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Chapter 5

CONSEQUENCE OPERATORS

5.1 Basic Definitions

Recall once again the Tarski [21] cardinality independent axioms
for a finite consequence operator C:P(A) → P(A) on a nonempty set
of meaningful sentences A.

(2) If B ⊂ A, then B ⊂ C(B) ⊂ A,

(3) If B ⊂ A, then C(C(B)) = C(B),

(4) If B ⊂ A, then C(B) =
⋃
{C(F)

∣∣ F ∈ F(B)}

The modern theory of consequence operators (the term finite
dropped) alters axiom (4) and replaces it by axiom

(5). If B, D ⊂ A, if B ⊂ D then C(B) ⊂ C(D),

It is very important to state that axioms (2), (3) and (4) im-
ply axiom (5). Thus a finite consequence operator is a consequence
operator, but not conversely. All things that can be established for
consequence operators without any further axioms hold for finite con-
sequence operators. For this reasons, some of the following results
will be established for consequence operators in general. Of course,
consequence operators need not be restricted only to objects that are
considered to be language. In the theory here being developed, A can
be of two types. Either A ⊂ W or A ⊂ E. I shall, however, continue
to use Roman notation for all of the objects related to W so as to
differentiate them from the other mathematical entities. In all that
follows, the symbol C′ will denote the set of all consequence operators
defined on some specified P(A) and the symbol C′

f the set of a finite
consequence operators. Obviously, C′

f ⊂ C′, where, if no mention is
made of any other possible, it will also be assumed that each member
of C′ is defined on the same P(A).

On the sets C′ and C′
f , we can define a significant partial order.

For C1, C2 ∈ C′ let C1 ≤ C2 if C1(X) ⊂ C2(X) for each X ∈ P(A).
This partial order, I term the stronger than order. The partial order
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defined on C′
f is the restricted stronger than order.

A great deal has been discovered about algebras 〈C′,≤〉 and
〈C′

f ,≤〉. For example, one can define a compatible meet operation as
follows: For each C1, C2 ∈ C′ [resp. C′

f ], let the map C1∧C2:P(A) →
P(A) be defined by (C1 ∧ C2)(X) = C1(X) ∩ C2(X), where X ⊂ A.
Each of these algebras has the same upper unit and the same lower
unit. The lower unit is but the identity map on P(A). The upper unit
U is the map defined by U(X) = A for each X ⊂ A. These algebras
are both meet semi-lattices.

Our interest in the above two algebras is not in any deep investi-
gation into there different properties but, rather, will be restricted
two chains. In general, 〈C′,≤〉 is not closed under composition.
[24] However, for chains there is a very simple relation between the
stronger than order and composition.

Theorem 5.1.1 Let D ⊂ C′. Then D is a chain in 〈C′,≤〉 iff for
each C1,C2 ∈ D either the composition C1C2 = C1 or C2C1 = C2.

Proof. For the necessity, assume that hypothesis. Suppose that
C1 ≤ C2. Then for each X ⊂ A, X ⊂ C1(X) ⊂ C2(X) implies that
C2(X) ⊂ C2(C1(X)) ⊂ C2(C2(X)) = C2(X). Hence C2C1 = C2. In
like manner, if C2 ≤ C1.

For the sufficiency, let C2C1 = C2. Then for each X ⊂
A, C1(X) ⊂ C2(C1(X)) = (C2C1)(X) = C2(X) implies that C1 ≤ C2.
In like manner for C1C2 = C1 and this completes the proof.

5.2 Basic σ Properties

Since consequence operators are relations between sets, it be-
comes more essential to incorporate, to a certain degree, the σ op-
erator into much of our discussion. Since we wish to maintain sym-
bolic consistency and avoid trivialities, assume that nonfinite A ⊂ W.
One important result that will be used many times without further
elaboration, uses the finitary construction of the equivalence class
[f ] ∈ E. From our previous discussion, a readable sentence [f ] be-
haves as follows: ∗ [f ] = [ ∗f ] = [f ] under the identification of the
natural numbers. Now if ∅ 6= A ⊂ E, then σA = { ∗ [f ] | [f ] ∈ A} =
{[f ] | [f ] ∈ A} = A. The following result brings together various facts
relative to the σ operator all of which follow easily from the definitions
and characterizing properties. The proofs will be omitted.
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Theorem 5.2.1

(i) Let A ∈ N . Then σ(F (A)) = F (σA). If also A ⊂ (W∪E, then
σ(F (A)) = F (A).

(ii) Let C ∈ C′, B ⊂ X ⊂ W.

(a) σ(C(B)) = C(B).

(b) ∗C
∣∣ { ∗A | A ∈ P(X)} = {( ∗A, ∗B) | (A,B) ∈ C} = σC.

(c) If F ∈ F(B), then σ(C(F)) ⊂ (σC)(σF) = (σC)(F).
Also σ(C(B)) ⊂ (σC)( ∗B) and, in general, σ(C(B)) 6=
(σC)( ∗B), σ(C(F)) 6= (σC)(F ).

(d) If C ∈ C′
f , then σ(C(B)) =

⋃
{σ(C(F)) | F ∈ σ(F (B))} =⋃

{σ(C(F)) | F ∈ F (σB)} =
⋃
{C(F) | F ∈ F (B)}.

(A duplicate theorem holds, where A ∈ N and C ∈ C, where C
set of consequence operators defined on subsets of W if W is included
as a subset of the ground set. The difference is that the “bold” notion
does not appear.)

Throughout the reminder of this section, in order to escape
trivialities, we remove the upper unit U from the collections of con-
sequence operators. Let C = C′ − {U} and Cf = C′

f − {U}. One of
the consequences of this last requirement shows that if D ∈ N sat-
isfies the axioms for a consequence operator and G ⊂ C, then there
does not exist a consequence operator C ∈ ∗G such that σD = C.
To see this simply note that from Theorem 5.2.1 σD is defined on
extended standard sets while each member of ∗G is defined on the
internal subsets of A. Since A is not finite, there exists internal sub-
sets of A that are not equal to any extended standard set. There is
also one useful general fact. Consider any sets A,B ∈ N such
that A ⊂ B. Then ∗A− σA ⊂ ∗B − σB. For suppose that there exists
some X ∈ ( ∗A − σA) such that X ∈ σB. Then X = ∗D for some
D ∈ B. Thus ∗D ∈ ∗A implies that D ∈ A. From this, we have the
contradiction that X = ∗D ∈ σA. Also note that there does not exist
D ∈ N such that ∗D ∈ ( ∗B − σB) (i.e. each member of ( ∗B − σB) is
an internal pure nonstandard object or a pure subtle object.)

5.3 Major Results

For the algebras 〈C,≤〉 and 〈Cf ,≤〉 two types of chains will be
studied. Denote by K any nonempty chain contained in either of
these algebras and by K∞ a chain with the following property. For
each C ∈ K∞ there exists C′ ∈ K∞ such that C < C′.
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Theorem 5.3.1 There exists C0 ∈ ∗K such that for each
C ∈ K, ∗C ≤ C0. There exists some C∞ ∈ ∗K∞ such that C∞ is a
purely subtle consequence operator and for each C ∈ K∞, ∗C < C∞.
Each member of ∗K and ∗K∞ are subtle consequence operators.

Proof. Let R = {(x, y) | (x ∈ K) ∧ (y ∈ K) ∧ (x ≤ y)} and
R∞ = {(x, y) | (x ∈ K∞)∧(y ∈ K∞)∧(x < y)}. In the usual manner,
it follows that R is concurrent on K and R∞ is concurrent on K∞.
Consequently, there is some C0 ∈ ∗K and some C∞ ∈ ∗K∞ such
that for each C ∈ K and each C′ ∈ K, ∗C ≤ C0,

∗C′ < C∞ since
∗M is an enlargement. Further, it follows that C∞ ∈ ∗K∞ − σK∞

implies that C∞ is a purely subtle consequence operator. Note that
each member of ∗K∪ ∗K∞ is defined on the set of all internal subsets
of ∗A. This completes our proof.

Notice that C∞ is stronger than or “more powerful than” any
C ∈ K∞ in the following sense. If B ⊂ A, then for each C ∈ K∞, it
follows that C(B) ⊂ ∗(C(B)) = ∗C( ∗B) ⊂ C∞( ∗B). Also for each
C ∈ K∞ there exists some internal EC ⊂ ∗A and ∗C(EC)⊂6=C∞(EC).

Recall that for C ∈ C, a set B ⊂ A is a C-deductive system if C(B) = B.
Also, when we write the *-operator on any map f in the form ∗f(x)
this always means ( ∗f)(x) rather than ∗(f(x)).

Theorem 5.3.2 Let C ∈ Cf and B ⊂ A ⊂ W. Then there
exists a *-finite F ∈ ∗(F (B)) = ∗F ( ∗B) such that C(B) ⊂ ∗C(F ) ⊂
∗C( ∗B) = ∗(C(B)) and ∗C(F ) ∩ A = C(B) = ∗C(F ) ∩ C(B).

Proof. Consider the binary relation Q = {(x, y) | (x ∈ C(B)) ∧
(y ∈ F (B)) ∧ (x ∈ C(y))}. By axiom (4), the domain of Q is C(B).
Let (x1, y1), . . . , (xn, yn) ∈ Q. By Theorem 1 in [5, p. 64] (i.e. axiom
(5)) we have that C(y1)∪· · ·∪C(yn) ⊂ C(y1∪· · ·∪yn). Since F = y1∪
· · · ∪ yn ∈ F (B), then (x1, F ), . . . , (xn, F ) ∈ Q. Thus Q is concurrent
on C(B). Hence there is some F ∈ ∗(F (B)) such that σ(C(B)) =
C(B) ⊂ ∗C(F ) ⊂ ∗C( ∗B) = ∗(C(B)). Since σA = A, ∗C(F )∩A =
C(B) = ∗C(F ) ∩C(B).

Corollary 5.3.2.1 If C ∈ Cf and B ⊂ A ⊂ W is a C-deductive
system, then there exists a *-finite F ⊂ ∗B such that ∗C(F )∩A = B.

Corollary 5.3.2.2 Let C ∈ Cf . Then there exists a *- finite
F ⊂ ∗A such that for each B ⊂ A, ∗C(F) ∩B = B.

Proof. In Theorem 5.3.2, let the “B” be equal to A. Then there
exists some *-finite F ⊂ ∗A such that ∗C(F ) ∩ A = C(A) = A.
Thus ∗C(F ) ∩ A ∩B = ∗C(F ) ∩ B = A ∩B = B.
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Theorem 5.3.3 Let B ⊂ A ⊂ W.

(i) There exists a *-finite FB ∈ ∗(F (B)) and a subtle consequence
operator CB ∈ ∗K such that for all C ∈ K, σ(C(B)) = C(B) ⊂
CB(FB).

(ii) There exists a purely subtle consequence operator C∞
B ∈

∗K∞ such that for all C ∈ K∞, σ(C(B)) = C(B) ⊂ C∞
B (FB).

Proof. (i) Consider the binary relation Q = {((x, z), (y,w)) |
(x ∈ K) ∧ (y ∈ K) ∧ (w ∈ F (B)) ∧ (z ∈ x(w)) ∧ (x(w) ⊂
y(w))}. Let nonempty {((x1, z1), (y1 , w1)), . . . , ((xn , zn), (yn , wn))} ⊂
Q. Notice that F = w1 ∪ · · · ∪ wn ∈ F (B) and the set R =
{x1, . . . , xn} has a largest member D with respect to the E em-
bedded ≤ ordering for the consequence operators. It follows
that zi ∈ xi(wi) ⊂ xi(F ) ⊂ D(F ) for each i = 1, . . . , n.
Hence {((x1, z1), (D,F )), . . . , ((xn, zn), (D,F ))} ⊂ Q implies that
Q is concurrent on its domain. Consequently, there exists some
(CB , FB) ∈ ∗K × ∗(F (B)) such that for each (x, z) ∈ domain of
Q, ( ∗(x, z), (CB , FB)) ∈ ∗Q. Therefore, each (u, v) ∈ σ(domain of
Q), ((u, v), (CB , FB)) ∈ ∗Q. Let arbitrary C ∈ K and b ∈ C(B).
Then there exists some F ′ ∈ F (B) such that b ∈ C(F′). Thus
( ∗C, ∗b) ∈ σ(domain of Q). Consequently, for each C ∈ K and
b ∈ C(B), b = ∗b ∈ ∗C(FB) ⊂ CB(FB). This all implies that for
each C ∈ K, σ(C(B)) = C(B) ⊂ CB(FB).

(ii) Change the relation Q to Q′ be adding the additional re-
quirement to Q that x 6= y. Replace the D in (i) with any D′ that is
greater than and not equal to the largest member of R. Such a D′

exists in K∞ from the definition of K∞. Continue the proof in the
same manner as in (i) to obtain C∞

B and FB. The fact that C∞
B is a

purely subtle consequence operator follows as in the proof of Theorem
5.3.

Corollary 5.3.3.1 There exists a [resp. purely] subtle conse-
quence operator CA ∈ ∗K [resp. ∗K∞ ] and a *-finite FA ∈ ∗(F (A))
such that for all C ∈ K [resp. K∞ ] and each B ⊂ A, B ⊂ C(B) ⊂
CA(FA).

Proof. Simply let the “B” in Theorem 5.3.3 be equal to A. Then
there exists a [resp. purely] subtle CA ∈ ∗K [resp. ∗K∞] such that
for all C ∈ K [resp. K∞], C(A) ⊂ CA(FA). If B ⊂ A and C ∈ K
[resp. K∞], then B ⊂ C(B) ⊂ C(A). Thus for each B ⊂ A and C ∈ K
[resp. K∞], B ⊂ C(B) ⊂ CA(FA) and this completes the proof.

Relative to the above results, it is well known that for B ⊂ A
that there exists a *-finite F1 ⊂ ∗B such that B ⊂ F1 ⊂ ∗B. Thus
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for any C ∈ C it follows that B ⊂ C(B) ⊂ ∗C(F1) ⊂ ∗C( ∗B). One
significance of the above results is that the C∞

B is purely subtle and,
thus, not the same as any extended standard consequence operator.

