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The Earth’s diametrically opposed, presumably symmetric, tides are due to the Moon’s differential gravitational
force varying across the Earth. This is not intuitively obvious, but becomes clear when the physics is examined
mathematically. The presumed symmetry is due to an approximation that holds when the radius of the affected body
(e.g., the Earth) is much less than its center-to-center distance from the affecting body (e.g., the Moon). The exact
solution indicates an asymmetry, which becomes more pronounced as the assumption loses its applicability.

Introduction

Explaining why the Earth experiences high tides (or
low tides) simultaneously on opposite hemispheres is not
intuitively obvious. If due to the gravitational force of the
Moon (and, to a lesser extent, that of the Sun),! one might
expect there to be a tidal bulge solely on the ‘near’
hemisphere (i.e., the one closer to the Moon), as illustrated
in Figure 1. [1]
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FIGURE 1. Tidal Misconceptions [1]

This is clearly not observed. Most websites that explain the
tides follow the following logic or something similar. [2]

“The tidal force is a secondary effect of the force
of gravity and is responsible for the tides. It arises
because the gravitational force exerted by one
body on another is not constant across it; the
nearest side is attracted more strongly than the
farthest side. Thus, the tidal force is differential ...
For a given (externally generated) gravitational
field, the tidal acceleration at a point with respect

Only the Moon’s effect is examined in this paper. It has
been estimated to be approximately twice that of the
Sun. [2]

to a body is obtained by vectorially subtracting the
gravitational acceleration at the center of the body
(due to the given externally generated field) from
the gravitational acceleration (due to the same
field) at the given point. Correspondingly, the term
tidal force is used to describe the forces due to tidal
acceleration. Note that for these purposes the only
gravitational field considered is the external one;
the gravitational field of the body is not relevant
... By Newton's law of universal gravitation and
laws of motion, a body of mass M [i.e., the earth]
at distance D from the center of a sphere of mass
m [i.e., the moon] feels a force F = ~GMm/D?
equivalent to an acceleration A = -Gm/D? [along]
a unit vector pointing from the body m to the body
M ... Consider now the acceleration due to the
sphere of mass m experienced by a particle in the
vicinity of the body of mass M. With D as the
distance from the center of m to the center of M,
let R be the (relatively small) distance of the
particle from the center of the body of mass M. For
simplicity, distances are ... considered only in the
direction pointing towards or away from the
sphere of mass m. If the body of mass M is itself a
sphere of radius R, then the new particle
considered may be located on its surface, at a
distance D + R from the center of the sphere of
mass m, and R may be taken as positive where the
particle’s distance from m is greater than R.
Leaving aside whatever gravitational acceleration
may be experienced by the particle towards M on
account of M’s own mass, we have the
acceleration on the particle due to gravitational
force towards m as A = -Gm/(D + R)2. Pulling out
the D? term from the denominator gives A = -
(Gm/D?)/(1 + RID)?, ... [which expands, via the
Maclaurin  series, into] A = Gm/D?> +
(2Gm/D?(R/D) +... The first term is the
gravitational acceleration due to m at the center of
the reference body M, i.e., at the point where R is
zero [i.e., earth’s center]. This term does not affect
the observed acceleration of particles on the
surface of M because with respect to m, M (and
everything on its surface) is in free fall. When the
force on the far particle is subtracted from the
force on the near particle, this first term cancels,
as do all other even-order terms. The remaining
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(residual) terms represent the difference
mentioned above and are tidal force (acceleration)
terms. When R is small compared to D, the terms
after the first residual term are very small and can
be neglected, giving the approximate tidal
acceleration (axial) for the distances R considered,
along the axis joining the centers of M and m [as]
A = +2GMR/D3.”

