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The Earth’s diametrically opposed, presumably symmetric, tides are due to the Moon’s differential gravitational 

force varying across the Earth.  This is not intuitively obvious, but becomes clear when the physics is examined 

mathematically.  The presumed symmetry is due to an approximation that holds when the radius of the affected body 

(e.g., the Earth) is much less than its center-to-center distance from the affecting body (e.g., the Moon).  The exact 

solution indicates an asymmetry, which becomes more pronounced as the assumption loses its applicability. 

 

 

1. Introduction 
 

Explaining why the Earth experiences high tides (or 

low tides) simultaneously on opposite hemispheres is not 

intuitively obvious.  If due to the gravitational force of the 

Moon (and, to a lesser extent, that of the Sun),1 one might 

expect there to be a tidal bulge solely on the ‘near’ 

hemisphere (i.e., the one closer to the Moon), as illustrated 

in Figure 1. [1] 

 

 
FIGURE 1.  Tidal Misconceptions [1] 

 

This is clearly not observed.  Most websites that explain the 

tides follow the following logic or something similar. [2] 

 

“The tidal force is a secondary effect of the force 

of gravity and is responsible for the tides. It arises 

because the gravitational force exerted by one 

body on another is not constant across it; the 

nearest side is attracted more strongly than the 

farthest side. Thus, the tidal force is differential ... 

For a given (externally generated) gravitational 

field, the tidal acceleration at a point with respect 

                                                
1  Only the Moon’s effect is examined in this paper.  It has 

been estimated to be approximately twice that of the 

Sun. [2] 

to a body is obtained by vectorially subtracting the 

gravitational acceleration at the center of the body 

(due to the given externally generated field) from 

the gravitational acceleration (due to the same 

field) at the given point. Correspondingly, the term 

tidal force is used to describe the forces due to tidal 

acceleration. Note that for these purposes the only 

gravitational field considered is the external one; 

the gravitational field of the body is not relevant 

… By Newton's law of universal gravitation and 

laws of motion, a body of mass M [i.e., the earth] 

at distance D from the center of a sphere of mass 

m [i.e., the moon] feels a force F = –GMm/D2 

equivalent to an acceleration A = –Gm/D2 [along] 

a unit vector pointing from the body m to the body 

M … Consider now the acceleration due to the 

sphere of mass m experienced by a particle in the 

vicinity of the body of mass M. With D as the 

distance from the center of m to the center of M, 

let R be the (relatively small) distance of the 

particle from the center of the body of mass M. For 

simplicity, distances are … considered only in the 

direction pointing towards or away from the 

sphere of mass m. If the body of mass M is itself a 

sphere of radius R, then the new particle 

considered may be located on its surface, at a 

distance D ± R from the center of the sphere of 

mass m, and R may be taken as positive where the 

particle's distance from m is greater than R. 

Leaving aside whatever gravitational acceleration 

may be experienced by the particle towards M on 

account of M’s own mass, we have the 

acceleration on the particle due to gravitational 

force towards m as A = -Gm/(D + R)2. Pulling out 

the D2 term from the denominator gives A = -

(Gm/D2)/(1 + R/D)2, … [which expands, via the 

Maclaurin series, into] A = Gm/D2 + 

(2Gm/D2)(R/D) +… The first term is the 

gravitational acceleration due to m at the center of 

the reference body M, i.e., at the point where R is 

zero [i.e., earth’s center]. This term does not affect 

the observed acceleration of particles on the 

surface of M because with respect to m, M (and 

everything on its surface) is in free fall. When the 

force on the far particle is subtracted from the 

force on the near particle, this first term cancels, 

as do all other even-order terms. The remaining 
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(residual) terms represent the difference 

mentioned above and are tidal force (acceleration) 

terms. When R is small compared to D, the terms 

after the first residual term are very small and can 

be neglected, giving the approximate tidal 

acceleration (axial) for the distances R considered, 

along the axis joining the centers of M and m [as] 

A ≈ +2GMR/D3.” 

 

We see equal magnitude accelerations for the 

maximum tides, implying symmetry.  Additional websites 

that explain the ocean tides often cite the hemispherical 

opposites as symmetric based on polynomial expansions and 

neglecting higher order terms beyond the second power, e.g., 

“The tide-generating force can be decomposed into 

components perpendicular and parallel to the sea surface. 

