The real parts of the nontrivial Riemann zeta function zeros
Igor Turkanov

ABSTRACT

This theorem is based on holomorphy of studied functions and the
fact that near a singularity point the real part of some rational
function can take an arbitrary preassigned value.

The colored markers are as follows:
e - assumption or a fact which is not proven at present;
- the statement which requires additional attention;
- statement which is proved earlier or clearly undestandable.

THEOREM

The real parts of all the nontrivial Riemann zeta function zeros p are

1
equal Re (p) = o

PROOQOF:

According to the functional equality [10, p. 22|, [6, p. 8-11]:
1—s

F(g) _§g(s):r(1;8>{ 2 ((1-s), Re(s)>0 (1)

C (s) - the Riemann zeta function, I' (s) - the Gamma function.



From [6, p. 8-11] ¢ (5) = ((s), it means that Vp = o +it: ((p) = 0 and
0 <o <1 we have:

(P =C1—=p)=C(1=p)=0 (2)

From [11], 9, p. 128], [10, p. 45] we know that ¢ (s) has no nontrivial zeros

on the line ¢ = 1 and consequently on the line ¢ = 0 also, in accordance
with (2) they don’t exist.

Let’s denote the set of nontrivial zeros ((s) through P (multiset with
consideration of multiplicitiy):

P={p: ((p)=0, p=c+it, 0<o <1},

de , 1
And:Plzf{p: C(p) =0, p=o+it, 0<0<§},

de 1 .
Pzzf{p: C(p)ZO,p:§+zt},

. 1
733CIZf{pi C(p)zO,pza—l—zt, §<0<1}.
Then:

P:P1U7D2UP3 and PlﬁPQZPgm’P?):Plﬂ’Pg:@,
Pr=9 & P;=0.

Hadamard’s theorem (Weierstrass preparation theorem) about the
decomposition of function through the roots gives us the following result
10, p. 30], [6, p. 31], [12]:

S

7T§€as s 2
5(3)3(51)r(g)g<1")6p’ Re(s) >0 (3)

a = In2y/1 — J_ 1, v — Euler’s constant and

2
S
c(s) 1 1T 1 1 (5) 11



According to the fact that

- Digamma function of [10, p. 31],

6, p. 23] we have:

Bt n(

)2 (Fmm) e o

pEP n=1
C = const
From [5, p. 160], [8, p. 272], [4, p. 81]:
1 gl
= =1+ —In2y/7=0,0230957 ... (6)
pEP P 2

Indeed, from (2):

e

1 ( 1 1)
— — —_|__ .
[; 2/; IL—=p p

o3 (€O L1 1 (3)

| -
s—1 | C(s) 15 ¢ 2n7r—|—2r<>
2

From (4):

pGP

Also it’s known, for example, from [10, p. 49|, [4, p. 98] that the number
of nontrivial zeros of p = o + ¢t in strip 0 < o < 1, the imaginary parts of
which ¢ are less than some number 7" > 0 is limited, i.e.

[{p: peP, p=c+it, |t < T}| < oo,

1
Indeed, it can be presented that on the contrary the sum of peP would

P
have been unlimited.

Thus VI' > 0 36, > 0, d, > 0 such that

in area 0 <t < 9,0 < o < 0, there are no zeros p = o + it € P.



Let’s consider random root ¢ € Py U Po
Let’s denote k(q) the multiplicity of the root g.
Let’s examine the area Q (R) = {s: ||s — ¢|| < R, R > 0}.
From the fact of finiteness of set of nontrivial zeros ((s) in the limited

area follows 3 R > 0, such that Q(R) does not contain any root from P
except q.

o
>3
8

N =
-

Fig. 1.

From [1], |10, p. 31], [6, p. 23] we know that the Digamma function

in the area Q(R) has no poles, i.e. Vs € Q(R)

Let’s denote:

and

o 1 1 1
Ip\(g}(5) d:f——+—s+ > .
peP\{q}

Hereinafter P\ {¢} = P\ {(q,k(q))} (the difference in the multiset).



