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Abstract. This note represents an attempt to give a solution of Navier-
Stokes equations under the assumptions (A) of the problem as described
by the Clay Institute [I]. We give a proof of the condition of bounded
energy when the velocity vector u and vorticity vector Q = curl(u) are
collinear.

1. Introduction

As it was described in the paper cited above, the Euler and Navier-Stokes
equations describe the motion of a fluid in R™ (n = 2 or 3). These equations
are to be solved for an unknown velocity vector u(z,t) = (u;(z,t))i=1,n € R"
and pressure p(x,t) € R defined for position z € R" and time ¢ > 0.

Here we are concerned with incompressible fluids filling all of R™. The
Navier-Stokes equations are given by:

Z ]8% l/Aui—%—i—fi(x,t) ie{l,,n} (xeR" t>0) (1)

dwu—zgzl— (xeR™ t>0) (2)

with the initial conditions:
u(z,0) = u’(z) (z € R") (3)

where u°(x) a given vector function of class C*°, f;(x,t) are the components
of a given external force (e.g gravity), v is a positive coefficient (viscosity),
and A is the Laplacian in the space variables. Euler equations are equations

Withuzo,
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2. The Navier-Stokes Equations

We try to present a solution to the Navier-Stokes equations following assump-
tions (A) as described in [I] that summarized here:

* (A) Existence and smooth solutions € R3 the Navier-Stokes equations:

- Take v > 0. Let u°(x) a smooth function such that div(u®(z)) = 0 and
satisfying:

102, w° (@)l < Csx (1 + [|2]))~F in R® Vo, K (4)

- Take f = 0. Then show that there are functions p(x,t), u(z,t) of class C*>

on R3 x [0, +00) satisfying ,,, and:

/ ||u(z,t)||*dz < C ¥t >0, (bounded energy) (5)
R3

We consider the Navier-Stokes equations in this case, we take v > 0 and
fi =0, then equations are written:

ou; i auz dp
Au; =
at " ]Z iz, VT T, ©
Considering the case n = 3, we write:
ou ou Ju Ju 0
G gy Tty —vAu = — g0 ™
8uz 3uz aUQ 8’&2 o (9]9
ﬁ+ T‘F 28y +U3§*I/AUQ— ay (8)
(9’[1,3 ou us 8’&3 8U3 o ap
En + uy o + ug y + ug o vAug = o (9)
As:
_ Op 3p op Op

Using equations @ - I - E[), we get.

dp = — (8U1 uAul—l—ula + Qaul—l—ugaul)dz‘

ot ox dy 0z
Ous Ousg Oug Ous
( Bn — vAug + up—— or + ’LLQaiy + U3az> dy
Ous Ous Jdus dus dp
( ot I/A’u,g +uyp—— Oz + U2 —(— 8y + ug 2 > dz + ot dt (11)

But:

du?  d(u? + u2 +u3)
R e— Zuzdul zi:ui(@Cuidl‘—k@yuidy—&—azuidz—katuidt)

(12)
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0
noting 0, = e Then equation lj becomes:
4

ou ou ou ou ou
—dp + Op.dt = <8tl — vAug + UQG—; Jru;ga—zl — uza—; - U38;> dx
Ouy Ous Ous Oouy Ous
72 A gv2 I et )
+<8t v u2+u1ax +u382 ulay u38y dy
8u3 8’11,3 8u3 8u1 (’9u2
8 A b2 s _ 2 YR
+<8t e L TP P u23z>d2
ouq Ous Ous u?
Let € the vector curl(u), then:
w1 81 U1 ayUB - azu2
Q= w2 | =0y A|u = O,ur —0Orus (14)
ws 0, Us Ozua — Oyur
Then, equation is written as follows:
2 1
—d (p + UQ) = —:(p+ §u2)dt + (8;; — VAU — usws + U3OJ2) dx+

ot ot

We write the above equation in the form:

0 0
<u2 — vAug + ujws — u3w1> dy + <u3 — vAug — ujwy + qu1> dgl5)