The tides are produced by the horizontal component … The 

tidal potential is symmetric about the Earth-moon line, and 

it produces symmetric bulges.” [3]    This conclusion 

implicitly assumes that the ratio between the radius of the 

affected body and its center-to-center distance from the 

affecting body is << 1.  A common illustration is shown in 

Figure 2.  

 
FIGURE 2.  Effect of Differential (Tidal) Forces [3] 

 

 
 

2. Tidal Asymmetry? 
 

The goal here is to show that, using the exact, vs. the 

asymptotic, solution to the differential force between the 

Moon’s gravitational pull at the Earth’s surface vs. at its 

center, an asymmetry between the tides will result for equal 

angles θ on the Earth’s far and near hemispheres.  This 

asymmetry will exist for both the magnitude of the 

differential force (Δg) and the angle (β).  Figure 3 provides 

the geometry for the comparison.  Note that, for the near 

hemisphere, the Moon’s gravitational force at the surface is 

almost always greater than that at the Earth’s center,2 as 

indicated by the first forces triangle for the near hemisphere.  

The opposite holds exclusively for the far hemisphere, where 

the Moon’s gravitational force at the Earth’s center is always 

                                                
2  As θn approaches 90o, βn reaches a maximum then starts 

to decrease, with the angle at which the maximum 

occurs being closer to 90o as R/D decreases.  This will 

be shown later via plots of the differences between the 

Δg forces for corresponding angles θ on the near and 

far hemispheres. 

greater than at the surface, as indicated by the second forces 

triangle for the far hemisphere. 

 

Calculations for the various parameters are as follows: 

 

dn = √([D - R cos θn]2 + [R sin θn]2) = √(D2 - 2DR cos θn + 

R2) 

df = √([D + R cos θf]2 + [R sin θf]2) = √(D2 + 2DR cos θf + 

R2) 

 

Assuming, for convenience, that G (gravitational constant) 

and m (Moon’s mass) are both unity, gm,n = 1/dn
2, gm,f = 

1/df
2, gc = 1/D2.  In addition, the Moon’s gravitational force 

is assumed to act on a unit mass of 1 kg of ocean water on 

the Earth’s surface, so that the force equations developed 

below can be viewed as characterizing the force per unit of 

affected mass, effectively an acceleration.  Therefore, the 

differential forces between the Moon’s gravitational pull at 

the Earth’s surface and at the Earth’s center are as follows: 

 

Δgn = √(gm,n
2 + gc

2 – 2gm,n gc cos ϕn) 

Δgf = √(gm,f
2 + gc

2 – 2gm,f gc cos ϕf) 

cos ϕn = (D - R cos θn)/dn  

cos ϕf = (D + R cos θf)/df 

gm,n/sin βn = Δgn/sin ϕn → βn = sin-1(sin ϕn gm,n/Δgn) 

gm,f/sin (π - βf) = Δgf/sin ϕf → gm,f/sin βf = Δgf/sin ϕf → βf 

= sin-1(sin ϕf gm,f/Δgf) 

 

To compare corresponding angles θ on the near and far 

hemispheres in terms of the differences between the 

differential forces in terms of magnitude (Δg) and direction 

(β), we calculate the following pair of differences for 0 ≤ θ 

< π/2: (1) Δgn - Δgf and (2) βn - βf .  For convenience, we 

assume D = 1 and express R as a fraction of D ranging from 

0.001 to 0.5 and including the ratio for the Earth-Moon 

system, i.e., R/D = (6,371 km)/(384,400 km) = 0.0166.  

Figures 4 and 5 plot both pairs of differences over the 

complete range.  Figures 6 and 7 are analogous plots in terms 

of the percent differences (relative to the average of the 

corresponding values for the far and near hemispheres).  All 

four include the results for the Earth-Moon system, with g 

and m set to unity. 

 

The expected trend is that the Moon’s gravitational 

force on the near hemisphere, albeit decreasing from θ = 0 

to 90o, vs. the Moon’s gravitational force on the far 

hemisphere, always increasing, is always greater for 

corresponding values of θ, with equality achieved only when 

θ = 90o.  As a result, the differential force on the near 

hemisphere, albeit decreasing from θ = 0 to 90o, always 

exceeds the differential force on the far hemisphere, also 

always decreasing, as evidenced by the values remaining 

positive, albeit decreasing, from θ = 0 to 90o.  This trend is 

evident in Figures 4 and 6, increasing as R/D increases.3 

3  Also shown in this figure is the trend for the Earth-

Moon system with the actual values of the gravitational 

constant (6.674 x 10-11 m3/kg-s) and Moon’s mass 

(7.348 x 1022 kg) included.  The actual center-to-center 

distance between the Earth and Moon and the Earth’s 

actual radius are already accounted for by R/D = 

0.0166. 
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FIGURE 3.  Geometry for Analysis 
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FIGURE 4.  Differences between Moon’s Differential Force for Corresponding Position on Near and Far Hemisphere  
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 FIGURE 5. Differences between Angles of Moon’s Differential Force for Corresponding Position on Near and Far 