We see equal magnitude accelerations for the
maximum tides, implying symmetry. Additional websites
that explain the ocean tides often cite the hemispherical
opposites as symmetric based on polynomial expansions and
neglecting higher order terms beyond the second power, e.g.,
“The tide-generating force can be decomposed into
components perpendicular and parallel to the sea surface.
The tides are produced by the horizontal component ... The
tidal potential is symmetric about the Earth-moon line, and
it produces symmetric bulges.” [3] This conclusion
implicitly assumes that the ratio between the radius of the
affected body and its center-to-center distance from the
affecting body is << 1. A common illustration is shown in
Figure 2.
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FIGURE 2. Effect of Differential (Tidal) Forces [3]

2. Tidal Asymmetry?

The goal here is to show that, using the exact, vs. the
asymptotic, solution to the differential force between the
Moon’s gravitational pull at the Earth’s surface vs. at its
center, an asymmetry between the tides will result for equal
angles 0 on the Earth’s far and near hemispheres. This
asymmetry will exist for both the magnitude of the
differential force (Ag) and the angle (). Figure 3 provides
the geometry for the comparison. Note that, for the near
hemisphere, the Moon’s gravitational force at the surface is
almost always greater than that at the Earth’s center,? as
indicated by the first forces triangle for the near hemisphere.
The opposite holds exclusively for the far hemisphere, where
the Moon’s gravitational force at the Earth’s center is always

2 As0napproaches 90°, Bn reaches a maximum then starts
to decrease, with the angle at which the maximum
occurs being closer to 90° as R/D decreases. This will
be shown later via plots of the differences between the
Ag forces for corresponding angles 6 on the near and
far hemispheres.

greater than at the surface, as indicated by the second forces
triangle for the far hemisphere.

Calculations for the various parameters are as follows:

dn = V([D - R cos 0r]? + [R sin 0r]%) = V(D? - 2DR cos 6n +
R?)
di = ([D + R cos 6] + [R sin 6:]) = V(D2 + 2DR cos 6 +
R?)

Assuming, for convenience, that G (gravitational constant)
and m (Moon’s mass) are both unity, gmn = 1/d?, gmf =
1/df, gc= 1/D?. In addition, the Moon’s gravitational force
is assumed to act on a unit mass of 1 kg of ocean water on
the Earth’s surface, so that the force equations developed
below can be viewed as characterizing the force per unit of
affected mass, effectively an acceleration. Therefore, the
differential forces between the Moon’s gravitational pull at
the Earth’s surface and at the Earth’s center are as follows:

Agn= \/(gm,nz + gc2 — 2gmn Je COS ¢n)

Agi= \/(gm,fz + gc2 — 20m,fJc COS ¢f)

cos ¢n = (D - R cos 0n)/dn

cos ¢f = (D + R cos 0)/ds

gm,n/Sin Bn= Agn/sin ¢n— Bn = sin"}(sin ¢n gmn/Agn)
gmt/sin (z - Br) = Ag#sin ¢r— gm#/Sin Br = Ags/sin o — Pt
= sin}(sin ¢ gm,#/AQY)

To compare corresponding angles 6 on the near and far
hemispheres in terms of the differences between the
differential forces in terms of magnitude (Ag) and direction
(B), we calculate the following pair of differences for 0 < 0
<mw/2: (1) Agn - Agr and (2) fBn - Br. For convenience, we
assume D = 1 and express R as a fraction of D ranging from
0.001 to 0.5 and including the ratio for the Earth-Moon
system, i.e., R/D = (6,371 km)/(384,400 km) = 0.0166.
Figures 4 and 5 plot both pairs of differences over the
complete range. Figures 6 and 7 are analogous plots in terms
of the percent differences (relative to the average of the
corresponding values for the far and near hemispheres). All
four include the results for the Earth-Moon system, with g
and m set to unity.

The expected trend is that the Moon’s gravitational
force on the near hemisphere, albeit decreasing from 0 = 0
to 90°, vs. the Moon’s gravitational force on the far
hemisphere, always increasing, is always greater for
corresponding values of 0, with equality achieved only when
0 = 90°. As a result, the differential force on the near
hemisphere, albeit decreasing from 6 = 0 to 90°, always
exceeds the differential force on the far hemisphere, also
always decreasing, as evidenced by the values remaining
positive, albeit decreasing, from 6 = 0 to 90°. This trend is
evident in Figures 4 and 6, increasing as R/D increases.®

8 Also shown in this figure is the trend for the Earth-
Moon system with the actual values of the gravitational
constant (6.674 x 10! m3kg-s) and Moon’s mass
(7.348 x 10?? kg) included. The actual center-to-center
distance between the Earth and Moon and the Earth’s
actual radius are already accounted for by R/D =
0.0166.



