is no third betweemm gy and time. Under conditions of general thexfrselativi-
ty, the associated probability tensor follows as

Ry~ rEy _ rl, (91)
= - - v R v — R
p(Rtuv)_p(R_Euv)_dR_L{w)_ R - R
v n
Definition: The tensor rgy
We define the second ratdnsorgg,, as
) _ Rtpv — REpv — Rguv _ RSJ\) R Epv (92)
Scholium. rR9w = = = =
The tensor RO NrGy RWNMRG RGNrRG® rRENR G
Rgpv (93)

is not identical with the metric tensor of generdtivity, defined as

gw (94)

Still, circumstances may exist, where both tensarsbe treated as being identical.

Definition: The tensor oty

We define the second ratgnsordt,, as

ot =C, =rt, —wl, =,C,— A (95)

Scholium.
Under conditions of general theory of relativityetassociated probability tensor follows as

1 \_(1 v
( ¢ )= ( )= rbw ~ why _ OCW— Auv =+(4xn.jx((':ucx':v )—(4xgwadeFd Jj_/\xguv (96)
p (O TV p qlv - Ru\, - Ruv - Ruv

®
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Definition: The tensor oguv

We define the second raténsoryg,, as

t

— 0 "pv

t,—wt (97)
ng = — R W "pv

Y

2Co N rGy  rGy N rGy

Definition: The tensor wt,,

We define the second ratdnsoryt,, as
(98)

Scholium.
Under conditions of general theory of relativityetassociated probability tensor follows as

Bxguv —[lw’]x[(ﬁm X FVC)—(lxgw xFy x Fd"D
~ ot _ 2 4,nm, 4 (99)
R R

uv v

Definition: The tensor wg,

We define the second ratdnsoryg,, as

= thv = Rtpv - Otpv (100)
ng\) - -
RCuvn RC[JV waﬂ RCEJV
Definition: The wave function tensor gWv
We define the covariant second rank wave funcemsar as
R lPW (101)

Under conditions of general relativitye define
R R 1 R
Y,sl—n -{An =l —-A|ng =¥Wn—n|—=-A|ng =¥n 102
e (2 gwj (nna.) (2 j > W (2 j & vS 0%

Definition: The complex conjugate wave function tensor "W,

We define the covariant second rank complex congugave function tensor of yet unknown structure as

RW (103)

®
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Definition: The decomposition of the tensor of space

A portion of the tensor of space is due to thedews time, another portion of the tensor of spacgetermined
by the tensor of energy. In general, we define

RSy =rEy TRty =rHy * ¥y (104)

The field equation of the unified field thedoylows in general as

RSuv TR tpv = R Euv (105)

wheregS,, denotes the tensor of spagg,, denotes the tensor of energy afjd denotes the tensor of time.

Definition: The normalization of the tensor of space

LetrY,, denote a covariant second rank tensor of preliminaknown structure. In general, we define
RSpv N Rva Elpv (106)

Scholium.

In general, the properties of the tengd¥y,, are unknown. But one property of this tensor isvn and this
property assures the normalisation of the tens@pate agS,, n /Y, = 1. Under conditions of the gen-
eral theory of relativity, it is true that aS,, = R,, and we do obtain Rn grY,, =1

Definition: The probability tensor
Let

p( X ) (107)

R Mpv

denote a covariant second rank probability tensgebunknown structure as associated with a tegpsgy. The
probability tensor p¥,,,) of yet unknown structure as associated with thgeafunction tensag¥,,, is defined
as

p( - pr) (108)

Definition: General covariant form of Born’s rule
Under the assumption of the validity Bbrn’s rule even under conditions of accelerataahfes of referenge
we define

p( ¥ )E RunV n R*unv = Rquv N RYpV (109)

R v

where pgW,,) denotes the probability tensor as associatedvith.the wave function tensatV,, and R*le is
the covariant second rank complex conjugate wawetion tensor anch denotes theommutativemultiplica-
tion of tensors.

Definition: The probability tensor II

In general, we define

P(rW, )= cW, 0 oY (110)
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where pgW,,) denotes the probability tensor as associatedavith.the wave function tensek’,,, andrY,, de-
note a covariant second rank tensor of preliminaMynown structure and denotes theommutativemultipli-
cation of tensors.

Scholium.

The properties of the tensgY ,, , as mentioned already before, are still unkndstitl, another second property
of this tensor is the special relationship with W@ve function tensag¥,,,. The interaction of the tensqy
with the wave function tensqﬂ%\, yields the probability tensor g¢,,) as associated with the wave function
tensorrW,,.. In general itis pWu) =rWw N RY .

Definition: The tensor Uy,

In general, we define the tensog,bf yet unknown structure as

s s e e ke )
U R R R R nRL'Juv
ST PSS LS i S M Eery (111)

Definition: The decomposition of the tensor Uy,

In general, we decompose the tensgy &$

UvaUpv_RMpv+Mp ERMW +MvaFJ\/|pv+ngv (112)
Scholium.

By this definition we are following Einstein in hitaim that something is determined by matter dredgravita-
tional field. In other wordghere is no third between matter and gravitatiofi@ld, i. e. all but matter is gravita-
tional field. To proceed further, in following Eileén, we make a strict distinction between mattet gravita-
tional field too.

“Wir unterscheiden im folgenden zwischen ‘Gravitationsfeld’
und ‘Materie’ in dem Sinne, daf alles auler
dem Gravitationsfeld als ‘Materie’ bezeichnet wird, also nicht
nur die ‘Materie’ im Ublieh Sinne, sondern auch
das elektromagnetische Feld1]

The tensorU,,, is not identical with the tensor,lJ In terms of set theory, we do obtain the follogvipicture
(Table 3).

Table 3The relationship between matter and gravitatidiead.

RM MV Rguv
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Definition: The tensor of curvature (Cyy

In general, we define the tensor of curvaturgGas of yet unknown structure as

_ _ R
oCw =G, =A,+C, =R, _Ex 9w (113)

where G, is the Einsteinian tensor, Ris the Ricci tensor, R is the Ricci scalar apgdig the metric tensor of
general relativity. Under conditions of the theofygeneral relativity it i$Cyy = G,y

Scholium.
Under conditions of general theory of relativityetassociated probability tensor follows as

=
p( Gh ) - Apv +CHV - uv 2 v 114
Y R R

uv '\

P(oC)

Definition: The tensor of anti-curvature oCyv

In general, we define the tensor of anti-curvaasgC,,, of yet unknown structure as

ngv ER %v o QN (115)

wheregS,, is the tensor of spacgg,, is the tensor of curvature. Under conditions aiggal relativity, the ten-
sor of anti-curvature is equivalent with

= = = R _R (116)
oCw=By+Dy, =R, -G, =R, _( Ry _Ex ij=3x D

where G, is the Einsteinian tensor, Ris the Ricci tensor, R is the Ricci scalar apgdig the metric tensor of
general relativity.

Scholium.
Under conditions of general theory of relativityetassociated probability tensor follows as

_ _R R
B, +D, R,-G, (RW zxq”j_zxgw

p(,Cu) = w W= = (117)
Ruv Ruv Ruv RIV
2.3. Tensor calculus.
Definition: The tensor of the unified field 1,
In general, we definthe tensor of the unified fieldl,, , as
1uv (118)

Scholium.
Every component ahe tensor of the unified field equal to +1. The tensor of the unified fieldfsorder two,

®
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its components can be displayed in 4 x 4 matrirnfas

+1 +1 +1 +1
= +1 +1 +1 +1 (119)
W= 1 w1 1
+1 +1 +1 +1
Definition: The zero tensor 0,,
In general, we define the zero tenspy &k
0 (120)

Scholium.

uv

Every component of a zero tensor is equal to +@ Zéro tensor is of order two, its components carmlib-

played in 4 x 4 matrix form too as

+Ouv +0

Definition: The tensor of the number 2,

+0
+0
+0
+0

+0
+0
+0
+0

In general, we define tensor of any number, i.e.rthmber g, as

Scholium.

2

uv

+0
+0 (121)
+0
+0
(122)

Every component of a tensor of the number +2 isktu+2. The tensor of the number +2 can be dygglan 4

x 4 matrix form as

+2

v +2

Definition: The tensor of infinity coyy

In general, we define the tensor of infinity,, as

Scholium.

+2
+2
+2
+2

00

uv

+2
+2
+2
+2

+2
+2 (123)
+2
+2
(124)

Every component of the tensor of infinity is eqt@boo. The tensor of infinity is of order two, its compmts

can be displayed in 4 x 4 matrix form as

+00

+00

+oo
H +00

+00

+00

+00

+00

+00

+00

+00

+00

+00

+00
+oo (125)
+00

+00
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Definition: The symmetrical part of a tensor S( oX,v)

Let oX,, denote a second-tensor rank. The symmetric partefisogX,, is defined as

1 (126)
S(O va) _Ex(oxpv +0Xvu)
and denoted using the capital letter S and theotdtself within the parentheses.
Definition: The anti- symmetrical part of a tensor S( oXuv)
Let oX,, denote a second-tensor rank. The anti-symmetricopa tensogX,,, is defined as
1 (127)
§(O va) _Ex(oxpv _Oxvu)
and denoted using the capital letter S undersautdtee tensor itself within the parentheses.
Scholium.
In general, the tensgK, can be written as a sum of symmetric and antisytmcrgarts as
1 1 (128)
Ova _S(Oxpv) +§(0va ) _EX( Oxpv +0xv u) +EX( C?(pv - (?( Y y)
Definition: Tensor ¢X,v and anti tensor oX,v
In general, let
rRCuw = o X X, +ot (X, (129)
We definethe anti tensopX,,, of the tensogX,,, as
OXW = Rva - Oxpv = +1X Hv oot prv (130)

Scholium.