1 1
Also we shall consider the summation - 7 p —— and } peP\(gh T
s — s —

1 1 1
further as the sum of pairs (s —, + s (1= ,0)) and > p P as the sum
1 1

of pairs <— + 1—) as a consequence of division of the sum from (5)
p 1—p

1 1Y . 1 1 e 1
> pep (E + ;) into > cp P + 2 ep > As specifed in [5], 7],
8], [10].

Let’s note that Ip\ 4 (s) is holomorphic function V s € Q(R).

Then from (4) we have:

¢ () = 111(17r +a— lrl (§>

R

And in view of (3), (6):

1
+ ZpEP ; + IP(S>

¢ " (3)
Reg((j)) = %hm%—Re _%[‘ (§2>

+1Ip(s) | - (7)

Let’s note that from the equality of

1 1 1
PN D Dl (e i) B ®)

S—p
peP (1-p)eP peP

follows that:

Ip(1 —s) = —Ip(s), Ip\(g(1 = s) = —Ip\1—q3(s), Re(s) > 0.

Besides

Ty (s) = Ip(s) — 1L

and Ip\ (g (s) is limited in the area of s € Q(R) as a result of absence of its
poles in this area as well as its differentiability in each point of this area.




If in (4) we replace s with 1 — s that in view of (6), in a similar way if we
take derivative of the basic logarithm (1):

s ,(1—s
<’<s>+<'<1—s>_1r'(§>_lr( 2 )+m, Re(s) > 0. (9)

O T () T (L)

Let’s examine a circle with the center in a point ¢ and radius r < R, laying
in the area of Q(R):

Im(s) 1 i
ty ....... <>
ymr ....... r.n.,Lr::
5y. ....................... ;.g ........................................................... .
0 dr xmraq % 1 RG(S)
Fig. 2.
For s = o +1y, ¢ = o4+ 11,
k k k — —
Re (q) — Re : (q) : — (q)gx O-Q) 5 — k(q)x 20-61.
s—q r+iy—o,—it, (v—0,)+ (y—t,) r

Let us prove the following Lemma:

LEMMA 1
VqgeP

J0< R, <R: YO<r< R, Im,:|my—q| =r, Im(m,) < Im(q),
¢ (1 —my)
C(mr) C(l_mr)

And for the angle 3, between the ordinate axis and the straight line passing
through the points ¢ and m,., the following equality holds:

68 B, = O()rs0. (11)

=0 (10)



PROOF:

For s € Q(R) we consider the function:

Re@ — Re—cl (1=5) — QRGM

¢ (s) ¢(1=s) s—q
From (7) and (8), it is equal to:

(2 F’(
Re ;F((g)) +%r(125> + 2p (g (5)

2

Since all components of the brace are limited in the area of s € Q(R),
then 4 Hl(R) >0 Hl(R) € R:

¢'(5)  p, 2k(q)

fers s Sy

‘ < H\(R), VseQ(R).

On each of the semicircles: the bottom semicircle -

{s:]ls—q||=r t,—r <y <t,} and the upper semicircle -

{s:|ls—q|l=r t, <y <t,+r} the function Reskgl)q is continuous and
takes values from _kgﬂq) to kan), r > 0.
Consequently V 0 < r < }QIIT((EJQ))’ 3 Moninrs Mmazr
[mminy = all = 7, [|Mmaz,r —qll =7
Re—M9) _ _ _p(r), Re—2MY__ o py(r)
Mmingy — 4 Mmaz,r — 4



and the sum of two functions:

() (=3 . 2K(a)

s M ca—s) Sy P

in points Mmyn,» and My, , will have values with a different signs.

