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Abstract

Based on the fact that electromagnetic radiation has energy and momentum, and it
creates curvature in the space time, we have used the covariant derivative of second rank
tensor , thus we show that its possible to derive an explicit expression for Maxwell’s equations
in curved space time with and without torsion as well as—This is a coupling between gravity
to electromagnetism. We show that the coupling introduced an extra amount of charge and
current density-the electromagnetic and gravitoelectric-which resulting in non vanishing
divergence of the magnetic filed tensor, this is equivalent to a magnetic monopole density.
This is similar to the result that found by Piplowski, which states that such a coupling breaks
the symmetry of U(1) group, and has only significant at early time of the universe or inside
black holes where the energy is very high.

1 Introduction

The electromagnetic force is one of the fundamental four forces in nature. It is governed by a set
of equations, these are: the Gauss’s law for electric and magnetic field, the Faraday’s law, and the
Ampere’s law. In the year 1865 J.C. Maxwell published a revolutionary article on a dynamical
theory of the electromagnetic field [1]. In that article he had amended Ampere’s law by adding
an extra term, which has led him to demonstrated that the electric and magnetic field satisfied
the wave equation and propagate with velocity equals to the speed of light in space. Then he
concluded that the light is a combination of a perpendicular components of electric and magnetic
field that are perpendicular to direction of propagation of the electromagnetic waves. This is why
the field equations of electromagnetic theory are called the Maxwell’s equations.

Since then, the idea of finding an expression for Maxwell’s equations in curved space with and
without torsion has extensively been discussed in many articles and literature [2, 3, 4]. For instant,
Nikodem and J. Poplawski [5] have considered a Lagrangian density for a free Maxwell field, where
the electromagnetic field tensor minimally coupled to the affine connection. Then he derived a
formula for the torsion and electromagnetic field tensors in terms of the electromagnetic potential.
He has shown that the photon-torsion coupling acted like an effective magnetic monopole density.
From his calculations it becomes clear that such a coupling breaks the symmetry of U(1) group,
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and it has only significance inside the black holes or at early stage of our universe where the
temperature was very high.

In addition to that, Fresneda [6] has coupled electromagnetism to torsion by proposing a
generalized Abelian gauge invariance at the action level. In this approach, he has introduced a
free parameter in such way that the new gauge is compatible with minimal coupling procedure,
and is constrained by the available experimental data. This is an alternative model to HRRSs
[8], where the gauge transformation has been modified by introducing a scalar field to the vector
potential whose gradient gives the trace part of the torsion tensor. Further more, Redkov V.M
[11] has triad a possibility of writing Maxwell’s equation in a curved space-time by considering
an effective media of which its properties are determined by metrical structure of the initial
curved model. It was found that the metrical structure of the curved space-time generates the
material equations for electromagnetic fields in terms of four symmetrical tensors. These tensors
are explicitly written for a general case in arbitrary Riemann space-time geometry. Although
their matrial equation has been tested for serveral geometries, still the covaraint derivative form
of Maxwell’s equations is replaced by the usual partial derivative, specially the Bianchi identity.

Based on the fact that the energy and momentum of electromagnetic radiation generates
curvature on the space time, thus, the main objective of this paper is to use the covariant derivative
of second rank tensor and derive an explicit formula for Maxwell’s equations in curved space time
with an without torsion, and see how the new form of electric and magnetic field vector.

The structure of this paper is as follows: we begin by introduction, in section two represents
the field equations, in section three we reproduce the Maxwell’s equation in curved space time
with and without torsion, in section four we consider some spacial cases. And we ends up with
our concluding remarks.

2 The Field Equations

The action of electromagnetic field equations in curved space-time can be written in terms of the
Lagrangian density as follows

S = / (4_—1F’“’ Fl — AHJ“) V=g dz, (1)
Ho

where

F,w/ = V;LAV - VVA,u ) (2)

and A, is the four vector potential. To obtain an expression for Maxwell’s equations in curved
space, we vary this action with respect to A,, to viz

V,F" = o " (3)
The second pair of electromagnetic filed equation can be obtained directly from Bianchi identity
VUF;U/ + VMFO'I/ + quua =0. (4)

Egs (3) and (4) are the generalized Maxwell’s equations. The question arised here is how does
B and E field propagate when the geometry is no longer flat— Minkowski space. Recalling the
covariant derivative of antisymmetric second rank tensor F),,, (3) becomes

