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Abstract: The singlet state of two conduction electrons and the full overlap of their wave functions in the real 

space may minimize the energy of the electrons. This can be shown analyzing the energy of each conduction 

electron in the field of every particle of a crystal by use of exchange terms. It is possible that the exchange energy 

of two conduction electrons in the crystal is negative and, thus, the singlet state is favorable. Thus the Pauli 

Exclusion Principle and the exchange interaction cause a bond between two conduction electrons. The 

superconductivity in a metallic crystal occurs only if conduction electrons before the pairing are put closely on the 

Fermi surface in the momentum space. The motion of conduction electrons in the crystal may prevent the 

formation of Cooper pairs, because the kinetic energy of the motion is usually much larger than the binding energy 

in the pair. The conduction electrons as standing waves have a zero momentum, hence their momenta are 

synchronous; therefore the formation of Cooper pairs is more probable than in case of nonzero momenta. The 

approach of standing waves explains the inverse isotope effect, behavior at high pressures and many other facts 

about superconductors. 
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1. Introduction and motivation. 

The knowledge of a root cause of the superconductivity would help to explain many mysterious facts about all kinds of 

superconductors. It seems reasonable that the superconductivity should have one key cause, but the unified explanation 

remains still an open question, the current theories are not universal and explain many effects ambiguously [1]. The 

mainstream theories assume that the superconductivity is a result of the electron pairing at a mean field approximation, 

the spin ordering plays a part for the pair formation [2], [3], [4]. Every spin ordering is related with the exchange 

interaction, which influences the total energy of the electrons interacting with every particle of the crystal. Moreover the 

exchange interaction may in itself cause binding states in quantum systems at a many-body approach [5], [6]. Therefore 

the many-body approach seems to be more appropriate to define the electron states and the role of the exchange 

interaction seems to be crucially important for the pair formation. In the work is shown that the Pauli Exclusion 

Principle and its associated exchange interaction may in principle lead to a binding singlet state of two conduction 

electrons, which under certain conditions become superconducting. 

 

2. Formation of Cooper pairs as a consequence of exchange interaction. 

Normally the spins of conduction electrons in a crystal are unordered because the thermal fluctuations and own motion 

of electrons destroy the spin ordering. Thus the spin orientation of every conduction electron 1e  is random to spins of 

all other electrons. This state of 1e  is unpaired or single. If the spin of 1e  is antiparallel to the spin of electron 2e  in 

their overlap area in the real space, then the state of 1e  is paired or singlet. 

We assume that every unpaired conduction electron has its accurate spatial wave function, which describes the position 

of the electron in the crystal. Using the accurate wave functions of the unpaired electrons 21,ee  we can compare the 

energy of singlet states with the energy of unpaired states. If two electrons 21,ee  are paired with antiparallel spins then 

their overall position-space wave function is symmetric and their overall energy is related to the sum of direct and 

exchange terms D+J, where D and J are applied to the overall energy of 21,ee . The exchange term takes into account 

the modification of the initially unpaired wave functions resulting from the pairing. Since the wave function 

modification influences the total energy of 21,ee , we must use the overall position-space wave function to find the total 

energy of the singlet electrons (including the kinetic energy, repulsion of 21,ee  from every conduction electron and 

attraction of 21,ee  to every ion). The singlet of 21,ee  is favorable if J<0 [7]. If two electrons have parallel spins, then 

their overall position-space wave function is antisymmetric and the exchange term changes the sign [8] (it is a property 

of the antisymmetric position-space wave function), hence the overall energy of 21,ee  is D-J. The parallel spin state of 
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21,ee  is favorable if J>0. If the exchange interaction is weak and the exchange term is negligible, then the spins of 

electrons remain unpaired and fully random, in this case the energy of the unpaired electrons contains only the direct 

term (as it should be for the accurate wave functions of the unpaired electrons). 

The exchange term J is related to the energy increment resulting from the pairing. If the accurate wave functions of the 

unpaired electrons 21,ee  in the crystal are known, then we can compute for each electron its energy in the unpaired state 

and in the paired state; hence we can compute the sign of the energy increment resulting from the pairing. The energy of 

the unpaired 1e  is the sum of direct terms applied to its potential and kinetic energy. The energy of the paired 1e  is the 

sum of direct and exchange terms, where the exchange terms take into account the modification of the initially unpaired 

wave functions resulting from the pairing. Since the wave function modification influences the total energy of 1e , we 

must apply the exchange terms for the total energy of the electron 1e  (including the kinetic energy of 1e , repulsion of 

1e  from every conduction electron and attraction of 1e  to every ion). 

