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We study the relation between the possibility of describing quantum correlation with hidden vari-
ables and the existence of the Bloch sphere. We derive some proposition concerning a quantum
expected value under an assumption about the existence of the Bloch sphere in N spin-1/2 systems.
However, the hidden variables theory violates the proposition with a magnitude that grows expo-
nentially with the number of particles. Therefore, we have to give up either the existence of the
Bloch sphere or the hidden variables theory. We show that the introduction of curved information
and the continuity equation of probability is in agreement with classical quantum mechanics. So we
give up the hidden variable theory as local theory and we accept the Bloch sphere as global theory
connected with the information space.

PACS numbers: 03.65.Ud, 03.65.Ca

I. INTRODUCTION

The quantum theory (cf. [1—6]) gives approximate
and at times remarkably accurate numerical predictions.
Much experimental data approximately fits to the quan-
tum predictions for the past some 100 years. We do
not doubt the correctness of the quantum theory. The
quantum theory also says new science with respect to
information theory. The science is called the quantum
information theory [6]. Therefore, the quantum theory
gives us very useful another theory in order to create
new information science and to explain the handling of
raw experimental data in our physical world.

As for the foundations of the quantum theory, Legget
type non-local variables theory [7] is experimentally in-
vestigated [8—10]. The experiments report that the quan-
tum theory does not accept Leggett-type non-local vari-
ables interpretation. As for the applications of the quan-
tum theory, implementation of a quantum algorithm to
solve Deutsch’s problem [11] on a nuclear magnetic res-
onance quantum computer is reported firstly [12]. Im-
plementation of the Deutsch-Jozsa algorithm on an ion-
trap quantum computer is also reported [13]. There are
several attempts to use single-photon two-qubit states
for quantum computing. Oliveira et al. implement
Deutsch’s algorithm with polarization and transverse
spatial modes of the electromagnetic field as qubits [14].
Single-photon Bell states are prepared and measured [15].
Also the decoherence-free implementation of Deutsch’s
algorithm is reported by using such single-photon and
by using two logical qubits [16]. More recently, a one
way based experimental implementation of Deutsch’s al-

gorithm is reported [17].

We study the relation between a significant specific
hidden variables theory and the existence of the Bloch
sphere. The results of measurements are either +1 or
−1. We derive some proposition concerning a quantum
expected value under an assumption about the existence
of the Bloch sphere in N spin-1/2 systems. However, the
hidden variables theory violates the proposition with a
magnitude that grows exponentially with the number of
particles. Therefore, we have to give up either the exis-
tence of the Bloch sphere or the hidden variables theory.
We solve the previous dilemma we introduce the infor-
mation space and the continuity equation to show how
quantum mechanics is consequence of the information lo-
cate in all the space so is impossible to represent by local
hidden variables. In conclusion we agree on the existence
of the Bloch sphere.

II. FROM PROBABILITY CONTINUITY

EQUATION AND INFORMATION SPACE TO

SHRODINGER EQUATION

1) Continuity equation

Given the continuity equation of the probability
(global conservation of the probability ) we have

∂ρ

∂t
+∇ · (ρv) = 0 (1)
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When the probability density ρ = R2 we have

∂R2

∂t
+∇ · (R2v) = 2R

∂R

∂t
+∇ · (R2v)

= 2R
∂R

∂t
+ 2R∇Rv +R2∇v = 0 (2)

For R �= 0 we have

∂R

∂t
+∇Rv +

1

2
R∇v

=
∂R

∂t
+

1

2m
(2∇Rmv +R∇mv) (3)

Now in classical mechanics we have for the action S
the relation

∇S = mv = p (4)

So

∂R

∂t
+

1

2m
(R∇2S + 2∇R∇S) = 0 (5)

where S is the action and for the wave the phase of the
wave.

2) Condition probability from statistical parameters (
average value, standard deviation and others )

We assume that to found a particle in a particular state
is a probabilistic phenomena for which we have join prob-
ability that the particle can be in a particular state. Now
the novelty is to assume that the probability is function
of other external elements as parameters. The average
of the position for the particle is a parameter the move-
ment of the particle in a particular environment for ex-
ample inside of a tube or in other boundary condition
( see boundary condition in Shrodinger solution ) can
change the probability for a particular state. Any far or
near change of the environment change the probability of
the state ( Bell theorem and entanglement ) In conclu-
sion the join probability of a state of different variables
is conditioned by a set of parameters that statically or
physically can define the environment where the particle
move. We denote all this parameters as the information
relate to the environment where the particle is locate.
The set of external parameters are the information space
that can have curvature as in the Berry phase phenomena
that show that in the Shrodinger solution any loop can
change the original phase. In differential geometry any
loop in a space with curvature change the original phase
of the vectors. Now we built the information space which
geodesic tensor is the Fisher entropy or Fisher informa-
tion by which we can compute the covariant derivatives
and the curvature.

