
Kalman Folding 2: Tracking and System Dynamics
(Review Draft)

Extracting Models from Data, One Observation at a Time

Brian Beckman

<2016-05-03 Tue>

Contents

1 Abstract 1

2 Kalman Folding in the Wolfram Language 2

3 A Tracking Example 3
3.1 Time-Evolving States . 3
3.2 Recurrences for Dynamics . 4
3.3 The Foldable Filter . 5
3.4 Dynamics of a Falling Object . 5

4 Concluding Remarks 7

1 Abstract

In Kalman Folding, Part 1,1 we present basic, static Kalman filtering as a functional fold, high-
lighting the unique advantages of this form for deploying test-hardened code verbatim in harsh,
mission-critical environments. The examples in that paper are all static, meaning that the states of
the model do not depend on the independent variable, often physical time.

Here, we present a dynamic Kalman filter in the same, functional form. This filter can handle
many dynamic, time-evolving applications including some tracking and navigation problems, and
is easilly extended to nonlinear and non-Gaussian forms, the Extended Kalman Filter (EKF) and
Unscented Kalman Filter (UKF) respectively. Those are subjects of other papers in this Kalman-
folding series. Here, we reproduce a tracking example from a well known reference, but in func-
tional form, highlighting the advantages of that form.

1B. Beckman, Kalman Folding Part 1, http://vixra.org/abs/1606.0328.

1

http://vixra.org/abs/1606.0328

2 Kalman Folding in the Wolfram Language

In this series of papers, we use the Wolfram language2 because it excels at concise expression
of mathematical code. All examples in these papers can be directly transcribed to any modern
mainstream language that supports closures. For example, it is easy to write them in C++11 and
beyond, Python, any modern Lisp, not to mention Haskell, Scala, Erlang, and OCaml. Many can
be written without full closures; function pointers will suffice, so they are easy to write in C. It’s
also not difficult to add extra arguments to simulate just enough closure-like support in C to write
the rest of the examples in that language.

In Kalman Folding,1 we found the following elegant formulation for the accumulator function
of a fold that implements the static Kalman filter:

kalmanStatic (Z) ({x,P} , {A, z}) = {x+K (z−Ax) ,P−KDKᵀ} (1)

where

K = PAᵀD−1 (2)
D = Z+APAᵀ (3)

and all quantities are matrices:

• z is a b× 1 column vector containing one multidimensional observation

• x is an n× 1 column vector of model states

• Z is a b× bmatrix, the covariance of observation noise

• P is an n× nmatrix, the theoretical covariance of x

• A is a b× nmatrix, the observation partials

• D is a b× bmatrix, the Kalman denominator

• K is an n× bmatrix, the Kalman gain

In physical or engineering applications, these quantities carry physical dimensions of units of
measure in addition to their matrix dimensions as numbers of rows and columns. If the physical
and matrix dimensions of x are [[x]]

def
= (X, n× 1) and of z are [[z]]

def
= (Z, b× 1), then

[[Z]] = (Z2 b× b)
[[A]] = (Z/X b× n)
[[P]] = (X2 n× n)
[[APAᵀ]] = (Z2 b× b)
[[D]] = (Z2 b× b)
[[PAᵀ]] = (XZ n× b)
[[K]] = (X/Z n× b)

(4)

2http://reference.wolfram.com/language/

2

http://reference.wolfram.com/language/

In all examples in this paper, the observations z are 1× 1 matrices, equivalent to scalars, so b = 1,
but the theory and code carry over to multi-dimensional vector observations.

The function in equation 1 lambda-lifts3 Z, meaning that it is necessary to call kalmanStatic with
a constant Z to get the actual accumulator function. Lambda lifting is desirable when Z does
not depend on the independent variable because it reduces coupling between the accumulator
function and its calling environment. It is better to pass in an explicit constant than to implicitly
close over4 ambient constants, and it is good to keep the number of parameters in the observation
packet {A, z} as small as possible. In other applications,Z can depend on the independent variable,
in which case we pass it around in the observation packet along with A and z.