The symmetric overall position-space wave function of 21,ee  is 2/)()(2/)()(),( 1221221121 rrrrrr


, 

where )( 11 r


, )( 22 r


 are accurate wave functions of unpaired 21,ee ; 1r


, 2r


 are radius-vectors of 21,ee .  

The sum of the direct and exchange terms of an energy operator ),(ˆ 21 rrO


we find as 

)0.2(),(ˆ),()ˆ()ˆ( 2121 rrOrrOJOD
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We assume that )( 11 r


, )( 22 r


 have an overlap in the real space and contain similar atom orbitals (for sample s-

waves); momenta of 21,ee  along the crystal are equal or zero. In this case )(1 r


, )(2 r


 are not orthogonal as 

orbitals of the ground state in H2-molecule or in Helium atom; hence the overlap integral )()( 21 rr


 appearing in 

Eq. (2.0) is not zero [9]. 

The potential energy of repulsion of two initially unpaired electrons ),( 21 eeP  contains only the direct term: 
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From Eq. (2.0) we find the potential energy of repulsion between two paired electrons with a symmetric overall 

position-space wave function and with antiparallel spins ),( 21 eePs
 as a sum of the direct integral (2.1) and of an 

exchange integral, which takes into account that the average distance between two paired electrons decreases [10], [11]: 
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In conducting crystals the wave functions of electrons of the upper shell fade out slowly with the distance and can cover 

many points of lattice, thus the wave functions of many electrons may overlap in a shared area in the real space, so we 

consider at first the limiting case that the densities 
2

1 )(r


and 
2

2 )(r


almost coincide in real space, i.e. 

2

2

2

1 )()( rr


, hence:  
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Below we show that the assumption 
2

2

2

1 )()( rr


is true because a maximal overlap in the real space of two 

paired wave functions is energetically favorable in comparison to the unpaired state or to a partial overlap. 

Substituting Eq. (2.3) into (2.2) and comparing the result with Eq. (2.1) we find: 
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Thus the repulsion of two paired electrons is twice as much as the repulsion of two unpaired electrons. 
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If all other kinds of the collective spin ordering are weak, then the spin of e1 is antiparallel only with e2 and is unordered 

with spins of other conduction electrons. In other words e1 cannot have the antiparallel spin with all other conduction 

electrons at the same time. Consequently the total repulsion of the paired e1 from all conduction electrons is not larger 

than the double value of the total repulsion of the unpaired e1 from all conduction electrons, i.e.: 

),(2),( 1
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eePeeP , where n is the number of all conduction electrons in the crystal.  

We designate: ),( 1

2

ks

n

k

eeP  as ),( 1 eePs
; ),( 1

2

k

n

k

eeP  as ),( 1 eeP . Thus one can write: 
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The attraction energy of the unpaired electron e1 to one-valent ions ),( 1 IeP  does not contain the exchange term: 
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Where: n  number of ions in the crystal; kr


  radius-vectors of the ions (ions assumed motionless). 

The total attraction energy to ions of two paired electrons e1, e2 with a symmetric overall position-space wave function 

and with antiparallel spins is a sum of the direct integral and of an exchange integral, which takes into account the 

modification of the initially unpaired wave functions resulting from the pairing: 
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Equations (2.7) and (2.2) are derived from Eq. (2.0); in Eq. (2.2) we handle the operator of the overall repulsion of 

21,ee ; in Eq. (2.7) we handle the operator of the overall attraction of 21,ee  to ions. 

The exchange term in Eq. (2.7) has a clear physical meaning. Consider a small area around one of ions in the overlap 

area of 21,ee  in the real space; due to the Exclusion Principle two singlet electrons are located in this small area with a 

probability higher than two electrons with parallel spins, because the electrons with parallel spins avoid each other and 

cannot be put into a small area (i.e. the probability that 21 rr


 is little). If two electrons are unpaired, then their spins 

are equiprobably parallel or antiparallel, hence the electrons avoid each other, but do it weaker than the electrons with 

parallel spins. Thus the probability to observe in this small area two unpaired electrons is larger than this probability for 

two electrons with parallel spins and smaller than this probability for a singlet. Therefore the singlet is in average closer 

to the ion than two unpaired electrons. The exchange term in Eq. (2.7) takes it into account. 