Given the system of the conditional probabilities

ρ = ρ(x1, . . . , xq|θ1, . . . , θp) (6)

We have the p dimensional information reference

eα =






�
Ω
∂ log ρ
∂θ1

dx�
Ω
∂ log ρ
∂θ2

dx

· · ·�
Ω
∂ log ρ
∂θp

dx





. (7)

Given the vector

V = V αeα (8)

The derivative is

∂V

∂θβ
=

∂V α

∂θβ
eα + V α ∂eα

∂θβ

=
∂V α

∂θβ
eα + V γ ∂eγ

∂θβ

=
∂V α

∂θβ
eα + V γ

�

Ω

∂2 log ρ

∂θβ∂θγ
dx (9)

where
�

Ω

∂2 log ρ

∂θβ∂θγ
dx = Γαγβeα (10)

is the Fisher information matrix connected with the
Christoffel symbols Γαγβ . For

∂2 log ρ

∂θk∂θγ
V γ =

∂2 log ρ
∂θk∂θγ

∂ log ρ
∂θk

∂ log ρ
∂θγ

∂ log ρ

∂θk
(11)

Here,

V γ =
1

∂ log ρ
∂θγ

(12)

For the Fisher information we have

E
	
∂2 log ρj
∂θp∂θγ




E
	
∂ log ρj
∂θp

∂ log ρ
∂θγ


 = 1 (13)

where E is the average operator so we can write in the
first approximation

Dk =
∂

∂θk
−
∂ log ρ

∂θk
(14)

and

Pk = pk −
∂ log ρ

∂θk
(15)

where pk is the momentum. So we have

δS = δ

�
ρ[
∂S

∂t
+

1

2m
pipj + V )dtdnx

+δ
1

2m

�
ρ
∂ log ρ

∂xi

∂ log ρ

∂xj
)]dtdnx = 0 (16)

δ

�
ρ[
∂S

∂t
+

1

2m
pipj + V )dtdnx

δρ( ∂S
∂t

+ 1
2mpipj + V )

∂ρ

−
∂

∂xµ

δρ(∂S
∂t

+ 1
2m

pipj + V )

∂ ∂ρ
∂xη

=
∂S

∂t
+

1

2m
pipj + V (17)
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and

δ

�
ρ
∂ log ρ

∂xi

∂ log ρ

∂xj
)]dtdnx

=
∂(ρ∂ log ρ

∂xi

∂ log ρ
∂xj

)

∂ρ

−
∂

∂xµ

∂(ρ∂ log ρ
∂xi

∂ log ρ
∂xj

)

∂ ∂ρ
∂xη

=
∂ log ρ

∂xi

∂ log ρ

∂xj
−

1

ρ

∂( ∂ρ
∂xi

∂ρ
∂xj

)

∂ ∂ρ
∂xµ

=
1

ρ2
∂ρ

∂xi

∂ρ

∂xj
−

1

ρ

∂

∂xµ

∂( ∂ρ
∂xi

∂ρ
∂xj

)

∂ ∂ρ
∂xη

=
1

ρ2
∂ρ

∂xi

∂ρ

∂xj
−

2

ρ

∂2ρ

∂xi∂xj
= Q (18)

So

∂S

∂t
+

1

2m
pipj + V +

1

2m
(
1

ρ2
∂ρ

∂xi

∂ρ

∂xj
−

2

ρ

∂2ρ

∂xi∂xj
)

=
∂S

∂t
+

1

2m
pipj + V +Q = 0 (19)

Now for R2 = ρ and the Plank constant is equal to 1 we
have

Q = −
1

2m

∇2R

R
(20)

So we have

∂S

∂t
+
|∇S|2

2m
−

1

2m

∇2R

R
+ V = 0 (21)

where Q is the Bohm quantum potential that is a conse-
quence for the extreme condition of Fisher information (
minimum or maximum condition for the Fisher informa-
tion ). We know that the quantum potential as real part
and the continuous equation as the imaginary part from
the Boltzmann entropic geometry we can generate the
Schr?dinger equation. We can also use the Schrodinger
equation and came back to the Fisher information and
to the pure conditional probability interpretation of the
quantum mechanics.