5.4 Applications

In what follows, let denumerable L be a language constructed
from a denumerable set of primitive symbols {Pi | i ∈ ω}. As to the
construction of L it is, at least, constructed from the binary operation
→ . Deduction over L is defined in the usual sense. Only finitely many
steps are allowed, and if any axiom schema are used, then they do not
yield statements of the form Pi or Pi → Pj, i 6= j. Further, deduc-
tion from premises is also allowed. There are many examples of such
languages. Propositional languages with denumerably many atoms.
Indeed, in a predicate language with, at least, one predicate the list
of all predicates can be considered the set of primitives from which L
is constructed. Of course, simple natural languages are isomorphic to
L in the usual sense. There will be one modification, however. The
modification is in a rule of inference. Define the MPn, n ∈ ω rule of
inference on L as follows:

If two previous steps of a demonstration (or proof)
are of the form A, A → B where for each Pi in the
primitive expansions of A, A → B, i ≤ n, then the
formula B may be written down as the next step. No
other type of MP rule is used.

Given a set of hypothesesH ⊂ L and X ∈ L, denote by the symbol
H⊢n X this deductive process. It is immediate that ⊢n determines a
finitary consequence operator Cn on P(L). Suppose that ⊢ deduction
on P(L) has all of the above properties with the exception that the
MP rule of inference is the ordinary modus ponens in unrestricted
form. Let S0 denote the consequence operator determined by ⊢ .

It is a simple matter to show that for any B ⊂ L, S0(B) =⋃
{Cn(B) | n ∈ ω}. Let B ⊂ L. Suppose that X ∈ S0(B). Then B ⊢ X.

Now in the formal proof of this fact when all of the formula are written
in primitive form there is a maximum Pi subscript, say m ∈ ω. It
follows immediately that the same steps yield a formal proof that
B ⊢m X using the MPm in place of any MP step that appears in the
⊢ formal proof. Thus X ∈

⋃
{Cn(B) | n ∈ ω}. Clearly, if B ⊢n X, then

B ⊢ X. This implies S0(B) =
⋃
{Cn(B) | n ∈ ω}. Another interesting

result is that if B is an S0-deductive system, then S0(B) =
⋃
{Cn(B) |

n ∈ ω} = B implies that for each n ∈ ω, Cn(B) = B. Thus B is also a
Cn-deductive system.
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Let n, m ∈ ω, n ≤ m, B ⊂ L. Suppose that X ∈ Cn(B). If
there are any MPn steps in the formal proof, then these steps can
also be obtained by application of MPm. On the other hand, if no
steps were obtained by the MPn rule, then the exact same steps yield
a formal proof that B ⊢m X. From this we have that for each B ⊂
L, Cn(B) ⊂ Cm(B). Hence, Cn ≤ Cm. Therefore, {Cn | n ∈ ω} is a
chain of consequence operators.

Now to show that this chain is of type K∞. Let n < m and let B =
{Pn,Pn → Pm}. First, no member of B can be obtained as an instance
of an axiom. Further, it cannot be the case that B ⊢n Pm for MPn

does not apply to Pn → Pm or, indeed, any formula containing Pm.
Therefore, Pm /∈ Cn(B). Obviously, Pm ∈ Cm(B). Hence, Cn(B) 6=
Cm(B) implies that Cn < Cm. Thus this chain is of type K∞. Further,
note that Pm ∈ S0(B). Thus for each C ∈ {Cn | n ∈ ω} there exists
some B ⊂ L such that C(B) 6= S0(B) and, clearly C ≤ S0. Hence, in
general, C < S0 for all C ∈ {Cn | n ∈ ω}.

Theorem 5.4.1 Let L and K∞ = {Cn | n ∈ ω} be defined
as above. Then there exists a purely subtle consequence operator
C∞ ∈ ∗K∞ and a *-finite F ∈ ∗(F (L)) such that for each B ⊂ L and
each C ∈ K∞

(i) C(B) ⊂ C∞(F ),

(ii) S0(B) ⊂ C∞(F ) ⊂ ∗S0(F ) ⊂ ∗S0( ∗L),

(iii) ∗S0(F ) ∩ L = C∞(F ) ∩ L.

Proof. (i) is but Corollary 5.3.3.1. From (i), it follows that⋃
{σ(C(B)) | C ∈ K∞} =

⋃
{(C(B)) | C ∈ K∞} = S0(B) =

σ(S0(B)) ⊂ C∞(F ) and the first part of (ii) holds. By *-transfer
C∞ < ∗S0 and C∞ and ∗S0 are defined on all internal subsets of
∗L. Hence, C∞(F ) ⊂ ∗S0(F ) ⊂ ∗S0( ∗L) and this completes (ii).
(iii) follows immediately from (ii) and this completes the proof.

For this application, let L be a predicate type language and M any
set-theoretic structure in which the predicates and constants are in-
terpreted in the usual manner. A finite consequence operator defined
on P(L) is sound for M if whenever B ∈ P(L) has the property that
M |= B, then M |= C(B). As usual, T(M) = {x | (x ∈ L) ∧ (M |= x)}.
Obviously, if C is sound for M, then T(M) is a C-deductive system.

Corollary 5.3.2.2 implies that there exists *-finite F ∈ ∗(T(M))
such that ∗C(F ) ∩ L = T(M). Notice that F being *-finite implies
that F is *-recursive. Moreover, F is a *-axiom system for ∗C(F )
and we do not lack knowledge about the behavior of F since any
formal property about C or recursive sets, among others, must hold
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true for ∗C or F when properly interpreted. If L is a first-order
language with at least one predicate, then its associated consequence
operator S1 is sound for first-order structures. Theorem 5.4.1 not
only yields a *-finite F1 but a purely subtle consequence operator
C1 such that F1 is a *-axiom system for C1(F1) and ∗S1(F1). In
this case, we have that ∗S1(F1) ∩ L = T(M) = C1(F1) ∩ L. As
strange as it may appear, by use of internal and external objects, the
nonstandard logics { ∗C, ∗L}, {C1,

∗L}, { ∗S1, ∗L} technically by-
pass a portion of Gödel’s first incompleteness theorem. Of course, this
incompleteness theorem still holds under an internal interpretation.

By definition b ∈ S0(B),B ⊂ L iff there is a finite length proof of b
from the premises B. Thus for each b ∈ ∗(T(M)) there exists a *-finite
length proof of b from the *-finite F1. If we let ∗M be an enlargement
with the ℵ1-isomorphism property, among others, then each *-finite
length proof is either externally finite or externally infinite. Further,
all externally infinite proof lengths would be of the same cardinality.

{Remark: Using the customary notation in this chapter, the re-
lation ≤ has not been starred in ∗N . If this omission is confusing,
the * can be easily inserted. When these two different order relations
are compared, the * notation becomes necessary. For example, the
relation ∗≤ in ∗N is NOT an extension, in the usual sense, of the
relation ≤ as defined in N , although it is an extension of σ ≤ . Also
notice that if we had restricted our attention to Cf , then the partial
order ≤ is characterized totally by the finite subsets of A. This is
useful since that ∗≤ is characterized by the *-finite subsets of ∗A.
It’s clear that our concept of a consequence-type operator must be
generalized slightly. Let B and B0 be two families of sets. Then if
f :B → B0 satisfies axioms (2)(3)(4) or (2)(3)(5) or the *-transform of
these axiom systems, then f is a subtle consequence operator. I also
point out that, unfortunately, there are many typographical errors in
reference [24].
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Chapter 6

ASSOCIATED MATERIAL

6.1 Perception

In this section, the theory of ultralogics is applied to one aspect
of subliminal perception. What is needed is an interpretation scheme.
When subsets of ∗E are concerned the conscious objects are subsets
[resp. elements of] σE = E. The subconscious objects are nonstandard
internal subsets [resp. elements of] ∗E. Moreover, subconscious objects
can contain conscious objects and the union of a subconscious set
and a finite conscious set is a subconscious set. The unconscious
objects are external nonstandard subsets of ∗E. Like definitions apply
to members of ∗E × ∗E and so forth. In what follows, only strong
reasoning from the perfect is considered. You may assume that it is
defined on a natural language “very,|||” or a formal language “V∧”
and the like.

As to some sort of interpretation procedure the following seems
adequate. Let ⌈ ⌉ denote an interpretation symbol. First, we have
subperception and the better than ordering. Let A ⊂ ∗E be one of the
above defined objects in the domain of ∗Π. Let internal D ⊂ ∗Π(A)
and standard σE ⊂ ∗Π(A). Assume that σE ≤B D and that each
member of i−1[E] is a sentence which is distinctly comparable by the
“very,|||” symbol string. [Note I am not differentiating between the
object and a constant representing that object.] One might interpret
the following: ⌈∀x((x ∈ σE) → ∃y((y ∈ D) ∧ (x ≤B y)))⌉ : “You
are (I am, we are, etc) subperceptibly aware that for each conscious
(known) object (element, member) of (in) ⌈σE⌉ there exists an object
(element, member) of (in) ⌈D⌉ which is better than that conscious
object of (in) ⌈σE⌉. ”

Let a ∈ σE. Then: ⌈∃y((y ∈ D)∧(a ≤B y))⌉ : “You are (I am, we
are) subperceptibly aware that there exists a conscious (known) object
(element, member) of (in) ⌈D⌉ which is better than ⌈a⌉.” Note that
a = [f0] ∈ BP and ⌈a⌉ = i−1(f0(0)). Another example is ⌈σE ≤B D⌉ :
“You are (I am, we are) subperceptibly aware that ⌈D⌉ is better than
⌈σE⌉. ”

For another example, let σF ⊂ ∗Π(A). Then ⌈(|σE| < |σF |) ∧
(σE ≤B D)∧ (σF ≤B D)⌉ : “The result that ⌈D⌉ is better than ⌈σF ⌉
is a stronger subperceptible property than ⌈D⌉ is better than ⌈σE⌉.”

We also have the idea of general subperception. In this case,
we use some of the meaningful set-theoretic terminology. Let internal
nonstandard A, B ⊂ ∗BP. Now any elementary set-theoretic relation
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existing between A and B can be subperceptibly interpreted as ⌈A ⊂
B⌉ : “You are (I am, we are) subperceptible aware of the following:
⌈A⌉ is contained in ⌈B⌉. ” Also you might interpret relations between
standard objects as a complete awareness.

6.2 Existence

Some philosophers of science differentiate between theoretical en-
tities and those that are assumed to exist in objective reality. In
the original work in ultralogics, these two concepts were disjointly
modeled. This was done as follows: Consider σ[f0] = [f0] ∈ ∗E to
be the unique partial sequence with the property that i−1(f0(0)) =
externally|||exists|||in|||reality = ⌈[f0]⌉. For A ⊂ ∗BP, let (A)R =
{(x, [f0 ]) | x ∈ A}. Then for any E ⊂ ∗BP, define RR(E,A) =
{(x, y) | (x ∈ E) ∧ (y ∈ (A)R} to be the realism relation. These def-
initions are then extended to ∗BP × ∗BP in such a manner that
(A)R × (B)R is considered to be isomorphic to (A × B)R. I now
believe that this is a waste of effort. The difference lies in the in-
terpretation and not in the mathematical structure. Thus, under
the interpretation, if one wishes to differentiate between these two
concepts, one simply includes “existence in objective reality” as a part
of the interpretation for some entities and the statement “theoretical
entities” for other distinct entities.

6.3 An Alternate Approach

What is presented in this section is mainly of historical interest al-
though this author’s first research into nonstandard analysis used this
alternate approach. This approach utilizes a pseudo-set theory and
has essentially been replaced by the superstructure approach. Some
years ago, certain applications employ this alternate approach due to
its use of a basic language that is somewhat more expressive than
the ∈,= language. However, what might be gained in an additional
freedom of expression will lead to a more complex array of extensions,
definitions and the requirement that extreme care be exercised.

All of our constructions are within ZFC. We utilize the transi-
tive closure operator, denoted by TC. Let V be a set. (Note: This
definition also applies to atoms and sets containing atoms.) The tran-
sitive closure of V is obtained by an inductive construction using the
union operation. Let V0 = V and for each i ∈ IN, let Vi+1 = ∪Vi.
Then the transitive set TC(V ) =

⋃
{Vi | i ∈ IN}. The set TC(V ) for

a set V has the property that if W is another transitive set such
that V ⊂ W, then V ⊂ TC(V ) ⊂ W. Define the superstructure
operator, denoted by SS, on V as SS(V ) =

⋃
{Ui | i ∈ IN}, where
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U0 = V, Ui+1 = Ui ∪P(Ui), i ∈ IN. Recall that this is the first type of
superstructure defined in Chapter 2. To correspond to our previous
investigation, let V = W ∪ IN and N1 = SS(TC(V )). (If V is a set of
individuals TC(V ) = V.) Let the structure M1 = 〈N1,∈,=, ap,pr〉,
where ∈, = are the usual set-theoretic membership and set equality
relations restricted to N1 and ap, pr are two ternary relations, the
“applying a function to its argument” and “ordered pair creation”,
respectively. (Of course, =, ap, pr can all be defined in terms of ∈ . )
Notice that M1 is a fragment of our ZFC model.

Consider a κ-adequate ultrafilter, where κ > |N1|. By Theorem
7.5.2 in [19] or 1.5.1 in [9], such an ultrafilter U exists in our ZFC
model and is determined by the indexing set J = F (P(κ)). By the
ultrapower or ultralimit construction, a first-order structure M2 =
(N J ,∈U ,=U , apU ,prU ) is obtained of the same type as is M1 but
M2 is a nonstandard model for the set of all sentences, K0, in our
first-order language L, with predicates ∈,=, ap, pr which hold in M1.
(Theorem 3.8.3 in [19]) Note that the cardinality of the set of constants
in L ≥ |M1|. Further, the members in N J are interpreted by constants
in an extended language L′. By the axioms of our ZFC set-theory, the
relation “=” is an equivalence relation with substitution for ∈, ap, pr
and, hence, =U has these properties for ∈U , apU ,prU . Consequently,
we shift the structure M2 (i. e. contract it) [13, p. 83] and obtain
a structure ′M = 〈′N1, ǫ,=, ′ap,′ pr〉, where = is the original equality
in our ZFC model. Note that members of ′N are still interpreted
by constants in L′ as before. [In [4] and [11], a structure isomorphic
to ′M is obtained by application of the compactness theorem for a
first-order language.]