Moon is distance D from Earth (center-to-center). Earth radius is R. Define 8; and
8, as equal angles on f(ar) and n(ear) hemispheres when looking down from the
North Pole (or up from the South), forming distances d; and d_ between Moon’s
center and points on Earth'’s surface at which Moon's gravitational effect on the

tides is calculated. These create two triangles with corresponding angles ¢, and ¢,

between the Moon's gravitational force at the surface points and the Earth’s center.
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FIGURE 3. Geometry for Analysis
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FIGURE 4. Differences between Moon’s Differential Force for Corresponding Position on Near and Far Hemisphere
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FIGURE 7. Figure 5 Differences Measured as Percents
TABLE 1. Angle Where Difference between Near and Far Hemisphere Tidal Forces is Maximum
On (degrees) R/D
for pn — Pr 0.001 0.01 0.0166 0.1 0.2 0.3 0.4 0.5
maximum — 89.97 89.71 89.53 87.13 84.26 81.37 78.46 75.52

The trend for the direction (angle B) of the differential
force on the near hemisphere vs. far hemisphere is also
evident from Figures 5 and 7. On the far hemisphere, this
angle always increases from 6 = 0 to 90°. On the near
hemisphere, it also increases over nearly the entire range,
only showing a slight decrease from 6 = 89° to 90°. The
result is that the difference between the angles of the
differential forces is always positive (i.e., n > Br). However,
as shown in Figures 5 and 7, this difference reaches a
maximum as 3 approaches 90°, with the maximum occurring
at a lesser angle with increasing R/D.* This maximum value
occurs where dn = D (df is always > D), i.e.,

dn=D — V(D2 - 2DR cos 6n + R?) =D
0n = cos(R/2D)

Table 1 lists where these maxima occur.
3. Ring-Spring Analogy
Figure 8 illustrates the assumed tidal effect for the

asymptotic case where R/D << 1, such that the tides are
symmetric on both hemispheres. A force pulling at one end

4 The inflection point is impossible to see until R/D

reaches 0.1 due to the scale of the axes.

of the ring-spring (with the other end fixed), such as the
Moon, translates into a differential force as if pulling at both
ends (neither end fixed). An observer in the middle of the
ring-spring before any force is applied sees both ends of the
spring as equidistant, and the ring as circular. After the force
is applied, the observer still sees both ends equidistant, albeit
now equally farther away, and the ring stretched to form a
symmetrical ellipse. This is the assumed behavior of the
tides when R << D.

Figure 9 assumes the ring-spring starts in ‘deep space’
where there is no gravity. There, no deformation will occur.
If the bottom is pulled, uniform deformation will occur,
analogous to the deformation in Figure 8 since there is still
no gravity.  However, as the ring-spring enters a
gravitational field, it acquires weight, with the weight being
proportional to the length of the spring such that, towards the
top, the coils feel a greater pull (more coils) than near the
bottom (less coils). Now the deformation is not uniform and
an observer originally at the middle of the spring when the
ends were equidistant now will see the upper end farther
away than the lower. The ring also deforms into more of an
egg-shape than a symmetric ellipse. This is the analogy for



the case where R is not << D. This parallels the results from
the analysis as shown in Figures 4 through 7, i.e., there is an
asymmetry between the two hemispheres, more pronounced
as R approaches D.

4. Conclusion

The explanation for the Earth’s tides is not intuitively
obvious, but appears to suggest an expectation of symmetry
on the two hemispheres, i.e., equally-high high tides and
equally-low low tides, diametrically opposite. The analysis
performed here suggests that this symmetry is the result of
an approximation, usually quite good when the radius of the
affected body is much less than the distance between its
center and that of the affecting body (e.g., Earth-Moon).
However, exact solution of the differential tidal force
equations demonstrates that there always is an asymmetry,
more pronounced as the affected body radius approaches the
center-to-center distance from the affecting body. This peaks
at approximately 10% in terms of magnitude and direction
for R/D = 0.0166 for the Earth-Moon system (Figures 6 and
7).

(o Q>

An elastic ring with a spring across its diameter is fixed at one end then
pulled from the other. The ring expands in the direction of the force linearly,
such that what was the center point of the spring remains so, still equidistant
from its two ends. The ring is deformed symmetrically to form an ellipse.

Y

Now a free-standing elastic ring with a spring across its diameter is pulled by equal
forces at both sides. The ring expands as before, symmetrically to form an ellipse, and
what was the center point of the spring remains so, still equidistant from both ends.