Now we combine the continuity equation of the prob-
ability with the covariant derivative in the curved infor-
mation space we have

∂S

∂t
+ (

|∇S|2

2m
−

1

2m

∇2R

R
+ V ) (22)

i(
∂R

∂t
) +

1

2m
(R∇2S + 2∇R∇S)) = 0 (23)

where the real part is consequence of the curvature in the
information space and the immaginary part is due to the
continuous equation for the probability.

Now for Ψ = ReiS the previous real and complex part
are the real and immaginary of the classical Schrodinger
equation.

i
∂Ψ

∂t
= (−

1

2m
∇2 + V )Ψ (24)

with

h

2π
= 1 (25)

In conclusion we can make a reverse process used by
Shrodinger we can generate the Shrodinger equation by
the information space and the continuity equation of the
probability. In this way the Hilbert mechanism can be
explain only by information , curvature and probability.

III. A HIDDEN VARIABLES THEORY DOES

NOT MEET THE EXISTENCE OF THE BLOCH

SPHERE

Assume that we have a set of N spins 1
2 . Each of them

is a spin-1/2 pure state lying in the x-y plane. Let us
assume that one source of N uncorrelated spin-carrying
particles emits them in a state, which can be described
as a multi spin-1/2 pure uncorrelated state. Let us pa-
rameterize the settings of the jth observer with a unit
vector �nj (its direction along which the spin component
is measured) with j = 1, . . . ,N . One can introduce the
‘hidden variables’ correlation function, which is the aver-
age of the product of the hidden results of measurement

EHV(�n1, �n2, . . . , �nN ) = �r(�n1, �n2, . . . , �nN )�avg, (26)

where r is the hidden result. We assume the value of r
is ±1 (in (�/2)N unit), which is obtained if the measure-
ment directions are set at �n1, �n2, . . . , �nN . We introduce
ergodic averaging as a theoretical model here. We do
not pursue the details of the assumption. To pursue the
details is an interesting point. It is suitable to the next
step of researches.

Also one can introduce a quantum correlation function
with the system in such a pure uncorrelated state

EQM(�n1, �n2, . . . , �nN ) = tr[ρ�n1 · �σ ⊗ �n2 · �σ ⊗ · · · ⊗ �nN · �σ]
(27)

where ⊗ denotes the tensor product, · the scalar product
in R2, �σ = (σx, σy) is a vector of two Pauli operators,
and ρ is the pure uncorrelated state,

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN (28)

with ρj = |Ψj��Ψj | and |Ψj� is a spin-1/2 pure state lying
in the x-y plane.

One can write the observable (unit) vector �nj in a plane
coordinate system as follows:

�nj(θ
kj
j ) = cos θ

kj
j �x

(1)
j + sin θ

kj
j �x

(2)
j , (29)
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where �x
(1)
j = �x and �x

(2)
j = �y are the Cartesian axes.

Here, the angle θ
kj
j takes two values (two-setting model):

θ1j = 0, θ2j =
π

2
. (30)

We derive a necessary condition to be satisfied by the
quantum correlation function with the system in a pure
uncorrelated state given in (27). In more detail, we de-
rive the value of the product of the quantum correlation
function, EQM given in (27), i.e., 
EQM


2. We use the
decomposition (29). We introduce simplified notations
as

Ti1i2...iN = tr[ρ�x
(i1)
1 · �σ ⊗ �x

(i2)
2 · �σ ⊗ · · · ⊗ �x

(iN )
N · �σ](31)

and

�cj = (c1j , c
2
j) = (cos θ

kj
j , sin θ

kj
j ). (32)

Then, we have


EQM

2

=

2�

k1=1

· · ·

2�

kN=1




2�

i1,... ,iN=1

Ti1...iN c
i1
1 · · · c

iN
N





2

=

2�

i1,... ,iN=1

T 2i1...iN ≤ 1, (33)

where we use the orthogonality relation
�2

kj=1
cαj c

β
j =

δα,β . The value of
�2

i1,... ,iN=1
T 2i1...iN is bounded as

�2
i1,... ,iN=1

T 2i1...iN ≤ 1. We have

N�

j=1

2�

ij=1

(tr[ρj�x
(ij)
j · �σ])2 ≤ 1. (34)