We next isomorphicly embed M1 into ′M in the same manner
as outlined in [4, p. 22]. However, please notice that the following
notation differs from that used in this reference. First, let I be the
the original interpretation map from L onto M1 and let ′I by the
composition of the extended ultrapower interpretation map and the
contraction interpretation map restricted to the constants in L.

Now for each “a” that is a constant in L, define σ(I(a)) = ′I(a) ∈
′N . Assume that a, b are constants in L that represent the same
element and consider the well-formed formula (a = b). Then M1 |=
(a = b) iff ′M |= (a = b) implies that σ(I(a)) = σ(I(b)). Thus
the map σ is well-defined. Again let a, b be constants in L. Then
M1 |= ¬(a = b) iff ′M |= ¬(a = b) implies that σ(I(a)) 6= σ(I(b)) iff
I(a) 6= I(b). Thus σ is injective. It is immediately clear that M1 |=
(a ∈ b) iff ′M |= (a ∈ b) implies that I(a) ∈ I(b) iff σ(I(a)) ǫ σ(I(b))
and, in like manner, for the relations “ap” and “pr”. Consequently,
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σ is an isomorphic embedding of M1 into ′M. For convenience in all
that follows, we suppress the interpretation map notation and simply
use the constants of the language L (and the extended language L′)
to represent members in N = {x | ∃a(a ∈ L)∧ (σ(I(a)) = ′I(a))∧ (x =
′I(a))}. Of course,N ⊂ ′N andM1 is isomorphic to M = 〈N , (ǫ)/σ,=
, (′ap)/σ, (′pr)/σ〉. [Note: (ǫ)/σ is the relation restricted to members
of N , etc.]

Now to continue this construction. First, by Theorem 1.5.2 in
[9], ′M is an enlargement. For each p ∈ ′N , let ∗p = {x | (x ∈ ′N ) ∧
(x ǫ p)} and ∗N = { ∗p | p ∈ ′N}. Notationally, let ∗∗N = ′N∪N1∪ ∗N
and define 0N = SS(TC( ∗∗N )). Obviously, N ∪ N1 ∪ ′N ∪ ∗N ∪
∗∗N ⊂ TC( ∗∗N ). Since TC( ∗∗N ) is a member of SS(TC( ∗∗N )), then
this implies, by Theorem 2.6 (iii) [4], that N ,N1,

′N , ∗N , ∗∗N ∈ 0N .
Finally, applying Theorem 2.6 (ii) and 2.10 in [4] to the transitive set
0N , one obtains that 0N is closed under finite power set iteration and
finite Cartesian products. The structure 0M = 〈0N ,∈,=, ap,pr〉 that
is a fragment of our ZFC model is the G-structure in this alternative
approach.

The model 0M contains all of the set-theoretic objects needed for
this investigation. The fact that we are only interested in semantic
consistency allows us to consider all of the structure M as the stan-
dard model in which sentences from L are interpreted and ′M the
nonstandard model for sentences from L. Of course, we can always
return to M1 by application of σ−1.

There is one important notational convention that is continually
employed. The σ map is suppressed when considering members of N .
That is to say that for each constant a ∈ L, σ(I(a)) = ′I(a) = a. The
use of M can be made more efficient since there should be no great
difficulty if you consider (ǫ)/σ, (′pr)/σ, (′ap)/σ to be the same as the
ZFC model relations ∈, ap,pr for there is no first-order differences
between these structures.

The fact that we are actually working with the restricted
ǫ, ′ap, ′pr can be determined by the additional result that the only
objects to which the restriction of these relations apply are members
of N . The only other objects to which nonrestricted ǫ, ′ap, ′pr apply
are elements of ′N that are not members of N . The actual ∈, ap,pr are
used in all other contexts such as the following important definition as
previously stated. For each A ∈ ′N , ∗A = {(x ∈ ′N )∧ (x ǫ A)}. This
is the beginning of certain technical features for this model. What
is significant as we define some of these technical terms is that all of
the objects within this and other nonstandard investigations are set-
theoretic members of 0M and, of course, 0M is in our ZFC model.
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Rather than force the reader to seek out references [4] or [11],
I reproduce here the more significant definitions required to relate
many of our results to the ∈, ap,pr operations within the structure
0M. Let p ∈ ′N . If p /∈ N , then p is called a nonstandard object or
entity. If p ∈ N , then p is called a standard object. If S ⊂ ∗P and
there exists some Q ∈ ′N such that S = ∗Q, then S is called an
internal object or set. Observe that P ∈ ′N that is not a ′atom is an
internal subset of itself. Also it is often the case that each element of
∗P is called internal for if P ∈ ′N , then there exists some Xn such
that P ǫ Xn and Xn is ′-transitive. Thus if p ǫ P, then p ǫ Xn implies
that p ∈ ′N . Intuitively internal means that there exists a symbolic
name in L′ for the object that generates, under the given definitions,
the second corresponding object.

This generation of the second corresponding object is of a special
nature. Let f ∈ ′N be an ′n-ary relation where n > 1. Thus f satisfies
in L′ the appropriate sentence that defines such a object. Extend f in
the following manner. Let f⋆ = {(a1, . . . , an) | (a1 ∈ ′N )∧· · · ∧ (an ∈
′N ) ∧ ((a1

′pr · · · ′pr an) ǫ f)}. In general, ∗f 6= f⋆. For the many
properties associated with this definition, refer to references [4] [11]. I
note that in [4] one of the important properties for such an extension
of f relative to the i’th projection [Theorem 4.5 (vii)] is stated on
one side of the equation incorrectly. However, the proof goes through
correctly and one should correct the statement of that small portion
of the theorem to show that the i’th projection of the n-ary relation
f⋆ = ∗(of the i’th projection of f). [Note: there are two theorems in
[4] that are proved incorrectly, even though the theorem statement is
correct. The proofs were corrected when these results were published.]
Any n-ary relation that is produced by an extension that has the ⋆ on
the right is called an internal n-ary relation. Notice that what this
actually means is that there is a name for the ′n-ary relation in the
extended language L′.

Our major interest and application for this model will be confined
to objects in E as well as in ∗E − E, and a fixed power set iteration
or Cartesian products of these objects. The use of the *-ing process
is different in this model than it is in the model utilized in the previ-
ous sections of this chapter and previous chapters of this book. For
example, it is important to realize that the set f ∈ E is a finite set
of functions. Thus ∀x(x ∈ [f ] ↔ (x = a1) ∨ . . . ∨ (x = an)) holds in
M. Therefore, ∀x(x ∈ ∗ [f ] ↔ (x = a1) ∨ . . . ∨ (x = an)) implies that
∗ [f ] = [f ] and [f ] is internal. Observe that the symbols a1, . . . , an do
not carry the * notation as would be necessary, prior to our identifi-
cation process, in the previous sections of this chapter and previous



60 The Theory of Ultralogics

chapters. Further, each g ∈ [f ] is a finite set of ordered pairs, as
previously. Thus ∗g = g and g is internal.

Even though the above property seems to be a nice property,
the nonstarring of standard objects, it turns out that the partition
concept must be handled differently. Indeed, Theorem 3.2.3 is not
true in this model. If A, B ∈ N and B is a partition of A, then
∗B is not a partition of ∗A. What is needed is to consider the set
D = { ∗x | x ∈ ∗B}. The D is a partition for ∗A, but D is not in
general an internal set. On the other hand, each element of ∗B is an
internal set as is each finite subset. It is interesting to note that we
require a different extension definition for the consequence operators
when 0M.

Let C :P(A) → P(B) be a standard set-valued map. One must
be more careful with the extensions of such set-valued maps than the
other maps since the types of objects contained in the ordered pairs
are of significance. Observe that C⋆ is composed of ordinary ordered
pairs of ′sets and as such these sets are in 0M and contain ′elements.
However, these sets may also contain ordinary elements as well. As-
sume that (P,Q) ∈ C⋆, and that P, Q are not finite standard sets,
then (P,Q) 6= ( ∗P, ∗Q). Consequently, in general, a map such as C
can be extended to a map ∗C = {( ∗P, ∗Q) | (P,Q) ∈ C⋆}. In this case,
∗P, ∗Q contain only ′elements from P and Q. This different interpre-
tation occurs because the “starring” process in the first model used in
this analysis is distinct from the “starring” process as employed with
respect to 0M. In fact, the * process in the first model is a renam-
ing of the standard language objects as they are interpreted within
that model and is a member of the extended language L′. The other
members of L′ are restricted to internal members of our model.

More importantly, with the first model all of the relations
ǫ, ′pr, ′ap have been replaced by the ordinary ∈, pr ap within the
ZFH model and the standard model has been embedded into the
structure that what would have been the ǫ, ′pr, ′ap defined objects
denoted by members of L are so altered that they become the orig-
inal relations restricted to entities that are isomorphicly related to
the original standard objects. One can say that the first model alters
the objects with a “minimal” language change. This alternate ap-
proach requires a much larger language change but is more expressive
in character.

The above extension processes lead to three distinct objects
∗C, C⋆ and ∗C within 0M. If C :P(A) → P(B) is a consequence
operator, then C⋆ and ∗C are interesting but distinct member of 0M.
They both satisfy (extended) Tarski type axioms. If we were to con-



61

tinue this development, then the map ∗C appears to be the most
appropriate for such an investigation. However, ∗C is, in general, an
external object. It does not satisfy the internal defining method for
′n-ary relations that requires the variables to vary over ′N . Observe
that ∗C is defined for all of the internal subsets (within 0M) of ∗A.
With respect to the first model, ∗C is restricted to its internal subsets
of ∗A as well. Now C⋆ is an internal map in 0M that is defined on
“internal entities” that are ′subsets of A and it yields ′subsets of B
which, when viewed from the structure 0M, could contain many non-
′elements. Notice that we cannot obtain any information about these
other objects by simply transferring, by the *-transfer method, infor-
mation from the standard model. These objects could be investigated
by a more careful analysis of the exact construction of 0M.

The definition of the “standard restriction” for 0M would depend
upon which type of extension ∗C, C⋆, or ∗C is used. It is clear that
all of this as well as the appropriate definitions for human, subtle and
purely subtle entities can be successfully accomplished.
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Chapter 7

DEVELOPMENTAL PARADIGMS

7.1 Introduction.

Consider the real line. If you believe that time is the ordinary
continuum, then the entire real line can be your time line. Otherwise,
you may consider only a subset of the real line as a time line. In the
original version of this section, the time concept for the MA-model was
presented in a unnecessarily complex form. As shown in [3], one can
assume an absolute substratum time within the NSP-world. It is the
infinitesimal light-clock time measures that may be altered by physical
processes. In my view, the theory of quantum electrodynamics would
not exist without such a NSP-world time concept.

Consider a small interval [a, b), a < b as our basic time interval
where as the real numbers increase the time is intuitively considered to
be increasing. In the following approach, one may apply the concept
of the persistence of mental version relative to descriptions for the
behavior of a Natural system at a moment of time within this interval.
An exceptionally small subinterval can be chosen within [a, b) as a
maximum subinterval length = M. “Time” and the size of a “time”
interval as they are used in this and the following sections refer to
an intuitive concept used to aid in comprehending the notation of
an event sequence - an event ordering concept. First, let a = t0.
Then choose t1 such that a < t1 < b. There is a partition t1, . . . , tm
of [a, b) such that t0 < t1 < · · · < tm < b and tj+1 − tj ≤ M.
The final subinterval [tm, b) is now separated, by induction, say be
taking midpoints, into an increasing sequence of times {tq} such that
tm < tq < b for each q and limq→∞ tq = b.

Assume the prototype [a, b) with the time subintervals as defined
above. Let [tj , tj+1) be any of the time subintervals in [a, b). For each
such subinterval, let Wi denote the readable sentence

This|||frozen|||segment|||gives|||a|||description|||for|||the|||

time|||interval|||that|||has|||as|||its|||leftmost|||endpoint|||the

|||time|||⌈ti⌉|||that|||corresponds|||to|||the|||natural|||number|||i.

Let Ti = {xWi | x ∈ W}. The set Ti is called a totality and each
member of any such Ti is called a frozen segment. Notice that since
the empty word is not a member of W, then the cardinality of each
member of Ti is greater than that of Wi. Each Ti is a (Dedekind)
denumerable set, and if i 6= j, then Ti ∩ Tj = ∅. (See note [1] on p.
82.)

I point out two minor aspects of the above constructions. First,
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within certain descriptions there are often “symbols” used for
real, complex, natural numbers etc. These objects also exist as ab-
stract objects within the structure M. No inconsistent interpretations
should occur when these objects are specifically modeled within M
since to my knowledge all of the usual mathematical objects used
within physical analysis are disjoint from E as well as disjoint from
any finite Cartesian product of E with itself. If for future research
within physical applications finite partial sequences of natural num-
bers and the finite equivalence classes that appear in E are needed and
are combined into one model for different purposes than the study of
descriptions, then certain modifications would need to be made so
that interpretations would remain consistent. Secondly, I have tried
whenever intuitive strings are used or sets of such strings are defined
to use Roman letter notation for such objects. This only applies for
the intuitive model. Also Wi is only an identifier and may be altered.

7.2 Developmental Paradigms

It is clear that if one considers a time interval of the type
(−∞,+∞), (−∞, b) or [a,+∞), then each of these may be considered
as the union of a denumerable collection of time intervals of the type
[a, b) with common endpoint names displayed. Further, although [a, b)
is to be considered as subdivided into denumerably many subintervals,
it is not necessary that each of the time intervals [tj , tj+1) ⊂ [a, b) be
accorded a corresponding description for the appearance of a specific
Natural system that is distinct from all others that occur throughout
the time subinterval. Repeated descriptions only containing a differ-
ent last natural number i in the next to last position will suffice. Each
basic developmental paradigm will be restricted, at present, to such a
time interval [a, b).

Where human perception and descriptive ability is concerned, the
least controversial approach would be to consider only finitely many
descriptive choices as appropriate. A finite set is recursive and such
a choice, since the result is such a set, would be considered to be the
simplest type of algorithm. You “simply” check to see if an expression
is a member of such a finite set.

If we limited ourselves to finitely many human choices for Natural
system descriptions from the set of all totalities and did not allow a
denumerable or a continuum set to be chosen, then the next result
establishes that within the Nonstandard Physical world (i.e. NSP-
world) such a finite-type of choice can be applied and a continuum of
descriptions obtained.