Substituting Eq. (2.3) into (2.7), using the normalization to 1 for 
2

11 )(r


and 
2

22 )(r


 [12] and comparing the result 

with Eq. (2.6) we find: 
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Thus the attraction to ions of each paired electron is twice as much as the attraction of the unpaired electron: 

 

)( IePIePs 9.2),(2),( 11  

 

The result has sense because the average distance between two paired electrons decreases, therefore the electron density 

may converge to ions since the ions are located somewhere between electrons.  

Consider that the overlap area of 21,ee  is negligible, then the exchange term in Eq. (2.7) is negligible and we obtain: 
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),(),(),( 2121 IePIePIeePs , what is physically correct since the electrons are separated in real space. In this 

case ),(),( 11 IePIePs  and there is no advantage of the singlet state. 

Using Eq. (2.5) and (2.9) we express the potential energy of the paired electron ),(),()( 111 eePIePeP sss
 

through the potential energy of the unpaired electron ),(),()( 111 eePIePeP : 
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The potential energy advantage of the pairing for one electron can be expressed from Eq. (2.10): 
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Equation (2.11) indicates: 0p  and the singlet state is favorable if the potential energy of the initially unpaired 

electron ),(),()( 111 eePIePeP  is negative. Since the crystal is usually a potential well for conduction 

electrons, )( 1eP  is negative and the singlet state is favorable. 

The kinetic energies of the unpaired electrons 1e  and 2e  are: 
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The total kinetic energy ),( 21 eeKs
 of two paired electrons with a symmetric overall position-space wave function  

contains a direct term and an exchange term, which takes into account the modification of the initially unpaired wave 

functions resulting from the pairing: 
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Equations (2.13), (2.7), (2.2) are derived from Eq. (2.0), but each equation handles its own energy operator. 

Substituting Eq. (2.3) into (2.13), using the normalization to 1 for 
2

11 )(r


and 
2

22 )(r


 and comparing the result with 

(2.12) we find: 
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Equation (2.14) means that the kinetic energy of a paired electron is twice as much as of an unpaired electron: 

 

)( eKeKs 15.2)(2)( 11
 

 

A crystal is usually a potential well for all electrons. We define that the kinetic and potential energies are zero outside of 

the crystal. Then )( 1eP  is negative. The value )( 1eK is not larger than the absolute value )( 1eP  because during 

a transition into the potential well the kinetic energy of 1e  turns partially into radiation. So one can write: 

 

)16.2(10),(),()()( 1111 beePbIePbePbeK  

 

Using Eq. (2.10), (2.15), (2.16) we can find the total energy advantage  of the pairing for one electron: 
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It is easy to show that the value  in Eq. (2.17) is not positive. If 21 a  and 10 b  and the potential energy of 

the unpaired electron ),(),()( 111 eePIePeP  is negative, then a  and b  both are positive, 

consequently  is maximal when a and b are maximal; amax = 2, bmax = 1, hence 0max . Thus 0 . 

We can prove that the energy increment  is equal to the exchange term )( 1eJ  for the electron 1e . The energy of the 

paired 1e  from Eq. (2.17) is: )()()()()( 11111 ePeKePeKeE sss
. The energy of the unpaired 1e  is 

the sum of the direct integrals applied to the kinetic and potential energy of 1e  by use of the accurate wave function 

)( 11 r


; thus )()( 11 ePeK  is the direct term )( 1eD  for 1e . Hence )()( 11 eDeEs . On the other hand 

)()()( 111 eDeJeEs , consequently )( 1eJ . 

The overall exchange term J  for both electrons 21,ee  can be found knowing the values 21,  of both electrons:  

 

)18.2(),(2),( 212121 eePeePJ  

 

The term  ),( 21 eeP  occurs because for the second electron we must correct double counting the repulsion between 

21,ee . As one would expect the energy increment  and the overall exchange term J  are related. The Eq. (2.18) 

indicates: since 0 , the value 0J , the singlet ),( 21 ee  is favorable in comparison with the unpaired state. 