2 1 0
d (p + u) = 0y(p + u?)dt + (—ul 4+ vAuq + ugws — U3w2) dz+

2 2 ot
(-5 )
——= 4+ vAus — ujws + uzwy | dy
ot
8’&3
+ 5 + vAus + ujwe — uswy | dz (16)
or as:
2
1
d (p+ u2> =0o(p+ §u2)dt+A.dx+B.dy+C’.dz (17)
with:
6’&1
A = usws — ugwy — ot + vAuy (18)
0
B = ugw; — ujws — % + vAusg (19)
0
C = ujwg — ugwi — % + vAus (20)
Let h the vector:
A
h=| B (21)
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The left member of equation is a total differential, we can write the
conditions:

OyA =0,B (22)
0,A=0,C (23)
0.B =0,C (24)
Which give:
0,C — 0,8
curl(h) = 0,A—0,C | =0 (25)
0B — 0,A

But A is written as:

A o™ W ou
h=| B | =unQ——| w2 |+vA| us | =uAQ——+vAu (26)
C ot ot
U2 U2

The conditions (22]- [23]- are summarized by curl(h) =

curl(u A Q) = %—? —vAQ (27)

because Q = curl(u). Recall now the formula [2]:
curl(a Ab) = (b.V).a — (a.V).b+ a.divb — b.diva (28)

In our study, we have a = u = diva = divu = Oyu1 + Oyua + 0,uz = 0 and
b= Q = curl(u) then divb = divQ = div(curl(u)) = 0. As a result:

o0

(QV)u— (u.V).Q =5 vAQ (29)
Or in matrix form:
Our duy - Oy Owi Qun Oy
dr Ody 0z dr Ody 0z
Qup Qup Qup | [N Own Dwy Qwp | [ D)
Or Oy 0Oz ’ > Ooxr Oy Oz ’ >
ws us
Oug  Jug Dug Ows  OQwy Dy
or Ody 0z or 0Oy 0z
Oun
Awl ot
aWQ
A - == 30
vl Aw 5t (30)
Aws Ows

ot
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Let:

Ouy Ouy - Juy

Jdr OJy 0z

8’LL2 3U2 8uQ
= = == == 1
Aw) dr Ody 0z (31)

Ous  Oug  Juy

or Oy 0z

Owy  Owy  Owy

or Oy 0z

o 80.)2 8w2 8w2
A= T By e (32)

Ows  Qwg  Ows
dr Oy 0z
In this case, equation becomes:

A(u).Q — A(Q).u =vAQ — %—? (33)

The equations are the fundamental equations of this study. These are
nonlinear partial differential equations of the third order. Their resolutions
are the solutions of the Navier-Stokes equations.

3. The Study of The Fundamental Equations

3.1. Preliminaries

Call respectively:

Fu,Q) = A(u).Q — A(Q).u (34)
G(Q) = vAQ — %? (35)

If you exchange u, Q in —u, —, we get:
F—u, —Q) = F(u,Q) (36)
G(-9Q) =-G(Q) (37)

According to equation , we get:
{ F(u,Q) = G(Q)

F(—u,—Q) = G(-Q) = —G(Q) = F(u,Q)

=G =0= F(u,Q)=0

(38)
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It was therefore the differential system:

N
A(u).Q—A(Q)u=0
with Q = curl(u)

and curl(u A Q) = vAQ — %Z = curl(unQ) =0

under equation .

3.2. Case 2 =0

In this case, obviously:

o0

A(u)—AQ)u=0
So:

u =0 which is a contradiction,

Q= curl(u) =0= < u = a constant vector which is a contradiction,

3 a scalaire function ® /u = grad®

In the latter case, as 2 = curl(u) = curl(u) = 0 then:

Our _ Jup
oy Oz
Ouy _ Oug
dz Oy
Qus _ 0wy
or 0z

and as div(u) = 0, it is easily obtained:

0wy Puy 0%y
+ +
Ox? Oy? 022

Similarly, we have also:

:Au1:0

A’LLQ =0

AU3 =0
Using div(u) = 0, we have also:

AP =0

Thus & = &(z,y, z,t) is a harmonic function of (z,y, 2).