ADDENDUM I

FIGURE 8. Ring-Spring Analogy for Asymptotic
Deformation (R << D)

No gravity;
no force No gravity;
force only
at bottom J
Gravity; force throughout;
weight-based deformation

&

FIGURE 9. Ring-Spring without and with Gravity)
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The Earth’s monthly rotation about the Earth-Moon barycenter barycentric rotation is still ~ 10 times that from the differential

can affect the tides. Referring to the figure above, the Earth-Moon
barycenter (B) is located 4671 km (4.671 x 10¢ m) from the Earth’s
center, within the Earth itself. With a rotational period (p) about this
point of 27.32 d (sidereal montbh,
https://en.wikipedia.org/wiki/Orbit_of_the_Moon, “Orbit of the
Moon”), the tangential speed at 6 = 0° (along Earth-Moon axis on
the “far’ side) is 2n(R + B)/p = 29.4 m/s for R (earth) = 6371 km
(6.371 x 105 m). Compared to the daily rotational speed at the
equator, 2zR(86400 s) = 463 m/s, this is small (~ 6%) but not
negligible. The centrifugal force on 1 kg of ocean due to this
barycentric rotation is (1 kg)(29.4 m/s)?(R + B) = 7.82 x 105 N.
The differential gravitational force on 1 kg of ocean from the Moon
at this point is Gm(1 kg)/(1/D? — 1/[R + D]?) = 1.07 x 10°® N where
m (moon) = 7.348 x 10% kg and D = 384400 km (3.844 x 108 m).
Therefore the centrifugal force from the barycentric rotation is ~ 70
times that from the differential gravitational force at this point. Even
at the ‘near’ side (6n = 0°), the barycentric centrifugal force
dominates that from the differential gravitational force. At this point
(along Earth-Moon axis on the ‘near’ side), the tangential speed is
2n(R - B)/([27.32 d][86400 s/d]) = 4.52 m/s. The centrifugal force
on 1 kg of ocean due to this barycentric rotation is (1 kg)(4.52
m/s)?/(R - B) = 1.20 x 10° N. The differential gravitational force on
1 kg of ocean from the Moon at this point is Gm(1 kg)/(1/[D - R]? -
1/D?) = 1.07 x 106 N. Therefore the centrifugal force from the

gravitational force at this point. Clearly, the dynamic effects from
the rotation of the Earth-Moon system about its barycenter
dominates over the static effect from the differential gravitational
force from the Moon.

If one examines the variation of the radial (outward from center
of Earth) component of the barycentric centrifugal force over each
hemisphere (Ctr and Chn,), one finds the difference between these
forces (Ctr — Cnyr) decreasing from a maximum of 6.62 x 105 N at 0¢
=0°vs. 0h=0°t0 1.15 x 106 N at 6r = 89° vs. 0 = 89° (the difference
is naturally zero when both 6+ and. 6n = 90°). Therefore, there is a
strong asymmetry between the two hemispheres, as one would
expect given R + B=7(R - B). Scaled to 1 x 105 N, this asymmetry
is shown in the accompanying plot. Note from the plot also the
ratios of the radial component of the barycentric centrifugal force to
the magnitude of the differential gravitational force on the two
hemispheres. It remains between ~ 70 and 90 for the far hemisphere,
peaking around 6r = 75°, while rising from ~ 10 to 82 from 6, = 0°
to 6nh = 90°. Clearly there is strong asymmetry predicted due to the
barycentric centrifugal force, with the tides on the far hemisphere
exceeding those on the near, opposite to the trend for the differential
gravitational force. However, due to the dominance of the former,
the latter does not come close to an offset, so asymmetric tides are
predicted.
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ADDENDUM 11

An Intriguing ‘Coincidence?’