From the property of a continuous function on a segment taking all the
intermediate values between its extrema, it follows that 3 R, € R,
R, >0:

2k
R, < R, 2klg) > Hi(R)
Rq

and then V0 <r < R,
exists on the lower semicircle point m, = T, + 1Ym, such as that:

¢" (m;) eC’(l —m;)

R — R = 0.
eC(mr) C(l _ mr) !
From (9) and (10) it follows that V 0 < r < Ry:
¢" (m,) ¢'(1—m,)
R =R —
eg(mr) eC(l_mT)
1—m
) ()
= —Inm + 1Re —1 ( 2/ _ 1 2 (12)

[.e. taking into account the absence of singular points for I'(s), V s € Q(R)
for r — 0O:

—0(1). (13)



Point m,.
Im(s)t

Oy — T,
‘tgﬂmr - ‘tq
g — Ym,
From (7) it follows that:
I (—
Tm, — g ¢'(my) 1 2
k(q)T = Re C (mr) — 511’171' — Re —§m + IP\{q} (mr)
2
In view of (13) at r — 0:
T, — O
3 1=0(1)



Then from equality:

(04 = T,)* + (tg — ym,)* =17

it follows that when r — 0:

[e. 30< R <Ry: VO<r <R

and therefore r — 0:

Let’s prove the second Lemma:

LEMMA 2

PROOQOF:

From the first Lemma V. 0 < r < Ry, for s =z +iy: |s—gq|| =7

let’s consider the function:
g(x y) déf RQC/ (S) ReC/ (1 o S)

¢s)  ¢l—s)

10



Ty Lo, a:q Re(s)

Fig. 4.
k
For arbitrary €, e; > 0, taking into account that the function Re () is
§—4q
k k
continuous and takes values from — (@) to (q)’ there must exist a radius

r r
O<Re<Ri: VO<r<Ry: dmy., mpg ¢
¢" (m,)

Clmre) _ pedilm) gz mne) _ p ) gy

e —& A C(1—myg,) B ¢ (my)

e )~ ¢ my)

Let’s designate V s € Q(R):

o 1 1
als) = 511’17‘(' + §Re —=

—_
el
/—\
| »
~— [
DO | =
— !
/\/\\
—_
O B NG
w
SN—"

11



From (12) follows:

¢my) o, A=m) 1(, ¢ (m) ¢ —m)) _
e Cmn) =T =my " 2 <R€< m) OIS mr>> = ol
which means taking into account (9) and (14):
¢'(1— mm) . ¢’ (my)
e =,y 2t = ey
_ 5 ¢ (my) B
= ReC () + e+ 2a(m,e) — 2a(m,),
(15)
¢ (mrz,) ¢ (my)
ReC (e) 2a(my ) RGC(mr) —€1 =
= Re C ((;Z:)) — &1+ 2a(myg,) — 2a(m,)

Let’s designate:

. dif . dif
T, T Wm,. = Mrey Tm, . +Wm, . = Mg,

The points m,. and m, ., lie on a circle with center at the point ¢ and
radius r, i.e. all the points s = x + iy of the smallest of the arcs that
connects them satisfy the equation:

y = fr(z) d:eftq_ \/T2_ (0 — )%

And:
fr(xmns) = ymr,s’ fr(l’mr,sl) - ymr,sl :

Function g(z,y) is differentiated, so function g(x, f.(x)) is continuous and
differentiated on z.

Let’s designate V s € Q(R):

(s
()d—‘*f%l + Re 2F(<;2>> + Ipygy(s)

12



(' (x+if(x))

From (7) and (14), because of the continuity of the function Re :
(and (19 o+ if,(x)

for Vo € (0, — R,0,+ R), based on the mean value theorem for r — 0:

(’Cmr o xmr,s
—k(Q)TI =—e1—w(l—m;) +w(l - mr,sl) =
= —1+ 0, — Tm,., ), (16)
xmr o xmr,s
b(g) = = € — wl(am,) + w(em,,) =

= e+ O0(Tm, — Tm,_)-

Thus VWe, ¢1 >0, d0< R3 < Ry: VO<r < Rs:

lim, o My e = My, lim,, o Myep = My.

Thus, a real function that is continuous and differentiable on the inner
interval takes on the values on its ends:

o o)) =
_ (Reo (m,) M) Z ef’( > e 2a(mr)> .