If the overlap area of 21,ee  in the real space is small (i.e. integral )()( 21 rr


 is small), then all exchange terms are 

small,  is small but negative. Thus the larger the overlap, the greater the energy advantage of the pairing. 

Consequently two paired wave functions tend to a full coincidence in the real space and remain together in equilibrium. 

Thus the assumption 
2

2

2

1 )()( rr


 for Eq. (2.3) is justified. Finally two electron densities stay together because 

the singlet state with a full overlap in the real space increases their attraction to ions. 

Substituting two equal Bloch wave functions )exp()(),( rkitirutr
k


  [13] into Eq. (2.0)–(2.18) we find 

that all conclusions are valid for the electrons as running waves. However it is a rare event that the momenta k


 of 

running waves are equal. 

All conclusions from Eq. (2.0)–(2.18) are valid if before pairing each electron is a standing wave, which is a sum of 

two equiprobable Bloch waves propagating in opposite directions: 
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The momentum of an electron as standing wave is zero [14], hence the total momentum of the pair is also zero; thus the 

kinetic energy of electrons (which is usually much larger than the energy gap of superconductor) cannot split the pair. 

The pairing energy ∆ in Eq. (2.17) is a part of )( 1eP ; hence ∆ is not arbitrarily small since the potential well )( 1eP  

is not arbitrarily small. Thus the unpaired (normal) state of 1e  is instable. However the paired state of 21,ee  is 

permanent in time only if external energies (temperature, radiation, magnetic field) are weaker than ∆. 

The electron wave density in the crystal has usually a translational symmetry with a period equal to the lattice constant 

R. Hence 
2

11 )(r


 may be shifted in the real space away from 
2

22 )(r


 at a distance ln=n·R, where n is integer. The 

exchange energy of 21,ee  is related with their degree of overlap in real space, hence the minimal shift l1=R raises the 

exchange energy at a finite (not arbitrarily small) value, which can be considered as the excitation energy of the pair. 

Hence the excitation energy of the pair is also not arbitrarily small. If all external influences are weaker than this 

excitation energy, then the paired wave functions coincide in the real space permanently, therefore the spins are 

permanently coupled only with each other (as in Helium atom). Thus the pair cannot form/lose any bonds in the crystal, 

so the pair doesn’t absorb/radiate any energy; as a result the total energy and momentum of all pairs don’t dissipate. 

Thus the pairs fluctuate without resistance despite the fact that the electrons were standing waves before pairing. 
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In an external magnetic field H the crystal obtains an additional energy density 
2

05,0 Hw ; the energy of the 

singlet electrons splits. If the energy split )2( 0 HB  is smaller than the excitation energy of the pair then the pair 

fluctuates in the field H as a free particle with a charge -2e and zero spin. Consequently there are no obstacles to 

redistribute the non-dissipative fluctuations of the pairs into non-dissipative currents compensating the additional 

magnetic energy w  (Meissner effect). 

If the wave functions of two conduction electrons in the crystal (for sample two s-electrons) coincide in the real space 

and form a singlet, then the electrons are similar to the electrons in the ground state in Helium. The difference is that in 

the crystal the wave functions cover many ions and the pair can move in an external potential, since all crystal areas are 

equipotential for the pair. In the ground state of Helium the singlet state is favorable despite the fact that the repulsion 

of electrons is maximal; the increase in attraction of the singlet s-electrons to the Helium nucleus exceeds the increase 

in repulsion and in kinetic energy. The Cooper pair is stable as a valence bond in multi-atom molecules.  

If the value │∆│ in Eq. (2.17) is significantly larger than the insulating band gap of the crystal, then electrons can leave 

the valence band at the temperature cTT , hence the electrons may form the pairs despite the band gap. A doping in 

the crystal may reduce the band gap and, thus, give rise to superconductivity. This doping effect is observable in 

cuprates [15], in iron-based superconductors [16], in semiconductors [17]. 

In Eqs (2.0)-(2.18) we investigated the crystal energy terms which contain the paired electrons. The other, remaining 

unpaired, electrons don’t change their states and wave functions; hence all other crystal energy terms (containing only 

the unpaired electrons and/or ions) remain unchanged; i.e. unchanged remain the kinetic energies of single electrons, 

interactions between single electrons, between ions and between single electrons and ions. This is easy to show taking 

the many-body crystal Hamiltonian )...( 1 nrrH


 and the total crystal wave function as a product of normalized accurate 

wave functions of every single and paired electron: 

 

)20.2()()...()...()()...()()...()...()()( 3322111332211 mmssnmmss rrrrrrHrrrrcrystalE


 

 

Where: )...(),( 2211 rr ss


 normalized accurate wave functions of every paired electron; )()...( 33 mm rr


 normalized 

accurate wave functions of every unpaired electron; nrr


...1  radius-vectors of all electrons and ions. 