Hemisphere 
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FIGURE 6.  Figure 4 Differences Measures as Percents 
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FIGURE 7.  Figure 5 Differences Measured as Percents 

TABLE 1.  Angle Where Difference between Near and Far Hemisphere Tidal Forces is Maximum 

θn (degrees) 

for βn – βf 

maximum → 

R/D 

0.001 0.01 0.0166 0.1 0.2 0.3 0.4 0.5 

89.97 89.71 89.53 87.13 84.26 81.37 78.46 75.52 

 

The trend for the direction (angle β) of the differential 

force on the near hemisphere vs. far hemisphere is also 

evident from Figures 5 and 7.  On the far hemisphere, this 

angle always increases from θ = 0 to 90o.  On the near 

hemisphere, it also increases over nearly the entire range, 

only showing a slight decrease from θ = 89o to 90o.  The 

result is that the difference between the angles of the 

differential forces is always positive (i.e., βn > βf).  However, 

as shown in Figures 5 and 7, this difference reaches a 

maximum as β approaches 90o, with the maximum occurring 

at a lesser angle with increasing R/D.4  This maximum value 

occurs where dn = D (df is always > D), i.e., 

 

dn = D → √(D2 - 2DR cos θn + R2) = D 

θn = cos-1(R/2D) 

 

Table 1 lists where these maxima occur. 

 

3. Ring-Spring Analogy 
 

Figure 8 illustrates the assumed tidal effect for the 

asymptotic case where R/D << 1, such that the tides are 

symmetric on both hemispheres.  A force pulling at one end 

                                                
4  The inflection point is impossible to see until R/D 

reaches 0.1 due to the scale of the axes. 

of the ring-spring (with the other end fixed), such as the 

Moon, translates into a differential force as if pulling at both 

ends (neither end fixed).  An observer in the middle of the 

ring-spring before any force is applied sees both ends of the 

spring as equidistant, and the ring as circular.  After the force 

is applied, the observer still sees both ends equidistant, albeit 

now equally farther away, and the ring stretched to form a 

symmetrical ellipse.  This is the assumed behavior of the 

tides when R << D. 

 

Figure 9 assumes the ring-spring starts in ‘deep space’ 

where there is no gravity.  There, no deformation will occur.  

If the bottom is pulled, uniform deformation will occur, 

analogous to the deformation in Figure 8 since there is still 

no gravity.  However, as the ring-spring enters a 

gravitational field, it acquires weight, with the weight being 

proportional to the length of the spring such that, towards the 

top, the coils feel a greater pull (more coils) than near the 

bottom (less coils).  Now the deformation is not uniform and 

an observer originally at the middle of the spring when the 

ends were equidistant now will see the upper end farther 

away than the lower.  The ring also deforms into more of an 

egg-shape than a symmetric ellipse.  This is the analogy for 
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the case where R is not << D.  This parallels the results from 

the analysis as shown in Figures 4 through 7, i.e., there is an 

asymmetry between the two hemispheres, more pronounced 

as R approaches D.  

 

4. Conclusion 
 

The explanation for the Earth’s tides is not intuitively 

obvious, but appears to suggest an expectation of symmetry 

on the two hemispheres, i.e., equally-high high tides and 

equally-low low tides, diametrically opposite.  The analysis 

performed here suggests that this symmetry is the result of 

an approximation, usually quite good when the radius of the 

affected body is much less than the distance between its 

center and that of the affecting body (e.g., Earth-Moon).  

However, exact solution of the differential tidal force 

equations demonstrates that there always is an asymmetry, 

more pronounced as the affected body radius approaches the 

center-to-center distance from the affecting body. This peaks 

at approximately 10% in terms of magnitude and direction 

for R/D = 0.0166 for the Earth-Moon system (Figures 6 and 

7). 