From the convex argument, all quantum separable states
must satisfy the inequality (33). Therefore, it is a sepa-
rability inequality. It is important that the separability
inequality (33) is saturated iff ρ is a multi spin-1/2 pure
uncorrelated state such that, for every j, |Ψj� is a spin-
1/2 pure state lying in the x-y plane. The reason of the
inequality (33) is due to the existence of the Bloch sphere
in quantum mechanics

2�

ij=1

(tr[ρj�x
(ij)
j · �σ])2 ≤ 1. (35)

The inequality (35) is saturated iff ρj = |Ψj��Ψj | and
|Ψj� is a spin-1/2 pure state lying in the x-y plane. The
inequality (33) is saturated iff the inequality (35) is sat-
urated for every j. Thus we have the maximal possible
value of the scalar product as a quantum proposition con-
cerning the Bloch sphere


EQM

2 = 1 (36)

when the system is in such a multi spin-1/2 pure uncor-
related state.

A. Hidden variables & reference frames

A hidden variables correlation function, assuming er-
godicity, can be written as a weigthed sum over integer
indices. For a function r in a function space R we see
e.g.

EHV(�n1, . . . , �nN ) = lim
m→∞

1

m

m�

ℓ=1

r(�n1, . . . , �nN , ℓ)(37)

If a formulation with discrete indexing of hidden variables
is a sensible way to describe a correlation, then one may
select from R a function such that

EHV(n) = lim
m→∞

1

m

�

λ∈Lm

r(n, λ) (38)

Here, the abbreviation n = (�n1, . . . , �nN ) is used. Instead
of an index, real variables are employed. In addition
we may assume that the function space R contains a
Heaviside type of function,

f(x) = lim
K→∞

exp

�
−
e−Kx

K

�
∈ {0, 1} (39)

A sign function can then be obtained ∝ f(x) − f(−x).
Those sign functions are in R and, hence, r can attain
this form of sign function. The set Lm in (38) is a subset
of the interval

I = {λ ∈ R | −∞ < ℓI < λ < uI <∞; ℓI , uI ∈ R}

and has cardinality m. More explicitly,

Lm = {λ1, λ2, ..., λm; ℓI < λ1 < λ2, · · · < λm < uI}

The elements of Lm can be shifted with an infinitesimal
δλ > 0. This gives, λ′ = λ+ δλ, hence,

L′m = {λ′1, λ
′
2, ..., λ

′
m; ℓI < λ′1 < · · · < λ′m < uI}

and ℓI < λ1 < λ′1 < λ2 < λ′2 · · · < uI .

B. Maximum value and product

We are very interested in the maximum value of the
square of an expected value in a probability interpreta-
tion of quantum measurement theory. Therefore we focus
on each measurement result providing a probability. And
we study the maximum value when we inspect the sum-
mation. In short, we can multiply a measuremenet result
by the same measurement result.

Therefore, we wish we would have some sort of Kro-
necker delta function at our disposal to match proper
terms in the sum. In this respect it must be noted that
the correlation in (38) can be arbitrary close approxi-
mated with the use of L′m in the sum. We have, still
using the ’=’ symbol,

EHV(n) = lim
m→∞

1

m

�

λ′∈L′m

r(n, λ′) (40)
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Assuming, m→∞, squaring the EHV is in close approx-
imation equal to the product of expressions in (38) and
(40)

{EHV(n)}
2 =

1

m2

�

λ∈Lm

�

λ′∈L′m

r(n, λ)r(n, λ′) (41)

Because, of small differences, we may write in a Taylor
like approximation,

r(n, λ′) = r(n, λ) + δλ
∂r

∂λ
(n, λ)

The r product in (41) can then be re-written as

r(n, λ)r(n, λ′) = r2(n, λ) + δλ r(n, λ)
∂r

∂λ
(n, λ) (42)

If the previous result from (42) is introduced in (41) then
the latter can be re-written as

{EHV(n)}
2 =

1

m

�

λ∈Lm

�
r2(n, λ) + δλ r(n, λ)

∂r

∂λ
(n, λ)

�

If for r ∈ R a sign form is empoyeld based on (39), then
it is easy to see that for proper λ ∈ Lm, the following

0 ≤
∂r

∂λ
(n, λ) ≤ 1

will be true. The form r(n, λ) ∂r
∂λ

(n, λ) contains, numeri-
cally and in limit, something similar to xδ(x) because r
is a sign ∝ f(x)− f(−x). We can conclude that given r
is a sign function based on (39), it is plausible to expect
for proper Lm we obtain

{EHV(n)}
2 → 1

m

�
λ∈Lm

1 +O(δλ2)

→ 1 +O(δλ2)
(43)

for m→∞.