Neither the exact solution to the differential gravitational force
approach nor incorporating the effect of the earth’s barycentric
centrifugal force was able to establish the alleged symmetry of the
tides across the Earth’s hemispheres. However, an interesting
anomaly that might bear further examination is revealed if one
combines the barycentric effect with the Moon’s gravitational force
directly, i.e., without the differential effect. In Addendum I, the
barycentric centrifugal on 1 kg of ocean at 6s = 0° (along Earth-
Moon axis on the ‘far’ side) was calculated as 7.82 x 105 N. At 0,
= 0° (along Earth-Moon axis on the ‘near’ side), the corresponding
force is 1.20 x 10° N. What are the gravitational forces (direct, not
differential) of the Moon on the same 1 kg of ocean water at these
points? At the “far’ side (6¢ = 0°), this is Gm/(R + D)? = (6.674 x 10°
' m3/kg-s)(7.348 x 1022 kg)/(6.371 x 105 m + 3.844 x 108 m)? = 3.21
X 10 N. At the ‘near’ side (6n = 0°), it is Gm/(D — R)? = (6.674 x

10

1071t m3/kg-s)(7.348 x 10?2 kg)/(3.844 x 108 m — 6.371 x 10° m)? =
3.43 x 10° N. At the ‘far’ side (6 = 0°), the barycentric centrifugal
and Moon’s gravitational forces act in opposite directions, yielding
a net force radially outward of 7.82 x 10° N — 3.21 x 10° N = 4.61
x 105 N. At the ‘near’ side (6n = 0°), these two forces act in the
same directions, yielding a net force radially outward of 1.20 x 10
N +3.43 x10° N = 4.63 x 10° N. These are essentially equal, both
radially outward, inferring symmetry of the tides at these highest
points. Is this just a coincidence, or might an explanation for tidal
symmetry rely on this combination of forces, i.e., including the
Moon’s direct gravitational rather than its differential gravitational
effect? To examine this conjecture over the entire pair of
hemispheres, we employ the geometry as shown in the following
figures.



Bn Jis the angie (‘'near SIde }at whlch the bamcentrlfugal forceis :

. exauﬂy allgned with the: y axis, i. e 9

Far S|de

= cosHB/R)=.0.748 = 42.85% ... .. . e, e, S S L

Using the symbols from the prewous ﬂgures the ang[e relatlve to the x- axls at

which the barycentric centrifugalforce {C ) occursis 1t —

(0 — B¢
The Moon's grawtatlondl (direct) force {gm f}l occurs at the angle §: relatlve to
the x-axis. The net force I[Nf] is the vector si sum of these as shown Its

¥e =B —vr

“comporients in the x and y directions are as folows: SR S Dl

Ne = Cr - B g Where G = Celcos [B:— ‘r"f“and%mfx %mf'[CDS‘pfj
%mf'[s'” ¢f]

\M,f\.' Cey By where\(;ﬂ {sm [B:— ‘r‘f]]and%mf\

The: totalforce Ne= l[I"s.Ifx2 + fo]“ relative to the x- a:-els it occurs atan angle =

cos: I[fo,ﬂ'l\l]

Near Side {BF.I, <8, < T[,H'2

Although not shown lest the dlagram become too crowded analogous
formulas as above also applyr here now using the nl[ear] subscrlpt as follows

.

e ‘N“M:an&-gv%mWheregmx ..... {COS[T[ a ..... n]ahdgmm( ...... osq}
NM=Q@\E5M hereQn -wf{sm [m— B

.. The: ’rotalforre Np= = (N, 2, N,
dlrectlon], it occurs atan angle = cos 1{Mnxf‘lﬂ~n]

' NearS|c|e O<9_n<8ncl N : :
Once 8, < B, both the barycentric centrifugal and

Moon's grawtatlonal (direct) forces reinforce each other

F‘l]] andgmnv gmn':sm ¢n

]05 relative to the x- axis.(in the negatlve

-~in the negative x direction. This leads to the followmg set -

of equations:

unx .,C;n__x"'gmnx : :
- where Cnx_c (COS [e +Vn]) and gmnx_gm n(CDS ¢n
Nny = Coy - Emny

where C,, = Cf(sm [0, +v,l) and gm gmn(sm 0,)

(in the negatlve d|rect|on) |t occurs at an angle =!
cos’ 1L,,n xfun} :

The barycentric centrifugal and Moon’s gravitational (direct)
forces are calculated over both hemispheres from the preceding
formulas. These are then combined vectorially to yield the net
forces along with the directions relative to the x-axis, also as shown
in the figures. The differences between the net forces on the ‘far’
and ‘near’ sides and the differences between the angles of these
forces are shown in the following plot. Also shown are the ratio of
these differences to their average values for the corresponding
locations in each hemisphere.
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The results are as follows. For the net forces themselves, the
differences between corresponding locations in each hemisphere are
quite small, on the order of 1 x 107 N or less, or < 1% of their
average value. Similarly, the differences between the angles for
these net forces at corresponding locations is quite small, on the
order of 0.01 radians or less, again < 1% of their average value.
What this suggests is that by combining the barycentric centrifugal
force and the Moon’s gravitational (direct, not differential) forces
vectorially produces the alleged symmetry between the tides on the
opposite hemispheres. Might this, and not just the one differential



gravitational force, be the reason for the symmetry of the alleged
tides?