(40)

(41)
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Equation becomes:

P 000 0P 0°® 0P 0°D
0zt | Ox 022 | Oy oxdy | 92 00z
0 [9?°®d 02 0% dp
V(%{W+8y?+822}_8x

But A® = 0 then:

0

20x

200 (0®\® [0®\? [0d)\° ap
=) H =) H =) =

ot ox dy 0z Jr
And integrating with respect to x, we obtain:

00 1

2
=— -z t
p= gy — QU+ ay, 2 0)
Similarly, we also obtain:
o 1,
P=—pr TRl + 12 (z, 2, t)
o 1,
P=="g T3l +b3(z,y,1)

As a result:

1 1 1
p+ *UQ 7w1(y727t) =p+ 5”2 7¢2(I7'Zat) =p+ 5“2 *1/)3(937%75)

2
Which gives:
PY1(t) = ¥a(t) = 3(t) = (1)

a function that is added to the function ®, and the result:

AP =0
0P(x,y,2,t) 0 0®(x,y,2,t) 0
—_— =u(z,Y,2); ———= = Us(T,Y,2
ax o 1( ) 8y o 2( )
0®(z,y, z,t)
T |, T wew?)

and:

Aui(x’y’ Z’t)|t:0 = Au?(x7yv Z) = Ov 1= 1, n

0 1 0 1
p(z,y,2,1) = TR §U2 =T §||97"ad‘1’||2

(47)

(50)

(51)

(52)

(53)
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3.3. Case () is not the zero function
We rewrite the differential system

o)

a —vAQ =0
A(u).Q—A(Q)u=0
with Q = curl(u)

Q
and curl(u A Q) = 837 —VAQ = curl(unf2) =0

From curl(u A §2) =0, we deduce that:
1. There is a scalar function ¢(x,y, z) as u A Q = gradep.
2. uAQ = C where C = (c1,c2,c3)T is a nonzero constant vector or vector

function of ¢ of R — R3.
3. uNQ=0= as u and Q are not nuls, it is that u and € collinear.

3.3.1. Case 2. As C' = u A2, one can write:
ci1.u1 + co.ug + c3.uz =0 (57)

because C is orthogonal to u. Let us differentiate the previous equation,
respectively, to x,y and z, we get:

8”&1 aUQ 87.L3 o
gy terg, tergy =0
Auy Ous Ous
2 I8 58
Sy +co o9 +c3 9y (58)
ouy Ous Juz
g, Ty, Ty, =0
that in matrix form:
AT(w).Cc =0 (59)

where A(u) is the matrix given by (31)). However, the matrix A(u) is the Ja-
cobian matrix of (z,y, z) — u(x,y, 2, t) therefore its determinant is nonzero.
As a result, we deduce from that the vector C' is necessarily zero. It is
the case 3.

3.3.2. Case 3 where u//) = u is a Beltrami vector field [3]. Assume now
that u and Q are collinear. Let u//Q.
Case u = A2 with A € R*. Then there is a coefficient A # 0 such that:

u= A (60)
Using the equation:
A(u).Q—A(Q)u=0
it is verified. Then we have the system:

o0
E—I/AQ—O
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But the above equation is the heat equation. Let the change of variables:

r=vX (61)
y=vY (62)
z=vZ (63)
t=vT (64)
u(z,y,2,t) =U(X,Y,Z,T) (65)
p(z,y,2,t) = P(X,Y,Z,T) (66)
Qz,y,2,t) = UX,Y, Z,T) (67)

Then:

dpudz + dyudy + O,udz + dpudt = OxUdX + dyUdY + 0,UdZ + dpUdT
V(OpudX + OyudY + 0,udZ + OpudT) = OxUdX + Oy UdY + 0,UdZ + OpUdT

1 1 1 1
6g;u = *8}(U, &,u = *8yU, qu = *azU, 8,511, = *aTU (68)
v v v v
Then the equation
o9
E — I/AQ =0
becomes:
o0 —
— —AQ =
a7 0 (69)

This is the heat equation!