C. Quantum and hv values

We study the possibility, EQM = EHV. For the ease
of the presentation we write, r(λ) and suppress the
(�n1, �n2, . . . �nN ) notation. Hence, from our previous con-
siderations we then write, under the limit, m → ∞ and
employing the result in (43)


EQM

2

=
2�

k1=1

· · ·
2�

kN=1

 1

m

�

λ∈Lm

r(λ)×
1

m

�

λ′∈L′m

r(λ′)





→

2�

k1=1

· · ·

2�

kN=1

�
1 +O(δλ2)

�
→ 2N . (44)

We use the following fact

(r(�n1, �n2, . . . , �nN , λ))
2 = +1. (45)

for properly selected Lm. Hence one has the following
proposition concerning the hidden variables theory


EQM

2 → 2N , (m→∞). (46)

Clearly, we cannot assign the truth value “1” for two
propositions (36) (concerning the Bloch sphere) and (46)
(concerning the hidden variables theory), simultaneously,
when the system is in a multiparticle pure uncorrelated
state. Of course we can imagine Lm where this would be
possible but the hv theory would be in need of a sufficient
number of special points in the Lm that makes the r
vanish for all n. In general the claim can be made that
the selection of hv theories is not as free as one would
prefer.

To continue we note, each of the theories refers to a
spin-1/2 pure state lying in the x-y plane. Therefore,
we are in the contradiction when the system is in such a
multiparticle pure uncorrelated state. Thus, we cannot
accept a general validity of the proposition of a hidden
variables theory, if we assign the truth value “1” for the
proposition (36) (concerning the Bloch sphere).

IV. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have studied the relation between a
hidden variables theory and the existence of the Bloch
sphere and with a new type of conditional probability
and Fisher information as metric for information space
we show that the hidden variable are not possible. Now
we have derived some proposition concerning a quantum
expected value under an assumption about the existence
of the Bloch sphere in N spin-1/2 systems. However,
the hidden variables theory has violated the proposition
with a magnitude that grows exponentiall with the num-
ber of particles. Therefore, we have had to give up either
the existence of the Bloch sphere or the hidden variables
theory. The hidden variables theory does not have de-
pictured physical phenomena using the existence of the
Bloch sphere with a violation factor that grows exponen-
tially with the number of particles. Now we point out
the problem that when we cannot measure an observ-
able we cannot say nothing on this measure as in the
non-commutative case. So we have contradictions. In
classical interpretation of quantum mechanics does not
exist conditional probability and we cannot measure the
probability but with the introduction of the information
space and Fisher metric we show that conditional proba-
bility is possible but limited to statistical parameters as
average value or other parameters. So contradiction is
eliminate. Now entanglement and Bell theorem can be
understand in a new type of set theory that include cop-
ula [18] and information [19]. May be we are right that
projection operator is not sufficient to understand quan-
tum mechanics so we cannot give Hilbert space axiomatic
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structure. Now axiomatic Hilbert space is useful but can-
not explain completely the meaning of the quantum me-
chanics. With information space we can give a meaning

with the axiomatic Hilbert that is always a useful math-
ematical instrument to use information and probability
together.

[1] J. von Neumann, Mathematical Foundations of Quantum

Mechanics (Princeton University Press, Princeton, New
Jersey, 1955).

[2] R. P. Feynman, R. B. Leighton, and M. Sands, Lectures

on Physics, Volume III, Quantum mechanics (Addison-
Wesley Publishing Company, 1965).

[3] M. Redhead, Incompleteness, Nonlocality, and Realism

(Clarendon Press, Oxford, 1989), 2nd ed.
[4] A. Peres, Quantum Theory: Concepts and Methods

(Kluwer Academic, Dordrecht, The Netherlands, 1993).
[5] J. J. Sakurai, Modern Quantum Mechanics (Addison-
Wesley Publishing Company, 1995), Revised ed.

[6] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
2000).

[7] A. J. Leggett, Found. Phys. 33, 1469 (2003).
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