There is no third tensor between a tensor andwts anti tensora third is not giventertium non daturAristo-
tle). An anti tensor is denoted by the name oftdresor with underscore. Theoretically, the digtorc be-
tween amanti-symmetrical tensasind ananti tensoris necessary. The simplest nontrivial antisymmeatink-2
tensor, written as a sum of symmetric and antisytrimparts, satisfies the equation

_ _1 1 (131)
Oxuv - _Oxvu =§X(()(uv + (?< vu)+_2x( 3( W 3< vu)
In general, the relationship betweenaami symmetrical tensaand aranti tensorfollows as
Ova = _OX VH = Rva - O>_(pv (132)
Only under conditions where, Cuv =0 we obtain
_Oxvp = _O>_(pv (133)

but not in general. In this context it is

®
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1,51, +0, =L, +L, =Q,+ Q (134)

The anti tensorg,,, of the Kronecker deltar Kronecker's delté,,, named after Leopold Kronecker (1823
—1891), follows as

§W =1, - 6W (135)

Definition: The addition of tensors

Tensors independent of any coordinate system orefraf reference as generalizations of scalars (italm no
direction associated with a scalar) which have aeetno indices and other mathematical objects ¢gvecsin-
gle direction), matrices) to an arbitrary numberirafices may be operated on by tensor operatolsy ather
tensors. In general, tensors can be representegpmrcase Latin letters and the notation for adeisssimilar
to that of a matrix even if a tensor may be deteeaiiby an arbitrary number of indices. A distinatlmetween
covariant and contravariant indices is made. A comemt of a second-rank tensor is indicated by tweices.
Thus far, a component of any tensor of any tensok which vanishes in one particular coordinateesys will

vanish in all coordinate systems too. As is knotmm tensors X and X which have the same rank aad#me
covariant and/or contravariant indices can be ad@led sum of two tensors of the same rank is alsmsor of
the same rank. In general, it is

RCW = oxuv + Olw (136)
or

RCuv - OXuv + Oluv (137)
or

RCHV = Oxuv + Oluv (138)

Definition: The difference of tensors

The difference of two tensors of the same ranksis a tensor of the same rank. In general, it is

oXw = RCpw =Xy (139)
or
of XM= CHY = XY (140)
+oX", = gCY, = XY, (142)

Definition: The commutative multiplication of tensors

Let us display the individual components of a caava rank two tensor X in matrix form as

XOO XOl XOZ X03

X = Xlo X 11 X 12 X 13 (142)
. Xag Xy Xy Xy
Xy Xo X, X

31 32

w
w
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Let us display the individual components of a caava rank two tensor ¥ in matrix form as

YOO YOl Y02 Y03

Yy = Yo Yu
Yy Y,
Yy, Y

12 13 (143)

2

< < <
< < <

30 31 32 33

The commutativemultiplication of tensors (i. e. matrices), whiishdifferent from the non-commutative multi-
plication (of matrices), is an operationrafiltiplying the corresponding elements of both aemby each other.
We definethe commutative multiplication of tensansgeneral as

XOOXYOO X leY 01 X OZXY 02 X Oge{ 0.

XioXYo Xy XYy X XY, X (144)
XZOXYZO X leY 21 X 22XY 22 X de{ 2

X3OXY3O X 3le 31 X SZXY 32 X 3§{ 3

XWnYwEYWnXWE

while the signn denoteshe commutative multiplicationf tensors which is equally related to the Hadamar
[29] product. TheHadamard product(also known as the Schur product or the pointwiseduct), due to
Jacques Salomon Hadamard (1865 - 1963), is an toger@ two matrices of the same dimensions whih i
commutative, associative and distributive.

Definition: The tensor raised to power n

Let us introduce the notation of a co-variant ramé tensor X, raised to powen as

"X =X N Xy N n X (145)

n-times

Each individual component of the tensqy, ¥ multiplied by itself n-times.

Definition: The root of the tensor raised to power 1/n

Let us introduce the notation of a co-variant rawmé tensor X, raised to power 1/n as

1/n — 146
xw_Q/anan...nxw (146)
n-times

Each individual component of the tensqy, X6 raised to the power 1/n.

Definition: The commutative division of tensors

Let us once again display the individual componefies co-variant rank two tensgX,,, in matrix form as

Xoo Koo Xz X g3
12 13 (147)

22 23

><N>< X
X X X
X X X

w
ey

X X X

32 33
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The commutative division of tensors is defined ly division of the corresponding elements of betisors by
each other and displayed in matrix form as

Xoo! Yoo Xod Y o1 X Y 2 X §Y

Y = xlO/YlO X 11/Y 11 X 1£Y 12 X (3Y 1 (148)
e Xool Yoo Xod Y oy X AY 5, X LY
Xaol Yoo Xaf Y50 X Y 5 X LY

X

while the sign : denotdbe commutative division of tensofhe commutative division of tensors is displagsd

Xoo/Yoo X 01/Y o X oéY 02 X 63Y 0
X Y = xlO/YlO X 11/Y 11 X 1£Y 12 X (3Y 1 :X pv (149)
e xzo/Yzo X 21/Y n X 2£Y 2 X £3Y 2 Yuv

Xl Yao Xaf Y X Y 5 X LY

too.

Definition: The expectation value of a second rank tensor

Let E(X,,) denote the expectation value of the covarianbiseécank tensor X. Let p(X,,) denote the probabil-
ity tensor of the second rank tensqg,Xn general, we define

£(X,) 2p(X, )1 X, aso

while the sigm denotes theommutativemultiplication of tensors.

Definition: The expectation value of a second rank tensor raised to power 2

Let E(ZXuv) denote the expectation value of the covarianbsg¢aank tensor X raised to the power 2. Let
p(X,y) denote the probability tensor of the second tenlkor X,,. In general, we define

2 - = 2
E( XW)=D(XW)OXWOXW =p(XW)n xuv (151)
while the sigm denotes theommutativemultiplication of tensors.

Definition: The variance of a second rank tensor

Let o(X,)? denote the variance of the covariant second t@amor X,,. Let E(X,,) denote the expectation value
of the covariant second rank tensqr,.X et Efxw) denote the expectation value of the covarianbisgécank
tensor X, raised to the power 2. Let p(X denote the probability tensor of the second itamsor X.,. In gen-
eral, we define

0(X,) =E(*X, )~ (E(Xw) nE(X,)) (152)
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which can be written as

(X, ) =p(X) 1 X NX,, —((p (X)X ) 0 (o (X ) X “)) (153)

or as
o(X,) =p(X,) 0 X, N X, (X 0X 0 (X ) 0 (X)) (154)

or as
6(X,) =X X, 0 [p (X0)-P (X ) 0P (X)) (155)

or as
(X, ) =X, 01X, 0 (p (X)L —p(XW))) (156)

while the sigm denotes theommutativanultiplication of tensors and,lis the tensor of the unified field.

Definition: The standard deviation of a second rank tensor

Let o(X,,) denote the standard deviation of the covariacbisé rank tensor . Let E(X,,) denote the expecta-
tion value of the covariant second rank tensgy. Xet E(ZXHV) denote the expectation value of the covariant
second rank tensorXraised to the power 2. Let p(X denote the probability tensor of the second remisor
Xuv In general, we define

| | o(X,) =FE(*X,) - (E(X) nE(X,)) (157)
6(X,0) =X, 1 3P (X) P (X,0) 0P (X)) (158)
(X, ) =X, 0 g/(p (X,)n (1uv —p(XW))) (159)

while the sigm denotes theommutativemultiplication of tensors and,lis the tensor of the unified field . The
covariant second rank tensoyXollows as

o(X,) (160)

(%) (30 -p(%,)

X =

v

Definition: The co-variance of two second rank tensors

Let o(X, , Y.,) denote the co-variance of the two covariant sda@amk tensors X and Y. Let E(X,.,Y )
denote the expectation value of the two covariaebed rank tensors,Xand Y,,. Let p(X,, ,Y,,) denote the
probability tensor of the two covariant second régrisors X, and Y,,. Let E(X,,) denote the expectation value
of the covariant second rank tensqy.X.et p(X,,) denote the probability tensor of the second ramisor X,,.
Let E(Y,,) denote the expectation value of the covarianbiseécank tensor . Let p(Y,,) denote the probabil-

®
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ity tensor of the second rank tensqy,Yn general, we define

(X, Y, EE(XW,YW)—(E (X,)n E(YW)) (161)

which can be written as

G(Xuv'YHV) Ep(XW,YW) NX W NY _(p (X HV) NX w NY 4 NP “W)) (162)
or as
(X s Y ) ZX,0 0Y 0 (p (X Y)P (X,0) 0P (YW)) (163)

while the sigm denotes theommutativanultiplication. In general it is

(X Y ) (164)

Definition: Einstein’s Weltformel

Let o(rU,v , 0W,.,) denote the co-variance of the two covariant ségank tensorgU,, andoW,,. Let a(gU,,)
denote the standard deviation of the covariantrsgcank tensor of the cause. lofW,,) denote the standard
deviation of the covariant second rank tensor ef éffectoW,,. Let kgU,,, oW,,) denote the mathematical
formula of the causal relationship in a generalac@nt form (i. e. Einstein’s Weltformel). In geagrwe define

) O\r qu 0 Wuv (165)

Scholium.

In this context, the above equation is able tod®ithe gap between classical field theory and gquartheory
since the same enables the existence elementdigigmi. e. with unequal mass but with oppositeutih oth-
erwise equal electric charge.
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2.3. Axioms.

2.3.1. Axiom I. (Lex identitatis. Principium identitatis. The identity law)

The foundation of all what may follow is the followg axiom:
+1=+1. (166)

Scholium.
From the standpoint of tensor calculus, it is

]W = luv (167)

This article does not intend to give a review & thistory of the identity lawpfincipium identitati. In the fol-
lowing it is useful to sketch, more or less chragitally, and by trailing the path to mathematit® history of
attempts of mathematizing the identity law. Theniitg law was used ifPlato's dialogue Theaetetus, in Aristo-
tle's Metaphysics (Book IV, Part 4) and by manyeothuthors too. Especially, Gottfried Wilhelm Leibn

(1646-1716) expressed the law of identityessrything is that what it isChaque chose est ce
qu'elle est Et dans autant d'exemples gu'on voudra A est
A, B est B.” [30]. In The problems of philosopht912) Russell himself is writingbout the

identity law too.

Lex identitatisor the identity law oprincipium identitatiscan be expressed mathematically in the very simple
form as+1 = +1. Consequently, +1 is only itself, simple equalitighnitself, it is only self-related and unrelated
to another, +1 is distinct from any relation to #rew, +1 contains nothing othero local hidden variablebut
only itself, +1. In this way, there does not appeabe any relation to another, any relation totheois re-
moved, any relation to another has vanished. Comselyy +1 is just itself and thus somehow the abseof
any other determination. +1 is in its own self oitbelf and nothing else. In this sense, +1 is fidahonly with
itself, +1 is thus just the 'pure’ +1 . Let us ddaesthis in more detail, +1 is not the transitioto its opposite,
the negative of +1, denoted as -1, is not as napess the +1 itself, +1 is not confronted by itkes, +1 is
without any opposition or contradiction, is not exga another, is not opposed to another, +1 istidanonly
with itself and has passed over into pure equalith itself. But lastly, identity as different fromlifference,
contains within itself the difference itself. Thusjs the same +1 which equally negates itself,ir-the same
respect is in its self-sameness different fromlfitaed thus self-contradictory. It is true, that =1+1, but it is
equally true that -1 = -1. It is the same 1 whighdlated to a +1 and a -1. It is the +1 which eae$ at the same
time the other out of itself, the -1, out of itsedfl is +1 and nothing else, it is not -1, it ig @, it is not ... Es-
pecially +1 is at the same time not -1 , +1 is tfarsdetermined as non being at least as non-beritg own
other. In excluding its own other out of itself, islexcluding itself in its own self. By excludiiity own other,
+1 makes itself into the other of what it excludiesn itself, or +1 makes itself into its own oppesi+1 is thus
simply the transition of itself into its oppositel is therefore determined only in so far as ittaors such a
contradiction within itself. The non-being of itther (-1) is at the end the sublation of its otffdris non-being
is the non-being of itself, a non-being which hasnion-being in its own self and not in anothegheeontains
thus far a reference to its other. Not +1 (i. §.islthe pure other of +1. But at the same time,+#ioonly shows
itself in order to vanish, the other of +1 is not.this context, +1 and not +1 are distinguished anhthe same
time both are related to one and the same 1, eatttat what it is as distinct from its own othelentity is thus
far to some extent at the same time the vanishiraiherness. +1 is itself and its other, +1 hasl@germinate-
ness not in another, but in its own self. +1 isstiar self-referred and the reference to its ofkeonly a
self-reference. On closer examination +1 thereforenly in so far as its Not +1 is, +1 has wititself a rela-
tion to its other. In other words, +1 is in its owelf at the same time different from something als +1 is
something. It is widely accepted that somethindifferent from nothing, thus while +1 = +1 it is thte same
time different from nothing or from non - +1. Frdhis it is evident, that the other side of the iitgn+1 =+1 is
the fact, that +1 cannot at the same time be +1-armd not +1 . In fact, if +1 = +1 then +1 is raitthe same