) Clm
:(Reg((Z:) ~ct+2(r </ L2 (atme) = am), (17

(@, o fr(Tm,.)) =
= (Regl my) _ g) (gReCI (1) 4 o 4 20(my.) - 204(m,,)> _

COm) C(my)
_ (RE_ f:f;) _52+2(Re§_’ é:;; _s) (a(my2) — am,). (18)



Let’s consider equality:

g(me',:S? fr(xmr,g)) = g(me,glv f?“<xmr,sl))' (19)

On the basis of the Lagrange theorem about the average value YV e, 1 > 0,
V0 <17 < R3on the arc described by f.(z) in interval (@, . , T, ), there

is a point 7;.., = ry,., +ifr(2r,. ), for which it is true:
a(mye,) — a(m,) = o (v + ifr(x))xzxrr,gl (xm'r,el = Tm,),
similarly in the interval (z,,. _, Zmy,) 3 1. = vy, +ifr(vr,,)

a(mre) = a(me) = & (x +ife(2))o=ar, . (Tm,. = Tm,)-

Also in the same intervals there are two more points:
def

Hrier = Lse, =+ ifr(x%ml) and Hre = L, o + Z'fr(x%ng)?
'I.%r,sl E (xmr,517$m7‘)7 aj%r,e E (xmr,s7 xmr) :
w(l =m;) —w(l —me) =w,(1 -z — ifr(x))xzx%ml (@m, — xmml)v

w(m,) — w(mr,s) = W;;(ZE + Z'fr(x))xzxmg (T, — xmm)-

And (16) will be as follows:

= om) (8 4 bl =2 = Do, ) =1

7"2

(= om ) (S ot i, ) =

Or:

€1T2

k(q) + r2w) (1 — & — ifo(2))ama,

Ly = Ty =

(20)

er?

k(q) + r’wi(z + ifr (%)=,

Lm, — Tm,. —

14



And then the equality (19) will look like (17) and (18) as follows:

¢' (my) >/ :
272 <R6 — €& C%(x + Zfr(x))xzxrm
—e?+¢ ¢ (m,) =

+Tw(x+ﬁﬂ)%wmg
k(q

) 0 (& + i) o,
+r " ( @

:—€%+5

2 _ 2
Ar,&-g —_— Br758 — Ar7€161 - BT’Elsl.

So from (21) it is visible, that 30 < Ry < R3: V0 <r < Ry

27“2043 (z +ifr(v) )I:In,a

A =1+ . >0
’ k(q) + r2w,(x + ifr(2)) o=, .
- 220l (o + if,(2)
rea, (T + 1 [ (T)) =z
A, 21— SaMLLY >0,
’ k() + r?wi(1 — & — i fi(2))o=a,,.,
as well as:
k(q) + r’w(z + ifr(2))i=z,,. >0
and
k(q) +r*w.(1—x — ifr(a:))xzxm’a1 > 0.
Where:

22 ReS ) o (o i ()
B C(mr) -
" kun-%r%d(w-%iﬁ(w»xzama ’
¢ (my) ,
o, (z+if(x ))xzxn,sl
By, o )

k(q) + r*w! (1 —x —if.(x ))I:;,;M’E1 '

15
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Let’s assume that:

0(4) 2-0(g) # 0. (22)

Then, taking into account the existence of a two-dimensional neighborhood
of the point ¢ in which the continuous function of two variables

0
alz + iy)%a(aj + iy) preserves the sign, and also that :

d 0 d 0
ole + i @) = Srale+if, @) + i) 5ol + i)

and in accordance with (20) V x € (min(zy, . , Tm,.), max(Tm, . , Tm,.)):

%fr(x) - \/7"2 — (0, — 7)?

We have: 30 < Ry < Ry : VO <r < Ry:

= O(T)r—>0-

alx +if.(z)) #0, %a(az +if(x)) #0, Y € |o,— Rs,0,+ R5). (23)

Let’s notice, that in the assumption (22), V 0 < r < Rj factors B, ., and
B, . are not equal 0 and have one sign.

For resolvability of the equation (21) it is enough to us to show a continuity
a(m,.) on €. Really in this case, in view of (18), the left part of equality
(21) will be continuous on €.

And then V ¢ > 0 at ¢ — 0 there would be a value £ such, that the
left part (21) is less on the module of value in the right part, as well as
dJA1>0: V0<e <A at e = 00, there would be a value of a variable
at which the module of the left part is more the than module right and both
parts have one sign.

