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 Abstract. We examine through the lens of dynamical systems a ‘one dimensional’ time mapping 

of emergent VEV from Pre Planckian space time conditions. We use Licata’s and Fiscaletti’s 

Bolmian Quanuum mechanics to obtain an energy E as minus the time derivative of a phase 

transition, as given by Bohmian Q.M. for curved space time, in the Pre Planckian state, where 

we then use a modified version of the HUP , to then isolate the inflaton. The emergence of the 

inflaton scalar field, in time evolution is tied into physics of the first order phase transition to 

QM, and the regular HUP, used by Heisenberg. I.e. a first order generation of initial entropy via 

Bohmian QM applied in Pre Planckian space-time. 
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1.  Introduction. Bringing up the Quantum Potential used in this problem 

We begin with the results from [1], by lacata and Fiscaletti, where in pages 69-71 of [1] they set up a 
quantum gravity correspondence between space-time and matter based on [2, 3,4,5,6]  

By Eq. (3.6) of reference [1] we have that if Q is the quantum potential and we go to Pre Plank times, 
with a modification of the Klein Gordon equation as given below 
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The energy expression we will reference comes from [1], page 44  is 

            ( ) tE t S                                                                                                                                          (2)    

We will be using Eq. (2) in its variance in order to obtain an energy expression. Before we do so we 
will, say that Planck mass has 2.177 times 10^-8 Kilograms, Planck length is 1.616 times 10^-35 meters, 
and Plan time as 5.391 times 10^-44 seconds.  Now, due to Planck units, we can and will make the 
following simplifications, namely  

The five universal constants that Planck units, by definition, normalize to 1 are: 

 the speed of light in a vacuum, c, 

 the gravitational constant, G, 

 the reduced Planck constant, ħ, 

 the Coulomb constant, 1/4πε0 

 the Boltzmann constant, kB 

 

We will find this extremely useful in order to avoid having the calculations which follow completely 
messed up. i.e. in doing so we look at the mass, for Planck mass, which is going to be set to 1. I.e. this 
will have immediate consequences in the equations we will work with next. I.e. Planck mass will be set 
equal to 1. We will in our own derivations figure in the mass of a graviton, rest, about 10^-62 kilograms, 
as by given by these units as  

https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Gravitational_constant
https://en.wikipedia.org/wiki/Reduced_Planck_constant
https://en.wikipedia.org/wiki/Coulomb_constant
https://en.wikipedia.org/wiki/Boltzmann_constant


 

 

 

 

 

 

                                                                m(graviton,rest)~ 10^-54                                                            (3) 

These units, as well as Planck time set as = 1 , and Planck length, as set = 1 will be used extensively 
in our manuscript. 

2. Use of the Wheeler De Witt equation in the representation of Eq. (1)  

This section makes use of [7] by Dalarsson and Dalaarsson, page 271 and then obtains for r < r0 
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Here, we will be taking into account, the issues in [9] as to symmetry breaking, by a change in the HUP. 

Then, set from [8], ie. Begin with the starting point of [9,10, 11 ]   

2
l p                     (5)    

We will be using the approximation given by Unruh   [10, 11] , of a generalization we will write as 
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If we use the following, from the Roberson-Walker metric {12]. 
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Following Unruh [9, 10] , write then, an uncertainty of metric tensor as, with the following inputs  
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This Eq.(9)   is such that we can extract, up to a point the HUP principle for uncertainty in time and 
energy, with one very large caveat added, namely if we use the fluid approximation of space-time [11, 
12]  

( , , , )iiT diag p p p                                      (10)

       

Then [8]   
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Then, Eq. (9) and Eq. (10) and Eq. (11) together yield 
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What we will refer to is also, besides Eq. (12), that in Pre Planckian space-time we have due to [8] 
cancellation which we give as follows.To begin this process, we will break it down into the following 

coordinates. In the rr,   and   coordinates, we will use the Fluid approximation, 

( , , , )iiT diag p p p    [8] with the results as given  in [8] to be  
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Furthermore from Giovanni, we will use the additional approximation of, from [8] and [13,14,15,16] 

                                                                 2( )tt initialg initial a                                                                   (14) 

In particular, reference [16] gives a good reason as to why the initial scale factor is not set to zero, and 
we follow this convention, while asserting its commonality with work done by Corda as to the inflaton, 
[17]  where the final part of our work will be to, give a parallel development as to a Pre Planckian space 
–time version of the Inflaton which will be the tail end of what will an algebraically complicated result. 