®
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time not +1 . What emerges from this consideraigotherefore, even if +1=+1 it is a self-contairmgaposition,
+1 is only in so far as +1 contains this contradicwithin it, +1 is inherently self-contradictoryl is thus only
as the other of the other. In so far, +1 includékiwits own self its own non-being, a relationstmmething else
different from its own self. Thus, +1 is at the satime the unity of identity with difference. +1itself and at
the same time its other too, +1 is thus contraglictDifference as such it unites sides which ang; m so far as
they are at the same time not the same. +1 isiardp far as the other of +1, the non +1 is. +thiss far that
what it is only through the other, through the rdn through the non-being of itself. From the idignt1=+1
follows that +1 - 1 = 0. +1 and -1 are negativediated to one another and both are indifferentn® another,
+1 is separated in the same relation. +1 is itmedf its other, it is self-referred, its referengét$ other is thus a
reference to itself, its non-being is thus only amment in it. +1 is in its own self the oppositeitsklf, it has
within itself the relation to its other, it is angdle and self-related negativity. Each of them @egermined
against the other, the other is in and for itsatf aot as the other of another. +1 is in its owlfitbe negativity
of itself. +1 therefore is, only in so far as itsAbeing is and vice versa. Non +1 therefore ity onso far as its
non-being is, both are through the non-being obflker, both as opposites cancel one another indbebina-
tion, itis+1-1=0.

2.3.2. Axiom II. (Lex negationis)

+1=(+00) x(+0). (168)

Scholium.
From the standpoint of tensor calculus, it is

1,50,N Ouv (169)
2.3.3. Axiom III. (Lex contradictionis)
+ 170
H0_ (170)
+0

Scholium.
From the standpoint of tensor calculus, it is

(171)

(+0,)=| T2 | (+0,)=(+1,) 0 (+0,)

v

The law of non-contradiction (LNC) is still one dfet foremost among the principles of science andlgga
fundamental principle of scientific inquiry too. Wout the principle of non-contradiction we coulot the able
to distinguish between something true and sometfzilsg. There are arguably many versions of thecjple of
non-contradiction which can be found in literatufée method ofeductio ad absurduntself is grounded on
the validity of the principle of non-contradictioo be consistent, a claim / a theorem / a pritipos/ a
statement et cetera accepted as correct, cannbtdeslogical contradiction. In general, a claimtheorem / a
proposition / a statement et cetera which leadsdaonclusion that +1 = +0 is refuted.
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3. Results

3.1. Theorem. Einstein’s field equation

Einstein’s field equations can be derived from axio

Claim. (Theorem. Proposition. Statement.)
In general, Einstein’s field equations are deriasd

4x 2X TIX Y
Gpv + (/\ X gpv) = (TX Tpv] (172)

Direct proof.
In general, axiom | is determined as

+1=+1 (173)

Multiplying this equation by the stress-energy tarsf general relativity ((>42><n><y)/(c4))><Tw, itis

4% 2% TIX 4x 2X TIX
+1X(Tyx TuV] =+1x (Tyx 'ILV] (174)

wherey is Newton's gravitational ‘constafii5]|, [26], ¢ is the speed of light in vacuum and sometimes re-
ferred to as ‘Archimedes’ constant’, is the rafi@eircle's circumference to its diameter. Du&tostein’s gen-
eral relativity, the equation before is equivaletth

R 4AX 2% TIX
va _(EX gpv] + (/\ X gpv) = (Ty X Tpv) (175)

R, is the Ricci curvature tensor, R is the scalar durea g, is the metric tensov) is the cosmological con-
stant and T, is the stress—energy tensor. By defining the Eindgensor a&,~ Ry~ (R/2)q,, it is possible to
write the Einstein field equations in a more contzac

4x 2X TIX Y
Gpv + (/\ X gpv) = (TX Tpv] (176)

Quod erat demonstrandum.

3.2. Theorem. The relationship between the complex tensor rY,y and the tensor gS,y

Claim. (Theorem. Proposition. Statement.)
In general, it is

v = ar)
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Direct proof.
In general, axiom | is determined as

+1=+1 (178)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (179)

or
1,=1, (180)

Multiplying this equation byS,,nrY .\, We obtain
RSN RYwN1,= Sun (Y01,

R™wv (181)

Due to our above definition the unknown teng¥y, assures thatS,, n rY . = 1. Consequently, equation
before reduces too

RSpv n Rva = 1pv (182)
A commutativadivision yields
Y = 1”" (183)
R " pv S
R ~uv

Quod erat demonstrandum.

3.3. Theorem. The relationship between the complex conjugate tensor "W,y and the ten-
sor rY,y

Claim. (Theorem. Proposition. Statement.)
In general, it is

RYuv =R W pv (184)
Direct proof.
In general, axiom | is determined as
+1=+1 (185)
Multiplying by the tensor of the unified field,J we obtain
1,n1=1,n1 (186)

or
1,=1, (187)

Multiplying this equation byW,, n REUJ“V, we obtain

RlPuvm R ‘P“lequ ¥ w R W ™A 1uv (188)
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Due to our above definition, it b, n REpr = gWwn RrY . Consequently, the equation before changes too
RLPuvn RYqu rY uv R Lpuv (189)
At the end, after aommutativalivision, we obtain

RYuv =R W pv (190)

Quod erat demonstrandum.

3.4. Theorem. The relationship between the complex conjugate tensor "W, and the Ricci
tensor Ry

Claim. (Theorem. Proposition. Statement.)
In general, it is

R W = llJV (191)
Hv R
Direct proof. Hv
In general, axiom | is determined as
+1=+1 (192)

Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (193)

or
]uv = j_uv (194)

Multiplying this equation byY .., we obtain

RYuv n 1pv = RY nl (195)
or
Rva = RY pv (196)

Due to the theorem before, itd¥ ., :R*Ww. Consequently, substituting this equation into eéheation before
we obtain

*

R W, = /Y (197)

Due to another theorem before, ikM,, = 1,,: rS... Consequently, substituting this equation into ¢iguabe-
fore, we obtain

T 1. (198)
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Under conditions of general relativityis R,,= rS,, where R, denotes the Ricci tensor. In general, under con-
ditions of general relativity, we obtain

=l (199)

Quod erat demonstrandum.

3.5. Theorem. The probability tensor 1, - p(rHu) as associated with the energy tensor
RHpv

Claim. (Theorem. Proposition. Statement.)
The probability 1,- p(rH,.)) as associated with the energy tengdy, is determined as

luv - p( R Hpv) = R Huva* W Hy (200)

Direct proof.
In general, axiom | is determined as

+1=+1 (201)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (202)

or
]w = luv (203)

A commutative multiplication of this equation byettensogS,, leads to

RSuv n ]'pv = ]'pv N R %v (204)
orto

RSuv =5 SUV (205)

Due to our definition above, we obtain

RHuv+ Rwuv: RSuv (206)
A commutative multiplication of the equation befdnethe complex conjugate wave function tenéé#uv ,itis

RHuvﬂ R LIJuv+ R‘-P“Vﬂ R LPHV: RSWn rR W w (207)

Due to the theorem before, itdS,, n R Y w=Lu. Thus far, equation before changes to

FeHwn R Wuv+ R‘Pwn R Wuv=1“\ (208)
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Following Born’s rule, it is p{¥,,,) =rWpy % RLIJ*HV. We obtain
RHpva LIJuv+ Rp( RLIJpv):]‘ (209)

py

At the end, it follows that
1y =P(rWh) = HWn e W, (210)

Quod erat demonstrandum.

3.6. Theorem. The normalization of the relationship between energy and time

Claim. (Theorem. Proposition. Statement.)
The relationship between Energfy,, and timext,, can be normalized as

B, Rl _ H, (211)
RSuv R%xv
Direct proof.
In general, axiom | is determined as
+1=+1 (212)

Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (213)

or
]uv = j_uv (214)

A commutative multiplication of this equation byettensogiS,, leads to

RSuv N ]'pv = luv n R Sw (215)
orto
RSuv = Rsuv (216)

Due to our definition above it i&E,, + rt,y =rSu. The equation before changes to

R Euv + Rtuv - RSuv (217)

A commutativelivision of the equation before by the teng8y, leads to
"B, =l 1, (218)

R Suv R SJV

Quod erat demonstrandum.
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3.7. Theorem. The normalization of the relationship between matter and gravita-
tional field

Claim. (Theorem. Proposition. Statement.)
The relationship between the quantum mechanicalabpeof matter and the wavefunction of the graiotaal
field can be normalized as

Rgpv + RMpv = +1“V (219)
U, U
Direct proof.
In general, axiom | is determined as
+1=+1 (220)

A commutativanultiplication by the tensor of the unified field, leads to

1,n1=1,n1 (221)

or too
]uv = j_uv (222)

A commutative multiplication byM ., leads to

fM,,nl,=:M N1

pv pv Y pv (223)
which is equivalent with
R Muv = RM I\ (224)
and at the end with
RMuv_ RM pvzouv (225)

In our understandingM,,, is a determining part of |J We add {J,, and do obtain

RMuv+qu_ RM uv:U [\ (226)

Due to Einsteirall but matter is gravitational fieldSincerg,, = U,y - M, it follows that

Rguv+ RMuv: qu (227)
A commutativedivision of the equatiobefore by |J, leads to the normalization of matter and gravitslo
field as
M
Rgpv + R pv:_|_1'JV (228)
U, U

Quod erat demonstrandum.
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3.8. Theorem. The gravitational field rgyv

Claim. (Theorem. Proposition. Statement.)
The gravitational fielckg,, is determined as

= Rtuv
Rguv -
. Rcuv N Rva
Direct proof.
In general, axiom | is determined as
+1=+]1

A commutativanultiplication by the tensor of the unified fielg, leads to

]w n1l= :Im, n1
or too

Lv=1y

Due to a theorem before it igH,, : rS.v) + Rt RSi)=1 The equation before changes too

E t
+1“V: RSpv+ R uv

R>~uv RSAV

Due to another theorem before it @A, : Uy) + RO.v: Up)=1.. The equation before changes too

M E t
Rguv+R pbv _ R uv+va

u, U S, &S

1\ pv R™~uv

uv

A commutative multiplication by L} leads to

U U
— v Hv
Rguv+RMuv_ N RE + n Rtuv

R>uv R ~uv

(229)

(230)

(231)

(232)

(233)

(234)

(235)

According to our definition, it i8S,y = (RCuwN rRCGw) NUy. Thus far, it is ((1)/ (RCuwN rRCGw)) = Upv / rSuv. The

equationbefore changes to

R Epv + R tpv

chvn chv Rcuvn chv

Rguv+ RMuv:

Due to our definition of matter ad,,, = rE,., /(rCuv rCw). The equatiomhanges to

— uv
Rgpv+ RMpv_ RM +

pv
R va N g va

The tensor of matteyM,,, drops out, and what is left is the tensor of trevigational fieldzg,, as

(236)

(237)
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Rl (238)

R ™~pv

Rguv =
R™pv

Quod erat demonstrandum.