However, now that we are considering the direct gravitational
effect of the Moon, what about that of the Sun, which is
(M/m)(D/S)? = 180 times stronger, where M = mass of the Sun
(1.989 x 10%® kg) and S = distance from Sun’s center to Earth’s (~
1.496 x 108 km)? The Moon’s direct gravitational force on the near
vs. far side differs by 3.43 x 105N —-3.21 x 10° N =220 x 10 N,
~T7% relative to the force at the Earth’s center. For the Sun, this
difference is GM(1/[S — R]?— 1/[S + R]?) = 1.01 x 10¢ N, ~ 0.02%
relative to the force at the Earth’s center (GM/S? = 0.00593 N).
When considering the effect of the differential gravitational forces,
this is an important contributor, nearly half the value of the Moon’s.
However, for direct gravitational force, the variation across the
Earth due to the Sun’s gravity is negligible, i.e., it affects the Earth
gravitationally on essentially an equal basis everywhere (0.00593

12

N). Therefore, as with the Earth’s own daily rotational centrifugal
and direct gravitational forces, the Sun’s direct gravitational force is
essentially uniform over the entire planet, thereby introducing no
asymmetry.

We are left to ponder whether there is an alternative
explanation for the alleged symmetry of the tides other than
accepting the approximation employed when deriving the
differential gravitational effect as in Reference 2. If the essentially
uniform effects from the Sun’s and Earth’s own direct gravitational
forces, as well as that from the Earth’s daily rotational centrifugal
force, introduce no asymmetry, might the combination of the
barycentric centrifugal and Moon’s direct gravitational forces
explain what has so far been attributed to an approximation in the
differential gravitational force derivation?
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TIDAL ASYMMETRY

Dr. Raymond HV Gallucci, PE

2™ AnnualJohn Chappell Natural Philosophy
Society Conference

College Park, MD
July 20-23, 2016

EARTH’S TIDES - SIMPLY EXPLAINED?

» Why Earth experiences high tides (or low tides)
simultaneously on opposite hemispheres is not
intuitively obvious.

— If due to the Moon’s gravitational force (and, to a

lesser extent the Sun’s), one might expect a tidal
bulge solely on the ‘near’ hemisphere:

“~ Bulge of water

X(yndy waggerated)
\
/
ey
_'. ~ LY //
o2 -”/' o T -~
i .. e »
» "
,‘ y D. Sanacck, “Tidad Miscoaceptions.”

Jurzp . TR, edu ~dsimaneks seeario nides. Jum.
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EARTH’S TIDES — WHAT IS ACCEPTED

* Since Isaac Newton, the accepted explanation is the
differential gravitational force of the Moon across
the diameter of the Earth

— ... the approximate tidal acceleration (axial) for the
distances R considered, along the axis joining the centers
of M and m [is] A = +2GMR/D-.

* We see equal magnitude accelerations for the
maximum tides, implying symmetry.

— Additional websites cite the hemispherical opposites as
symmetric based on polynomial expansions and
neglecting terms beyond the second power.

EARTH’S TIDES — SYMMETRIC?

* The presumed symmetry (figure below) is due
to an approximation that holds when the radius
of the affected body (e.g., the Earth) is much
less than its center-to-center distance from the
affecting body (e.g., the Moon).

— The exact solution indicates an asymmetry, more
pronounced as the assumption loses its applicability.

frult o iy Effect of Differantial | Tidal| Forces
. - | e LhitpsYeceanwontd tomueduyresources/oomg_texthook/
— — chopterl 7_0d/him, "Coastal Processes and Tadas,")
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ASYMPTOTICVS. EXACT SOLUTION

* Using the exact, vs. the asymptotic, solution,
show that an asymmetry between the tides
will result for equal angles 6 on the Earth’s far
and near hemispheres.