In doing so, we will also, with additional work, if the infaton is so identified, permit investigation into 
the issues bought up in [18] and [19] in future research. 

Having said that, it is time to calculate first the energy, and then the total  mass, where the mass in 
what we are assuming is akin to a multiple of the graviton mass, with the graviton ‘rest mass’ set as 
about to 10^-62 kilograms, or maybe less, by [20], and we will do our best not to contravene the basic 
physics given by Abbot et.al, in [21] 

3. Calculating of energy, and then from there a minimum fluctuation of energy 

Our initial assumption is starting off with dr/dt = c = 1, i.e. we disregard the very initial slight difference 
in graviton speed for heavy gravity as given < c = 1 due to the considerations for massive gravity given 
in [21], and approximate due to the smallness of the ‘massive graviton’ as given by [20] a top off of 
propagation speed of about c=1. Having done this, using Eq. (12) and then wanting to isolate (E) as due 

to Eq. (1) and Eq. (2), we then after algebra obtain, for 20 20  and using Planck unit 

normalization. Here, we are assuming one half the value of Planck time, i.e. about ~ .5
2

Planckt
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If he above energy is also, by thermal arguments equal to scaling by [23] 

                                                                    4

min~ ~E a                                                                               (16) 

We obtain then a scaling argument as to a scalar potential as expressed in Eq. (16) and more over a 
first or estimate as to the entropy, which is in this case equal to by Ng [24] 

                                               54~ ( ) ~10 10Initial EntropyS N gravitons 

                                                    (17) 

We will next, finally 0ut in the explicit value for Eq. (15) while using Eq. (17) as well as coming up with 
an estimate of entropy, by explicit calculations. 

If as an example, we have negative pressure, with
rrT ,T  and T  < 0, and p  , then the only 

choice we have, then is to set ~ ~ ~ 0rrg g g     , since there is no way that p  is zero 

valued.  This observation and others will color our concluding statement and explicit calculation 
philosophy.  

 

4. Conclusion. Explicit representation of Pre Planckian inflaton value, entropy and other 
issues.  

We will in the conclusion give explicit calculation values and do it with respect to Planckian 
physics units scaling as identified at the start of the paper. Plus suggestions as to numerical 
simulation work as follow up, and possible interpretations of the above. First we set up a work 
in progress, and then next we will elucidate what we have done with the inflaton calculation 
explicitly in this formulation. 

To begin with in line with what is done in [25] If we understand what the inflaton initially is, 

and we understand what is done with the physics of generation of entropy, maybe even in the 

Pre Planckian regime, we may understand the entire point of a possible causal discontinuity, 

if it exits, or if it does not exist. To paraphrase our point, the degree of entropy as information, 

along the lines of making sense of the following deliberations, i.e. To do so, in our new argument, 



 

 

 

 

 

 

we look at first a simple way to frame the cosmological constant problem as given by Guth [26] as 

given by 
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This last line, namely   1

C. ,Pr 00 00Pr
0 0Const e Planckian e Planckian

T g 

 
     is assumed to have the same 

value as the cosmological constant today, i.e. no quintessence, so what we will be doing is to examine 

what this says about an inflaton mass, in the spirit of what was said by Corda in [17] In the pre Planckian 

regime we are having that  
2

 would be of small import, and that there is still though, a small 

regime of space-time, i.e. a bounce ball of the form given in [27] and [28]  and [29]  which would have 

the inflaton only change by time, not space, and then refer to [30]  which has an inflaton mass of the 

form given by , if we use the variable change of /z H , and assume that  is approximately a 

constant in the interval of time, in the Pre Planckian space-time regime, so that the inflaton mass is 

given by, if in Pre Planckian space-time 
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With  
mina  defined in [28] , then the equation given in [30] for inflation mass would in the Pre Planckian 

space-time  
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Where, for future work we need to make full sense out of  following presentation for the inverse of 

the Hubble parameter 
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Then 

The parameter 1

Pre Planckian regimeH 

 
 is set for half of the Planck time interval, and the net result is that 

Eq.(21) becomes scaled as 
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Then inflaton based kinetic energy would be , if PlanckM is Planck mass 
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Note that we are looking for a numerical simulation to verify and to back up what was stated in 

reference [32], i.e.                             

 

The parameter 1

Pre Planckian regimeH 

 
 is set for half of the Planck time interval. We need to explicitly model 

it and not call it a pretty concept with no modeling development. 