3.9. Theorem. The normalization of the relationship between the tensor of energy
and the wave function tensor.

Claim. (Theorem. Proposition. Statement.)
The relationship between the Hamiltonian operatal the wavefunction can be normalized as

w o, RV _ 41, (239)

Direct proof.
In general, axiom | is determined as

+1=+1 (240)
A commutativanultiplication by the tensor of the unified fielg, leads to

1,n1=1,n1 (241)

or too

1,=1, (242)

A commutative multiplication of this equation byettensogS,, leads to

RSuv N ]'pv = luv N R Sw (243)
orto
RSW =R Sbv (244)

Due to our definition above it jgH,,, + ¥,y =rS.v. The equation before changes to

RHuv+ Rwuv: RSuv (245)

After a commutative division of the equation befditee normalization of the relationship between ¢hergy
tensorgH,,, and the tensor of the wavefunctigtl,, follows as

RHuv + Rq"pv :+1“V (246)

R Suv R va

Quod erat demonstrandum.
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3.10. Theorem. The relationship between the wave function tensor rW,v and the
tensor of the gravitational field rgyv

Claim. (Theorem. Proposition. Statement.)
In general, the tensor of the gravitational figdgl, is determined as

W
a0, = —R W (247)

. Rcuv N Rva
Direct proof.
In general, axiom | is determined as

+1=+1 (248)
A commutativanultiplication by the tensor of the unified fielg, leads to

1,n1=1,n1 (249)
or too
]uv = 1uv (250)
Due to a theorem before it igM ., : rRSw) + G¥uv: RSWW)=1- The equation before changes too

+1, = RH“V+ Gt (251)
YRS

R>uv RSJV

Due to another theorem before itggy(: U,,) + My @ Uw) =1, The equation before changes too

r9uv + RMuv — rH o rRY v (252)

u, U S, &S

[\ 1\ R™>uv

Multiplying this equation by L, it is

U U
_ uv uv 253
Rguv+RMuv_ S N RHuv + N RLIJ pv ( )
R>uv R “v

According to our definition, it IS,y = (rRCuwN rRCuw)N Uy Thus far, it is (1, /(rCuvn rRCw)) = U/ rS.v. The
equation before changes to

H W
RO+ M = —— K (254)

chvn chv Rcuvn Rcuv

Due to our definition of matter a# ., = grH v/ (RGN rCw), €Quatiorbefore changes to

()
- R " pv
Rgpv + RM pv RM uv+ (255)
Rcuv N chv

Subtracting the tensor of mattgvl,, on both sides of the equation before, the tenttheogravitational field
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rOuv follows as

_rPw (256)

Quod erat demonstrandum.

3.11. Theorem. The equivalence of the tensor of time rt,, and the tensor of the
wave function Wy

Claim. (Theorem. Proposition. Statement.)
Under conditions of the special theory of relagiitom the standpoint of a stationary observer iR it

R tuv =R Y uv (257)
Direct proof.
In general, axiom | is determined as
+1=+1 (258)
A commutativanultiplication by the tensor of the unified fielg, leads to
1,n1=1,n1 (259)

or too
1,=1, (260)

A commutative multiplication by the tensor of thegtational fieldgg,., we obtain
Rguv n 1uv = Rguvm ]'uv (261)

Due to a theorem before, itdg,, = rt,v /(RGN rCuw). We obtain

Rtpv

— 262
S (262)
chv N Rcuv
According to another theorem, itdg,, = rW,.v/ (rCuvN rCw). RE@rranging equation, we obtain
R tuv — RLIJ v (263)
Rcuv N RCuv Rcuvm Rva
Rearranging equatioyields
Rtpv :R l'IJuv (264)

Quod erat demonstrandum.
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3.12. Theorem. The generally covariant form of Schrodinger’s equation

Let us suppose that the classical Einstein equéiidas at the fundamental level too. Under thessunistanc-
es, the Einstein's field equations can be rewrigbglicitly as a wave equation. In order to geoimetthe matter
field in general, it is useful to bring Schrédingegquantum mechanical “wave equation” into a gelhervar-
iant form.

Claim. (Theorem. Proposition. Statement.)
In general, the generally covariant form of Schngyéir’'s equation is determined by the equation

. 0 _
Ly N R7 N (aj negW, =H 0 ¥, (265)
uv

Direct proof.
In general, axiom | is determined as

+1=+1 (266)
A commutativanultiplication by the tensor of the unified field, leads to

1,n1=1,n1 (267)

or too

]_“V = ]'uv (268)

A commutativanultiplication bygH,, n g¥,, yields

RHuvn RLIJpv = RH N Rl'lJ

b m (269)

: d
Due to our definition itis Hle =l n N/ w (— . Substituting this equation into the equabefiore,

uv
we obtain the generally covariant form of Schrédirg equation as

. 0
Ly N thv“ (EJW N RLIJUV

Quod erat demonstrandum.

Hy N W (270)

W v

Scholium.

A methodological important point in the processha establishment of field equations for the undifiield the-
ory is the relationship between quantum theory @tassical) field theory. The basic assumptionsgjdntum
mechanics (QM) and general relativity (GR) contra@iach other. Even general relativity (GR) is neefof
inconsistencies. According to the singularity tleeorof Hawking and Penrose (1970) near singularitiegpure
classical theory of general relativity becomes mptete and inconsistent. Thus far, the attemptquantize
gravity have encountered fundamental difficultiesthis context, with regard to the unified fieltkbry, an ex-
tension of general relativity, this trial to bridgee gap between quantum theory and (classicdl) fleeory
yields the derivation of quantum theory as a consaqge of the unified field theory. A satisfactoryaqgtization
of the gravitational field still remains to be ashéd.
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3.13. Theorem. The quantization of the gravitational field

Claim. (Theorem. Proposition. Statement.)
In general, the quantization of the gravitationeld is determined by the equation

Iuv N thv n (ij n RLIJ v (271)
chvm C at uv Rlen chv

R “uv

RI\/luvm Rgpv =

Direct proof.
In general, axiom | is determined as

+1=+1 (272)
A commutativanultiplication by the tensor of the unified fielg, leads to

1,n1=1,n1 (273)

or too

1,=1, (274)

A commutativanultiplication bygH,, n g¥,, yields

RHuvn RLIJpv = RH uvn Rl'IJ H\ (275)
Due to a theorem before, this equation is equivalétn
=j 0 276
rHy N W S0 gl 0 3 ng¥, (276)
t v

Dividing by the speed of the light squared, we obta

RHpv n RLIJpv - iuvnhpv m(ij n RLIJ pv (277)
chvaCuv chvnRva R(EleR(ElV atpv R%vaﬁ/

Due to our definition of matter it gV, = rH, /(rCuvN rCwy). The equation before changes to

W i 0 W

R " pv — v R"™ pv R" pv

rMy, N = N (_dt n——— (278)
rRCw N rCuy rRGwN r Gy w rR@NRr Gy

Due to a theorem before itdg ., = ¥,/ (rCuvN rCwy). The quantization of the gravitational field foNs as

Iuv n thv n (ij n RLIJ v (279)
chvm C at uv Rlen chv

R “uv

RI\/luvm Rgpv =

Quod erat demonstrandum.
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3.14. Theorem. The tensor of time gty

The tensor of timet,, under conditions of Einstein's general theoryedativity theory is determined by the

equation

Rtpv:(%m ng_(/\ n gpv)

Claim.
In general, axiom | is determined as

+1=+1

A commutativemultiplication by the tensor of the unified fielg, leads to

]w n1l= :Im, n1
or too

Lo =%
A commutativenultiplication of this equation by Einstein's siseenergy tensor leads to
LvneEw=r Eun L,
or to

RE =RE

uv "

which is equivalent with Einstein's field equatias

(Rw-%ﬂ %j*(’\“ 9u) =r B

Rearranging equation, we obtain

Ruv =R Euv+(% n gqu_(/\ n guv)

(280)

(281)

(282)

(283)

(284)

(285)

(286)

(287)

Under conditions of general relativity, the tensbispacesS,, is equivalent with the Ricci tensor,R Thus far

we equateS,,= R, and do obtain

R
suv =g E“V+(E N ng—(/\ N gw)
In general, it iRS,v= rE,v + /iy Rearranging equation before yields

_ R
REuv+R uv_REuv-i_(Em ng—(/\ﬂ guv)

(288)

(289)
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In generalunder conditions of the theory of general theding tensor of timet,,, follows as

(290)
t =(§ " QWJ-(/\ 19,) -

Quod erat demonstrandum.

3.15. Theorem. The equivalence of time and gravitational field

In general, the modification of our understandifigace and time undergone through Einstein'sivigiathe-

ory is indeed a profound one. But even Einsteiglativity theory does not give satisfactory answers lot of
guestions. One of these questions is the probletimeotrue’ tensor of the gravitational field. Th&pose of this
publication is to provide some new and basic funelatal insights by the proof that the gravitatiofield and

time is equivalent even under conditions of theegahtheory of relativity.

Einstein's successful geometrization of the gréeital field in his general theory of relativity & not include
a geometrized theory of the electromagnetic fietal fThe theoretical physicists working in the fieldthe gen-
eral theory of relativity were not able to succ@efinding a convincing geometrical formulation thie gravita-
tional and electromagnetic field. Still, electromatjc fields are not described by Riemannian methtsre se-
rious from the conceptual point of view, in ordefachieve unification, with the development of ciuam theory
any conceptual unification of the gravitational axldctromagnetic field should introduce a posgipilhat the
fields can be quantized. In our striving towardfigation of the foundations of physics a relatiddteld theory
we are looking for should therefore be an extensiotie general theory of relativity and equallyaf no less
importance a generalization of the theory of thavigational field. In the attempt to solve theselgems one
meets at least with another difficulty. Einsteinswelemanding that

“the symmetrical tensor field must be replaced Impa-symmetrical one. This means that the condijps g
for the field components must be dropp€d] “

Evidently, following up these train of thoughts a@ndriew of all these difficulties, the followindy¢ory is based
on a (gravitational) field of more complex natuftill, in our attempt to obtain a deeper knowleddethe
foundations of physics the new and basic concapténaaccordance with general relativity theorynfrthe be-
ginning but with philosophy too. In general, enertine and space are deeply related and interatikaghe
one with its own other and vice versa.

