The real parts of the nontrivial Riemann zeta function zeros
Igor Turkanov

ABSTRACT

This theorem is based on holomorphy of studied functions and
the fact that nearby of a singularity point the real part of some
rational function can take random arbitrary preassigned value.

The colored markers are:
e - assumption or a fact which is not proven at present;
- the statement which requires additional attention;
- statement which is proved earlier or clearly undestandable.

THEOREM

The real parts of all the nontrivial Riemann zeta function zeros p are

1
equal Re (p) = o

PROOQOF:

According to the functional equality [10, p. 22|, [6, p. 8-11]:
1—s

F(g) _§g(s):r(1;8>{ 2 ((1-s), Re(s)>0 (1)

C (s) - the Riemann zeta function, I' (s) - the Gamma function.



From [6, p. 8-11] ¢ (5) = ((s), it means that Vp = o +it: ((p) = 0
and 0 < 0 < 1 we have:

(P =C1—=p)=C(1=p)=0 (2)

From [11], [9, p. 128], [10, p. 45] we know that ¢ (s) has no nontrivial zeros
on the line ¢ = 1 and consequently on the line ¢ = 0 also, in accordance
with (2) they don’t exist.

Let’s denote the set of nontrivial zeros ¢ (s) through P (multiset with
consideration of multiplicitiy):

P={p: ((p)=0,p=0c+it, 0 <o <1}.

def . ]_
And:Plz{p:((p):O,p:0+zt,O<0<§}, (3)

def 1 .
Pzz{p: ¢(p) =0, P:§—I—zt},

1
773:{/): C(p) =0, p=o+it, §<0<1}.
Then:
P=PiUPUPs and PiNPy =P, NP3 =P NP3 =0,
Pr=90 < P;=03.
Hadamard’s theorem (Weierstrass preparation theorem) on the decomposition

of function through the roots gives us the following result [10, p. 30|, |6,
p. 31, [12]:

T2e% s
C(S)S(S_l)r(g)pl;[)(l——>ep, Re(s) >0 (4)

a = In2y/7m — % — 1, v — Euler’s constant and



According to the fact that

6, p. 23] we have:

() R Eaa) e o

pEP

C = const

From [5, p. 160], [8, p. 272], [4, p. 81]:

1
Z_:1+%—ln2ﬁ:0,0230957... (7)
pEP P
Indeed, from (2):
>3 (5 0)
pEP P 2 peP b= pop

From (5):

22 o few 11 ()

_ e a— 1 -
s—1 | C(s) 1—3+ ¢ 21’17T+2P<2>

pEP

Also it’s known, for example, from [10, p. 49|, [4, p. 98| that the number
of nontrivial zeros of p = o + ¢t in strip 0 < ¢ < 1, the imaginary parts of
which ¢ are less than some number 7" > 0 is limited, i.e.

[{p: peP, p=o+it, |t < T}| < oo,

1
Indeed, it can be presented that on the contrary the sum of » peP would

P
have been unlimited.



Thus VI' > 036, > 0, d, > 0 such that

in area 0 <t < 4,,0 < 0 < 9, there are no zeros p=oc+it € P.  (8)

Let’s consider random root ¢ € P; U Ps
Let’s denote k(q) the multiplicity of the root g.
Let’s examine the area Q (R) = {s: ||s — ¢|| < R, R > 0}.

From the fact of finiteness of set of nontrivial zeros ((s) in the limited
area follows 3 R > 0, such that Q(R) does not contain any root from P

except q.
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Fig. 1.

From [1], [10, p. 31], [6, p. 23] we know that the Digamma function 32
*(3)
in the area @(R) has no poles, i.e. Vs € Q(R)

()

< 0

Let’s denote:

> pep TP
and 1 1 1
Ip\(qy(s) = St LT Z . (9)
peP\{q}



Hereinafter P\ {¢} = P\ {(¢,k(¢))} (the difference in the multiset).

1 1
Summation - »  cp _— and > cp\ (o) _— further we shall consider as

1 1 1
the sum of pairs (S —, + s (1= p)) and Zpep; as the sum of pairs
1 1 1

-+ — f division of th f 6
(p + T p) as a consequence of division of the sum from (6) > _ p <s -

into ZpGP E

Let’s note that Ip\ 4 (s) is holomorphic function V s € Q(R).

+ 3 ep % As specifed in [5], [7], [8], [10].