In Wolfram, this function is

kalman[Zeta_][{x_, P_}, {A_, z_}] :=
Module[{D, K},
D = Zeta + A.P.Transpose[A];
K = P.Transpose[A].Inverse[D];
{x2 + K.(z - A.x), P - K.D.Transpose[K]}]

For details about this filter including walkthroughs of small test cases, see the first paper in the
series, Kalman Folding, Part 1.1 In another paper in this series, Kalman Folding 3: Derivations,5 we
present a full derivation of this static accumulator function.

3 A Tracking Example

Let us reproduce an example from Zarchan and Musoff,6 to track the height of a falling object,
with no aerodynamic drag. Handling drag requires an extended Kalman filter (EKF), subject part
five of this series,7 because a model with drag is nonlinear.

We will need a dynamic Kalman filter, which applies an additional, linear dynamic model to
the states.

3.1 Time-Evolving States

Suppose the states x suffer time evolution by a linear transformation F and an additional distur-
bance or control input u, linearly transformed byG. These new quantities may be functions of time,
but not of x lest the equations be non-linear. Write the time derivative of x as

ẋ(t) = F x(t) +Gu(t)

If the physical dimensions of x are X and the physical dimensions of t are T, then the physical
dimensions of F x are X/T. The various elements of F have physical dimensions of various powers
of 1/T, so F does not have a single physical dimension on its own.

We often leave off the explicit denotation of time dependence for improved readability:

3https://en.wikipedia.org/wiki/Lambda_lifting
4https://en.wikipedia.org/wiki/Closure_(computer_programming)
5B. Beckman, Kalman Folding 3: Derivations, to appear.
6Zarchan and Musoff, Fundamentals of Kalman Filtering, A Practical Approach, Fourth Edition, Ch. 4
7B. Beckman, Kalman Folding 5: Non-Linear Models and the EKF, to appear.

3

https://en.wikipedia.org/wiki/Lambda_lifting
https://en.wikipedia.org/wiki/Closure_(computer_programming)

ẋ = F x+Gu

Generalize by adding random process noise ξ to the state derivative:

ẋ = F x+Gu+ ξ (5)

This is standard state-space form8 for differential equations. Solving these equations is beyond
the scope of this paper, but suffice it to say that we need certain time integrals of F, G, and ξ as
inputs to the filter. We denote these integrals asΦ, Γ, and Ξ. The first,Φ, is defined as follows:

Φ(δt)
def
= eFδt = 1+

F2δt2

2!
+
F3δt3

3!
+ · · · (6)

where δt is an increment of time used to advance the filter discretely.
Like F, Φ does not have a single physical dimension. Only applications of Φ to quantities

including physical dimension X make sense. For instance, in the applicationΦx,Φ is dimension-
less.

The second integral, Γ, is defined as follows:

Γ(δt)
def
=

∫δt
0

Φ(τ) ·Gdτ (7)

The physical dimensions of Γ are defined only in combination withu: the product Γ ·u has physical
dimensions X.

The last integral, Ξ, is defined as follows:

Ξ(δt)
def
=

∫δt
0

Φ(τ) ·

0 · · · 0
...

. . .
...

0 · · · E [ξξᵀ]

 ·Φ(τ)ᵀ dτ (8)

The physical dimensions of Ξ must be X2, and we accomplish this by accompanying the various
zeros in the matrix in the integral with implicit dimensions so that the overall dimensions work
out properly. Making these dimensions explicit would needlessly clutter the expressions.

Detailed dimensional analysis of these matrices is the subject of another paper in this series.

3.2 Recurrences for Dynamics

The transitions of a state (and its covariance) from time t to the next state (and covariance) at time
t+ δt follow these recurrences:

x←Φx+ Γ u (9)
P← Ξ+ΦPΦᵀ (10)

These equations appear plausible on inspection, and equation 9 has a particularly intuitive
explanation. If F does not depend on time and ifGu is zero, then the state space form ẋ = F x has

8https://en.wikipedia.org/wiki/State-space_representation

4

https://en.wikipedia.org/wiki/State-space_representation

a trivial solution: x(t) = eF t x0 = Φ(t) x0. We can use Φ to propagate the solution at any time
x(t1) forward to another time x(t2) as follows:

x(t2) =Φ(t2 − t1) x(t1) (11)

= eF×(t2−t1) eF t1x0 = e
F t2x0

This is the first step in verifying that the recurrences satisfy equation 5. It also explains why we
callΦ the propagator matrix.