Claim.
The relationship between time and gravitationddlfie determined as

Rtw = (C2x R guv (291)

Proof.
In general, axiom | is determined as

+1=+1 (292)
A commutativemultiplication by the tensor of the unified fielg, leads to
1,n1=1,n1 (293)

or too

]uv = ]11v (294)



Ilija Baruk¢ic¢

A commutativemultiplication of this equation byRE“V + gty yields

REuv+ Rtuv: REuv+ Rtu\ (295)

initi = iti = v =
Due to our definition, S, = g E,+ gt,, itis U = o o N gSW= Mt 9
R ™~pv R™uv
and it follows that
REuv+ Rtuv: Rcuvn Rvan ( RM uv+ Rg u) = Rsp (296)
Rearranging equation, it is as
REuv+ Rtuv: ( Rcuvn Rvan RM u)+( RCu\p Rcu\/m Rg u)/ (297)
4x 2% X
Due to the relationship M, =———*—= R T X Vi nT

pv
Rcuv N RC|.1V (chv n chv) n ( Rcuvn Rvan Rvan Rcu)
it follows that

REuv+ Rtuv: REpv+( Rcuvn Rcuvn Rgp) (298)

The equivalence of time and gravitational fielddals in general as

Rtuv: Rcuvn RCuvn Rgp\ (299)

Quod erat demonstrandum.

3.16. Theorem. The generally covariant form of Planck’s-Einstein relation
Claim.
In general, it is

Rhuv n o(’ouv: Rh uvm Rf i (300)
Direct proof.
In general, axiom | is determined as
+1=+1 (301)
Multiplying by the tensor of the unified field,J we obtain
1,n1=1,n1 (302)

or

]_“V = ]'uv (303)
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Multiplying this equation by the stress-energy tarsf general relativity ((>42><n><y)/(c4))><Tp\,, itis

4x2 4x 2
A(E ()

wherey is Newton's gravitational ‘constant’, ¢ is the egef light in vacuum and , sometimes referred to as
‘Archimedes’ constant’, is the ratio of a circlelscumference to its diameter. Due to Einstein’sagal relativi-
ty, the equation before is equivalent with

R 4x 2% TIX
R, ‘(5" guvj + (’\ % guV) = (Ty X ij (305)

R,y is the Ricci curvature tensor, R is the scalar durea g, is the metric tensov) is the cosmological con-
stant and T, is the stress—energy tensor. By defining the Eindgensor a&,.~ R~ (R/2)q,, it is possible to
write the Einstein field equations in a more contzac

4 X 2X TIX
G, +(/\x guv) (Ty T, J (306)
This equation can be rearranged as

i (Guv +(/\x9uv)) S AN A URTUL PR (307)

I\
thv thv chvm Rcuvm chvm RCuv

Simplifying equation we obtain

4
Rhuvn[ b n(Gw+(/\xguv))J= o2 n[ TR TIR S J (308)

pv
Rhu Rcuvm Rcuvn Rcuvm Rcuv

R pv

Due to our definitions before, the equation casibglified as

4“V N 2“V NN Y,y

h.,n . =h n N nT (309)
pv 0™ v R " pv [\
R hpv Rcuv N Rcuvm chvm Rcuv
and the generally covariant form of Planck’s-Eiirstelation follows as
h,n,w.,=h n.f
pv 0™ v Hv R v (310)

Quod erat demonstrandum.

3.17. Theorem. The generally covariant form of de Broglie relationship
Claim.
The generally covariant form of de Broglie's retatship is determined as

(311)

h = _ thv f
R uv_Rpuvm R)\pv_ C N Ruvm F\)\w

R ™~uv
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Direct proof.
In general, axiom | is determined as

+1=+1 (312)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (313)

or

]w = ]'uv (314)

Multiplying this equation byc,,, we obtain

luv N Rcuv = luv N Rcuv (315)
and at the end
chv = Rcuv (316)
Due to our definition, it is
chv = Rfuv n R)\ Hv (317)
This equation can be rearranged as
Juv _ wa (318)
R)\uv chv
Multiplying by gh,., we obtain
— R 'pv _ Rhuvm prv_ Rh uv f (319)
Rppv - A - - N g pv
R pv chv Rcuv

wheregp,, denotes the tensor of the momentum. The genesallgriant form of de Broglie’s relationship fol-
lows as
(320)

h = _ thv f
R uv_Rpuvm R)\pv_ C N Ruvm F\)\w

R ~uv

Quod erat demonstrandum.
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The four basic fields of nature

3.18. Theorem. The tensor of ‘ordinary’ matter (E,,
Claim.
In generalthe tensor of ordinary mattgE,, follows as

— — 4x2xTTXY luv c 1 dv
Auv o Euv=(c4xTuvj_(4xﬂ:]x((Fucx Fv )—(4)(9”\’ X de xF

Direct proof.
In general, axiom | is determined as

+1=+]1
Multiplying by the tensor of the unified field,J we obtain
1,n1=1,n1
or

Lv=1y

Multiplying this equation by the stress-energy tarsf general relativity ((>42><n><y)/(c4))><Tw, itis

+1,n (4x2xnxy Tj 1,0 (4X2><T[><y Tj

C C
or
(4x2>inxy T j (4x 2><4T[xy <T, j
C C

Due our definition this is equivalent with

A, +B,, (—“2’:”’(" T j
C
and at the end

_(4x 2><T[xy
Auv = (TXTHVJ _BHV

Due to our definition it is B=(1/(4x19)x((FucxF,°) — (((1/4)Xgy* Fgy % F™). The equation changes to

_ _(4x2xTmxy 1, c 1 dv
Auv o Euv=(c4xTuvj_(4xﬂ:]x((Fucx Fv )—(4)(9”\’ X de xF

Quod erat demonstrandum.

®

(321)

(322)

(323)

(324)

(325)

(326)

(327)

(328)

(329)
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Scholium.
Under conditions of general theory of relativithetassociated probability tensor, the ‘joint disition’ tensor
between the tensor of energly,, and Einstein’s tensor (3 follows as

4% 2XTIXY 1, oy _(1 av
[a”wj‘[w]x[(wﬁ {rapr j) £, (330)

— 0 v

R R

nv uv

p(Aw) = p(oEuv) = p( R EW,GW) =

The tensor of ordinary mattgM,,, is determined as

A, E. (1 4x 2 1 v y_(1 v
L G e e P S (RS R U0 R

3.19. Theorem. The probability tensor associated with ‘ordinary’ matter (E,
Claim.
In general, of ordinary matter follows as

P(AL)=P(0Ew) = Apn ¥ W= 0B W0 W = E n Fl;” == 532
v uv
Direct proof.
In general, axiom | is determined as
+1=+1 (333)
Multiplying by the tensor of the unified field,J we obtain
1,n1=1,n1 (334)

or
1,=1, (335)

Multiplying this equation by A, it is

ALEAL
(336)
or in general to
Auv E0 Euv
(337)
Multiplying by the tensogrY it is
Auv n RYuv EOE pvn RY Hv (338)

The commutative multiplication with the tensof,,, yields the probability tensor as associated with tensor
AL

P(AL)=ALN YW= E L0 Y (339)

uv §
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Due to our theorem before, itd¥,,, = R*LIJH\, = (1./R.). The equation before simplifies as

(340)

Quod erat demonstrandum.

3.20. Theorem. The stress-energy tensor of the electromagnetic field B,
Claim.
In general, it is

— = 1uv c 1 dv
Buv o Euv = ([4)(77: X (Fuc X Fv )_ Zx guv X de xF (341)
Direct proof.

In general, axiom | is determined as
+1=+1 (342)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (343)

or
]uv = j_uv (344)

Multiplying this equation by B, it is

B

pv Buv
(345)
We defined B,=(1/(4xm)x((FuxF.) — (((1/4) xgux Fgy % F™)) where denotes the stress energy tensor of the

electromagnetic field. In general, we obtain

— — \Y c 1 dv
BuSEu = {U‘)‘(ﬂ]x[(ﬁc xF, )-(4X Oy X Fyy X F ]D (346)

Quod erat demonstrandum.

3.21. Theorem. The probability tensor as associated with the electromagnetic field (E,..
Claim.
In general, it is

(347)
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Direct proof.
In general, axiom | is determined as

+1=+1 (348)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (349)

or
1,=1, (350)

Multiplying this equation by B, it is

[vy]
Il
vy]

pv pv

(351)

— — \Y c 1 dv
B = Ew =[[4]1‘<n]x[(ﬁc xF, )-(4X Oy X Fyy X F jD (352)

where B,=(1/(4x))x((FyexFy%) — (((1/4) Xgux Fgy % F™)) denotes the stress energy tensor of the eleagom
netic field. Multiplying by the tensagY it is

or in general to

Bu N Y =oEp N oY (353)

uv pv Hv

The commutative multiplicationvith the tensogY ., yields the probability tensor as associated with tensor
By

P(B.) =B YW=oEwn oY (354)

Due to our theorem before, itd¥',,, = R*LIJH\, = (1./R.). The equation before simplifies as

. . 1, _oEu
p(B)Ep(OE‘“")E Byn W WSoEun Y W=0Eun RLl = ORH

pv pv

(355)

Quod erat demonstrandum.

Scholium.

Due to Einstein’s theory of gravitation the stresergy tensor of the electromagnetic field is &feevoid of
any geometrical significance. An additional taskloé approach to the unified field theory is thasgibility to
“geometrize” the electromagnetic field. A geomedtitensorial representation of the electro-magrfeid un-
der conditions of the general theory of relativitighin the framework of a “unified field theory” lows as

[(kr]x[(meFf)—[ixgw <F, devmsp(B)m R w=P(oEn)N Ry (356)

®
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3.22. Theorem. The relationship between the gravitational and the electromagnetic field
Claim.
In general, it is

. Cot (/\ X gpv) = B, (357)
Direct proof.