VM = 9, F" 4 Dl FoV 4 TY Fre = o J* (5)
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By introducing the daul field strength tensor G*°, which is related to the field tensor F* via

v 1 ro
GH = 55“ *BFa/; : (6)
Where
+1 for even permutations
ghref = {0 when any of the two indices ar equal dimetion (7)
—1 for odd permutations

Hence, an equivalent formula of (4) is obtained by introducing Levi-Civita symbol in four dimen-
sion as

VLGP = 8,GM 4 T¥, G +T,aGH =0 . (8)

3 Reproducing Maxwell’s Equations

The first pair of Maxwell’s equation can be obtain by setting p = 0 in (5). Since there are many
terms, we extract each term individually, thus

DEV R §EOL 902 9Epo3  Gpo; N
o~ o o T o T am w0 )

Where j runs over 1,2,3. The second term also reads

Y, F = T%,F*°+T1%,FY
FOOO FOO + FOOl FlO + F002 F20 + F003 FSO + Fojo FOj + Fojz' Fij ’
— FOOI FlO 4 Fooz F20 + F003 FSO 4 POIO FOl 4 F020 FOQ + F030 F03
+ F012 F21 + F013 F31 4 F021 F12 4 F023 F32 + F031 F13 4 F032 F23 ]
Foya Fav (F%l . Fom) F10 4 (Foo2 N FO2O) F20 4 <F003 _ Foso) 30
+ (T2 —T%;) F + (I%; — I%3) F° + (% — [93) F*
— T010F10 4 T020F20 T T030F30 T T012F12 4 T031F13 T T032F23 7
= T F°+T°;F7
= T F"°+T°;F" . (10)

Where TJQD represents the torsion of the space, and in the the last step, the antisymmetric property
of F*¥ has been also used. Finally, the third gives

l—wya FOa _ FVI/O FOO + FVVj FOj _ FOO]’ FOj + Fllj FOj + F22j FOj + F33j FOJ ’
1 agl/}\ F
Ju aZU]

( \—g) "

)

= 9 (n |—g)F°J (11)

Where g = det(g,,). Now, adding equations (9), (10), and (11) and collect the zero component
of the current density J#, we obtain

0;FY + {Tojo + 0, (hl VARl )} FO + 7% F7 = 6_/) ) (12)

0
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as the generalized Gauss’s law. The additional term that appears on the L.H.S of this equation
represent the coupling between electromagnetism and curvature plus torsion that is linearly pro-
portional to the electric field vector. In other words, the effect of the curvature and torsion mimics
the effect of an external electromagnetic field upon dielectric martial. Also the torsion components
on hyper surface of constant time produce kind of a gravito-magnetic filed that is similar to a
circulating magnetic field around each point in a long wire.

Similarly, the second Maxwell’s equation can be achieved by putting u = k = 1,2, 3 in the
same equation, thus

8Fk0 N aFkl N 8Fk2 N aFkZi B aFkO N 8sz
oxV ozt 0x? or3  Ox0 ox’
OFF  gFki
o o
= OF* 4+ 9,F* (13)

o,F* =

and

Tk, F = Tho, FoO 4Tk Foi
= Tkog FO 4 Tk FY0 4 Tkgy F20 4 Thgy 30 4 Tk FOI 4 Tk il
= Ty YO Ty F20 4 Tk, F3 4 Tk FO1 4 Tk, f02 4 Tk, 03
4 Tk, P24 Tk B3 4 Thyy FI2 4 Dhyy F32 4 Ty F13 4 Tk, F23

Tk R — (ka _ Fklo) o (Fk02 _ FkQO) 20 4 (FkOS _ Fkgo) 30
+ ([Fip = TF) P2+ (T — TFy3) F'2 4 ([F30 — Tras) F2
= TRGFY £ TR FP 4 TR F0 4 Ty F12 4 TF B3 4 Tk, 23
= TFoF7° +T%,;F9 =T% F° % (TFy; —T%;) F9

) 1 -
= TFoF+ 5 T*; F9 . (14)
the last term produces

FVVa Fla _ FVVO FIO + l—wyl Fll + FVVQ F12 + Iwul F13

dln/ | — ¢ 10, 9ln | — g 11 Olny/ | — g 12, In | — g 13
= —Y 7 F —¥ = F —Y 7 F — _ < F
0x0 + ozt + Ox? + ox3 ’