The following theorem is not insignificant even if we are willing
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to accept a denumerable set of distinct descriptions — descriptions
that are not only distinct in the next to the last symbol, but are also
distinctly different in other aspects as well. For, if this is the case, the
results of Theorem 7.2.1 still apply. The same finite-type of process
in the NSP-world yields such a denumerable set as well.

The term “NSP-world” will signify a certain second type of in-
terpretation for nonstandard entities. In particular, the subtle logics,
unreadable sentences, etc. This interpretation will be developed
throughout the remainder of this book. One important aspect of
how descriptions are to be interpreted is that a description corre-
lates directly to an assumed or observed real Natural phenomenon,
and conversely. In these investigations, the phenomenon is called an
event.

In order to simplify matters a bit, the following notation is em-
ployed. Let T = {Ti | i ∈ IN}. Let F (T ) be the set of all nonempty
and finite subsets of T . This symbol has been used previously to in-
clude the empty set, this set is now excluded. Now let A ∈ F (T ). Then
there exists a finite choice set s such that x ∈ s iff there exists a unique
Ti ∈ A and x ∈ Ti. Now let the set C denote the set of all such finite
choice sets. As to interpreting these results within the NSP-world, the
following is essential. Within nonstandard analysis the term “hyper”
is often used for the result of the * map. For example, you have ∗

IR as
the hyperreals since IR is termed the real numbers. For certain, but
not all concepts, the term “hyper” or the corresponding * notation
will be universally replaced by the term “ultra.” Thus, certain purely
subtle words or *-words become “ultrawords” within the developmen-
tal paradigm interpretation. [Note: such a word was previously called
a superword.] Of course, for other scientific or philosophical systems,
such abstract mathematical objects can be reinterpreted by an appro-
priate technical term taken from those disciplines.

As usual, we are working within any enlargement and all of the
above intuitive objects are embedded into the G-structure. Recall,
that to simplify expressions, we often suppress within our first-order
statements a specific superstructure element that bounds a specific
quantifier. The alphabet A is now assumed to be countable.

[Note 2 MAY 1998: The material between the [[ and the ]] has
been altered from the original that appears in the 1993 revision.] [[Al-
though theorem 7.2.1 may be significant, it is no longer used for the
other portions of this research. The set of all developmental paradigms
corresponds to the set of all choice functions define on T .
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Theorem 7.2.1 Let ∅ 6= γ ⊂ IN and T̃ = {Ti | i ∈ γ}. There
exists a set of sets S determined by hyperfinite set Q and hyper finite
choice defined on Q such that:

(i ) s′ ∈ S iff for each T ∈ T̃ there is one and only one [g] ∈ ∗T

such that [g] ∈ s′, and if x ∈ s′, then there is some T ∈ T̃ and some
[g] ∈ ∗T such that x = [g]. (If ∗ [g] ∈ σT, then [g] = [f ] ∈ T.)

Proof. (i) Let A ∈ F (T̃ ). Then from the definition of T̃ , there
exists some n ∈ IN such that A = {Tji

| i = 0, . . . , n ∧ ji ∈ IN}. From
the definition of Tk, each Tk is denumerable. Notice that any [f ] ∈ Tk

is associated with a unique member of A1 = i[W]. Simply consider
the unique f0 ∈ [f ]. The unique member of A1 is by definition f0(0).
Thus each member of Tk can be specifically identified. Hence, for each
Ti there is a denumerable Mi ⊂ IN and a bijection hi:Mi → Ti such
that ai ∈ Ti iff there is a ki ∈ Mi and hi(ki) = ai. Consequently,
for each i = 0, . . . , n and aji

∈ Tji
, we have that hji

(kji
) = aji

,
and conversely for each i = 0, . . . , n and kji

∈ Mji
, hji

(kji
) ∈ Tji

.
Obviously, {hji

(kji
) | i = 0, . . . , n} is a finite choice set. All of the

above may be translated into the following sentence that holds in
M. (Note: Choice sets are usually considered as the range of choice
functions. Further, “bounded formula simplification” has been used.)

∀y(y ∈ F (T̃ ) → ∃s((s ∈ P(E)) ∧ ∀x((x ∈ y) → ∃z((z ∈ x) ∧ (z ∈ s)∧

∀w(w ∈ E → ((w ∈ s) ∧ (w ∈ x) ↔ (w = z)))))∧

(7.2.1) ∀u(u ∈ E → ((u ∈ s) ↔ ∃x1((x1 ∈ y) ∧ (u ∈ x1))))))

For each A ∈ F (T̃ ), let SA be the set of all such choice sets generated
by the predicate that follows the first → formed from (7.2.1) by delet-
ing the ∃s and letting y = A. Of course, this set exists within our set
theory. Now let C = {SA | A ∈ F (T̃ )}.

Consider ∗C and ∗(SA). Then s ∈ ∗(SA) iff s satisfies (7.2.1)
as interpreted in ∗M. Since we are working in an enlargement, there
exists an internal Q ∈ ∗(F (T̃ )) such that σT̃ ⊂ Q ⊂ ∗ T̃ . Recall that
σT̃ = { ∗T | T ∈ T̃ }. Also σT ⊂ ∗T for each T ∈ T̃ . From the
definition of ∗C, there is an internal set SQ and s ∈ SQ iff s satisfies
the internal defining predicate for members of SQ and this set is the

set of all such s. (⇒) Consequently, since for each T ∈ T̃ , ∗T ∈ Q,

then the generally external s′ = {s ∩ ∗T | T ∈ T̃ } satisfies the

⇒ for (i). Note, however, that for ∗T, T ∈ T̃ , it is possible that
s ∩ ∗T = { ∗ [f ]} and ∗ [f ] ∈ σT. In this case, by the finiteness of
[f ] it follows that [f ] = ∗ [f ] implies that s ∩ ∗T = {[f ]}. Now let
S = {s′ | s ∈ SQ}. In general, S is an external object.
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(⇐) Consider the internal set SQ. Let s′ be the set as defined by
the right-hand side of (i). For each internal x ∈ s′ and applying, if
necessary, the *-axiom of choice for *-finite sets, we have the internal
set Ax = {y | (y ∈ SQ) ∧ (x ∈ y)} is nonempty. The set {Ax | x ∈
s′} has the finite intersection property. For, let nonempty internal
B = {x1, . . . , xn}. Then the set AB = {y | (y ∈ SQ) ∧ (x1 ∈ y) · · · ∧
(xn ∈ y)} is internal and nonempty by the *-axiom of choice for *-
finite sets. Since we are in an enlargement and s′ is countable, then
D =

⋂
{Ax | x ∈ s′} 6= ∅. Now take any s ∈ D. Then s ∈ SQ and from

the definition of S, s′ ∈ S. This completes the proof.

[Note: Theorem 7.2.1 may be used to model physical develop-
mental paradigms associated with event sequences.]

Although it is not necessary, for this particular investigation,
the set S may be considered a set of all developmental paradigms.
Apparently, S contains every possible developmental paradigm for all
possible frozen segments and S contains paradigms for any *-totality
∗T. There are *-frozen segments contained in various s′ that can be
assumed to be unreadable sentences since σT 6= ∗T.]]

Let A ∈ F (T̃ ) and M(A) be a subset of SA for which there ex-
ists a written set of rules that selects some specific member of SA.
Obviously, this may be modeled by means of functional relations.
First, M(A) ⊂ SA and it follows, from the difference in cardinalities,
that there are infinitely many members of ∗(SA) for which there does
not exist a readable rule that will select such members. However, this
does not preclude the possibility that there is a set of purely unread-
able sentences that do determine a specific member of ∗SA − σM(A).
This might come about in the following manner. Suppose that H is an
infinite set of formal sentences that is interpreted to be a set of rules
for the selection of distinct members of M(A). Suppose we have a bi-
jection h:M(A) → H that represents this selection process. Let ∗M
be at least an appropriate saturated enlargement of M, (Hurd and
Loeb, (1985), Theorem 8.2, p. 105) and consider σf : σ(M(A)) → σH.
The map σf is also a bijection and σf : σ(M(A)) → ∗H. Since
|σ(M(A))| < |M|, it is well-known that there exists an internal
map h:A′ → ∗H such that h | σ(M(A)) = σf, and A′, h[A′] are
internal. Further, for internal A′ ∩ ∗(SA) = B, σ(M(A)) ⊂ B.
However, σ(M(A)) is external. This yields that h is defined on B
and B ∩ ( ∗SA − σ(M(A))) 6= ∅. Also, σH ⊂ h[B] ⊂ ∗H implies, since
h[B] is internal, that σH 6= h[B]. Consequently, in this case, h[B]
may be interpreted as a set of *-rules that determine the selection of
members of B. That is to say that there is some [g] ∈ h[B]−σH and a
[k] ∈ ∗SA−σ(M(A)) such that ([k], [g]) ∈ h. As it will be shown in the
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next section, the set H can be so constructed that if [g] ∈ h[B]− σH,
then [g] is unreadable.

7.3 Ultrawords

Ordinary propositional logic is not compatible with deductive
quantum logic, intuitionistic logic, among others. In this section, a
subsystem of propositional logic is investigated which rectifies this in-
compatibility. I remark that when a standard propositional language
L or an informal language P isomorphic to L is considered, it will
always be the case that the L or P is minimal relative to its appli-
cations. This signifies that if L or P is employed in our investigation
for a developmental paradigm, then L or P is constructed only from
those distinct propositional atoms that correspond to distinct mem-
bers of d, etc. The same minimizing process is always assumed for
the following constructions.

Let B be a formal or, informal nonempty set of propositions. Con-
struct the language P0 in the usual manner from B (with superfluous
parentheses removed) so that P0 forms the smallest set of formulas
that contains B and such that P0 is closed under the two binary op-
erations ∧ and → as they are formally or informally expressed. Of
course, this language may be constructed inductively or by letting P0

be the intersection of all collections of such formula closed under ∧
and → .

We now define the deductive system S. Assume substitutivity,
parenthesis reduction and the like. Let d = {Fi | i ∈ IN} = B be
a development paradigm, where each Fi is a readable frozen segment
and describes the behavior of a Natural system over a time subinterval.
Let the set of axioms be the schemata

(1) (A ∧ B) → A, A ∈ B

(2) (A ∧ B) → B

(3) A ∧ (B ∧ C) → (A ∧ B) ∧ C,

(4) (A ∧ B) ∧ C → A ∧ (B ∧ C).

If P0 is considered as informal, which appears to be necessary for
some applications, where the parentheses are replaced by the concept
of symbol strings being to the “left” or “right” of other symbol strings
and the concept of strengths of connectives is used (i.e. A ∧ B → C
means ((A ∧ B) → C), then axioms 3 — 4 and the parentheses in (1)
and (2) may be omitted. The one rule of inference is Modus Ponens
(MP). Proofs or demonstrations from hypotheses Γ contain finitely
many steps, hypotheses may be inserted as steps and the last step
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in the proof is either a theorem if Γ = ∅ or if Γ 6= ∅, then the last
step is a consequence of ( a deduction from ) Γ. Notice that repeated
application of (4) along with (MP) will allow all left parentheses to be
shifted to the right with the exception of the (suppressed) outermost
left one. Thus this leads to the concept of left to right ordering of a
formula. This allows for the suppression of such parentheses. In all
the following, this suppression will be done and replaced with formula
left to right ordering.

For each Γ ⊂ P0, let S(Γ) denote the set of all formal theo-
rems and consequences obtained from the above defined system S.
Since hypotheses may be inserted, for each Γ ⊂ P0, Γ ⊂ S(Γ) ⊂ P0.
This implies that S(Γ) ⊂ S(S(Γ)). So, let A ∈ S(S(Γ)). The gen-
eral concept of combining together finitely many steps from various
proofs to yield another formal proof leads to the result that A ∈ S(Γ).
Therefore, S(Γ) = S(S(Γ)). Finally, the finite step requirement also
yields the result that if A ∈ S(Γ), then there exists a finite F ⊂ Γ
such that A ∈ S(F). Consequently, S is a finitary consequence oper-
ator and observe that if C is the propositional consequence operator,
then S(Γ)⊂6=C(Γ). Of course, we may now apply the nonstandard the-
ory of consequence operators to S.

It is well-known that the axiom schemata chosen for S are the-
orems in intuitionistic logic. Now consider quantum logic with the
Mittelstaedt conditional i1(A,B) = A⊥ ∨ (A ∧ B). [1] Notice that
i1(A ∧ B,B) = (A ∧ B)⊥ ∨ ((A ∧ B) ∧ B) = (A ∧ B)⊥ ∨ (A ∧ B) = I (
the upper unit.) Then i1((A ∧ B),A) = (A ∧ B)⊥ ∨ ((A ∧ B) ∧ A) =
(A∧B)⊥ ∨(A∧B) = I; i1((A∧B)∧C,A∧(B∧C)) = ((A∧B)∧C)⊥ ∨
(A ∧ (B ∧ C)) = I = i1(A ∧ (B ∧ C), (A ∧ B) ∧ C). Thus with respect
to the interpretation of A → B as conditional i1 the axiom schemata
for the system S are theorems and the system S is compatible with
deductive quantum logic under the Mittelstaedt conditional.

Recall that d = {Fi | i ∈ IN} is a development paradigm, where
each Fi is a readable frozen segment, and describes the behavior of
a Natural system at each moment of a time interval. For the next
construction a formal language that is, of course, isomorphic to the
informal language is employed. Each ∧ [resp. Fi] corresponds to
a specific |||and||| [resp. a propositional atom that corresponds to
a specific word] when embedded. This eliminates confusion when
|||and||| appears in the Fi. Let M0 = d. Define M1 = {F0|||and|||F1}.
Assume that Mn is defined. Define Mn+1 = {x|||and|||Fn+1 | x ∈
Mn}. From the fact that d is a developmental paradigm, where the
last two symbols in each member of d is the time indicator “i.”, it
follows that no member of d is a member of Mn for n > 0. Now let
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Md =
⋃
{Mn | n ∈ IN}. Intuitively, |||and||| behaves as a conjunction

and each Fi as an atom within our language. Notice the important
formal demonstration fact that for an hypothesis consisting of any
member of Mn, n > 0, repeated applications of (1), (MP), (2), (MP)
will lead to the members of d appearing in the proper time ordering
at increasing (formal) demonstration step numbers.