3.3 The Foldable Filter

These tiny changes are all that is needed to add linear state evolution to the Kalman filter:

kalman[Zeta_][{x_, P_}, {Xi_, Phi_, Gamma_, u_, A_, z_}] :=
Module[{x2, P2, D, K},
x2 = Phi.x + Gamma.u;
P2 = Xi + Phi.P.Transpose[Phi];
(* after this, it’s identical to the static filter *)
D = Zeta + A.P2.Transpose[A];
K = P2.Transpose[A].inv[D];
{x2 + K.(z - A.x2), P2 - K.D.Transpose[K]}]

3.4 Dynamics of a Falling Object

Let h(t) be the height of the falling object, and let the state vector x(t) contain h(t) and its first
derivative, ḣ(t), the speed of descent.9

x =

[
h(t)
ḣ(t)

]
The system dynamics are elementary:[

ḣ(t)
ḧ(t)

]
=

[
0 1
0 0

] [
h(t)
ḣ(t)

]
+

[
0
1

] [
g
]

where g is the acceleration of Earth’s gravitation, about −32.2ft/s2 (note the minus sign). We read
out the dynamics matrices:

F =

[
0 1
0 0

]
, G =

[
0
1

]
, u =

[
g
]

and their integrals from equations 6, 7, and 8

Φ =

[
1 δt
0 1

]
, Γ =

[
δt2/2
δt

]
, Ξ = E [ξξᵀ]

[
δt3/3 δt2/2
δt2/2 δt

]
9A state-space form containing a position and derivative is commonplace in second-order dynamics like Newton’s

Second Law. We usually employ state-space form to reduce n-th-order differential equations to first-order differential
equations by stacking the dependent variable on n− 1 of its derivatives in the state vector.

5

Figure 1: Simulated tracking of a falling object

We test this filter over a sequence of fake observations tracking an object from an initial height of
400, 000 ft and initial speed of −6, 000 ft/s and from time t = 0s to t = 57.5 sec, just before impact
at h = 0 ft. We take one observation every tenth of a second, so δt = 0.10 s. We compare the
two states h(t) and ḣ(t) with ground truth and their residuals with the theoretical sum of squared
residuals in the matrix P. The results are shown in figure 1, showing good statistics over five
consecutive runs and qualitatively matching the results in the reference.

The ground truth is

h(t) = h0 + ḣ0 t+ g t
2/2

where

h0 = 400, 000 ft, ḣ0 = −6, 000 ft/sec

and we generate fake noisy observations by sampling a Gaussian distribution of zero mean and
standard deviation 1, 000 ft. We do not need process noise for this example. It’s often added during

6

debugging of a Kalman filter to compensate for underfitting or overfitting an inappropriate model.
It’s also appropriate when we know that the process is stochastic or noisy and we have an estimate
of its covariance.

4 Concluding Remarks

It’s easy to add system dynamics to a static Kalman filter. Expressed as the accumulator func-
tion for a fold, the filter is decoupled from the environment in which it runs. We can run ex-
actly the same code, even and especially the same binary, over arrays in memory, lazy streams,
asynchronous observables, any data source that can support a fold operator. Such flexibility of de-
ployment allows us to address the difficult issues of modeling, statistics, and numerics in friendly
environments where we have large memories and powerful debugging tools, then to deploy with
confidence in unfriendly, real-world environments where we have small memories, asynchronous,
real-time data delivery, and seldom more than logging for forensics.

7

	Abstract
	Kalman Folding in the Wolfram Language
	A Tracking Example
	Time-Evolving States
	Recurrences for Dynamics
	The Foldable Filter
	Dynamics of a Falling Object

	Concluding Remarks