= 0 (In/T=gl ) F™. (15)

Similarly, the corresponding result for 4 = 2 and y = 3 are

v g2 _ dln |_9‘ F20+alnv |_9| 22y (8111 |_9‘ F21—{—1n |_9‘ F23>
ve 0x0 Ox? ox! ox3 ’
= 0 (In/T=g ) F* (16)
dln/ | —g| Olny/ | —g| dln/ | —g| Iny/ | —g|
v 3 _ 30 33 31 32
oo 77 = 0z e ox3 o+ Ozt o ox? r ’



Now, combining all these terms together, we get

v, e — g, (ln\/|—g|> Fha
) (m m) F* 49, (m m) Fhi (18)

Adding equation (13), (14) & (18) with k£ component of J# “the spatial”, we obtain the generalized
Ampere’s Maxwell law, as

. . 1 - .
OjFM + QoF™ + TP + = Thy; Y+ 0y (nv/T=gT) F*+0; (ny/T=gl ) FY = pod .
(19
From (8) gives rise to the second pair of Maxwell’s equations. Following the same approach as
before, the generalized Gauss’s law for magnetic field can be calculated by setting u = 0 in (8), as

oG 9GM  HGY N
o ot o AT (20)

and

0, G = %, G 1%, GY
= T%) G 4 [%; G 4 [0y G2 1 [0y G + T, G% 4 T, GV
= 70, G0 4 T, G20 4 [0 G50 4 T0,0 GO + [0 G2 + [0, GO3
/=gl + T G2 4 T0 G% 4 T G + T GF 4 T, G + T0 G |
IO, G = (T —T%0) GY° + (T — ) G2 + (I — %) G
+ (T2 —T%;) G + (I%; — I'Y3) G + (I% — I3) G*
=TG4 TG 4 TO0 GO+ T 0GR o TV G 4 T050 G2 |
— TG 4 TG
= TG +T°;GY | (21)

and the third term produces

[0 GO = T7,0G% + 1%, GY = o GY = 9, <ln\/|— g|>GOj. (22)

Thus, from (20), (21) & (22), we get

06 + {1 + 0 (n/T= [ ) } G + 105G = 0. (23)

We see that the divergence of G% is not zero. This will be discussed later. The generalized
Faraday’s law, can be obtain by substitute 4 =k =1,2,3 in (8), as

oGt 9GH  oGH .
oxv - 0xY + oxJ :aOGkO"_aij]‘ (24)

while setting 4 = k£ = 1,2, 3 in the second term gives

Fkya GCW = Pkoa GaO —+ ija Gaj = Fkoj Gjo + ijo Goj + Fki]’ Gji 5
. 1 .
= TG + §Tkz‘jG” : (25)



Similary, the last term reads

v gle — dln y/ | — ¢ G10+81n | — g G11+<8ln | — 9] G12+ln\/ | — 9] G13)
e = a0 Ox2 ’

oxY ozt oxt
= 0, <1n\/\—g\> Gle (26)
v, G2e — dln |_g| G20+81n |_g‘ G2 4 (8111\/ |_g| G21+1n\/ |_g| G23>

0x0 ox? ox! ox3
= 0. (ln\/\—g\> G2 (27)
dlny/ | — ¢ dlny/ | — g dlny/ | — ¢ Iny/ | —g|
v 3o 30 33 31 32

— 9, (m N ) G (28)

Which is equivalent to

I, Gk = 9, <1n V1—dl ) Gk = 8, (m NI ) G + 8, (1n V=4l ) G (29)

Finally, from (24), (25) and (29), we get the Ampere’s Maxwell equation as:

OGH + 0,GM 4+ T 5oGP 4 ST GY + 0y (1n V=4l ) GH 1 9, (1n V-4l ) GH =0 |

(30)
Equation (12), (19), (23) & (30) are the generalized set of Maxwell’s equations in curved space-time
with torsion.