16



Consequently, in view of a continuity, between the specified values of
parameter there should be a point which is a root of the equation (21)
concerning a variable €, for fixed 0 < g1 < 4.

The continuity of a(m,.) with respect to ¢ follows from the continuity
of the function a(s) for Vs € Q(R) and the continuity of m, . in € because
the equation (16) can be written as follows:

— 04— h(7)
2

Lm

r

k(q)

r = —7—w(my)+w(og+h(T)+i(ty—/r? = h,(7)?)),

where h,.(7) it is defined from equality:

hr (8) g xmr,s T UC]' (24)

—w(m,) +w(og + h (1) +i(t, — /12— h(7)?)) = 7.

Those the function h,(7) is the inverse of the function:

Og+ T — Ty,
2

k(q) —w(my) +w(og+7+i(ty — Vr2—12)). (25)

r

It follows from the inverse function theorem that if a function is defined,
continuous and strictly monotone on some interval, then it has an inverse
function that is continuous and strictly monotone on the corresponding
interval, the image of the initial interval.

Let’s look at a derivative of function from (25):

k(q) .
T—2+w;(0q+7+z(tq— r?2 —12))+

17



[.e. area of values of argument 7 in (25) at r — 0:

= 0(r?).

Then 30 < Rg < R; : V0 <r < Rg and for any argument 7 possible in
(25) the derivative of this function will be strictly positive.

[.e. function from (25) is continuous and strictly increasing on all interval
of definition of the argument.

This means that VO <r < Rg, 3 A; >0: V0<e <4, de>0is
executed (19):

g(xmr,57 fr (ajmr,s)) = g(a:mr,sl e (xmr,el )-

Let’s assume, that:

xmr,al - a:mr,s' (26)

Then from (17), (18), (19), in view of equality a(m,,) = a(m,):

e’ — e +2(e + &) (almye,) — a(my)) = 0.

Le.
e —¢e1 =2(a(m,) —alm,.)). (27)
And from (15):
Re% = Reg ((:;:)) — &1+ 2a(myg,) — 2a(m,) = RGCC/((:;:)) — €.
Le.
Regl (mr,sl) o Recl (mm)

¢ (mye,) a ¢ (mye) '

18



That means according to (24), (25), (26) that:
o, + hi(e) = 04+ hy(e1) < he(e) = he(e1).
And in view of a continuity and strict monotony h,(¢):
£ = €1.

And then from (27):
a(m,) —a(m,.,) =0,

that contradicts strict monotony of function a(s) according to (20) and (23).

Hence the assumption of (26) is false, that is:

VO<r<Rs, d0<ALA:V0<e <A FJe>0: my. #my,

and
g(xmr,e7 f?" (xmr,e)) = g(xmnel ) fr (xmr,sl ))

I.e. continuous and differentiable on the inner interval, the real function

takes on its ends the same values.

By Rolle’s theorem about the extremum of a differentiable function on

an interval, we have:

76, (902, f;(0));s,. = 0.

Where:
®T,€1 (g (I®r751 i fr(a:.@r,sl )) *

From (21) follows:
£ = 0(1)51_>0.

(28)

And taking into account that the value of zg,_ lies between zy,, . and zp,, _,

we have:

lim ©, ., = m,.
61—)0

19



Let fe,. be the angle between the ordinate axis and the line passing
through the points ¢ and ©,,.

Also:

lim =
1550 ﬁ@ngl ﬁmr

¢z +if(z))
C ($ + Zfr(x))

V x between zy, . and x, , l.e. to appropriating continuity of derivative
function g(zx, f.(x)), from equality (28) follows:

and in view of infinite differentiability of function Re for

(g(xa fr(x)))lx:xmr - 0

This equality, taking into account the fact that the angle 3, between the
axis of ordinates and the line passing through the points ¢ and m, coincides
with the angle of inclination of the tangent passing through the point m,.,
can be written as follows:

4 (Rt —zﬁ(az)))mr _

e\ Carifi (@) CA—a—if(x)
_ o Sm) [ )\ (L=my) (o (= m) )
=0 ¢ (my) (R g(mr)) i (1 —m, <R C(l—mﬁ)x

e L) (Re%y) 0 (29)

20
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Thus, the equality (29) can be written as follows:

And taking into account (11), (12) as well as the presence of the last equality
of finite limits for all the terms at r — 0 we get:

0= hmrﬁo (g<$7 fT(m»);z:xm, =

r(n) ()

1 1
= | zlnm+ -Re | —= — = *
q _
2 2 2r(§) 2F<1 q)
2
1—gq '
q (1—a
A OGS, Lot
‘ QF(Q) 2 (1—(]) — MW, N
> r(—4
2

This contradicts the assumption that (22), i.e.:

a(q)%a(Q) = 0.



What is equivalent:

Re —lrl(§>—lrl<7> | — 0. (30)
2

Taking into account (4), (5) and the formula of the Digamma function from
[1, p.259 §6.3.16] we estimate the first factor:

1 —gq
q (2”4
RN RO GY.

71 “Re | = R N
o T T e 2F(g) 2 (1—q>
5 r(—4
2
1 S 1 1
— “Rrel1 T,z =
2 e(nﬂ+2+q+znzl(q+2n 2n>+

23



Let’s note that the derivative of the function:

r x—|—zy 1—a:—zy
11 +1R 1 2
g T e 2F<x+u0 (l—x—w)

along the ordinate axis for any fixed 0 < x < = an

—_

d y > 0 is negative:

T+ 1l—z—1y
0|1 1 1 2 1 2
— | =Inm + =Re

()

dy | 2 2 QF(:UJriy) 2F<1—x—iy>

2 2
_lzoo o 2n+x +3 2n+1—=x B
2\ Oy \ @2+ +y2) oy \@2n+1-2)?2+y?))
_ _EZ;O:O <(( 2(2n + )y N 22n+1—2)y ) > <o

2 2n+x)2+ 92?2 (2n+1—12)2+y2)?

Therefore, if the left-hand side of the equality (31) is negative for numbers

of the form gy = o+ ity, where tg > 0 is fixed and 0 < oy < = is arbitrarily

chosen, then it will be negative for any ¢ = o, +it, : t, > ty, 0 <o, < =

24



1
Consider gy = 09 + 8i, 0 < 0y < =, then from (31) will follow:

I —qo
qo /
r(%) ()
1 1 1 1

—Inm+ =R — 2 2

e J— J—
do 1 —
2

[\D

1 1 + + 1 — 0y + o)) +
= — [ In7
2 7 (1—00)248 o} +8?
00 2n + 0y 1
+ 2 ((Zn + 0¢)? + 82 2n>

—|—Zoo 2n+1—00 1 <
n=1 (2n+1—00)2+8 2n

1
2n + -
1 R 5 1
<> |1 - 2 =
o1 R Ml i enr-ohat el

2n +1 1
2 (( 2482 2n>> -
n—82 oIn — 82
1117T—|-’Y+82—|—Zn1 +82 +2n((2n)2+82) e

;<lm+v+—+2 <( +16)_n(n21i16)>>' (32)

From [1, p.259], |2, § 6.495] :

l\DlH

1
—— = —— 4+ —coth
y;n2+y2 y+2co Y.
Consequently:
EOO L L T othar = 0, 3614490 (33)
—n?4+16 32 8 o

The remaining amount in the (32) is estimated for the first nine terms:

Z o n2 710 Z ;> 1, 8873330. (34)

n:l :

25



Thus, taking into account (33) and (34) the inequality (32) can be continued:

L Inm + tet > o ’ 10 <
n ES— JR—
S n=1\8(n2+16) n(n? + 16)
3
(1 1447299 + 0, 5772157 + 0, 015625 + S0, 3614491 — 1 8873330)

l\DI»—\

1
< 5 (1,8731141 — 1,8873330) < 0,

1
Le.forVg=o0,+it,: t, 28, 0 <o, < < the first multiplier of work

\}

from (30) is not equal 0.
And taking into account the symmetry of the values of this factor relative

1
to the line o, = 3 it isnot equal to O forV ¢ = o, +it, : 1, =8, 0 <o, < 1.
Let’s estimate the minimal value ¢, > 0.