Theorem 7.3.1 For d = {Fi | i ∈ IN}, there exists an ultraword
w ∈ ∗Md− ∗d such that Fi ∈ ∗S({w}) (i.e. w ∗⊢SFi) for each i ∈ IN.

Proof. Consider the binary relation G = {(x, y) | (x ∈ d) ∧ (y ∈
Md − d) ∧ (x ∈ S({y})}. Suppose that {(x1, y1), . . . (xn, yn)} ⊂ G.
For each i = 1, . . . , n there is a unique ki ∈ IN such that xi = Fki

.
Let m = max{ki | (xi = Fki

) ∧ (i = 1, . . . , n)}. Let b ∈ Mm+1.
It follows immediately that xi ∈ S({b}) for each i = 1, . . . , n and,
from the construction of d, b /∈ d. Thus {(x1, b), . . . , (xn, b)} ⊂ G.
Consequently, G is a concurrent relation. Hence, there exists some
w ∈ ∗Md − ∗d such that σFi = Fi ∈ ∗S({w}) for each i ∈ IN. This
completes the proof. [See note 5.]

Observe that w in Theorem 7.3.1 has all of the formally express-
ible properties of a readable word. For example, w has a hyperfinite
length, among other properties. However, since d is a denumerable
set, each ultraword has a very special property.

Recall that for each [g] ∈ E there exists a unique m ∈ IN and
f ′ ∈ Tm such that [f ′] = [g] and for each k such that m < k ∈ IN,
there does not exist g′ ∈ T k such that [g′] = [g]. The function f ′ ∈ Tm

determines all of the alphabet symbols, the symbol used for the blank
space, and the like, and determines there position within the intuitive
word being represented by [g]. Also for each j such that 0 ≤ j ≤
m, f ′(j) = i(a) ∈ i[W] = T, where i(a) is the “encoding” in T of the
symbol “a”. For each m ∈ IN, let Pm = {f | (f ∈ Tm) ∧ (∃z((z ∈
E) ∧ (f ∈ z) ∧ ∀x((x ∈ IN) ∧ (x > m) → ¬∃y((y ∈ T x) ∧ (y ∈ z)))))}.
An element n ∈ ∗T is a subtle alphabet symbol if there exists m ∈ IN

and f ∈ ∗(Pm) = ( ∗P )( ∗m) = ( ∗P )m = ∗Pm ( m = ∗m) or if δ ∈ IN∞

and f ∈ ∗Pδ, and some j ∈ ∗
IN such that f(j) = n. A symbol is a pure

subtle alphabet symbol if f(j) = n /∈ i[W]. Subtle alphabet symbols
can be characterized in ∗E for they are singleton objects. A [g] ∈ ∗E
represents a subtle alphabet symbol iff there exists some f ∈ ( ∗T )0

such that [f ] = [g] = [(0, f(0))], f = {(0, f(0))}.
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Theorem 7.3.2 Let d = {Fi | i ∈ IN} be a denumerable devel-
opmental paradigm and use M1 of 9.1. For each ultraword w, that
yields d via ∗S, as in Theorem 7.3.1, the external cardinality of the
collection of all pure subtle alphabet symbols represented in each w
is greater than or equal to 2ℵ0.

Proof. Consider the conceptual Kleene “tick” notation for the
natural numbers (i.e |,|| .|||, . . .). For this proof, let | correspond to 0.
Every member of d = {Fi | i ∈ IN} contains a distinct symbol-string bi

that represents the natural number followed by the “period” symbol
that appears as the last two symbols in a member of d. Consider the
single Wn ∈ Mn, n > 0. Then n + 2 of these distinct symbol-strings,
the Kleene symbols and a “period” symbol, appear in Wn along with
other alphabet systems. Hence, in Wn, there are more than n + 2
alphabet symbols.

For the embedding E, there is a Wn representation [g] ∈ E and
two unique mappings fk ∼ f0 ∼ g, where the inverse of the embedding
i yields the entire word for f0 and, for fk ∈ Pk, yields the entire word
as it is join constructed from individual symbols (eq. 1.2.4). In this
case, k > n + 2.

Consider the *-transform. Let w = [g] be an ultraword such
that for each i ∈ IN, Fi ∈ ∗S({w}). Theorems 7.3.1 shows that such
ultrawords exist. From the definition of S, w ∈ ∗Md − σMd. Hence,
there is a ν, δ ∈ IN∞ and ∗Mν ∈ { ∗Mx | x ∈ ∗

IN} such that [fδ] =
[g] ∈ ∗Mν, δ > ν + 2, fδ ∈ ∗Pδ

Let K = {[1,n + 2] | n ∈ IN}. Then there exists a mapping
C:K → IN such that C([1,n+2]) = n+2. The mapping C is considered
as yielding the intuitive cardinality of [1, n+2]. Hence, ∗C([1, ν+1]) =
ν + 2. To get an idea as to the external cardinality |[1, ν + 2]| of
[1, ν +2], consider Theorem 3.1 in [16, p. 201], where it is shown that
|[1, ν + 2]| ≥ 2ℵ0. Since |[1, δ]| ≥ |[1, ν + 2]|, and the set of all subtle
alphabet symbols that yields members of W is denumerable, then it
follows that for w the set of all pure subtle alphabet symbols also has
an external cardinality great than or equal to 2ℵ0. This completes the
proof.

With respect to the proof of Theorem 7.3.2, the function fδ de-
termines the alphabet composition of the ultraword w. The word w is
unreadable not only due to its infinite length but also due to the fact
that it is composed of infinitely many purely subtle alphabet symbols.

The developmental paradigm d utilized for the two previous the-
orems is composed entirely of readable sentences. We now investigate
what happens if a developmental paradigm contains countably many
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unreadable sentences. Let the nonempty developmental paradigm d′

be composed of at most countably many members of ∗E − E and, for
countable B, let d′ ⊂ ∗B ⊂ ∗P0. Construct, as previously, the set
MB from B, rather than from d and suppose that B ∩ Mi = ∅, i 6= 0.
[See Note [2] on page 82.] Let 6= λ ⊂ IN.

Theorem 7.3.3 Let d′ = {[gi] | i ∈ λ}. Then there exists an
ultraword w ∈ ∗MB − ∗B such that for each i ∈ IN, [gi] ∈ ∗S({w}).

Proof. Consider the internal binary relation G = {(x, y) | (x ∈
∗B) ∧ (y ∈ ∗MB − ∗B) ∧ (x ∈ ∗S({y})}. Note that members of d′

are members of σE or, at the most, denumerably many members of
∗E − σE . From the analysis in the proof of Theorem 7.3.1, for a finite
F ⊂ B, there exists some y ∈ MB − B such that F ⊂ S({y}). It follows
by *-transfer that if F is a finite or *-finite subset of ∗B, then there
exists some y ∈ ∗MB − ∗B such that F ⊂ ∗S({y}). As in the proof
of Theorem 7.3.1, this yields that G is at least concurrent on ∗B.
However, d′ ⊂ ∗B and |d′| ≤ ℵ0. From ℵ1-saturation, there exists
some w ∈ ∗MB − ∗B such that for each [gi] ∈ d′, [gi] ∈ ∗S({w}).
This completes the proof.

Let nonempty γ, λ ⊂ IN, j ∈ γ, Dj = {dij | i ∈ λ}, and for each
j ∈ γ, i ∈ λ, dij ⊂ ∗B is considered to be a developmental paradigm
either of type d or type d′ and B ∩ Mi = ∅, i 6= 0. Notice that Dj is
finite or denumerable. Theorem 7.3.1 holds for the case that d ⊂ B,
where w ∈ ∗MB− ∗B. For each dij ∈ Dj , use the Axiom of Choice to
select an ultraword wij ∈ ∗MB − ∗B that exists by Theorems 7.3.1
(extended) or 7.3.3. Let {wij | i ∈ λ} be such a set of ultrawords.

Theorem 7.3.4 For, j ∈ γ, there exists an ultimate ultraword
w′

j ∈ ∗MB − ∗B such that for each i ∈ λ, wij ∈ ∗S({w′
j}) and,

hence, for each dij ∈ Dj , dij ⊂ ∗S({wij}) ⊂ ∗S({w′
j}).

Proof. For each finite {F1, . . . ,Fn} ⊂ MB − B there is a natural
number, say m, such that for each i = 1, . . . , n, Fi ∈ Mj for some
j ≤ m. Hence, taking b ∈ Mm+1, we obtain that each Fi ∈ S({b}).
Observe that b /∈ B. By *-transfer, it follows that the internal relation
G = {(x, y) | (x ∈ ∗MB − ∗B)∧ (y ∈ ∗MB − ∗B)∧ (x ∈ ∗S({y})} is
concurrent on internal ∗MB − ∗B and {wij | i ∈ λ} ⊂ ∗MB − ∗B.
Again ℵ1-saturation yields that there is some w′

j ∈ ∗MB − ∗B such
that for each i ∈ λ, wij ∈ ∗S({w′

j}). The last property is obtained
from dij ⊂ ∗S({wij}) ⊂ ∗S( ∗S({w′

j})) = ∗S({w′
j}) since finite {wij}

is an internal subset of ∗P0. This completes the proof.
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Corollary 7.3.4.1 There exists an ultimate ultraword w′ ∈
∗MB − ∗B such that for each j ∈ γ, w′

j ∈ ∗S({w′}) and, hence,
for each dij ∈

⋃
Dj , dij ⊂ ∗S({w′

j}) ⊂
∗S({w′}).

The same analysis used to obtain Theorem 7.3.2 can be applied
to the ultrawords of Theorems 7.3.3 and 7.3.4. (See note [6].)

7.4 Ultracontinuous Deduction

In 1968, a special topology on the set of all nonempty subsets of
a given set X was constructed and investigated by your author. We
apply a similar topology to subsets of E.

Suppose that nonempty X ⊂ E. Let τ be the discrete topology
on X. In order to topologize P(X), proceed as follows: for each G ∈ τ,
let N(G) = {A | (A ⊂ X) ∧ (A ⊂ G)} = P(G).

Consider B = {N(G) | G ∈ τ} to be a base for a topology τ1 on
P(X). Let A ∈ N(G1) ∩ N(G1). The discrete topology implies that
N(A) is a base element and that N(A) ⊂ N(G1) ∩ N(G2). There
is only one member of B that contains X and this is P(X). Thus if
P(X) is covered by members of B, then N(X) = P(X) is one of these
covering objects. Thus (P(X), τ1) is a compact space. Further, since
N(∅) ⊂ N(G) for each G ∈ τ, the space (P(X), τ1) is connected. The
topology τ1 is a special case of a more general topology with the same
properties. [2] Suppose that D ⊂ X. Let D ∈ N(G) = P(G), G ∈ τ.
Then D ∈ N(D) ⊂ N(G). This yields that the nonstandard monad is
µ(D) =

⋂
{ ∗N(G) | N(G) ∈ B} = ∗(P(D)) = ∗P( ∗D).

Theorem 7.4.1 Any consequence operator C : (P(X), τ1) →
(P(X), τ1) is continuous.

Proof. Let A ∈ P(X) and H ∈ ∗C[µ(A)]. Then there exists some
B ∈ µ(A) such that ∗C(B) = H. Hence, B ∈ ∗P( ∗A). By *-transfer
of a basic property of our consequence operators, ∗C(B) ⊂ ∗C( ∗A) =
∗(C(A)). Thus ∗(C(B)) ∈ ∗(P(C(A))) implies that ∗C(B) ∈ µ(A).
Therefore, ∗C[µ(A)] ⊂ µ([C(A)]). Consequently, C is continuous.

Corollary 7.4.1.1 For any X ⊂ E, and any consequence oper-
ator C:P(X) → P(X), the map ∗C: ∗(P(X)) → ∗(P(X)) is ultra-
continuous.

Corollary 7.4.1.2 Let d [resp. d′, d or d′] be a developmental
paradigm as defined for Theorem 7.3.1 [resp. Theorem 7.3.3, 7.3.4].
Let w be a ultraword that exists by Theorem 7.3.1 [resp Theorem
7.3.3, 7.3.4]. Then d [resp. d′, d or d′] is obtained by means of a
ultracontinuous subtle deductive process applied to {w}.
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Recall that in the real valued case, a function f : [a, b] → IR is
uniformly continuous on [a, b] iff for each p, q ∈ ∗ [a, b] such that
p − q ∈ µ(0), then f(p) − f(q) ∈ µ(0). If D ⊂ [a, b] is compact,
then p, q ∈ ∗D and p − q ∈ µ(0) imply that there is a standard
r ∈ D such that p, q ∈ µ(r). Also, for each r ∈ D and any p, q ∈
µ(r), it follows that p − q ∈ µ(r). Thus, if compact D ⊂ [a, b], then
f : D → IR is uniformly continuous iff for every r ∈ D and each
p, q ∈ µ(r), ∗f(p), ∗f(q) ∈ µ(f(r)). With this characterization in
mind, it is clear that any consequence operator C:P(X) → P(X)
satisfies the following statement. For each A ∈ P(X) and each p, q ∈
µ(A), ∗C(p), ∗C(q) ∈ µ(C(A)).

From the above discussion, one can think of ultracontinuity as
being a type of ultrauniform continuity.

7.5 Hypercontinuous Gluing

There are various methods that can be used to investigate the
behavior of adjacent frozen segments. All of these methods depend
upon a significant result relative to discrete real or vector valued func-
tions. The major goal in this section is to present a complete proof of
this major result and to indicate how it is applied.

First, as our standard structure, consider either the intuitive real
numbers as atoms or axiomatically a standard structure with atoms
ZFR = ZF + AC + A1(atoms) + A(atoms) + |A| = c, where A is iso-
morphic to the real numbers and A1∩A = ∅. Then, as done previously,
there is a model 〈C,∈,=〉 within our ZF+AC model for ZFR, where
A has all of the ordered field properties as the real numbers. A su-
perstructure 〈R,∈,=〉 is constructed in the usual manner, where the
superstructure 〈N ,∈,=〉 is a substructure. Proceeding as in Chap-
ter 2, construct ∗M1 = 〈 ∗R,∈=〉 and Y1. The structure Y1 is called
the Extended Grundlegend Structure — the EGS. The Grundlegend
Structure is a substructure of Y1.