 

FIGURE 8.  Ring-Spring Analogy for Asymptotic 

Deformation (R << D) 

 

FIGURE 9.  Ring-Spring without and with Gravity) 
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The Earth’s monthly rotation about the Earth-Moon barycenter 

can affect the tides.  Referring to the figure above, the Earth-Moon 

barycenter (B) is located 4671 km (4.671 x 106 m) from the Earth’s 

center, within the Earth itself.  With a rotational period (p) about this 

point of 27.32 d (sidereal month, 

https://en.wikipedia.org/wiki/Orbit_of_the_Moon, “Orbit of the 

Moon”), the tangential speed at θf = 0o (along Earth-Moon axis on 

the ‘far’ side) is 2π(R + B)/p = 29.4 m/s for R (earth) = 6371 km 

(6.371 x 106 m).  Compared to the daily rotational speed at the 

equator, 2πR(86400 s) = 463 m/s, this is small (~ 6%) but not 

negligible.  The centrifugal force on 1 kg of ocean due to this 

barycentric rotation is (1 kg)(29.4 m/s)2/(R + B) = 7.82 x 10-5 N.  

The differential gravitational force on 1 kg of ocean from the Moon 

at this point is Gm(1 kg)/(1/D2 – 1/[R + D]2) = 1.07 x 10-6 N where 

m (moon) = 7.348 x 1022 kg and D = 384400 km (3.844 x 108 m).  

Therefore the centrifugal force from the barycentric rotation is ~ 70 

times that from the differential gravitational force at this point.  Even 

at the ‘near’ side (θn = 0o), the barycentric centrifugal force 

dominates that from the differential gravitational force.  At this point 

(along Earth-Moon axis on the ‘near’ side), the tangential speed is 

2π(R - B)/([27.32 d][86400 s/d]) = 4.52 m/s.  The centrifugal force 

on 1 kg of ocean due to this barycentric rotation is (1 kg)(4.52 

m/s)2/(R - B) = 1.20 x 10-5 N.  The differential gravitational force on 

1 kg of ocean from the Moon at this point is Gm(1 kg)/(1/[D - R]2 – 

1/D2) = 1.07 x 10-6 N.  Therefore the centrifugal force from the 

barycentric rotation is still ~ 10 times that from the differential 

gravitational force at this point.  Clearly, the dynamic effects from 

the rotation of the Earth-Moon system about its barycenter 

dominates over the static effect from the differential gravitational 

force from the Moon. 

 

If one examines the variation of the radial (outward from center 

of Earth) component of the barycentric centrifugal force over each 

hemisphere (Cf,r and Cn,r), one finds the difference between these 

forces (Cf,r – Cn,r) decreasing from a maximum of 6.62 x 10-5 N at θf 

= 0o vs. θn = 0o to 1.15 x 10-6 N at θf = 89o vs. θn = 89o (the difference 

is naturally zero when both θf and. θn = 90o).  Therefore, there is a 

strong asymmetry between the two hemispheres, as one would 

expect given R + B ≈ 7(R – B).  Scaled to 1 x 10-5 N, this asymmetry 

is shown in the accompanying plot.  Note from the plot also the 

ratios of the radial component of the barycentric centrifugal force to 

the magnitude of the differential gravitational force on the two 

hemispheres.  It remains between ~ 70 and 90 for the far hemisphere, 

peaking around θf = 75o, while rising from ~ 10 to 82 from θn = 0o 

to θn = 90o.  Clearly there is strong asymmetry predicted due to the 

barycentric centrifugal force, with the tides on the far hemisphere 

exceeding those on the near, opposite to the trend for the differential 

gravitational force.  However, due to the dominance of the former, 

the latter does not come close to an offset, so asymmetric tides are 

predicted. 

 

https://en.wikipedia.org/wiki/Orbit_of_the_Moon
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ADDENDUM II 

An Intriguing ‘Coincidence?’ 