Thus if the pairing of some conduction electrons doesn’t modify the overall crystal structure, then the energy lowering 

of the paired electrons inevitably leads to the energy lowering of the whole crystal, the crystal radiates; the macroscopic 

state can exist. 

A necessary condition for the superconductivity in a metallic crystal is that the electrons before pairing are put closely 

on the Fermi surface in the momentum space. To show this we assume that the pairing occurs when the energy of the 

single electron has a value *E . If the thermal energy doesn’t exceed the energy │∆│ in Eq. (2.17), then the 

concentration of the pairs is not zero and in the energy spectrum of single electrons occurs a gap around the value *E . 

If *E is significantly less than the Fermi level ( FEE* ) then there are single electrons with the energy larger than 

*E . These single electrons may drop to the level *E  due to energy fluctuations and may, thus, form new pairs. The 

momentum of every paired electron as standing wave is zero, so the concentration of the paired electrons is limited by 

the Exclusion Principle; therefore the new pairs replace the already paired electrons, which lose the paired state. Thus 

each electron is not permanently paired, but it becomes periodically unpaired. During every switching of states the 

electron absorbs/loses energy, in the unpaired state it has an electrical resistance, therefore the momentum of the 

electron and of the pair dissipates. Thus the macroscopic state with FEE*  cannot be superconducting, despite the 

fact that the pairing is possible. If FEE*  then every pair may exist permanently in time, because below a certain 

temperature the single electrons cannot overcome the superconducting gap and cannot reach the pairing level FEE* ; 

as a result the new pairs don’t arise and don’t replace the existing pairs. Hence the switching of states doesn’t occur and 

the total momentum of the pairs doesn’t dissipate. Thus the superconducting pairing occurs only for single electrons in a 

thin energy gap with FE  as the upper limit. Only such permanent pairs are superconducting. 
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3. Pairing of standing waves. 

We found that the binding energy in the pair 21,ee  is maximal if the overlap integral )()( 21 rr


 is maximal, i.e. 

maximal is the degree of the spatial overlap of the wave functions of two conduction electrons. The energy gap of 

superconductors has order of magnitude 10-3 eV, the Fermi level has order of magnitude a few eV. Consequently the 

kinetic energy can split the pair. The energy of very slow electrons is usually much lower than the Fermi level; hence 

these electrons cannot form superconducting pairs. Two electrons can form a pair if their momenta are synchronous 

before pairing, but it is a rare event for running waves. The electrons as standing waves form the pair much easier than 

as running waves, because the momentum of each standing wave is zero, hence the momenta are synchronous. As 

shown in Eqs (2.0)–(2.19) the pairing of electrons as standing waves is possible due to the exchange interaction. 

A standing wave occurs as a result of reflections of a running wave from the periodic potential. The condition of the 

standing wave in a crystal is the Bragg condition [18]: 

 

 )(R     n 1.32  

 

Where: n  integer;   length of the Bloch wave )exp()(),( rkitirutr
k


 ; R   lattice constant. 

Under Bragg condition the electron becomes a set of standing waves with a zero total momentum [19].  

At n=1 in Eq. (3.1) the length of the standing wave is maximal: R21 . A crystal has some values R (depending on 

the crystal axis) and, thus, some values 1 . Each value R21  is linked to the energy RE 2 : 

)2.3(
82

)/(
2

22

1
2

mR

h

m

h
E R  

Where m is the inertial mass of electron. 

Not all materials have conduction electrons with the value R2  and with its associated RE 2 . If the Fermi level of 

a crystal is too low, then its  values are larger than R2  and its energies are lower than RE 2 . The standing waves 

don’t occur in this crystal. In some metals the value RE 2  is close to FE  (it is equivalent that RF 2 ). 

If the value R2  is in a filled conduction band and if the exchange interaction makes the pairing with antiparallel 

spins energetically favorable, then the formation of pairs is possible. Probably in some crystals the formation of pairs is 

also possible at n larger than 1 in Eq. (3.1). For sample at n=2 the length of standing waves is R2 . 