It is important to realized in what follows that the objects utilized
for the G-structure interpretations are nonempty finite equivalence
classes of partial sequences. Due to this fact, the following results
should not lead to ambiguous interpretations.

As a preliminary to the technical aspects of this final section,
we introduce the following definition. A function f : [a, b] → IR

m is
differentiable-C on [a, b] if it is continuously differentiable on (a, b) ex-
cept at finitely many removable discontinuities. This definition is ex-
tended to the end points {a, b} by application of one-sided derivatives.
For any [a, b], consider a partition P = {a0, a1, · · · , an, an+1}, n ≥
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1, a = a0, b = an+1 and aj−1 < aj , 1 ≤ j ≤ n + 1. For any
such partition P, let the real valued function g be defined on the
set D = [a0, a1) ∪ (a1, a2) ∪ · · · ∪ (an, an+1] as follows: for each
x ∈ [a0, a1), let g(x) = r1 ∈ IR; for each x ∈ (aj−1, aj), let
g(x) = rj ∈ IR, 1 < i ≤ n; for each x ∈ (an, b], let g(x) = rn+1 ∈ IR.
It is obvious that g is a type of simple step function. Notationally, let
F(A,B) denote the set of all functions with domain A and codomain
B.

Theorem 7.5.1 There exists a function G ∈ ∗(F([a, b], IR)) with
the following properties.

(i) The function G is *-continuously *-differentiable and *-
uniformly *-continuous on ∗ [a, b],

(ii) for each odd n ∈ ∗
IN, (n ≥ 3), G is *- differentiable-C of

order n on ∗ [a, b],
(iii) for each even n ∈ ∗

IN, G is *-continuously *-
differentiable of order n in ∗[a, b] except at finitely many points,

(iv) if c = min{r1, · · · , rn+1}, d = max{r1, · · · , rn+1}, then
the range of G = ∗ [c, d], st(G) at least maps D into [c, d] and
(st(G))|D = g.

Proof. First, for any real c, d, where d 6= 0, consider the finite set
of functions

hj(x, c, d) = (1/2)(rj+1 − rj)
(
sin

(
(x − c)π/(2d)

)
+ 1

)
+ rj , (7.5.1)

1 ≤ j ≤ n. Each hj is continuously differentiable for any order at each

x ∈ IR. Observe that for each odd m ∈ IN, each m’th derivative h
(m)
j

is continuous at (c + d) and (c− d) and h
(m)
j (c + d) = h

(m)
j (c− d) = 0

for each j.

Let positive δ ∈ µ(0). Consider the finite set of internal intervals
{[a0, a1−δ), (a1+δ, a2−δ), · · · , (an+δ, b]} obtained from the partition
P. Denote these intervals in the expressed order by Ij , 1 ≤ j ≤ n+1.
Define the internal function

G1 = {(x, r1)|x ∈ I1} ∪ · · · ∪ {(x, rn+1)|x ∈ In+1}. (7.5.2)

Let internal I†
j = [aj − δ, aj + δ], 1 ≤ j ≤ n, and for each x ∈ I†

j , let
internal

Gj(x) = (1/2)(rj+1 − rj)
(

∗sin
(
(x − aj)π/(2δ)

)
+ 1

)
+ rj . (7.5.3)

Define the internal function

G2 = {(x,G1(x))|x ∈ I†
1} ∪ · · · ∪ {(x,Gn(x))|x ∈ I†

n}. (7.5.4)
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The final step is to define G = G1 ∪ G2. Then G ∈ ∗(F([a, b], IR)).

By *-transfer, the function G1 has an internal *-continuous *-

derivative G
(1)
1 such that G

(1)
1 (x) = 0 for each x ∈ I1 ∪ · · · ∪ In+1.

Applying *-transfer to the properties of the functions hj(x, c, d), it
follows that G2 has a unique internal *-continuous *-derivative

(7.5.5) G
(1)
2 = (1/(4δ))(rj+1 − rj)π

(
∗cos

(
(x − aj)π/(2δ)

))

for each x ∈ I†
1 ∪ · · · ∪ I†

n. The results that the *-left limit for the

internal G
(1)
1 and the *-right limit for internal G

(1)
2 at each aj − δ

as well as the *-left limit of G
(1)
2 and *-right limit of G

(1)
1 at each

aj + δ are equal to 0 and 0 = G
(1)
2 (aj − δ) = G

(1)
2 (aj + δ) imply that

internal G has a *-continuous *- derivative G(1) = G
(1)
1 ∪G

(1)
2 defined

on ∗ [a, b].

A similar analysis and *-transfer yield that for each m ∈ ∗
IN, m ≥

2, G has an internal *-continuous *-derivative G(m) defined at each
x ∈ ∗ [a, b] except at the points aj ± δ whenever rj+1 6= rj . However,
it is obvious from the definition of the functions hj that for each odd
m ∈ ∗

IN, m ≥ 3, each internal G(m) can be made *-continuous at
each aj ± δ by simply defining G(m)(aj ± δ) = 0 and with this parts
(i), (ii), and (iii) are established.

For part (iv), assume that rj ≤ rj+1. From the definition of

the functions hj , it follows that for each x ∈ Ij ∪ I†
j ∪ Ij+1, rj ≤

G(x) ≤ rj+1. The nonstandard intermediate value theorem implies
that G

[
∗ [aj , aj+1]

]
= ∗ [rj , rj+1] and in like manner for the case that

rj+1 < rj . Hence, G
[
∗ [a, b]

]
= ∗ [c, d]. Clearly, st( ∗D) = [a, b]. If

p ∈ D and x ∈ µ(p) ∩ ∗D, then G(x) = rj = g(p) for some j such
that 1 ≤ j ≤ n + 1. This completes the proof.

The nonstandard approximation theorem 7.5.1 can be extended
easily to functions that map D into IR

m. For example, assume that
F :D → IR

3, the component functions F1, F2 are continuously differ-
entiable on [a, b]; but that F3 is a g type step function on D. Then
letting H = ( ∗F1,

∗F2, G), on ∗ [a, b], where G is defined in Theo-
rem 4.1, we have an internal *-continuously *-differentiable function
H: ∗ [a, b] → ∗

IR
3, with the property that st(H)|D = F.

With respect to Theorem 7.5.1, it is interesting to note that if hj

is defined on IR, then for even orders n ∈ IN,

(7.5.6) | h
(n)
j (c ± d) | =

∣∣∣∣
(rj+1 − rj)π

n

2n+1dn

∣∣∣∣= 0
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for rj+1 = rj but not 0 otherwise. If rj+1 − rj 6= 0, then G
(n)
2 (aj ± δ)

is an infinite nonstandard real number. Indeed, if mi is an increasing

sequence of even numbers in ∗
IN and rj+1 6= rj , then |G

(mi)
2 (aj ± δ)|

forms a decreasing sequence of nonstandard infinite numbers. The
next result is obvious from the previous result.

Corollary 7.5.1.1 For each n ∈ ∗
IN, then internal G(n) = G

(n)
1 ∪

G
(n)
2 is *-bounded on ∗ [a, b].

Let D(a, b) be the set of all bounded and piecewise continuously
differentiable functions defined on [a, b]. By considering all of the pos-
sible (finitely many) subintervals, where f ∈ D(a, b), it follows from
the Riemann sum approach that for each real ν > 0, there exists a
real ν1 > 0 such that for each real νi, 0 < νi < ν1, a sequence of
partitions Pi = {a = bi

0 < · · · < bi
ki

= b} can be selected such that
the mesh(Pi) ≤ νi and

|(f(b) − f(a)) −
ki∑

n=1

f ′(tn)(bi
n − bi

n−1)| < ν (7.5.7)

for any tn ∈ (bi
n−1, b

i
n).

Moreover, for any given number M, the sequence of partitions
can be so constructed such that there exists a j such that for each
i > j, ki > M, where Pi and Pj are partitions within the sequence of
partitions. By *-transfer of these facts and by application of Theorem
7.5.1 and its corollary we have the next result.

Corollary 7.5.1.2 For each n ∈ IN and each internal G(n), the
difference G(n)(b) − G(n)(a) is infinitesimally close to an (externally)
infinity *-finite sum of infinitesimals.

A developmental paradigm is a very general object and, therefore,
can be used for numerous applications. At present, developmen-
tal paradigms are still being viewed from the substratum or external
world. For what follows, it is assumed that a developmental paradigm
d traces the evolutionary history of a specifically named natural sys-
tem or systems. In this first application, let each Fi ∈ d have the
following property (P).

Fi describes “the general behavior and characteris-
tics of the named natural system S1 as well as the
behavior and characteristics of named constituents
contained within S1 at time ti.”

Recall that for Fi, Fi+1 ∈ d, there exist unique functions
f0 ∈ Fi = [f ], g0 ∈ Fi+1 = [g] such that f0, g0 ∈ T 0 and
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{(0, f0(0))} ∈ [f ], {(0, g0(0))} ∈ [g]. Thus, to each Fj ∈ d, correspond
the unique natural number f0(0). Let D = [ti−1, ti) ∪ (ti, ti+1] and
define f1:D → IN as follows: for each x ∈ [ti−1, ti), let f1(x) = f0(0);
for each x ∈ (ti, ti+1], let f1(x) = g0(0). Application of theorem 7.5.1
yields the internal function G such that G|D = f1. For these physical
applications, utilize the term “substratum” in the place of the techni-
cal terms “pure nonstandard.” [Note: Of course, elsewhere, the term
“pure NSP-world” or simply the “NSP-world” is used as a specific
name for what has here been declared as the substratum.] This yields
the following statements, where the symbols Fi and Fi+1 are defined
and characterized by the expression inside the quotation marks in
property (P).

(A): There exists a substratum hypercontinuous,
hypersmooth, hyperuniform process G that binds to-
gether Fi and Fi+1.

(B): There exists a substratum hypercontinuous,
hypersmooth, hyperuniform alteration process G
that transforms Fi into Fi+1.

(C): There exists an ultracontinuous subtle force-like
(i.e. deductive) process that yields Fi for each time
ti within the development of the natural system.

In order to justify (A) and (B), specific measures of physical
properties associated with constituents may be coupled together. As-
sume that for a subword ri ∈ Fi ∈ d, the symbols ri denote a numer-
ical quantity that aids in characterizing the behavior of an object in
a system S1 or the system itself. Let (M1) be the statement:

“There exists a substratum hypercontinuous, hyper-
smooth, hyperuniform functional process Gi such
that Gi when restricted to the standard mathemat-
ical domain it is fi and such that Gi hypercontinu-
ously changes ri for system S1 at time ti into ri+1 for
system S1 at time ti+1.”

This modeling procedure yields the following interpretation:

(D) If there exists a continuous or uniform [resp. dis-
crete] functional process fi that changes ri for S1 at
time ti into ri+1 for S1 at time ti+1, then (M1).

At a particular moment ti, two natural systems S1 and S2 may
interface. More generally, two very distinct developmental paradigms
may exist one d1 at times prior to ti (in the ti past) and one d2 at time
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after ti (in the ti future). We might refer to the time ti as a standard
time fracture. Consider the developmental paradigm d3 = d1 ∪ d2. In
this case, the paradigms may be either of type d or d′. For the type
d′, the corresponding system need not be considered a natural system
but could be a pure substratum system.

At ti an Fi ∈ d3 can be characterized by statement (P) (with the
term natural removed if Fi is a member of a d′). In like manner, Fi+1

at time ti+1 can be characterized by (P). Statements (A), (B), (C)
can now be applied to d3 and a modified statement (D), where the
second symbol string S1 is changed to S2. Notice that this modeling
applies to the actual human ability that only allows for two discrete
descriptions to be given, one for the interval [ti−1, ti) and one for the
interval (ti, ti+1]. From the modeling viewpoint, this is often sufficient
since the length of the time intervals can be made smaller than Planck
time.

Recall that an analysis of the scientific method used in the inves-
tigation of natural system should take place exterior to the language
used to describe the specific system development. Suppose that D
is the language accepted for a scientific discipline and that within D
various expressions from mathematical theories are used. Further,
suppose that enough of the modern theory of sets is employed so that
the EGS can be constructed. The following statement would hold
true for D.

If by application of first-order logic to a set of non-
mathematical premises taken from D it is claimed
that it is not logically possible for statements such
as (A), (B), (C) and (D) to hold, then the set of
premises is inconsistent.
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NOTES

[1] It is obvious that the concept of “time” need not be the under-
lying interpretation for these intervals. Time simply refers to an ex-
ternal event ordering concept. For other purposes, simply call these
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intervals “event intervals.” In the above descriptions for Wi, sim-
ply replace “time|||interval” with “event|||interval” and replace the
second instance of the word “time” with the word “event.” If this
interpretation is made, then other compatible interpretations would
be necessary when applying a few of the following results. Also, the
partition points ti can be notationally refined if more then one interval
is being considered.

[2] Note that this last requirement for B can be achieved as follows:
construct a special symbol not originally in A. Then this symbol along
with A is considered the alphabet. Next only consider a B that does
not contain this special symbol within any of its members. Now using
this special symbol in place of the ∧, consistently construct Mi, i 6= 0.
Of course, ∧ is interpreted as this special symbol in the axiom system
S.

[3] The actual members, Fi, of a developmental paradigm d need
not be unique. However, the specific information contained in each
readable word used for a specific Fi ∈ IN is unique. Other readable
sentences can be used in place of a specific Fi as long as they are
“equivalent” in the sense that the specific information being displayed
by each is the same information.

[4] Depending upon the application, a single standard word may also
be termed as an ultraword.

[5] For a new more refined method to obtain an ultra-
word for a refined developmental paradigm, see pages 4-7 at
http://arxiv.org/abs/math/0605120

[6] (Added 9/20/2009.) A concurrent relation is not needed to obtain
important “ultrawords.”

Theorem 7.3.5 For d = {Fn | n ∈ IN} and each infinite λ ∈ IN∞,
there exists one and only one wλ ∈ ∗Mλ and hyperfinite dλ such that
d ⊂ dλ ⊂ ∗S({wλ}), and dλ ⊂ ∗d.

Proof. For each, n ∈ IN, let G(n) = {Fi | 0 ≤ i ≤ n} ⊂ d.
Thus, G: IN → F(d) the set of all finite subsets of d. Let n > 0.
Then Mn has one and only one member and by definition wn ∈ Mn

has the property that G(n) ⊂ S({wn}). Hence, by *-transfer, for the
function ∗M, and each λ ∈ IN∞, there is one and only one wλ ∈ ∗Mλ

such that hyperfinite ∗G(λ) ⊂ ∗S({wλ}). Finally, by defintion of G,
d ⊂ ∗G(λ) ⊂ ∗d.