Then from (5) we have:

/ I’ 2
¢ (S) _ 11n7r+a— 1@ —|—Z%—{—Ip(8). (10)

) ’r(3)

And in view of (7):

¢s) ' (5)
Rer gy = glm + Re _éﬁﬂp@ . (11)

Let’s note that from the equality of

1 1 1
2, a2y (12

pEP

follows that:

Ip(1 =) = —Ip(s), Ip\(g(1 = s) = —Ip\1—q3(s), Re(s) > 0.

Besides

Ip\(qy(s) = Ip(s) — Sk(_q>q

and Ip\ (g (s) is limited in the area of s € Q(R) as a result of absence of its
poles in this area as well as its differentiability in each point of this area.

1

P

)



If in (5) to replace s with 1 — s that in view of (7), in a similar way if
to take derivative of the basic logarithm (1):

s (1—5
C’(S)+C’(1—s)__lrl <2> _1F< 2 >+ln7r, Re(s) > 0. (13)

SOREYERRNEN G %(1;8>

Let’s examine a circle with the center in a point ¢ and radius r < R, laying
in the area of Q(R):

Im(s) { i

Wl O

6y. ......................... é ............. ; ............................................. .

0 'O, 9q % 1 Re(s)

Fig. 2.
For s = o + 1y, ¢ = o4+ 11,

k k k — —
s—q x4iy—o,— ity (x—0y)?+ (y—1t,)? 72

Let us prove the following Lemma:

LEMMA 1
VgeP
JO0< R, <R: YO<r< R, Im,:|m,—q|| =r, Im(m,) < Im(q),

¢ (1 —m,)
¢ (my) ¢(1—my)

And for the angle 3, between the ordinate axis and the straight line passing
through the points ¢ and m,., the following equality holds:

6 B, = O()r 0. (15)

=0 (14)



PROOF:

For s € Q(R) we consider the function:

Re@ — Re—cl (1=5) — QRGM

¢ (s) ¢(1—s) s —q
From (11) and (12), it is equal to:

(2 F’(
Re ;F((g)) +%r(125> + 2p (g (5)

2

Since all components of the brace are limited in the area of s € Q(R),
then 4 Hl(R) >0 Hl(R) € R:

)

fers s Sy

On each of the semicircles: the bottom -

{s:|ls—q||=r t,—r <y <t,} and the upper -

{s:|ls—q|l=r t, <y <t,+r} the function Reskgl)q is continuous and
takes values from _kgﬂq) to kan), r > 0.
Consequently V 0 < r < }QIIT((EJQ))’ 3 Moninrs Mmazr
[mminy = all = 7, [|Mmaz,r —qll =7
Re—M9) _ _ _p(r), Re—2MY__ o py(r)
Mmingy — 4 Mmaz,r — 4



and the sum of two functions:

() (=3 . 2K(a)

s M ca—s) Sy P

in points Myin,» and Mpe,, will have values with a different signs.

From the property of a function continuous on a segment to take all the
intermediate values between its extrema, it follows that 3 R, € R,

R, >0:

2k
R, <R, 2klg) > Hi(R)
Rq

and then V0 <r < R,
exists on the lower semicircle point m, e T, + 1Ym, such that:

¢’ (my) ¢d—m)

ey )
From (13) and (14) it follows that V0 < r < Ry:

¢ (my) ¢ (L—my)

e Cmy T =
1—m
) ()
——1n7r+1Re 1 <2) ! : (16)

[.e. taking into account the absence of singular points for I'(s), Vs € Q(R)
for r — 0:

¢ (1—my)
g (mr) C (1 - mr)

—0(1). (17)



Point m,.

Im(s) t

.xm :O-q RG(S)

T

Fig. 3.

In the case if y,,, # t, the tangent modulus of the angle 3, is equal to:

Ty — T,
tg Bm,| = ‘tq
g~ Ym,
From (11) it follows that:
i) 1 (%)
Tm, — O9q _ my 2
]C(Q)T = Re C (mr) — Elmr — Re —5@ + [p\{q}(mr)
2
In view of (17) at r — 0:
Ty, — O
7= o)



Then from equality:

(04 = T,)* + (tg — ym,)* =17

it follows that when r — 0:

[e. 30< R <Ry: VO<r <R

and therefore r — 0:

Let’s prove the second lemma:

LEMMA 2

PROOF:

From the first Lemma V. 0 < r < Ry, for s = v +iy : |[s—¢q|| =r
consider the function:

10



Fig. 4.