A paired electron is not identical with a single electron with R2 , because the kinetic energy of electrons in Eq. 

(2.15) increases after the pairing. Thus the paired electrons form new states, they can overlap in the real space with 

single electrons and may be excluded from the energy spectrum of single electrons; hence two single states with 

R2  in this spectrum become vacant and may be occupied by two next single electrons, which may form a new 

pair. Thus the single electrons with R2  form the pairs and the spectrum of single electrons obtains a gap around 

the value RE 2 . The gap is not negligible if the pairing is favorable (i.e. ∆ in Eq. (2.17) is negative and not small) and 

if the thermal energy is insufficient to destroy the pairs. With other things being equal the greater the energy advantage 

of the pairing, the greater the energy gap )( 12 EE  in the spectrum of single electrons ( 1E , 2E  are limits of the gap). 

As shown above a necessary condition for the superconductivity is that FE  is the upper limit of the gap: 2EEF .  

The superconducting gap is )( 1EEF , where 1E  should be below RE 2  (otherwise new pairs arise and replace the 

existing ones, energy dissipates). The concentration of the superconducting electrons sN  is limited by the energy gap: 

)3.3()(

1

dEESN
FE

E

s  

Where )(ES  is the density of states of single conduction electrons in the crystal. 

Thus the energies and states of single electrons below the gap )( 1EEF  stay unchanged as assumed for Eq. (2.20).  

The electrons (before superconducting pairing) must be close to the Fermi surface, i.e. the value RE 2  must be close to 

FE  (i.e. RF 2 ). Really, the energy gap is much less than FE ; therefore if RE 2  is significantly less than FE , 
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then the upper gap limit 2E  is also less than FE ; as shown above this case is not superconducting because the pairs are 

not permanent in time. For this reason Au, Ag, Cu (where FR EE 2  significantly [20]) are not superconductors. If 

RE 2  is significantly larger than FE , then there are no electrons with R2  and the gap doesn’t occur. For this 

reason in some structures with a low FE  a doping may raise the carrier concentration and its associated FE  up to the 

level RE 2  (which is constant, if R  and R2  don't change). Thus the doping may lead to superconductivity, Tc 

increases. If the crystal is overdoped, then FE  is too large; FR EE 2  and Tc vanishes. This doping effect explains 

the dome form of phase diagrams of superconductors [21], [22]. A double dome form is possible due to the fact that the 

crystal has two (and more) lattice constants depending on the crystal axis. Thus the large value 
RF EE 2

 reduces Tc. 

If FR EE 2  then Tc is maximal and corresponds to ∆ in Eq. (2.17). So we know about the Tc tuning: 

)4.3(0 2RFcB EEifTkC  

)5.3(2RFcB EEifTkC  

Where C is a material specific constant; Bk  is the Boltzmann constant. 

In the above consideration we would have to investigate how the value ∆ depends on the doping. But we know that 

FE  and the increment of FE  has order of magnitude of FE . So one can assume that the increment of FE  is 

much larger than the increment of ; hence Tc depends mainly on the FE  modification. 

The isotope substitution is another way to tune Tc by tuning FE  to RE 2  based on the fact that FE  depends on the 

effective mass of electrons [23], whereas RE 2  in Eq. (3.2) depends only on the lattice constant. The isotope effect is a 

consequence that the energy of phonons is proportional to M -0,5 (M - mass of ion) [24]. The decrease in M raises the 

energy of phonons; therefore the electron-ion interaction and its associated reflection of electrons may intensify. This 

intensification is equivalent to the increase in the effective mass m* and, thus, to the decrease in FE  (since FE  is 

proportional to 1/m*), whereas R2  is almost unchanged. If the initial value FE  is larger than RE 2  (it is usual 

for metals), then the decrease in M pulls FE  down to RE 2 ; hence Tc grows (the isotope coefficient α>0). If the initial 

value FE  is less than RE 2 , then the decrease in M pulls FE  down away from RE 2 ; hence Tc may vanish (α<0). 

One can conclude that in case RF EE 2  the isotope effect may be weak (│α│<0,5). Thus the different values and 

sign of α [25] are a result of the different initial positions FE  to RE 2 . 