ForVp=o0+it:

—l—l—l— ! + L

p o l—p 1-p
o . o n l—-0o n l—0o B
T2 21 -0l + (-0l t
20 2(1 —o0) 20 21—-0) 2

= > + = :
02+t2+(1—0)2+t2 142 142 14t

Let’s designate through ¢; = min,ep [Im(p)| then in view of (6):

< Z < 0,0230958,

1+ tl peP

l.e.

t, > 9,2518015.
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Thus V ¢ € P multiplier:

Hence the second factor of (30) must be equal to 0, which is equivalent

to: .
r@) (v
Re 2 =R S ——— -

@)y
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Let’s prove the third Lemma:

LEMMA 3 |
Vs:x+iy,0<x<§,y>4:
r()) (7))
9 2
Re 3 Re & (35)
r(Z 1—s
(2) F( )
2
N 1
T =3
PROOF:

From (31), the equality (35) can be written as follows:

- (2n + x)? — 3 B @Cn+1—a)*—y* \
> )o@

n=0 (2n + x)2 -+ y2)2 ((2n +1— a:)2 i yg)g

In its turn:

- < (2n + x)? — o> (2n+1 —2)% — o2 ):
(2n+2)*+9%)  (2n+1-12)>+y?)?

an()

_ e 1 1
SO 2n )24y (2n 4+ 1 — )2 2

. 1 B 1 _
29" 0 <((2n v +y?)? (Cn+1-2)?%+ y2)2>
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(1 —2z)(4n +1)

BRG] TR e (TR e
202 5 (I—-22)dn+1)(2n+2)* 4+ (2n+1—2)* +2y*)
N O (e e e
dn +1
=(1-2 il —
1= 20) (S e o T 1= )
o @An+1)(2n+2)*+ 2n+ 1 —2)%* + 2?)
—2y? D n=0 ( A 2 212 2 2)2 (37)
(2n+2)2+42)2((2n+1—2)2+4?)
Let’s estimate the sum of the general brackets of equality (37):
o dn 41
" @ o+ (@t 1 0P+ )
o2y (4n +1)((2n +2)* + (2n + 1 — 2)* + 2¢°)
S Tt e P (2 L=+ )
From [1, p.259], |2, § 6.495] :
= 1 s Y
— — tanh -2
;(Qn—1)2+y2 4y g
- 1 1 s Y
5 = — 55 + 7 coth—.
; (2n)2 + 42 207 Ay 2
And then the first composed in the considered sum:
0o dn + 1
— <
>0 (@ 4 72+ ) (@ 41— 0 )
1 - dn +1
+ Enzl . <

S @A -2+ ) ((2n = 1) +¢2)((2n)* +v°)

<Ly > o ! ! +
yt TN @2n - D)2y (20) 4y

N 2
R e T
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> 1 1 ™ tanh 2 — T coth T 4
_ = —tanl — — ——coth — + —
@Cn—=12+y* (2n)+y?) 4y 2 4y 22y

ydy \ 4y 2 43 2 8y?eosn2 ™
Ie.
- dn +1
> <
Zn_o (2n+2)?2+9y*)((2n+1—2)>+y?)
! + " tanh ™2 + !
— + —tanh — + — —
22 g 2y
2
7 Y Yy n 1
— (coth 2 — tanh 7Y ) —
4y (CO 2 R 8y? cosh? -2
2

The second composed:

S (4n+1)(2n+2)°+ (2n+1—2)° +2¢°)

@t PP+ T+

oy dn — 3 "
(20 -2+ )2+ y?)((2n - 1 - 2)? +y?)