4. Resolution of the Equation (69))

Noting that U%(X,Y, Z) = U*(X) = U(X,Y, Z,0) = u(z,y, z,0) = u%(z,y, 2)
and QO = rotUY(X). Then the solution of with T > 0 satisfying:

Q € R? and of class C*(R? x [0, +00)) (70)
Q(X,0) = 0°(X) (71)
is given by []:
—0 X —a)?+ (Y =B +(Z—1)°
AX.T) = 2\1/% i & (%’”)e_ aT v
(72)

where dV = dadpdry.

4.1. Expression of U
We have:

U o [oh
U= || =x0=x [0 (73)
Us Q3
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Let :
—0 (X =P+ (Y =B+ (Z )
U=\, = 23% 8 Ql(‘%”)e AT v (74)
(X =)’ + (Y =B+ (Z 1)
= A [ DB -
U= A= o | 2(% ), AT dv (75)
=0 (X o)+ (Y =8P+ (Z )
Us = A0 = 2\% g 93(‘%’7)6 AT dv (76)

4.2. Checking div(U) =0
Let us calculate OxU;, we get:

(X —a)’+ (Y = B)*+(Z2—1)?

U _ - [ (X-a)(a B~

— = 4T dv
0X 4ﬁ R3 T\/>
(77)
We can write the above expression as follows:
oU, a=teo 0 (X=0)24(Y=8)2+(2=7)2
4T
ox = oy o [ Bes g (o )
(78)

Now we do an integration by parts, we get:

o Nﬁ/dﬂdv[ o 5,7) e

a=+00
_|_

a=—00

(X—a)2+(Y—ﬁ)2+(Z—«/)2:|
4T

dBdy /" Feo - Gz 8@?(04, B,7) ot
2\/ R2 =00 Oa ’
Taking into account the assumption that:
% U(X)|| < vCsx(1+v|X]) K inR3 V5, K 80
XJ

where X; denotes one of the coordinates X, Y, Z, and choosing K > 1, the
first term of the right member is zero. Then:

(79)

oy A ddn /“ T eaerr gy 89, (a, B,7) i
aX 2\/ R2 —=—00 804 ’
(81)
or: .
o, A _X—a24v=p2+z=m2 0 (o, B,7)
—_— = — ——— 2 dV 82
0X 2V 7T JRrs ¢ o Oa ( )
As a result:
_0
AU, A (X )24 (Y =32 4 (Z =) 0 (v, B,7)
d' U = J = - 2 dV = O
ZU( ) 9 an 2\/7TT Rge - Z aa

A

(83)
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—_
ra) o) 69 s Mo
because Qo(a,ﬁ,'y) satisfies dz’v(QO) = g % =0.
o J

4.3. Estimation of / U X, T)||*dV
R3

We have:
V(X T2 = 3, U2 = X2|[QX, T) |2 =
A2 a0 (X=0)24(Y=B)2+(Z—)? 2
— Q e d
AT || Jas (a,ﬁ,'y) € aT Vv
)\2 — 2 —a)2 32 N2
< 2 [ [P ety
As:

—=0 0 0 0
192 (@, B, = (@i”)? + (@) + (w5™)”
and taking into account the assumption that:
105 uf (x)] < Cor (14 ||x]) ™ in R® 0, K with [[x]| = /22 + 2 + 22

and passing to the coordinates (X,Y, Z), we have the inequalities:

d770
o0 (X) <vCsk(1+v|X[)~" in R® V4§, K €R
0X;
with ||X|| = VX2 + Y2+ 22 (85)
But:
2 2
o2 _ (Oue _ Oui\" _ (|Ouk| | Ou; < 4202 (1 X|)2K
W07 = (G- 52 ) < (|5 +[2]) <k +mixn
then :

=0 _ _
197 (o, B, )] < 120°CR (1+v]| X )72 = 120 CR (14w [V a2 + 52 +42]) 28

As a result:

_ (X —a)?+ (v -2+ (z-7)?
2

2\2,12
w2 < 22 CK/ ‘ T dodBdy  (88)
T Jrs (L+ vl a2 + 52+ 92))2K

Let us now majorize / l|u(x,t)||*dzdydz :
R3

/ ||u(x,t)||2dxdydz:/ |\U(X,T)|\2dzdydz:u3/ |lUX,T)|[?dXdYdZ
R3 R3 R3

 (X=a)24(y—8)2+4(2-)2
2T

5\22
< M/ / ¢ dadﬁd’y
T Jrs [Jrs (1 +v||\/a2 + B2 +42]))2K

dXdYdZ (89)
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As the integral / e XY -2 uxdydz < 400, we can permute the two

R3
triple integrals of the above equation. Let:
3V°N\2C3
o= ~ (90)
we obtain:
o2 (Y — 324 (Z— 2
/ u(x, t)||2dzdydz < LI(”) [/ P e 21
R3 R3 [JR3
dadfBdy (91)
(1 vl + B2 72 2R
Let: , , ,
7 :/ o e P2 (92)
R3
and let the following change of variables:
X =22 — X =VTdX et X =320
V=" =iy = oTdY etV = O3 (93)
Z=12—dz=\aTdZ etZ =230
I is written as:
I=(V2T)? [ / e X dX} = 2TV2T {2 / e ¢ dg} = 2TVT.my/7 = 20TV7T
oo 0

(94)
+o0 9
using the formula 2 / e~¢ d¢ = /7. Then the equation becomes:
0

dadpd
/ [u(x,t)|[*dzdydz < 27omV/ 7T adfdy (95)
R3 ke (L4 v|[va? + B2 +92])?K
Let us now: deud il
_ / adfBdry (96)
re (L+vl[y/a? + B2 +7])?5
and we use the spherical coordinates:
a = rsinfcosy
B = rsinfsing (97)

v = rcost

the form of the volume dadBdy = r2sinfdrdfdy and B becomes:

o= p=2m T r2dr T r2dr
B = ; [ — | _
/920 sinfdo L_O d%@/o 1+ or)2K 7T/0 0+ o)k (98)

We take K = 2, the integral B is convergent when r — +o00o. Let:

F— lim /r”d?"_/*“r?dr_/l%#*m?%
= T=+00 0 (1+yr)4_ 0 (1+I/7’)4_ 0 (1+I/T‘)4 1 (1+V7")4

(99)
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But : .
1 2 1 3
redr 9 r 1
[ o< [ rer=[5], =3 oo
too 2y
We calculate now / — . Let the change of variables:
1 (1+wvr)*
-1 d
§:1+Vr:>r=—£ :>d7":—£ (101)
v
then:
Too o p2gy 1 [T 2641 3v24+9v+5
—_— = — = —d¢=1 (V)= —4/—/——
-/1 (1 + VT)4 1/3 [Jru 54 g (1/) avec (1/) 1/3(1 + V)3
(102)
As a result: .
B < 477(5 +1(v)) (103)
Hence the important result:
1
/ l[u(x,t)|Pdedydz < 8Ton*VnT <3 + l(l/)> (104)
R3
or:
/ |[u(x,t)||?dzdydz < +o00 Vit (105)
R3
let:
/ |JUX,T)||?PdXdYdZ < 400 VT (106)
R3
because:
1
/ |[UX,T)|[2dXdYdZ = 7)/ l|u(x,t)||*dzdydz
R3 Ve JRr3
5. The expression of p(z,y, z,t)
We rewrite equation (6)):
AU = —
gr T2 Mgy, VAU = 5
j=1
It can be written under vectorial form:
Vp =vAu— %l; — A(u).u (107)
. . . o0
with the matrice A(u) given by 1) As u = A2 and vAQ — 5 = 0, then
the equation (107]) becomes:
Vp = —A(u).u (108)

As Q € R? and of class C(R3 x [0, +00)), see equation , then wu, d;u
are of class C*°(R? x [0, +00)) = p(x,y, z,t) also.
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6. Conclusion

In this work, we have obtained a solution w that verifies the conditions (A)
of existence and smooth solutions > R? of the Navier-Stokes equation. It
remains the study of the cases:

-uw=AQ, with X is a function of (z,y, z,t);

- there is a scalar function p(z,y, z) and u A Q = grade.
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