Other ways to tune Tc by tuning FE  to RE 2  are the high pressure [26], [27]; electric field [28] since FE  depends on 

the electron concentration; film thickness [29], [30], [31] since FE  depends on the number of atom layers [32]. 

A further sample of the FE  tuning is the alkali metals (Li, Na, K, Rb, Cs, Fr). Only Lithium is superconductor at 

ambient pressure [33] and only Lithium has RE 2 =3,09 eV (calculated by Eq. (3.2), R=3,49 Å) relatively close to 

FE ≈3,2 eV [34] at ambient temperature. The next candidate in superconductors after Lithium is Cesium: RE 2 =1,33 

eV )32,52314,6( R in bcc-structure, FE ≈1,54 eV [35]; Cesium is really superconductor under high 

pressure [36]. Probably the high pressure leads to the increase in the density of ions, so m* rises and FE  drops to 

RE 2 ; therefore Tc grows both in Li and in Cs. We note that FE  and RE 2  are equally proportional to 
2R , hence 

without the modification of m* an isotropic R-reduction equally influences FE  and RE 2 . The other alkali metals are 

not superconductors and their values FE  are larger than RE 2  more significantly than in Li and in Cs. 

The described approach explains the combined isotope and high pressure effect in lithium [37]. In lithium 6 the high 

pressure and light isotope pull FE  below the level RE 2 , so Tc starts to diminish at a certain pressure p0. In lithium 7 

FE  remains above RE 2  at p0, hence the pressure continues to pull FE  down to RE 2 , Tc continues to grow. 

A perfect conductor cannot form the Cooper pairs, because its electrons pass through the lattice without reflection, the 

standing waves don’t occur in the crystal (i.e. the wave packets are unlimited in real space); Tc tends to zero.  
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Thus the binding energy ∆ in a pair should be related with the strength of the electron reflection via the electron-ion 

attraction ),( 1 IeP  in Eq. (2.17). A deeper ),( 1 IeP  leads to a deeper ∆ in Eq. (2.17) and, thus, to a stronger bond 

in the pair. On the other hand a deeper ),( 1 IeP  means a deeper potential on each ion; this deeper ion potential 

interacts/reflects conduction electrons more strongly. So the binding energy │∆│ is larger if the reflection of the 

unpaired electrons is stronger; hence Tc may also be larger but under the condition that RF EE 2  is kept. 

The described approach is consistent with the fact that the high temperature superconductors are layered structures and 

poor conductors in the normal state. In some layered structures is possible to combine two poorly compatible things: a 

large effective mass m* (related to the strong electron-ion interaction/reflection) and a large FE  (up to the value 

RE 2 ). This is because FE  in thin films is larger than in bulk [38], whereas the electron reflection and m* in plane 

remain almost unchanged. In a 3-dimensional structure is difficult to combine a large m* (> 5·m) and RF EE 2  (a 

few eV). Thus Tc in quasi 2-dimensional systems can be higher. 

 

4. Results and discussion. 

The above argumentation shows that the exchange interaction may in itself cause the formation of Cooper pairs in a 

crystal. Finally the superconductivity is a result of the Pauli Exclusion Principle.  

If the momenta of 21,ee  are not equal (i.e. 21 kk


), then )( 11 r


, )( 22 r


 are orthogonal, 0)()( 21 rr


and we 

obtain from Eqs (2.0)-(2.18) that the exchange energy J is always positive; hence the singlet state is impossible. 

The approach of the exchange energy is clearly applicable when the waves )( 11 r


, )( 22 r


 contain s-orbitals, because 

the s-waves envelop each ion and the singlet pairing leads to the convergence of electrons to the ions. In case of p-, d-, 

f-orbitals the described approach works if the orbitals envelop nearest neighbor ions. In this case the singlet pairing 

depends on the orbital orientation and on factors influencing the distance between ions (pressure, doping etc.) 

The approach of standing waves is related with the Bragg-reflection, which may form diffraction patterns in the crystal. 

This explains why the charge density order pre-exists the superconductivity in cuprates [39], [40], [41].  

The approach of standing waves is not applicable to the systems with heavy fermions, where FE  is much smaller than 

the energy RE 2 . But in this case the kinetic energy of electrons on the Fermi surface may be smaller than the binding 

energy in the pair; therefore the pair may arise and exist permanently in time what leads to the superconductivity. 
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