This value for the inflaton mass, would depend upon what we are looking at due to entropy and we 

will discuss it now, as well as the inflation itself, and explicit energy calculations next.  

I.e. filling in the equations explicitly as a way to understand Eq. (23) and Eq. (24) depends in 
large part upon setting up comprehending the following equations we have set up in 
Planckian units. i.e. we need to fill in iteratively candidate for the Pre Planckian and 
Planckian Hubble parameters, and this will numerical iteration and so we will set up a value 
of the inflaton which will aid us in this endeavor. We begin with 
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If so then, the energy is given as follows, namely, if we look at say again, as given by B. Hu [31] which we 

write up as follows: Assuming an energy density as given by , in Pre Planckian space-time is given by , if we have 

an averaged out mean frequency for particle production  given by 
averagek  
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The second line of the above is making the approximation that the insides of the first line, are averaged 
out to a constant, which is defensible in the situation of a Pre Planckian space-time condition. Secondly, 

we are assuming in all of this that
2

averagek is the number of ‘created’ particles in k space, in space-time 

is in terms of  a situation for which we are assuming a very narrow range of k values, so we are when 
looking at the 2nd line of Eq. (23) referencing an averaged out value for the number of created particles 

which we then identify as
2

averagek , and have 3( ) PlanckV volume l , i.e. with Planckl Planck length. 

If so, then we could define having a net energy as given by [31] 
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We have several different ways to address what is meant by this energy. Our supposition is that we 
could make a reference, here, to, if c (speed of light) = 1, to have, here, initially, a transfer of gravitons, 
as an information carrier, from a prior universe to our present universe so that as a result of a match 
up in Pre Planckian space-time to Planckian space time we would have Eq. (27) as rendered by, using 
Hu again, [31]  
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And a graviton count, in the Pre Planckian era we would give as [31]  

                                                                    ~ 1 (exp( / ) 1)gravitons c tempn E T                                                  (29) 

Here, we would have that 
2

averagek would be the “average” number of particles produced in the Kth 

mode, and this kth mode would be in Pre Planckian space-time. Then combining Eq. (28) and Eq.(29), 
if  we wish to obtain a ‘Bose’ representation of ‘gravitons’ produced in the immediate aftermath of  

2

averagek  as the number of particles produced via a VEV, then we would have, if we have 1  
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And not just scale down to energy as directly proportional to 1 over the fourth power of the initial 
scale factor, as referred to earlier, then if 

                                                                   321.4167 10tempT eV                                                                 (31) 

This should be compared against the following value for the energy as we have set it up, involving a 

Wheeler De Witt equation. Also the mass of 62~10gravitonm grams  

                                                                    62 29~10 ~10gravitonm grams eV                                               (29) 

 

We need to make sense of a given value for the inflaton, and then afterwards, to compare the time 
derivative, in a future work, of this derived inflaton), In doing so, we will by trial and error, perhaps 
identify the Pre Planckian Hubble parameter value which is given above. I.e. we claim that to do this 
we will need numerical simulations. Let us now get a value of the inflation stated by our Bohmian 
approximation which will then, if confirmed lead to a derivation of the values in Eq. (23) above. 
Thereby, then, giving more confirmation as to [32]. 

We shall now, based upon the Bohmian development proceed to obtain a first order confirmation as 
to an inflaton  we claim would lead to confirming [32] as well as set up for numerical time evolution 
for Eq. (31) above. 

Using the formulation as given in this article, we write using Planckian scaling of units the following. 
Using Eq. (22) above, explicitly, we obtain the following for the energy 
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                                        (30) 

In Planckian units, all the temrs in Eq. (30) will effectively have to be non dimensionalized, and then 
compared with a numerical scheme, which will when this material is confirmed, be worked out in C++ 
as to confirm numerically, candidates for the derivative, i.e. the time evolution of Eq. (30) so as to 
compare it with Eq. (15), and then from there to come up with candidates for the Hubble parameter, 
in a Pre Planckian time  

Once this is done, and the formulas held to be approximate, it is conceivable that the datum and 
speculations given by Dr. Corda in [17] will be examinable and hopefully confirmed. 

In short, we would require an enormous ‘inflaton’ style   valued scalar function, and 2 110( ) ~10a t   . I.e. 

assuming a quantum ‘bounce with 2 110( ) ~10a t  , and we hope to confirm it soon. 
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