— This asymmetry occurs for both the magnitude of
the differential force (Ag) and the angle (B).

* Far the near hemisphere, the Moon's gravitational force
at the surface Is almost always greater than that at the
Earth's center; the oppasite holds exclusively for the far
hemisphere, where the Maon's gravitational force at the
Earth's center is always greater than at the surface.

COMPARISON: NEAR VS. FAR

* To compare corresponding angles 6 on the near
and far hemispheres in terms of the differences
between the differential forces in magnitude (Ag)
and direction (B), calculate the following pair of
differences for 0 < 8 < m/2:

— bg, - bgy
= B, - B

* For convenlence, assume D (Earth-Moon distance) = 1 and
express R (Earth radius) as a fraction of D ranging from 0.001
to 0.5 and include the ratio for the Earth-Moan system, i.e.,
R/D = (6,371 km)/(384,400 km) = 0.0166.
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COMPARISON (cont.)

* The expected trend that the Moon’s gravitational
force on the near hemisphere, albeit decreasing
from B = 0 to 90°, vs. the far hemisphere, always
increasing, is always greater for corresponding
values of 0 is evidenced by the differences
remaining positive, albeit decreasing, from 8 =0to
90°, increasing as R/D increases.

— As a result, the differential force on the near
hemisphere, albeit decreasing from 6 = 0 to 90°, always

exceeds the differential force on the far hemisphere,
also always decreasing.

RING-SPRING ANALOGY

(o G

An elastic ring with a spring across its diameter is fived at one end then
pulled from the other. The ring expands in the direction of the force lineary,
such that what was the center point of the spring remains so, still equidistant
from its two ends. The ring is defermed symmetrically to form an ellipse.

18



RING-SPRING (cont.)

Y

Now a free-standing elastic ring with a spring across its diameter is pulled by equal
forces at both sides. The ring expands as befiore, symmetrically to form an ellipse, and
what was the center point of the spring remains so, still equidistant from both ends.

MNote that the stretched ring-spring appears the same as
before, i.e., elliptically symmetrical about its midpoint.

RING-SPRING (cont.)

* Slide 10 illustrates the assumed tidal effect for
the asymptotic case where R/D << 1, such that
the tides are symmetric on both hemispheres.

A force pulling at one end of the ring-spring (with the other
end fixed), such as the Moon, translates into a differential
force as if pulling at both ends (neither end fixed [Slide 11]).

An observer in the middle before any force is applied sees both
ends of the spring as equidistant, and the ring as circular.

— After the force is applied, the observer still sees both ends equidistant,
albeit now equally farther away, and the ring stretched to form a
symmetrical ellipse.
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RING-SPRING (cont.)

Mo gravity;
no force Mo gravity;
force only
at bottom J

Gravity; force throughout;
welght-based deformation

Now assume the ring-spring starts in ‘deep space’ where there is ne gravity and, thus, no deformation, Pull the
battam and uniform deformation will eceur, analogous to the deformation in the previous slides since there is still
no gravity. However, upon entering a gravitational field, it acquires weight proportional te the length of the spring

such that, towards the top, the colls fesl a greater pull (more coils) than near the bottom (less coils).

RING-SPRING (cont.)

* Now the deformationis not uniform and an
observer originally at the middle of the spring
when the ends were equidistant now will see the
upper end farther away than the lower (the ring
also deforms into more of an egg-shape than a
symmetric ellipse).

* Thisis the analogy for the case where R is not << D. This
parallels the results from the analysis as shown in Slides 7-8,
i.e., there is an asymmetry between the two hemispheres,
more pronounced as R approaches D.
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CONCLUSION

» Explaining the Earth’s tides is not intuitively obvious,
but appears to suggest an expectation of symmetry
on the two hemispheres, i.e., equally-high high tides
and equally-low low tides, diametrically opposite.

— The analysis performed here suggests that this symmetry is the
result of an approximation, usually quite good when the radius
of the affected body is much less than the distance between its
center and that of the affecting body (e.g., Earth-Maoon).

— However, exact solution of the differential tidal force equations
demonstrates that there always Is an asymmetry, more
pronounced as the affected body radius approaches the center-
to-center distance from the affecting body.

* This peaks at approximately 10% in terms of magnitude and direction
for R/D = 0.0166 for the Earth-Moon system (Slides 7-8).