In general, axiom | is determined as
+1=+1 (358)

Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (359)

or

]w = ]'uv (360)

Multiplying this equation by the stress-energy tarsf general relativity ((>42><n><y)/(c4))><Tp\,, itis

4x2 4x 2
A(E (£

Due to Einstein’s general relativity, the equatimiore is equivalent with

R 4x 2% TIX
R, ‘(3" gwj + (’\ % guV) - (Ty X ij (362)

By defining the Einstein tensor &.~ R.v- (R/2)x0,., it is possible to write the Einstein field eqoas in a
more compact as

4 X 2X TIX
G, +(Axg,)= (Ty Tj (363)

According to our definition, under conditions ofngeal relativity it is Auv + Cle =

=
1
o

uv uv

Substituting this relationship into Einstein’s @iedquation, we obtain

4 X 2X TIX
A,+ C, +(/\><gw) (%’ Tj (364)

C4
Substituting this relationship into Einstein’s @iedquation, we obtain

4x 2xnxy
Under conditions of general relativity it is A + B (— T j

Apv + va +(Axgpv) = Apv + pr (365)

We defined B, as the second rank covariant stress-energy terfishe electromagnetic field in the absence of
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‘ordinary’ matter and  as the tensor of time (i. e. gravitational fie&d) associated with the tensqyf,AThis
equation before can be rearranged as

C, +(Axg,)= B (366)

()

Quod erat demonstrandum.

Scholium.
The following 2x2 table may illustrate the equathmafore Table 4).

Table 4The unified fieldgW,,.

Curvature
yes no
Energy / ‘ yes A Hv BHV R U Y
momentum ‘ o Cuv Duv . U "
OWuv OWuv RWuv

3.23. Theorem. The tensor of time ot,, as associated with ordinary energy tensor oE,,

Claim.
In general, the tensor of tingk,, as associated with ordinary eneggy, follows as
— — luv c 1 v
Cuv =Ot},lv =+(4X77: X (Fuchv )_ nguvdevde _Axgpv (367)

Direct proof.
In general, axiom | is determined as

+1=+1 (368)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (369)

or
]w = luv (370)

Multiplying this equation by fz we obtain

C =C (371)

uv v

Due to our definition, we rearrange this equatimn t

Cv= G- A,

v uv

(372)
We define A, = ((4x2xTxy)/c™) xT,v- B, The equation before changes too

_ _ 4x 2XTIXY luv c 1 v
Cuv = Guv - Auv = Guv _£(C4x Tuvj_[w]x[(lzuc xF, )—{4)( G X Fo X F jj] (373)

®
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or to

_ 4X2XTIXY 1, \_[(1L v
Cuv = Guv —[4)( Tuv]-'-(]x[(FHCXFV )—(4ng X FdV xF¢ j} (374)

C 4x 7

The tensor of timgt,,, as associated with ordinary eneg§y, follows as
= = luv ) 1 dv -
Cuv = ol _+(4xn X (FHCXFV ) nguvdevxF Axguv (375)

Quod erat demonstrandum.

3.24. Theorem. The probability tensor as associated with the tensor oty
Claim.
In general, it is

1, t, (376)
p(C:)Ep(Oq.lv)Ec:uvm Rl-Pquotuvﬂ RLIJ pv= Otp\p Rl'l E%
uv Hv
Direct proof.
In general, axiom | is determined as
+1=+1 (377)
Multiplying by the tensor of the unified field,J we obtain
1,n1=1,n1 (378)

or
]uv = j_uv (379)

Multiplying this equation by (, it is

(380)
or in general to

— — luv c 1 v
CHV o tW:[[A].X;[ x (Fuchv )_ ngpvdevde _/\xgpv (381)

where B,=(1/(4x))x((FuexFy%) — (((1/4) Xgux Fgy % F™)) denotes the stress energy tensor of the eleagom
netic field andAxg,, denotes the cosmological ‘constafittimes the metric g term. Multiplying by the tensor
RY uv it is

(382)
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The commutative multiplicationvith the tensogY ,, yields the probability tensor as associated with tensor
Cuv

P(Cu)=Cun &YW =otyn Y (383)
Due to our theorem before, itd¥,,, = R*LIJH\, = (1./R.). The equation before simplifies as

1 t (384)

p(C) = p(Oqu) = C“"m ;qJHVEO tIAvm *RLIJ IJVE Otu\n RHV E%

pv pv

Quod erat demonstrandum.

Scholium.
Under conditions of general theory of relativitiyetassociated probability tensor follows as

]'uv c 1 v
+(4><7r X (Fuchv )_ nguvdevde _Axgpv

p( Cu)=p(ot,)= - E{"F:““] (385)

pv pv

3.25. Theorem. The tensor of the gravitational and the electromagnetic hyper-field

Einstein himself spent decades of his life on théiecation of the electromagnetic with the gravibaial and
other physical fields. Even from Einstein’s andevtffiailed attempts at unification the hunt for mexs for
reaching a common representation of all four funeiatal interactions in the framework of “unified lfieheo-
ry” is justified. In all the attempts at unificatiove encounter that electromagnetic fields anditpgtienal are to
be joined into a new field. Tonnelat points out:

“a theory joining the gravitational and the eleatagnetic field into one single hyperfield whoseiatpns
represent the conditions imposed on the geomesioatture of the universel|

Claim.
In general, the tensor of the gravitational andeleetromagnetic hyper-field is determined as

2 G, +(Axg.)= G+ B, (386)

Direct proof.
In general, axiom | is determined as

+1=+1 (387)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (388)

or
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luv = ]uv (389)
Multiplying this equation by the tensogBwe obtain

]'uv N pr = luv N pr (390)

or

Buv = pr (391)

Due to the theorem before, the equation beforegdmito
— 392
Cuv+(/\xgw)_ Buv (392)
Adding G, , the tensor of time (i. e. gravitational field) associated with the tensog,Awe obtain

C.+ C, +(/\>< qw) = G, +B, (393)

or at the end the tensor of the gravitational dedeiectromagnetic hyper-field

— 394
2x C, +(Axg,)= G,+B8, (394)
Quod erat demonstrandum.
Scholium
Under conditions of general theory of relativitietgravitational and the electromagnetic hypedfisl deter-
mined as

— — ]'uv c 1 v
Cuv+Buv=2x Cuv+ /\xgw=2x[4xn X (Fuchv )— nguvdevde - /\xgw (395)

It is very easy to get lost in the many differettempts by Weyl, Kaluza, Eddington, Bach, Einsteia other to
include the electromagnetic field into a geomesetting. The point of departure to “geometrize” glectro-
magnetic field was general relativity. In view @etimmense amount of material, neither a briefriazi de-
scriptions of the various unified field theoriesrrall the contributions from the various scientiichools to
unify the electromagnetic and gravitational fiethde discussed with the same intensity. The jgininprevi-

ously separated electromagnetic and gravitatiaeld fvithin one conceptual and formal second ramsbr is
based on a deductive-hypothetical methodologicar@gh. Einstein himself spent decades of hisdiiethe
unification of the electromagnetic with the gratidaal field. Mie, Hilbert, Ishiwara, Nordstrom arathers
joined Einstein in his unsuccessful hunt for pregren this matter. In contrast to Kaluza’'s geornation of the
electromagnetic and gravitational fields within imefdimensional space, this approach is based ciglipl
within the conceptual and formal framework of geheelativity. Under conditions of general theoffyrelativ-

ity, the associated probability tensor follows as

i c\_ 1 dv _
(zuvn Cuv)+ /\ng =2x(4Xn’ * (F“CXFV ) 4xg“\)XFdVXF AXQ“" (396)
R R

uv uv

p( C,+B,)=
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3.26. Theorem. The tensor ot,v
Claim.
In general, the tensor,D= ot,,, as associated with the stress energy tensor aéistromagnetic field B = oE,.,

follows as
— R luv c 1 dv
Duv OIW =(2jxgpv_(4xnjx[(|:ucx|:v )_£4xguvdevxF jj (397)
Direct proof.

In general, axiom | is determined as

+1=+1 (398)

Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (399)

or
]uv = jw (400)

Multiplying this equation by the Ricci tensof,Rve obtain

1,nR,=1,n R, (401)
or
R, =R, (402)
Adding Q. it is
Ry =R,*+0, (403)
The zero tensor is equivalent tg, & +((R/2xg.) - ((R/2xg.). We rearrange the equation before as
=R D (E)ea,

Einstein’s tensor is defined asG R, - ((R/2)xg,,). We simplify the equation before as

R (405)
Ruv = G“" +(Ej Q= Guv+—Ghv

Due to our definition, itis R = A,y + Buw+ Cuw + D and Gy = A, + Cu. We rearrange the equation
before as

R (406)
Auv +BHV+CW+ D“V:A uV+C ”V+(Eng "
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Simplifying equation, it follows that

R (407)
Buv + Duv = (—j xguv

or

R (408)

Due to the decomposition of the stress-energy temsdg(4<2xTxy)/c’) XT,w= A + By, the stress-energy ten-
sor of the electromagnetic field is,B(1/(4x10))x((FuexF%) — (((1/4) xgu* Fay ¥ F™). Under conditions of
general relativity, the tensor,D= ,, as associated with the stress energy tensor oé¢ldotromagnetic field
B,v = oE, follows as

_(R Ly e\ _(1 v
w Otuv=(2]xguv_(4xﬂ]x((|:ucx|:v )—£4xgwadvde j] (409)

Quod erat demonstrandum.

D

3.27. Theorem. The probability tensor as associated with the tensor oty
Claim.
In general, it is

. 1, t, (410)
p(C:)Ep(Oq.lv)Ec:uvm Rl-Pquotuvﬂ RLIJ va Otp\n Rl'l E%
nv Hv
Direct proof.
In general, axiom | is determined as
+1=+1 (4112)
Multiplying by the tensor of the unified field,J we obtain
1,n1=1,n1 (412)

or
]uv = j_uv (413)

Multiplying this equation by R, it is

D, =D,
(414)
or in general to
R \V [ \
N A CESREES I
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where B,=(1/(4x))x((FuexFy%) — (((1/4) Xgux Fgy % F™)) denotes the stress energy tensor of the eleagom
netic field andAxg,, denotes the cosmological ‘constafittimes the metric g term. Multiplying by the tensor
RY uv it is

(416)

The commutative multiplicationvith the tensorY ., yields the probability tensor as associated with tensor
D

p( Duv) = p( OLV) = Duv n RYuvE OIuv N RY [T\ (417)

Due to our theorem before, itd¥,,, = R*LIJH\, = (L./Rw). The equation before simplifies as

. . 1, _ oty (418)
p(OLv)EDuvﬂRqJ Eot n RLIJ EOI HLEOH

uv —Hv

p(D)

Quod erat demonstrandum.

Scholium.
Under conditions of general theory of relativitiyetassociated probability tensor follows as

R v c 1 v
R e ety I

R

uv

p( Dy)=p(otw)=

3.28. Theorem. The tensor wgyv

Still, one of the major unsolved problems in phgsgthe unification of gravity with all the othieteractions of
nature. Such a unification would have to providbeoretical framework of a theory of everything ethifully
would explain and link together all physical aspeat objective reality. Einstein's theoretical framork of the
theory of general relativity focuses mostly on gnavas being curvature of spacetime. The curvatfre
spacetime is expressed mathematically using theiatehsor — denoted,g Curvature itself is caused by the
presence of energy/matter and accelerating eneegigmgenerate changes in this curvature. Changései
curvature of spacetime propagate in a wave-likemaaand are known as gravitational waves.