 
Neither the exact solution to the differential gravitational force 

approach nor incorporating the effect of the earth’s barycentric 

centrifugal force was able to establish the alleged symmetry of the 

tides across the Earth’s hemispheres.  However, an interesting 

anomaly that might bear further examination is revealed if one 

combines the barycentric effect with the Moon’s gravitational force 

directly, i.e., without the differential effect.  In Addendum I, the 

barycentric centrifugal on 1 kg of ocean at θf = 0o (along Earth-

Moon axis on the ‘far’ side) was calculated as 7.82 x 10-5 N.  At θn 

= 0o (along Earth-Moon axis on the ‘near’ side), the corresponding 

force is 1.20 x 10-5 N.  What are the gravitational forces (direct, not 

differential) of the Moon on the same 1 kg of ocean water at these 

points?  At the ‘far’ side (θf = 0o), this is Gm/(R + D)2 = (6.674 x 10-

11 m3/kg-s)(7.348 x 1022 kg)/(6.371 x 106 m + 3.844 x 108 m)2 = 3.21 

x 10-5 N.  At the ‘near’ side (θn = 0o), it is Gm/(D – R)2 = (6.674 x 

10-11 m3/kg-s)(7.348 x 1022 kg)/(3.844 x 108 m – 6.371 x 106 m)2 = 

3.43 x 10-5 N.  At the ‘far’ side (θf = 0o), the barycentric centrifugal 

and Moon’s gravitational forces act in opposite directions, yielding 

a net force radially outward of 7.82 x 10-5 N – 3.21 x 10-5 N = 4.61 

x 10-5 N.  At the ‘near’ side (θn = 0o), these two forces act in the 

same directions, yielding a net force radially outward of 1.20 x 10-5 

N + 3.43 x 10-5 N = 4.63 x 10-5 N.  These are essentially equal, both 

radially outward, inferring symmetry of the tides at these highest 

points.  Is this just a coincidence, or might an explanation for tidal 

symmetry rely on this combination of forces, i.e., including the 

Moon’s direct gravitational rather than its differential gravitational 

effect?  To examine this conjecture over the entire pair of 

hemispheres, we employ the geometry as shown in the following 

figures. 
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The barycentric centrifugal and Moon’s gravitational (direct) 

forces are calculated over both hemispheres from the preceding 

formulas.  These are then combined vectorially to yield the net 

forces along with the directions relative to the x-axis, also as shown 

in the figures.  The differences between the net forces on the ‘far’ 

and ‘near’ sides and the differences between the angles of these 

forces are shown in the following plot.  Also shown are the ratio of 

these differences to their average values for the corresponding 

locations in each hemisphere. 

 

The results are as follows.  For the net forces themselves, the 

differences between corresponding locations in each hemisphere are 

quite small, on the order of 1 x 10-7 N or less, or < 1% of their 

average value.  Similarly, the differences between the angles for 

these net forces at corresponding locations is quite small, on the 

order of 0.01 radians or less, again < 1% of their average value.  

What this suggests is that by combining the barycentric centrifugal 

force and the Moon’s gravitational (direct, not differential) forces 

vectorially produces the alleged symmetry between the tides on the 

opposite hemispheres.  Might this, and not just the one differential 
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gravitational force, be the reason for the symmetry of the alleged 

tides? 

 

However, now that we are considering the direct gravitational 

effect of the Moon, what about that of the Sun, which is 

(M/m)(D/S)2 = 180 times stronger, where M = mass of the Sun 

(1.989 x 1030 kg) and S = distance from Sun’s center to Earth’s (~ 

1.496 x 108 km)?  The Moon’s direct gravitational force on the near 

vs. far side differs by 3.43 x 10-5 N – 3.21 x 10-5 N = 2.20 x 10-6 N, 

~7% relative to the force at the Earth’s center.  For the Sun, this 

difference is GM(1/[S – R]2 – 1/[S + R]2) = 1.01 x 10-6 N, ~ 0.02% 

relative to the force at the Earth’s center (GM/S2 = 0.00593 N).  

When considering the effect of the differential gravitational forces, 

this is an important contributor, nearly half the value of the Moon’s.  

However, for direct gravitational force, the variation across the 

Earth due to the Sun’s gravity is negligible, i.e., it affects the Earth 

gravitationally on essentially an equal basis everywhere (0.00593 

N).  Therefore, as with the Earth’s own daily rotational centrifugal 

and direct gravitational forces, the Sun’s direct gravitational force is 

essentially uniform over the entire planet, thereby introducing no 

asymmetry. 

 

We are left to ponder whether there is an alternative 

explanation for the alleged symmetry of the tides other than 

accepting the approximation employed when deriving the 

differential gravitational effect as in Reference 2.  If the essentially 

uniform effects from the Sun’s and Earth’s own direct gravitational 

forces, as well as that from the Earth’s daily rotational centrifugal 

force, introduce no asymmetry, might the combination of the 

barycentric centrifugal and Moon’s direct gravitational forces 

explain what has so far been attributed to an approximation in the 

differential gravitational force derivation? 
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