Note that theorems that generate or use ultrawords may need to
be trivially modified depending upon the definition for d.
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Chapter 8

A SPECIAL APPLICATION

8.1 A Neutron Altering Process.

The purpose of this chapter is to justify the interpretations uti-
lized in reference [1]. Let B be the set of all nondecreasing bounded
real valued functions defined on D = [a, t′) ∪ (t′, T ]. Let Q ∈ B
and Q(t) = 2 for each t ∈ [a, t′); Q(t) = 3 for each t ∈ (t′, T ]
be the discrete neutron altering process. Application of Theorem
7.5.1 implies that there exists internal G: ∗ [a, T ] → ∗

IR such that
st(G)|D = G|D = Q, and G is hypercontinuous, hypersmooth, hy-
peraltering process defined on the hyperinterval ∗ [a, T ]. Hence, G sat-
isfies statement (A) in section (2) of [1]. Theorem 7.5.1 also implies
that G is hyperuniformly continuous on ∗ [a, T ].

Recall how a *-special partition for ∗ [a, T ] is generated. Let
0 < ∆t ∈ IR

+. Then P (∆t) = {a = t0 ≤ · · · tn ≤ tn+1 = T}, where
n is the largest natural number such that a + n(∆t) ≤ T and for
i = 0, . . . , (n−1); ti+1−ti = ∆t, and tn+1−tn = b−(a+n(∆t)) < ∆t.
It is possible that tn+1 = tn. If P is the set of all special partitions,
then letting dt ∈ µ(0)+ (the set of all positive infinitesimals) it follows
that P (dt) ∈ ∗P and P (dt) has the same first-order properties as does
P (∆t).

Theorem 8.1.1 Let internal G be hypercontinuous on ∗C =
∗ [a, T ] and zj ∈ (a, T ), j = 1, . . . ,m. For any dx ∈ µ(0)+, there exists
a dy ∈ µ(0)+ such that for each x, y ∈ ∗D such that |x − y| < dy it
follows that |G(x) − G(y)| < dx, and there is a hyperfinite partition
{a = t′0 < · · · < t′ν+1 = T} such that for i = 0, . . . , ν + 1; j =
1, . . . ,m we have t′j 6= zj , G(t′i+1)−G(t′i) ∈ µ(0), t′i+1− t′i ∈ µ(0) and

G(T ) − G(a) =
∑ν

0(G(t′i+1) −G(t′i)).

Proof. Since internal G is *-uniformly continuous, it follows that
for any dy ∈ µ(0)+ there exists some δ such that 0 < δ ∈ ∗

IR and for
each x, y ∈ ∗ [a, T ] such that |x−y| < δ, it follows that |G(x)−G(y)| <
dx. Now let dy < δ and dy ∈ µ(0)+ and consider the *-special partition
P (dy/3). Let y ∈ [ti, ti+1], x ∈ [ti+1, ti+2], i = 0, . . . , ν−1 and x, y 6=
t′. Then |y−x| < dy and each *-closed interval is nonempty. By means
of internal first-order statements that imply the existence of certain
objects and the choice axiom, select t′0 = a, t′ν+1 = T and if tν+1 = tν ,
then for i = 1, . . . , ν− 2 select some t′i ∈ [ti, ti+1] such that t′i 6= zj for
j = 1, . . . ,m; or if tν+1 6= tν, then for i = 1, . . . , ν − 1 select some t′i ∈
[ti, ti+1] such that t′i 6= zj for j = 1, . . . ,m. This yields a hyperfinite
internal partition with the properties listed in the hypothesis and by
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*-transfer of the properties of a finite telescoping series, we have that
G(T ) −G(a) =

∑ν
0((G(t′i+1) −G(t′i)), and |G(t′i+1)−G(t′i)| < dx for

i = 0, . . . , ν implies that G(t′i+1)−G(t′i) ∈ µ(0) and each t′i ∈
∗D has

the property that |t′i+1 − t′i| < dy. This complete the proof.

We now apply Theorem 8.1.1 to the discrete altering function Q.
Let Q be the set of all finite partitions of D. Then, for n > 0 and the
partition {a = t0 < t1 < · · · < tn ≤ tn+1 = T}, consider the partial
sequence S: [0, n+1] → IR defined by S(i) = ti, i = 0, . . . , n+1. Define
Ti = [ti, ti+1], i = 0, . . . , n. Consider the set H = {Ti | i = 0, . . . , n}.
Then H ∈ P(C), where C = [a, T ]. There is an N ∈ IR

P(C)−∅ such
that N(Ti) = Q(ti+1) −Q(ti), Q(ti) = ri, i = 0, . . . , n. The function
N is a resolving process for the function Q and each ri is a degree
for the constituent N(Ti). Let M(Q) be the set of all such resolving
processes generated by the infinite set of finite partitions of D for a
fixed Q. Consider the *-finite partition P (dy/3) of D generated in
the proof of Theorem 8.1.1. Now modify this *-finite partition in the
following manner. Consider the standard finite partition generated
by S: [0, n + 1] → IR. Let Ti = [ti, ti+1] = [S(i), S(i + 1)], ti 6= t′, i =
0, . . . , n; H = {Ti | i = 0, . . . , n} and, for the fixed Q, N(ti) =
Q(ti+1) − Q(ti) = G(ti+1) − G(ti), i = 0, . . . , n, where G is in the
statement of Theorem 8.1.1. This sequence S extends in the usual
manner to ∗S: [0, ν + 1] → ∗

IR.

Since 0 < |ti − tj |, where i 6= j, for each ti there exists a *-closed
interval [vj , vj+1] generated by P (dy/3) such that ti ∈ (vj , vj+1), or
ti = vj or vj+1 not both. In the case that ti ∈ (vj , vj+1), the interval is
unique. Moreover, there are only finitely many such ti in the standard
partition. Hence for these finitely many real number cases, where
ti ∈ (vj , vj+1), modify the partition by subdividing [vj , vj+1] into two
intervals [vj , ti]∪ [ti, vj+1]. This process can, obviously, be defined by
a finite set of first-order statements. This adds an additional finite
number of intervals to our hyperfinite partition and yields a partition
number λ ∈ ∗

IN to replace ν. Since the infinitesimal length of these
adjoined intervals is < dy/3, Theorem 8.1.1 still holds with λ replacing
ν. This yields an internal sequence S ′: [0, λ+1] → ∗

IR such that S ′(i) =
t′i as defined in the proof of Theorem 8.1.1 with the condition that
finitely many of the t′j correspond to the standard partition elements
ti. (Notice that, for all of this construction, the assumed n is fixed.)

From the above, we have the *-closed intervals T ′
i = [t′i, t

′
i+1], i =

0, . . . , λ as well as the internal H ′ = {z | (z ⊂ ∗ [a, T ]) ∧ (∃i(i ∈
[0, λ]) ∧ ∀x(x ∈ z ↔ S ′(i) ≤ x ≤ S ′(i + 1)))}. Obviously, H ′ ∈
∗(P(C)). Thus there is in ∗M(Q) an internal hyperresolving process
N ′ such that N ′(T ′

i ) = ∗Q(t′i+1) −
∗Q(t′i+1) = G(t′i+1) −G(ti), where
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T ′ = [S ′(i), S ′(i + 1)] ∈ H ′ and i = 0, . . . , λ.

Technically, it is not true that H ⊂ H ′. Thus define the standard
restriction of N ′ to N, where N is generated by the standard sequence
S: [0, n + 1] → IR that is obtained as follows: consider the set {S ′(i) |
i = 0, . . . , λ +1} ∩ [a, T ] = P0. Since P0 is a finite standard set, it can
be ordered by the < of the reals and let P0 = {a = t0 < ti < · · · tn ≤
tn+1 = T.} This yields a sequence S”: [0, n + 1] → IR, S”(i) = ti, i =
0, . . . , n + 1. Let S” = S. Utilizing S”, generate the original resolving
process N from N ′.

Application of Theorem 8.1.1 yields the following description.
There exists a hyperpartition (generated by) S ′ for the hyperinterval
∗D (since t′ ∈ range S ′) and S ′ (generates) the hyperresolution N ′ for
the hyperaltering process G. The hyperresolution N ′ is defined on the
hyperfinitely many internal subintervals of ∗ [a, T ] and the range of
N ′ is composed of hyperfinitely many hyperconstitutents G(t′i+1) −
G(t′i) that, by *-transfer of the standard supremum function defined
on nonempty finite sets of real numbers, yields a maximum degree
among all of the degrees of the hyperconstitutents. This maximum
degree is infinitesimal, by Theorem 8.1.1, and since G(T )−G(a) ∈ IR

+

and taking G as nondecreasing, this maximum degree is a positive
infinitesimal. By the above restriction process, N is the restriction of
N ′ to the standard world. Consequently, N ′ satisfies statement (B)
in section 4 of [1].

Finally, the length function L defined on the set of all closed
intervals extends to the set of all *-closed intervals that are subsets
of ∗

IR. Then ∗L( ∗ [a, T ]) = T − a = L([a, T ]). Thus (C) of section 4 in
[1] holds. (D) in section 4 of [1] follows from the unused conclusions
that appear in Theorem 8.1.1, among others.

For the nondecreasing bounded classical neutron altering process
CQ, there is assumed to exist a standard smooth function f defined
on [a, t] such that f |D = CQ. Now define standard G: [a, T ] → IR as
follows: let G0(t) = f(t), t ∈ [a, t′); G1(t) = f(t), t ∈ (t′, T ]. Then
since G0(t0) ≤ G1(t1), for t0 ∈ [a, t′) and t1 ∈ (t′, T ], it follows that
h = sup{G0(t) | t ∈ [a, t′)} exists, and we can let G = G0 ∪ G1 ∪
{(t′, h)}. Obviously, G(t0) ≤ G(t′) ≤ G(t1), t0 ∈ [a, t′), t1 ∈ (t′, T ],
and G|D = CQ. It follows from left and right limit considerations
that G = f. (Note: G is defined in this manner only to conform to
the discrete case.) Theorem 8.1.1 holds for ∗G and, in this case, we
simply repeat the entire discussion that appears after that statement
of Theorem 8.1.1 and replace the G that appears in that discussion
with ∗G = ∗f. This yields a model for statements (E), (F), (G) and
(H) in section 4 of reference [1].
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Chapter 9

9. NSP-WORLD ALPHABETS

9.1 An Extension.

Although it is often not necessary, we assume when its useful that
we are working within the EGS. Further, this structure is assumed to
be |M1|

+
-saturated, where M1 = 〈N ,∈,=〉, and the ground set is

W ′ ∪ IR or M1 = 〈N ,∈,=〉, where the ground set is W ′ ∪ Q and
Q is the set of rational numbers). The set W ′ is an extended lan-
guage. Referring to the paragraph prior to Theorem 7.3.3, it can be
assumed that the developmental paradigm d′ ⊂ ∗B ⊂ ∗P0. It is not
assumed that such a developmental paradigm is obtained from the
process discussed in Theorem 7.2.1, although a modification of the
proof of Theorem 7.2.1 appears possible in order to allow this method
of selection.

Theorem 9.1.1 Let d′ = {[gi] | i ∈ λ}, |λ| < |M1|
+
. There

exists an ultraword w ∈ ∗MB − ∗B such that for each i ∈ λ, [gi] ∈
∗S({w}).

Proof. The same as Theorem 7.3.3 with the change in saturation.

Let D = {di | i ∈ λ}, |λ| < |M1|
+
, |di| < |M1|

+
and each

di ⊂ ∗B is considered to be a developmental paradigm either of type
d or type d′. For each di ∈ D, use the Axiom of Choice to select
an ultraword wi ∈ ∗MB − ∗B that exists by Theorems 9.1.1. Let
{wi | i ∈ λ} be such a set of ultrawords.

Theorem 9.1.2 There exists an ultraword w′ ∈ ∗MB− ∗B such
that for each i ∈ λ, wi ∈ ∗S({w′}) and, hence, for each di ∈ D, di ⊂
∗S({w′}).

Proof. The same as Theorem 7.3.4 with the change in saturation.

9.2 NSP-World Alphabets.

First, recall the following definition. Pm = {f | (f ∈ Tm) ∧
(∃z((z ∈ E) ∧ (f ∈ z) ∧ ∀x((x ∈ IN) ∧ (x > m) → ¬∃y((y ∈ T x) ∧
(y ∈ z)))))}. The set T = i[W]. The set Pm determines the unique
partial sequence f ∈ [g] ∈ E that yields, for each j ∈ IN such that
0 ≤ j ≤ m, f(j) = i(a), where i(a) is an “encoding” in i[W] of the
alphabet symbol “a” used to construct our intuitive language W. The
set [g] represents an intuitive word constructed from such an alphabet
of symbols.

Within the discipline of Mathematical Logic, it is assumed that
there exists symbols — a sequence of variables — each one of which
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corresponds, in a one-to-one manner, to a natural number. Further,
under the subject matter of generalized first-order theories [2], it isas-
sumed that the cardinality of the set of constants is greater than ℵ0. In
the forthcoming investigation, it may be useful to consider an alpha-
bet that injectively corresponds to the real numbers IR. This yields a
new alphabet A′ containing our original alphabet. A new collection of
words W ′ composed of nonempty finite strings of such alphabet sym-
bols may be constructed. It may also be useful to well-order IR. The
set E also exists with respect to the set of words W ′. Using the ESG,
many previous results in this book now hold with respect to W ′ and
for the case that we are working in a |M1|

+
-saturated enlargement.

With respect to this extended language, if you wish to except the
possibility, a definition as to what constitutes a purely subtle alphabet
symbol would need to be altered in the obvious fashion. Indeed, for
T in the definition of Pm, we need to substitute T ′ = i[W ′]. Then the
altered definition would read that r ∈ ∗i[W ′] is a pure subtle alphabet
symbol if there exists an m ∈ IN and f ∈ ∗(Pm), or if m ∈ ∗

IN− IN an
f ∈ Pm, and some j ∈ ∗

IR such that f(j) = r /∈ i[W ′]. Notice that if
one chooses to use W ′, then r corresponds to an r′ ∈ ∗W ′. Further,
some of the previous theorems also hold when the proofs are modified.