Claim.
In general, under conditions of general relativigsavitational waves are determined by the equation
— W uv _ v c v
O = - X0y~ x| (F _xF - —=%g xF, xF (420)
W Iuv va n va 2“\/ n Cuv n va v (4“\) xn_w n Cuvﬂ va] ( He v ) 4 (Y dv

Direct proof.
In general, axiom | is determined as

+1=+1 (421)
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Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (422)

or
]uv = ]w (423)

Multiplying this equation by the stress-energy tarsf general relativity ((>42><n><y)/(c4))><Tp\,, itis

4x2 4x 2
+1,, N (—x :nxy Tj +1,,0 ( a znxy Tj (424)

Due to Einstein’s general relativity, the equatimiore is equivalent with

R 4x 2% TIX
R, ‘(5" gwj + (’\ % guV) = (Ty X ij (425)

By defining the Einstein tensor &.~ R.v- (R/2)x0,., it is possible to write the Einstein field eqoas in a
more compact as

4 X 2X TIX
G, +(/\xguv) (Ty Tj (426)

The equation can be rearranged as

R 4x 2X TIX
Ruv _Exgpv-l_(/\x gpv) :(—yx T, j

c* (427)
or as
4AX 2XTIXY _ R
Ruv _(TXTHVJ _Ex gpv_(/\>< gpv) (428)
or as
R
Rtpv =Exguv_(/\xgpv) (429)
This equation can be changed as
R
Rtpv+0:§><9uv‘(/\x gpv) (430)
or as
_R
Rtpv_Otuv+ Otuv_zxgpv_(/\xgpv) (431)
Due to our definition itis ,,t,, = gt,,— ot,, . Tkequation changes to
R
Wtuv+0tuv=_xgpv_(/\xgpv) (432)

2
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and at the end to

R
Wtuv zzxgpv_(/\xguv)_ Otuv (433)

vV Cc 1 \
Due to the theorem before it igt,, = [4]:\”}((':“0 xF, )‘[4x Gy X Fy X F* jj - Axg,
v uv

The equation above changes to

t —Rx —(Ax - Lo x| (F xF ¢)- 1x xF. xF® | |- Ax (434)
Wty T E gpv ( guv) m ( uc v ) Z gpv dv gpv
or to

t —Rx —(/\x )— L x| (F_xF ¢)- 1>< xF. xF¥ ||+ Ax (435)
WA, _E gpv gpv m ( uc v ) _4 gp\) dv gpv
and at the end to

_ R 1“\) c 1 dv
thv_EXgpv_{m]X((F“chv )_(ngwx':dvxl: j} (436)

Dividing the equation before by the c?, we obtain

tV R v [ 1 v
WOy = —2t gw-( L }x[(Fﬂchv )—(4xgwadv><Fd D (437)

= X
Cu N Cyy 2n GvN G, 4W><7ruv n G,N G

Quod erat demonstrandum.

Scholium.

There are circumstances, where the teqgpy is identical with the tensor of the gravitatiomedves. Whether
this is the case in general is a point of furtfeearch. It is convenient to consider the existefiggavitational
waves in analogous manner to electromagnetic wde&fere going on to discuss this aspect in moraidehe
could expect gravitational waves to carry energgy¥wom a radiating source. However, there are ssioet-
comings of such an approach. Assigning an energgitjeto a gravitational field is notoriously difilt, both in
principle and technically. In general relativithet energy momentum of a gravitational field at @o@t in
space-time has no real meaning. One way of circatimg such a problem is to take seriously the that all
energy and momentum is contained within the steeesgy tensor. This has the important consequédrate t
there is no energy and momentum left, which co@gbt within an own energy momentum tensor of ttaeg
itational field.

3.29. Theorem. The probability tensor as associated with Einstein’s tensor Gy
Claim.
In general, it is

* Ly Gy 2 (438)
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Direct proof.
In general, axiom | is determined as

+1=+1 (439)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (440)

or
]uv = j_uv (441)

Multiplying this equation by Einstein’s tensoy, it is

G, =6,
(442)
or in general to
_ _ R
oCw =G, = [ Ruv_(zj x guVJ (443)
Multiplying by the tensorY it is
Gpv n RYuv E0 Cuv n RY i\ (444)

The commutative multiplicatiomvith the tensogY ,, yields the probability tensor as associated with tensor
G-

p(G) = P(6Gu) = Gun V=0 Cun 1Y, (a45)

Due to our theorem before, itd¥,,, = R*LIJH\, = (1./R.). The equation before simplifies as

RX
: Lo Gu_ g 2% (@45)
R

uv uv uv

Quod erat demonstrandum.

3.30. Theorem. The probability tensor as associated with anti Einstein’s tensor Gy
Claim.
In general, it is

G (447)
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Direct proof.
In general, axiom | is determined as

+1=+1 (448)
Multiplying by the tensor of the unified field,J we obtain

1,n1=1,n1 (449)

or
]uv = ]w (450)

Multiplying this equation by anti Einstein’s tenggy,, it is

G, =G

=uv v
(451)
or in general to
_ — R (R
G =6 =Ry~ R[5 a2 s
Multiplying by the tensorY it is
guv n RYuv EO qu n Rva (453)

The commutative multiplicatiomvith the tensogY ., yields the probability tensor as associated with tensor
G-

p(guv) = p(og.lv) Egpv N R Yuv EofCuvm RYuv (454)

Due to our theorem before, itd¥,,, = R*LIJH\, = (1./R.). The equation before simplifies as

R
Ly _Gu_ 2 9 (455)

R R R

uv uv uv

p(G)= p(oglv) = Gyn %S0 Gun ¥ W=0Gun
Quod erat demonstrandum.

Scholium.
The following 2x2 table may illustrate the basitat®nships between the tensofable 5).

Table 5The unified fieldgW,y.

Curvature
yes no
Energy / ‘ yes A MV Buv R U v
momentum ‘ o Cuv Duv . U "
OWuv OWU\) RWuv
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Under conditions of general theory of relativity, terms of probability tensors, we obtain the failog table
(Table 6).

Table 6The unified field in terms of probabitliy tensors .

Jes Curvature —
Energy / ‘ Y p( A“V ) p( BHV ) p( R EHV )
momentum ‘ no p( Co ) p( D ) p( rlw )
p( GHV ) p(guv ) 1|.1v

3.31. Theorem. Einstein’s Weltformel

As long as humans have been trying to understamthths of objective reality, they have been propgsheo-
ries. In contrast to the well-known quantum thedhg most fundamental theory of matter currentlgilable,
Laplace's demon and Einstein's Weltformel are edlaore widely at least by standing out againsinteter-
minacy as stipulated by today's quantum theory. Bammess as such does not exclude a deterministitamre
ship between cause and effect, since every randemt das its own cause. The purpose of this puiditas to
provide a satisfactory description of the microstuve of space-time by mathematising the determiinisla-
tionship between cause and effect at quantum levidle form of amathematical formula of the causal rela-
tionship k Despite of our best and different approaches@btists worldwide spanning more than thousands of
years taken to describe the workings of the uneverggeneral, to understand the nature at the fandamental
guantum level and to develop a theory of everytlprogress has been very slow. There are a lotadgsals
and interpretations, some of them grounded ontaipgisque interplay of observation and experimeit wieas.
In short, the battle for the correct theory is aoinpletely free of metaphysics. Yet, besides ofrtlagy efforts
and attempts to reconcile quantum (field) theorthwgeneral relativity an ultimate triumph of humaason on
this matter is not in sight. There is still no dex¢heory which provides a genuine insight and ustdeding of
gravity and quantum mechanics, one of the mostisthes dreams of physics and of science as sucbtdtirs
Weltformel or a “final” or “ultimate”theory of everythingToE) as a hypothetical theoretical framework loif-p
losophy, mathematics and physics capable of desgriill phenomena of objective reality should ratsteast
on general relativity (GR) and quantum (field) the¢@(F)T). Still, physicists have experimentallynéomed
that (GR) and (Q(F)T) as they are currently forntedaare to some extent mutually incompatible anthoa
both be right in the same respect. Thus far, sonbeday’s front runners are ttaring theory theloop quantum
gravity et cetera and thguantum field theoryAmong the numerous alternative proposals formeitimg quan-
tum physics and general relativity theory, the raathtical and conceptual framework of quantum fiakbry
(Q(F)T) covers the electromagnetic, the weak ardsthong interactiorin quantum field theory, there is a field
associated to each type of a fundamental partickt appears in natureHowever, quantization of a classical
field proposed by quantum field theory is (philoBmally) unsatisfactory since the very important danda-
mental force in nature, gravitation, has defiedmjation so far. The problems are related to th@ntum me-
chanical framework as such. The usual axioms oftyua mechanics say that observables are represbpted
Hermitian operators which is not entirely true.l@ast one observable in quantum mechanics is poésented
by a Hermitian operator: the time it self. Toddye time itself enters into the mathematical forsraliof quan-
tum mechanics but not as an eigenvalue of any tper@ur subsequent discussion will be restrictioat
completely to both, the principles of general riglat and quantum theory.

Claim.

In general, the mathematical formula of the causationship k (Einstein’s Weltformel) covariantder a class
of general coordinates transformations i. e. theesa all the reference frames, namely in all cowtés sys-

tems, follows as
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o Rqu’ OWuv _ (p(R qu’ OWu )_ p( Rqu) n p( Ova))

Pl ) 0o (Ao (1~ )] e

Direct proof.
As a rule, the point of departure is axiom I. Imgel, axiom | is determined as

+1=+1 (457)
Multiplying be the tensor of the unified fielg,1 we obtain

1,n1=1,n1 (458)

or

]uv = juv (459)
Multiplying this equation by the tensor of the cans,,,, we obtain

]'uv n Ruuvzluvm Rqu (460)

or

U= .U (461)

[\ I\
Multiplying by the tensor of the effegiV,,,, it is

RUpv n OWuv: RU uvn yvu\ (462)

crU)

R~ v

%/(p(R Up) 0 (3. - p(x Ua)))

Due to our definition of standard deviation of tause , it isr qu =

Substituting this relation into the equation above,obtain

n W (463)

.. .. . _ o-(Ovvuv)
Due to our definition of standard deviation of effat is OWuv = \/ (
(p

3(p(oW) 0 (5~ p( oWL)))

Substituting this relation into the equation befave obtain
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G(RUW) N O(OWUV)

i/(p(R Uw) N (1[.1\) - ID(R qu))) N %/( p(ov\{w) m (:Lv _ F( oV\{w))) (464)

According to the definition of the co-variance aluse and effect, it is

U A W = 0-(Rqu’ OWuv)
R 0 -

(p(RUHV' oW )_ p( RUHV) n p( OWHV))

Substituting this relationship into the equatiofobe, we obtain

W)

pv? 0

O(RU _ C(RUW)”G(oWuv)

(ST R (U8 B3 < PR i ) (AT o) I

Rearranging equation, it is

Y R qu' 0W|,lv (p(R qu' OWuv) - p( R qu) n p( OWuv))
(V) 0 0(W)  gl(p(20,) 0 (1= o(s U))) 0l HoWa) 0 (3, - o W) (466)
Einstein’s Weltformel, the mathematical formulatloé causal relationship k,follows as

C(RUHV' OWMV) - (p(R qu, OWM )_ p( RUMV) n p( OWMV))

S AT 78 v ey e I P ) R

Quod erat demonstrandum.

k(U

Scholium.