For any € > 0, in view of that function Re is continuous and accepts

§—4q
k k
values from —ﬂ up to ﬁ, there should be a radius 0 < Ry < R, :
r r
VO<r<Ry: Imyeq, My
!/ !/
C (mr,e—i—) _ RQC (mr)
¢ (Myey) ¢ (my)

From (16) follows:
¢’ (my) . ¢'(1—m,) . 1 ¢’ (m,) ¢'(1—m,)
Com) =) 2 (R%(mr) R —mr>> ’
that means in view of (13):
C/ (1 — My €+> Cl (mr) C/ (1 — My 6*) C/ (m?")
L = Re>——"~ —¢, R -~ =R .
CU—men) ) T T )

¢ mre) oy ) "

e, e ¢ (mye) ¢ (my)

Re

Re

R

11



Let’s designate:

xmr,s—o— + Zymr,s+ - mr75+, ':Umr,s— + Zymr,s— - mr,g—-

¢’ (s)
. _ , ¢ (s)
the points m, .4y and m,._ are different for V ¢ > 0. Without loss of
generality, we assume that z,,, . < Ty, .

From (19) taking into account the unique calculation of the function Re

In these various points according to (19) and (20) function g(z,y) accepts
identical values:

¢ (mr>>2 2

g(xmr,&i—’ ymr,a-i-) - g(xm'r,a—’ ymr,s—) - (Re C (mr)

The points m, . and m, ._ lie on a circle with center at the point ¢ and
radius r, i.e. all the points s = x4y of the smallest of the arcs that connects
them satisfy the equation:

y = fr(v) d:eftq_ \/TQ_ (0 — )2

And:
fr (xmr,s+) - ymr,s+7 f?” (xmr,s—) - ymr,a—'

The function g(z, y) is differentiable, which means that g(x, f.(z)) is continuous
and differentiable with respect to x.

Thus, a real function that is continuous and differentiable on the inner
interval takes on the same values at its ends:

9@m,eps Fr(@m,.. ) = g(@m, . fr(@m,. ).

By Rolle’s theorem on the extremum of a differentiable function on an
interval, we have:

dze,. € (Tp, s Tm,. ) (9(, fT(x)));:%m = 0. (21)

12



[e. Ve >0, VO < r < Ry on the arc described by the function
def

fr(z), = € (xmrﬁ,xmr’sf) there is a point ©,, = (x@m,fr(x@m)) for
which the equality (21) is true.

Let Bg,. be the angle between the ordinate axis and the straight line passing
through the points ¢ and 6, ..

. , ¢ (z+if(x))
By the continuity of the function Re , forVaoe (xm, .., Tm, .
(et if (@) R
and from (11) and (19) at r — 0:
Tm, — Mye— L, — Myre
k(Q) —7“2 = €+O(xm,~_m7“,€—)7 k(Q) 12 L _5+O($m,«_mr,5+)

follows that 30 < R3 < Ry : V0 < r < R3 we have:

]j.m mr E"_ — mfr-7 ]j.m mr e— — mlr-7
e—0 e—0

it means that:
lim 6, =m,, limfe . = Bn,
e—0 e—0 '
and taking into account the infinite differentiability of the function
5. (15, (2))
€ .
¢ (z+ifr(x))
of derivative function g(z, f.(z)) from equality (21) follows:

(9(x. fr(2)))oms,, = 0. (22)

for V.o € (zm, ., Tm,. ), i.e. to appropriating continuity

This equality, taking into account the fact that the angle 3, between the
axis of ordinates and the line passing through the points ¢ and m, coincides
with the angle of inclination of the tangent passing through the point m,.,
can be written as follows:

13
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s=my,

, (1 —m,
o Clm) | _f’(%)_f( ) N
. ds | 20 /™ T2 [1—m,
e e
1—m
) ()
et [ 7G) TSN

And taking into account (15), (16) as well as the presence of the last equality
of finite limits for all the terms at » — 0 we get:

0 = lim, (g($, fr(x)));c:xmr -

HONUES

1 1
— | el _z _ 2
2n77+2Re QF(Q) 5 (1—(]) *
5 N\ ——
2
1—gq !
q rf -4
1F/(§) 1F< 2 )
x| Re | —= S (26)