3.1 Torsion Free Space

In the case when the space has no torsion, the above set of Maxwell’s equations in §(3) will be
reduced to the following:

) ; 1 ) .
@jFOJ + E)Jgp FOJ = E_p s @F'” + 8Jg0 ij + (80@ Fko + 80Fk0) = ,U()J . (31)
0

8jG0j + anO Goj =0 y @ij + c%chkj = — (Gogo Gko + 80Gk0) . (32)
where we have used
© = 0y (ln\/ | — gl > ., Vo=20; (ln\/ | — 9] > , and 0;(AB) = B0;A+ A0;B .
(33)

Notes that V here stand for d; not the covariant derivative, and a letter with dot stand for
derivative with respect to time. With these notation in mind, we may also use the following
defintions

HY  — G0j+g0G0j, nggp(aijj_l_aoFkO) 7 j:/%Jg+J’
0



po = QLFY | D=epotp,  pm=p G, (34)

It is clear that the coupling between gravity and electromagnetic generates a kind of gravito-
electric susceptibility y,. This is similar to the electric susceptibility of materials, D% and H*
are the gravito-electric displacement field and gravito-magnetic field strength respectively. Now,
equations (31)-(32) can be simplified to

0,D% = L Gauss's law (35)
€o

0;HY = p, . Gauss’s law for magnetism (36)

O;H" = —9,D* + 1o . Ampere’s law (37)

0;D% = —0yH™ +J, . Faraday’s law (38)

These equations represent the generalized Maxwell’s equations in curved space with zero torsion.
The coupling between gravity and electromagnetism generates an extra charge and current densi-
ties, these are; p,, pm and Jy. The p,, in Gauss’s law for magnetism is kind of magnetic monopole
density, which leads to a non-vanishing divergence of G%, in other words, it breaks the symmetry
of U(1) group, and it may be exist inside black holes or at early time stage of the universe where
the energy is extremly very high. As it was mentioned in [5], but in a differnt approch, such kind
of pm, may provide a way for studying Dirac’s quantization of electric charge [7].

4 Special Cases:

In order to produce some special cases from the above set of equations—The generalized Maxwell’s

equations, first, we may set £/ = F% B; = %Ejlekl, GY = %6Ojlekl = B/, and GY =
1 (6T Fy + e Fy,) = €% Fy = —eY*E), then make a propraite choice of g,, in each case.
These are:

1. If g,, = diag(1,-1,-1,-1) — +/|—g|=1 — In4/|—g| =0, we obtain the

ordinary Maxwell’s equations (i.e. the electrodynamics in Minkawiki space).

o
V,B' = —. (39)

€o
VvV, B =0. (40)
€jkl VkEl = —8ij . (41)
M N By = 00 E7 + o J? . (42)

2. Choosing g, = diag (1, —e?:r), —efltr) _ebtr)) /| —g] =€t Iny/|—g| =
%9(15, 1), thia will produces

VB = —g V0 BV + ‘Z—OO : (43)
V,; B = —g V0 B . (44)
M VLB = —0,B7 — ; b B — g eMVL0 By (45)
M . B = 0y FE7 — g Do BV — g eIMN7 0 By + poJ? (46)
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Equations (43) and (46) are similar to the equations of the Axion electrodynamics which was
proposed by Frank Wilczek [9] to solve the dark matter. In this theory, Maxwell’s equations
are coupled with Axions, and under certain metric can be put in a form similar to Axions
electrodynamics [9]. In such way it may indicate that the Axion interact gravitationally as
well as electromagnetically.

3. If g = diag (1, —e’®, —e?®, —/0) /] —g|=€*® =  In\/| —g| = 36(t), then

we get
0
V,E = L (47)
€o
vV, B =0. (48)
‘ .3 ‘
M VLB = —0,B7 — 5 000 B/ . (49)
. .3 . .
M By = 0y E7 — 3 000 BV + poJ? . (50)

These equations are of the same type as those studied in [10] that describe the generation
and evolution of the cosmological magnetic elds in inationary universe.

4. Finally, choosing g,,, = diag (1, —e?"), —e?™), ™) — /| —g[ =¥ — In\/|—g| =
36(r), this leads to

VB = —g V0 B + i—j : (51)
V; Bl = —g V0 B . (52)
M VLB = —0,B7 — ; M0 E; (53)
M By = 0 F7 — g M0 By + poJ? (54)

These equations describe the evolution of electromagnetic filed in static space that has a
geometry similar to Schwarzschild.

5 Concluding remarks

We have studied in this work the Maxwell’s equations in Riemannian space-time with torsion.
A particular metric parameterized by the metric determinant g was considered. The ordinary
Maxwell’s equations are restored when g is constant "flat“. Space and time variation of g give rise
to magnetic charge and current densities as well as electric charge density. The resulting Maxwell’s
equations bear some similarities with the axion electrodynamics studied by Frank Wilczek.
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