The range of the causal relationship is,,-1<  kRU v, oW ) < +1,. In last consequence, negative parti-
cles can be derived from Einstein’s field equati@ausality and determinism (and prediction) areroéiquated
even if both are not really the same. For a varidtgeasons such an approach to determinism arghbguis
fraught with many problems. A further problem isspd by the fact that, as today widely recognizbd,ftin-
damental, exceptionless laws of nature are govebyetthe laws of quantum mechanics which itself idely
thought to be a strongly non-determinigtid |- [34] theory. Roughly speaking, Einstein's dream of apleta
[35] theory of quantum mechanics (i. e. hidden varididmry) with the goal “to restore to the theory sality
and locality”[36], determinism and definiteness to micro-realitydrae[37] partly mistaken and/or misleading
but not impossiblé38] -[39] in principle. The causal relationship k, deeplymected with our understanding of
objective reality, became a subject to clarificataond mathematical analysis and has been investigata spe-
cific, well-defined theoretical context of the gesletheory of relativity as developed by the Gerrbann theo-
retical physicist Albert Einstein. In order for tssgain a clear understanding of the concept o$aliy or uni-
fied field theory under conditions of the genetadry of relativity further explanation and investiion is re-
quired. Causality has been given various, usualfyréuise definitions. Many scholars contributedhe motion
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of causality and determinism, among them NicolasCdedorcet, Baron D'Holbach and Lapldéé]. One of
these definitions is the known Laplace demon (somest referred to as Laplace's Superman, after Raich-
enbach). The mechanical determinism generally mefieto as Laplace demon is of course incompatilide the
mainstream interpretations of today quantum medsarhich stipulates indeterminacy, and was fornealdty
Laplace as follows:

“Une intelligence qui, pour un instant donné, connaitrait
toutes les forces dont la atune est animée, et la
situation respective des étres qui la composent, Si dailleurs
elle était assez vaste pour soumettre ces données a l'analyse,
embrasserait dans la méme feemu les mouvements des
plus grand corps de l'univers et ceux du plus léger
atome: rien ne serait incertain  pour elle, l'avenir comme
le passé seraient présents a ses yeux.[41]

Laplace demon translated into English:

“We may regard the present state of the univerdbeasffect of its past and the cause of its futéreintellect
which at a certain moment would know all forcestthat nature in motion, and all positions ofl al
items of which nature is composed, if thistellect were also vast enough to submit these
data to analysis, it would embrace in a single fdemthe movements of the greatest bodies o0é th
universe and those of the tiniest atom; fsuch an intellect nothing would be uncertain
and the future just like the past would kmesent before its eyes.”

Thus far, to avoid certain major errors of defmitj the geometrical tensorial representation ointla¢ghematical
formula of the causal relationship k (Einstein’slMiéemel) as

o(«Un) 0 0(0) 02 Un) 0 (b -0l U ) (Al W) (- Hows)))  469)

is valid for a chaotic and random system too anthotibe reduced to Laplace demon and his articuladf
causal or scientific determinism.

k(& Uy W,) = O rYr Wi (p(Rqu'OWuv)_p( U)ol 0Wuv))

pv? 0

4. Discussion

Einstein had started unifying the electromagnetid gravitational fields via pure geometry into &fied field

[2] theory. In spite of failing success, Einstein triedrelate the macroscopic world of universal spéoe to
those in the physical phenomena in the submicrasaemrld of the atom. Einstein’s modest hope arelkay to
a more perfect quantum theory was his epistemadbgod methodological position that a “real stadé’a
physical system exists objectively and indepenadérny observation or measurement, independentofain
mind and consciousness. Still only a rather smathiper of theoretical physicists devoted their wtrkthe
search for a unified theory and the unificatioretefctromagnetism and gravitation has apparentlgdadto the
background at least since the death of Einstein.th® convenience of the reader, some of the mattieah
formalism given by general relativity theory is eaped in a slightly extended form only as mucheexded for
an understanding of this paper. In general, forglemetrization and the quantization of the fieldgjous ge-
ometric frameworks can been chosen. The geomesinattures of the underlying probability field éres the
transformation to different geometric frameworks.

®
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Under conditions of general theory of relativityg wbtain the following relationship$gble 7).

Table 7. Unified field theory under conditions of the theafygeneral realtivity

Curvature
yes no
oy R [w]n -
er/gy g -[(41";%]{(waﬁv)-[%xgwxaxrﬂv)]] +H41“;w]x((ﬁtxﬁc),(%xgwmexFWJ]] CwNCyNCyn Gy
of (2 (o o) ~(Ex g x By x F o ) (FoxF o)~ Bxgy xRy x F*
AP I e I G I P
tum | o (5)nom 2 )" %
G,, (e Ry

Curvature excludes momentum and vice versa

Under conditions where curvature excludes momentil®, stress-energy tensor of ordinary magtgy, is
equivalent to zero we obtain

Table 8.Curvature excludes momentum and vice versa.

Curvature
yes no
y [w]n T
En- v
er/2]y g O *H;“;w]{(F,JH“)*(%XQWXmeme G N Gy N Gy N Gy ‘
rrnneon n +[[41\‘:!w]X[(FMXHE)_[%XQWXFWXF‘”D] H“xl“:rw]x((waF )—(%XQWXFWXFW)]] o
um o % (3)nan [5)” 9w ~AN G,
GH\) (%]n - Ruv
or the equation
- 4uv n 2uv N T[uvﬁ yuv _ ]'uv c _(} dvj = (469)
o [Cuv NG, N CyN G, " T 4xx,, | (RexR’) 49w FaxF 0
From this assumption we obtain
4uv n 2uv n T[uv n yuv - luv c _(} dvj (470)
(Cuvﬂ ¢ GG, nT, 74)(7[“‘) X (chva ) 4xgqudexF

Such a manifold is determined by the fact thaieakrgy and momentum is contained within the steessgy
tensor of the electromagnetic field.

Momentum implies curvature

Under conditions of general relativity, there arewmstances where momentum implies curvature. $uehi-
folds are determined by the stress-energy tensthireoglectro-magnetic field which is eqyh),,=0. Under these

conditions we obtain
]'uv x (F = c)_ }xg x F dev =0 (471)
4xﬂ_w He v 4 Hv dv

®
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The following 2x2 table may illustrate these cirgtancesTable 9).

Table 9. Momentum implies curvature.

Curvature
yes no
En- |y (4uvn ZNVnT[uvnyw]nT O [4 VN2, ””uv”Vuv] .
P v pv
er/gy g CyNCyNn GG, " Cuw N Gy N Gy Gy
mo
R 5
men N | _— = ng,-Ang,
tum | O /\ N gHV [ZJOQW 2
R
Guv [Ej 0 G “"

Without momentum no curvature

Under conditions of general relativity, manifoldsncbe determined by the fact that without momentoncur-
vature. Under these conditions it is

(b fons

and the stress energy tensor of the electromagingticis determined by the equation

ES R

The question of course is, are there circumstaatedl, where the stress energy tensor of the releagnetic
field is determined by the equation before. Théofsing 2x2 table may illustrate these circumstan@esble
10).

Table 10.Without momentum no curvature.

Curvature
yes no
4,0 2,00V, 4
En- y {Cu ng, ncunqj]n‘r [MJOTW
ergy ° “Ang, +tAn g Gav 0 G 0 Guu ) G
S
/
mo An g,
men | N R R
tum | O O {2)09““ [EJ”QW'A”%
R
> |7 G
G, 5) Ry
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Momentum or curvature
One feature of manifolds determined by momenturruovature is the validity of the equation

(S| p{(mrm o mmne o

Consequently, under these circumstances the stnesgyetensor of the electromagnetic field is deteed by

the equation
1, (1 v (R 475
[(%Jx((ﬁmxa )_[ngwadeFd JJJ_[ZJQ o ( )

The following 2x2 table may illustrate this mandah more detailTable 11).

Table 11.Momentum or curvature.

Curvature
yes no
[4uvr72uvmnuvmijm-r [4Mvnzuvmnuvnyuv]n-r
v n \lﬁ vn v " v
:rn- Z G N Gy N Gy N G, . +(B]ng Cu N Gy N Gy N Gy !
Pl s 3)s =
mo
men (Bjn g
n 2) ™ R
wm o ang, (Ejﬂ 9w ~AN Gy
R
g,
GHV (ZJ Ruv

Either momentum or curvature
Manifolds determined bgither momentunor curvature are illustrated by the following 2x2l&brable 12).

Table 12.Either momentunor curvature.

Curvature
yes no
. y (%]T [4w n2,nT,n vw] T,
¢ femrtanr)) | {@Henfane)) | (Sosnas,
r:];n N e [[4”] (e D] « H”] ((er){Frouerxe j]] [BJH g, ~An g,
tum (o] [zjn O 2 v W
Guv (%Jngw Ruv

Theeithermomentunor curvature manifold is determined by the equation

[%J N G —([43}; : Jx[( F,x Fvc)_(%x g, X Fy X Fuvm -0 (476)
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and by the equation

4uvr\2uvﬂﬂuvﬂyuv ﬁTv_ lpv x (FCXFVC)_(EgideVXFdVJ =0 (477)
cunc,ng,ng, ) ([ 4xz, " 4

The following 2x2 table may illustrate this mandah more detailTable 13.

Table 13.Either momentunor curvature.

Curvature
yes no
En- y R [4wn2wmnuvnyw]n_r
ergy | © O (E] ng, CuNCGuN Gyn Gy ) ™
/ S
mo R)a
men | N (ZJ e O R
tum | 0| NG (Ejﬂ 9w ~AN G,
R
GHV (Ejngw Ruv
In last consequence, this manifold is determinethbyequation
R R _ _ _
> ngw—/\ngw+zngrw—Rn 9,-An g,=An g,= R (478)

At the end eithermomenturnor curvature manifolds are described by the equation

+/\ngw+Am gW=Rr1 9w

(479)

whereA denotes anti lamda, the anti cosmological constantiertheseconditions, anti lambda describes the
geometrical structures underlying the unified hyfieid of electromagnetism and gravitation, thefyinig of
the electromagnetic and gravitational fields intoyper-field via pure geometry.

5. Conclusions

For the geometrization of fields, various geomefr&aneworks can been chosen. This probability theom-
patible approach to the unified field theory enathle use of different geometric frameworks depegdipon
circumstances. The relationship between cause Hadt és expressed completely in the language nédes
while demonstrating the close relationship to Eimss general theory of relativity and Einsteinisld equation.
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