BARYCENTRIC EFFECT?

* Canthe Earth’s monthly rotation about the
Earth-Moon barycenter, located 4671 km from
the Earth’s center, i.e., within the Earth itself,
affect the tides?

— With a rotational period of 27.32 d (sidereal

month), the tangential speed at 8; = 0° (along
Earth-Moon axis on the ‘far’ side) is 29.4 m/s.

» Compared to the daily rotational speed at the equator
= 463 m/s, this is small (~ 6%) but not negligible.
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BARYCENTRIC EFFECT? (cont.)

* At the Earth-Moon axis on the “far’ side, the
barycentric centrifugal force on 1 kg of ocean
=7.82x 10° N, ~ 70 times that from the
differential gravitational force (1.07 x 10°® N).

— Even at the ‘near’ side (B, = 0°), the barycentric
centrifugal force = 1.20 x 10°° N is still ~ 10 times
that from the differential gravitational force.

* |t appears that the dynamic effects from barycentric
rotation should dominate over the static effect from
the Moon’s differential gravitational force.

BARYCENTRIC EFFECT? (cont.)

100

I S B S S B S S —— —
|D|r|tr|fup| Force from Barycenter Rotation va, Differertial Gravivy Farul
B ==
-1 [ -
_ T 7 ™
B =
N —_ U -1 4
— =+ = #

)

= Barycenter Force Difference (Radial) A
) [Scabed to 1E-5) [Mewtons) | 1 ! ,"

— —Ratio of Barycenter (Radial) to L7
W — Differential (Far) T~

- = Ratio of Barycenter [Radial] to i
8 |— Differential (Mear) —

. . - S . -
3 o
- r -
» .
o p=fk=r=r" -
-_-__-‘——_

o 1 —
@ 50 55 &0 B85 ™ 75 B B W



AN INTRIGUING ‘COINCIDENCE?’

* Neither the exact solution to the differential
gravitational force approach nor incorporating
the effect of the earth’s barycentric centrifugal
force established the alleged symmetry of the
tides across the Earth’s hemispheres.

— An interesting anomaly that might bear further
examination is revealed if one combines the

barycentric effect with the Moon’s gravitational
force directly, i.e., without the differential effect.

‘COINCIDENCE?’ (cont.)

« At the ‘near’ (8, = 0°) and ‘far’ sides (6; = 0°), the
Moon’s direct (not differential) gravitational forces
on 1 kg of ocean water are 3.43 and 3.21 x 10 N.

— Combining these with the barycentric centrifugal forces
yields net forces radially outward of (1.20+ 3.43)x 10° N
=4.63x10°Nand (7.82-3.21)x 10°N=4.61x 107 N,

* These are essentially equal, both radially outward, inferring
symmetry of the tides at these highest points. 1s this just a
coincidence, or might an explanation for tidal symmetry rely on
this combination of forces, i.e., including the Moon's direct
rather than its differential gravitational effect?
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‘COINCIDENCE?’ (cont.)
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‘COINCIDENCE?’ (cont.)

If we consider the Moon’s direct gravitational effect, then
what about the Sun’s, which is 180 times stronger?

— The Moon's direct gravitational force on the near vs. far side
differs by 3.43 x 10° N-3.21x 10° N =2.20 x 10° N, ~7%
relative to its force at the Earth’s center (3.35 x 10° N).

— For the Sun, this differenceis 1.01 x 10 N, ~ 0.02% relative to
its force at the Earth’s center (0.00593 N).
* When considering the effect of the differential gravitational forces, the
5uUn's is an important contributor, nearly half the value of the Moon's.

» However, for direct gravitational force, the variation across the Earth
due to the 5un's gravity is negligible, i.e., it affects the Earth on
essentially an equal basis everywhere (0.00593 N), thereby
introducing no asymmetry.
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‘COINCIDENCE?’ (cont.)

* |s there an alternative explanation for the alleged
symmetry of the tides other than accepting the
approximation employed when deriving the
differential gravitational effect?

— If the essentially uniform effects from the Sun’s and
Earth’s own direct gravitational forces, as well as that
from the Earth’s daily rotational centrifugal force,
introduce no asymmetry, might the combination of the
barycentric centrifugal and Moon's direct gravitational
forces explain what has so far been attributed to an
approximation in the differential force derivation?
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