Although these extended languages are of interest to the
mathematician, most of science is content with approximating a real
number by means of a rational number. In all that follows, the car-
dinality of our language, if not denumerable, will be specified. All
theorems from this book that are used to establish a result relative to
a denumerable language will be stated without qualification. If a the-
orem has not been reestablished for a higher language but can be so
reestablished, then the theorem will be termed an extended theorem.

9.3 General Paradigms.

There is the developmental paradigm, and for nondetailed de-
scriptions the general developmental paradigm. But now we have
something totally new — the general paradigm. It is important to
note that the general paradigm is considered to be distinct from de-
velopmental paradigms, although certain results that hold for general
paradigms will hold for developmental paradigms and conversely. For
example, associated with each general paradigm GA is an ultraword
wg such that the set GA ⊂ ∗S({wg}) and all other theorems relative
to such ultrawords hold for general paradigms. The general paradigm
is a collection of words that discuss, in general, the behavior of enti-
ties and other constituents of a natural system. They, usually, do not
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contain a time statement Wi as it appears in section 7.1 for develop-
mental paradigm descriptions. Our interest in this section is relative
to only two such general paradigms. The reader can easily generate
many other general paradigms.

The formal language is the usual first-order set-theoretic lan-
guage with variables and constants. And, as used throughout, W ′ is
a set of words formed by an alphabet, where if w ∈ W ′ there is no
set a in our structure such that a ∈ w. Obviously, if infinite W ′ is
not denumerable, then the modified Robinson approach is the most
appropriate, relative to the nonstandard language. Depending upon
the application, the alphabet is assumed to have symbols for informal
mathematical entities. Thus, there are mostly two mathematically
styled languages, the symbolic language N, which is part of the “ob-
ject language” that denotes the informal natural numbers considered
as constants and the formal natural number IN used to analyze the
language. In the form of constants, members of N, only have, as
previously defined, intuitive meaning. This allows one, as done by
Robinson, to consider formal relations that tend to characterize the
intuitive meanings.

Consider the symbol c′ and let n′ ∈ N. These symbols form a
denumerable subset of W ′. The symbol 0′ /∈ N. These symbols are con-
sidered as alphabet members and correspond to constants that further
correspond to the nonzero natural numbers. Hence, as set-theoretic
entities N ⊂ W ′. In what follows, the intended alphabet symbols are
employed as constants of the formal first-order language. The formal
mathematical structure also has the usual array of constants that de-
note the members. [Note: Within some of my papers on this subject
you may find the notation W or W ′. Although these symbols usually
indicate the set of equivalences cases without the coding i, this no-
tation may also be used to represent either of the equivalence class
representations.]

Now consider the following informally defined set of words. Of
course, in the extended case, it can be assumed that the cardinality of
W ′ is no greater than that of IR. It should be noted that the members
of GA are but linguistic forms that do, at least, partially have meaning
when interpreted physically. Due to the possible non-countable car-
dinality of W ′, the modified Robinson approach is employed in what
follows.

GA = {An|||elementary|||particle|||α(n′)|||with|||

kinetic|||energy|||c′+1/(n′). | n′ ∈ N} (9.3.1)

Of particular interest is the composition of members of
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∗GA − GA.

Theorem 9.3.1 A set [g] ∈ ∗GA − GA if and only if there
exists a f ∈ ∗(P55) and a nonstandard ν ∈ ∗N−N such that f ∈ [g],
and f(55) = A, f(54) = n, f(53) = |||, · · · , f(30) = f(2), · · · , f(3) =
(, f(2) = ν, f(1) =), f(0) = .

Proof. From the definition of GA the sentences

∀z((z ∈ GA) → ∃x∃w((w ∈ N) ∧ (x ∈ P55) ∧ (x ∈ z) ∧

((55,A) ∈ x) ∧ ((54,n) ∈ x) ∧ · · · ∧ (x(30) = x(2)) ∧ · · · ∧

((3, () ∈ x) ∧ (x(2) = w) ∧

(9.3.2) ((1, )) ∈ x) ∧ ((0, .) ∈ x))).

∀x∀w((x ∈ P55) ∧ (w ∈ N) ∧
((55,A) ∈ x) ∧ ((54,n) ∈ x) ∧ · · · ∧ (x(30) = x(2)) ∧ · · · ∧

((3, () ∈ x) ∧ (x(2) = w) ∧ ((1, )) ∈ x) ∧ ((0, .) ∈ x) →

∃z((z ∈ GA) ∧ (x ∈ z))).

hold in M, hence in ∗M. There is in the standard structure bi-
jection j[N] = IN

′. Hence, bijection ∗j[ ∗N] = ∗
IN

′. Consequently
∗j[ ∗N − N] = ∗

IN− IN. Since ∗j[N] = j[N] under our notational con-
vention, where, for atoms a, ∗a = a, then there is a nonstandard
ν ∈ ∗N − N that satisfies the *-transformed statements 9.3.2 for a
[g] ∈ ∗GA −GA, where internal partial sequence f ∈ [g] is the mem-
ber that characterizes the alphabet members and, thus, also varies
over members of ∗N −N for f(2) and f(2) = f(30).

Using Theorem 9.3.1, each member of ∗GA − GA, when inter-
preted, has only two positions with a single missing standard object
since positions 30 and 2 do not correspond to any symbol string in
our language W ′. This interpretation still retains a vast amount of
content, however. The members of ∗

IN− IN = IN∞ correspond to the
infinite Robinson numbers. Thus, considering “new” constant sym-
bols not used in our language, such as ≀, and let them denote infinite
numbers, we have symbolic forms such as

G′
A = An|||elementary|||particle|||α(≀)|||with|||

(9.3.3) kinetic|||energy|||c′+1/(≀).

9.4 Interpretations

Recall that the Natural world portion of the NSP-world model
may contain undetectable objects, where “undetectable” means that
there does not appear to exist human, or humanly constructible ma-
chine sensors that directly detect the objects or directly measure any
of the objects physical properties. The rules of the scientific method
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utilized within the micro-world of subatomic physics allow all such
undetectable Natural objects to be accepted as existing in reality.[1]
The properties of such objects are indirectly deduced from the ob-
served properties of gross matter. In order to have indirect evidence
of the objectively real existence of such objects, such indirectly ob-
tained behavior will usually satisfy a specifically accepted model.

Although the numerical quantities associated with these unde-
tectable Natural (i.e. standard) world objects, if they really do exist,
cannot be directly and exactly measured via any known instrumenta-
tion, these quantities are still represented by standard mathematical
entities. By the rules of correspondence for interpreting pure NSP-
world entities, such entities with a property being described by G′

A

must be considered as undetectable pure NSP-world objects, assum-
ing any of them exist in this background world. On the other hand,
physical entities could satisfy this behavior, when viewed from the
substratum. The G′

A type statements are actually being predicted
by the mathematical method employed. Consequently, some
such measures may be assumed to have an indirect affect within the
Natural world. The predicted measure 1/≀ is that of an infinitesimal.
From a substratum viewpoint, when c′ is interpreted as the 0 ∈ IN,
it rationally verifies a stance original held by Newton that such mea-
sures are “real” as well as a remark by Robinson that such measures
may be of significance in the world of particle physics.

The concept of realism often dictates that all interpreted mem-
bers of a mathematical model be considered as existing in reality. The
philosophy of science that accepts only partial realism allows for the
following technique. One can stop at any point within a mathemati-
cally generated physical interpretation. Then proceed from that point
to deduce an intuitive physical theory, but only using other not inter-
preted mathematical formalism as auxiliary constructs or as catalysts.
Entities having such infinitesimal measures could be restricted to the
substratum. Or, as mentioned, they could be physical entities that
exhibit such behavior only when viewed from the substratum. With
respect to the NSP-world, another aspect of this interpretation enters
the picture. Assuming realism, then the question remains which, if
any, entity with infinitesimal behavior actually indirectly influences
Natural world processes? Partial realism allows for the possibility
that none of these pure NSP-world measures has any affect upon the
standard world. These ideas should always be kept in mind.

If you accept that such particle measures as described by GA

can exist in reality, then the philosophy of realism leads to the next
interpretation.
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(1) If there exists an elementary particle with Natu-
ral system behavior described by GA, then there ex-
ists an entity that displays the behavior described by
statement G′

A.

The concept of absolute realism would require that the acceptance
of entities with behavior described by GA is indirect evidence for the
existence of the G′

A described behavior. I caution the reader that the
interpretation we apply to such sets of sentences as GA are only to be
applied to such sets of sentences.

The EGS may, of course, be interpreted in infinitely many dif-
ferent ways. Indeed, the NSP-world model with its physical-type lan-
guage can also be applied in infinitely many ways to infinitely many
scenarios. I have applied it to such models as the MA-model and the
GGU-model among others. In this section, I consider another possible
interpretation relative to those Big Bang cosmologies that postulate
real objects at or near infinite temperature, energy or pressure. These
theories incorporate the concept of the initial singularity(ies).

One of the great difficulties with many Big Bang cosmologies is
that no meaningful physical interpretation for formation of the initial
singularity is forthcoming from the theory itself. The fact that a
proper and acceptable theory for creation of the universe requires that
consideration not only be given to the moment of zero cosmic time but
to what might have occurred “prior” to that moment in the nontime
period is what partially influenced Wheeler to consider the concept
of a pregeometry.[3], [3] It is totally unsatisfactory to dismiss such
questions as “unmeaningful” simply because they cannot be discussed
in your favorite theory. Scientists must search for a broader theory to
include not only the question but a possible answer.

Although the initial singularity for a Big Bang type of state of
affairs apparently cannot be discussed in a meaningful manner by
many standard physical theories, unless one adjoins to the theory an
ad hoc quantum field, it can be discussed by application of our NSP-
world language. Let c′ be a symbol that represents any fixed real
number. Define

GB = {An|||elementary|||particle|||α(n′)|||with|||

(9.4.1) total|||energy|||c′+n′. | n ∈ IN},

Application of Theorem 9.3.1 to GB yields the form

G′
B = An|||elementary|||particle|||α(ζ ′)|||with|||

(9.4.2) total|||energy|||c′+≀

(2) If there exist an elementary particle with Natural
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system behavior described by GB, then there exist an
entity that displays behavior described by G′

B.

The entities being described by G′
B have infinite energy. This

infinite energy does not behave in the same manner as would the
real number energy measures discussed in GB. As is usual when a
metalanguage physical theory is generated from a formalism, we can
further extend and investigate the properties of G′

B described entities
by imposing upon them the corresponding behavior of the positive
infinite hyperreal numbers. This produces some interesting proposi-
tions. Hence, we are able to use a nonstandard physical world lan-
guage in order to give further insight into the state of affairs at or
near a cosmic initial singularity. This gives one solution to a portion
of the pregeometry problem. I point out that there are other NSP-
world models for the beginnings of our universe, if there was such a
beginning. Of course, the statement G′

B need not be related at all
to any Natural world physical scenario, but could refer only to the
behavior of pure NSP-world entities.

Notice that Theorems such as 7.3.1 and 7.3.4 relative to the gener-
ation of developmental paradigms by ultrawords, also apply to general
paradigms, where M,MB,P0 are defined appropriately. The following
is a slight extension of Theorem 7.3.2 for general paradigms. Theorem
9.4.1 will also hold for developmental paradigms.

Theorem 9.4.1 Let GC be any denumerable general paradigm.
Then there exists an ultraword w ∈ ∗P0 such that for each F ∈
GC, F ∈ ∗S({w}) and there exist infinitely many [g] ∈ ∗GC − GC

such that [g] ∈ ∗S({w}).

Proof. In the proof of Theorem 7.3.2, it is shown that there exists
some ν ∈ ∗

IN−IN and a bijection h such that ∗h[[0, ν]] ⊂ ∗S({w}) and
∗h[[0, ν]] ⊂ ∗GC. Since | ∗h[[0, ν]]| ≥ |M1|

+
, then | ∗h[[0, ν]] − h[IN]| ≥

|M1|
+
. This completes the proof.

Corollary 9.4.1.1 Theorem 9.4.1 holds, where GC is replaced
by a developmental paradigm.

(3) Let GC be a denumerable general paradigm. There
exists an intrinsic ultranatural process, ∗S, such that
objects described by members of GC are produced by
∗S. During this production, numerously many pure
NSP-objects as described by statements in ∗GC−GC

are produced.

9.5 A Barrier To Knowledge.

Our final discussion in this chapter deals with the use of |M|+-
saturated models and our ability to analyze sets of sentences such as
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G′
A.

Each of our previous investigations is done with respect to a spe-
cific NSP-world structure ∗M based upon a infinite standard set H
(with a cardinality usually equal to ℵ0) into which is mapped the
symbols and words for all languages. The requirement that H be a
standard set is relative to the standard universe in which we function.
Although there are infinitely many distinct nonisomorphic NSP-world
structures, each of our results is with respect to members of a sub-
class of the class of all such structures. In particular, |M|+-saturated
enlargement , where M is based upon a standard set H, where IN ⊂ H.

In order to analyze general paradigms G′
A, G′

B and the like, we
need to start, I believe, with a comprehensible set of sentences, such as
GA, GB, with nonempty content and insert new symbols but retain
some of the content of the original sentences. What is shown next
is that if we use any of our models based on H and require them
to be |M|+-saturation enlargement, then we cannot embed our new
alphabet into the standard set H and, thus, we cannot fully analyze
sets of sentences such as G′

A, G′
B using our embedding procedures.

Theorem 9.5.1 Let Γ′ be a set of symbols adjoined to a count-
able alphabet A, which is disjoint from A, and such that it is used
to obtain the set of sentences in G′

B. Let ∗M = 〈 ∗H,∈,=〉 be any
|M|+-saturated enlargement of a superstructure based on the ground
set H, where here IN ⊂ H ⊂ IR. There does does not exist an injection
from Γ′ ∪ A into L, where L ∈ H.

Proof. Suppose that there exists an injection i: (Γ′ ∪ A) → L.
Since the model is an enlargement, then |Γ′ ∪ A| ≥ |M|+. However,
|L| < |M|+. But under the assumption |Γ′∪A| ≤ |L|. This contradic-
tion implies that the injection does not exist and this completes the
proof.
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