1 1
>

. dn —1 1 !
> Zn:l < * ) -

(2n =12 +92)((2n)> +y*) \(2n = 1) + 42 (2n)* + 47

- Zn:l ((2n —1)2 4+ y2)((2n)? + y?) ((Qn —1)2+ 92 " (2n)? + y2>

> Zn:l (((Zn _ 1)2 + y2>2 N ((2“)2 + 3/2)2> N
— 2o -
n=1 ((271 . 1)2 + y2)3-
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Here:

2y dy \ 4y 2 297 4y 2
2 1 1 2 1
T ah Y T _ coth ¥ — T e
8y’ 2 16y cosh2 ™Y 2y y? 2 16y° g2 Y
9 2
And
4

1 d 1d ([« Y
= | ——— | —tanh = =
2udy \ ydy \ 4y 2

1d |« Ty 1
2udy \ 4y? 2 8y%cosh? Y
Y
37Tt L™ 2 1 2 1 o tanh7
= — tanh —= — - - -
8y° 2 16y cosh2 ™Y 8yt cosn2 Y 1617 cosn2 1Y
2 2 2
2 3 07 Yy 3m Y
<2y—|—2an 2)+8y5 an 5

8y3 cosh? %y
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Hence:

dn + 1 B
(2n+2)2+y2)((2n+1—2)2 +94?)
(An+1)((2n+2)* 4+ (2n+ 1 — 2)* + 2y?)

2 om0

T AN
Y Lo ((2n + :z;)2 + y2)2((2n +1—2)?+y?)?
< L + t h + !
2y° 4y y'
2
1
T <Coth— — tanh — > — 7T2 T
4y 2 2 8Y* cosh? —2
2
2
s Y s 1 1
— 21 —— tanh — — —
Y 8y an 9 16y2 cosh2 7r_y + 2y4
2
2
1
8y? 2 16y ginn2 =2
2
2
3 3
" (—+ztanhﬂ—y)+—ﬂt nh | =
8y cosh? 2 2 2y 2 2) 8y 2
1 1 1 3 Y
== |—=——= — tanh —=
v\ 2 8 cosh2% 8y R
2 2 2 2
e
8 cosh?™ 8 ginh? 5
1 2 3
+—tanh—+—+7r— <—+ztanhﬂ—y> : (38)
4y 2y 8y cosh? ¥ 5 2y 2 2

Let’s consider positive composed inside of the general bracket of the right
part of an inequality (38) at y > 4:
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Derivative:

2 , 2cosh =¥ _ my sinh ikl
Y _ 2 2
NG Y Ty < 0,
cosh® — cosh® =2
2 2
since for Vy > 4
2
2 coth 2 <.
7 2
Similarly, the derivative:
y? / 2 sinh %y — 7y cosh %y
——7y | =Y <0,
sinh? UL sinh® UEs
2 2
since for Vy > 4
2
2 tanh - <.
7 2
Hence Vy > 4
2 2 2 16
e < T < 0,0002754,
8 cosh? Y 8 cosh” 27w
2 2 2 g
o < <0,0002754.
8 ginh? o 8 sinh” 27
Further Vy > 4
& my
— tanh — < — < 0,1963496,
4y 16
1
— < 0,0625,
y?
s S T ™) < (31T < o,0000084
—— | — + —tanh —= — | =+ = : :
2y 2 2 32cosh?2r \8 2

8 2
Y COS 2
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Hence V y > 4 the total sum of positive composed in the general bracket

does not exceed 5:

2 2 2 2
LR— + — Y = T
8 cosh? Y 8 ginh? 73/

7r my 1 2 3 7 Y

+-—tanh — + - + ————= | o= + 5 tanh — ] < 0,2594088.
4y 2 Y 8ycosh®—=2 \2y 2 2
1
This means that forVy >4, 0 <z < <3 the second factor of the right side

of the equality (37) does not turn into 0,
hence from (36) and (37):

1
xr=—.
2
In a underside the validity of the statement of the Lemma 3 is obvious.

]

So, assuming that an arbitrary nontrivial root ¢ of zeta functions belongs
to the union P; U Py we found that it belongs only to Ps, i.e. P; =

And according to the fact that P, = @ < Py = & we have:

Ps=P =9, P="7Ps.

This proves the basic statement and the assumption which had been made
by Bernhard Riemann about of the real parts of the nontrivial zeros of zeta
function.
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