15



Taking into account (5), (6) and the formula of the Digamma function from
1, p.259 §6.3.16] we estimate the first factor:

l—q
q (24
1 1 1 1
"o+ ~Re | —=——2 N2 )

2D 2r (2) 2F<ﬂ>

2
1 v 1 - 1 1
:§Re(lnﬂ+§+5+zn:1( ——>+
v 1 1 1Y)
+2+1—q+2 (1—q—|—2n 2n>>_

1 2n + oy 1
2<ln7r+7+0 +Zn1<( 5 q——)+

q

1 -0y 00 2n+1—o, 1
—— . 27
Jr(1 —0y)* + 12 = ((2n+ 1—o0,)?+12 2n>> 27)

Note that the derivative of the function:

F,(:L‘—i—z'y) [ 1—x—2y
1 1 1 2 1 2
§1n7r+ —Re | —=

2 2F<x;z’y> 2

1
along the ordinate axis for any fixed 0 < x < = and y > 0 is negative:

T4y 1—x—zy
F’( ) I
0|1 1 1 2 1
— | zlInm+ -Re | —= )

l—x—zy

}1

[\

dy | 2 2 ZF(:UJrz'y) 2F 1—x—zy

2

_lzoo o 2n+x +3 2n+1—x B
27\ oy \(2n+ ) +y?) Oy (27%+1—w)+y B
R 2(2n + x)y 22n+1—2)y

=T (s s ) <O

16



Therefore, if the left-hand side of the equality (27) is negative for numbers
of the form gy = oy +1ty, where ty > 0 is fixed and 0 < 0y < 3 is arbitrarily

chosen, then it will be negative for any ¢ = o, +1t, : 1, > 1y, 0 <o, < 3

1
Consider gy = 09 + 81, 0 < 0y < =, then from (27) will follow:

N)

1 —qo
40 T’
1 (3) ( 2 )

1
-1 “Rel =2 _Z
o Tt 2F(@) 2 (1—%)
5 T
2
gy Lm0 0
= — nm
2 K (1—00)2+8 o+ 82

o 2n + oy 1
+ 2 ((Qn + 0¢)? + 82 2n>

Ly 2n+1—o0y 1 -
n=1 (2n+1—00)2+8 2n
1
2 -

n+2 1

1n7T+’7+ +Zn1 m—% +

2 (( 27;++182 2 21n>> - ;
<1n7r+7+ e + 200 < n—8+ 82) * 2n((2;n)_2182)>> -

;<ln7r+7+—+z ((n2+16)—n(n21i16))). (28)

<1
2

l\:)lr—k

17



From [1, p.259], [2, § 6.495] :

= —— - th .
y;n2+y2 2y 2
Consequently:
3 — —— + Zcothdr = 0,3614490... (29)

—n?+16 32 8

The remaining amount in the (28) is estimated for the first nine terms:

00 9
1 1
—_—— > —— > 1,8873330. 30
Z n(n? + 16) nz:; n(n?+16) = (30)

n=1

Thus, taking into account (29) and (30) the inequality (28) can be continued:

! InT + tert > o ’ 10 <
nmw —_— —
2 7 n=1\8(n2 + 16) n(n2 + 16)
3
(1 1447200 4 0, 5772157 + 0, 015625 + =0, 3614491 — 1 8873330)

wlr—\

1
< 5 (1,8731141 — 1,8873330) < 0.

—_

Le.forVg=o0,+it,: t, 28, 0 <o, < = the first multiplier of work

\}

from (26) is not equal 0.
And taking into account the symmetry of the values of this factor relative

. L. . :
to the line o, = 5 it isnot equal to O forV ¢ = o, +it, : 1, =8, 0 <o, < 1.
Let’s estimate the minimal value ¢, > 0.

ForVp=o0+it:

+1—|- ! + L

p p l=—p 1-p
o n o n l—0o n l—0o B
o242 o242 (1—0)2 42 (1—o)2+t2
20 2(1 — o) 20 21—-0) 2

— > = .
02—|—t2+(1—0)2—|—t2 1+ 2 1+ 2 1+ 2

18



Let’s designate through ¢; = min,cp [Im(p)| then in view of (7):

2
1+t

1
<) = <0,0230958,
P
epP

l.e.

t, > 9,2518015. (31)

Thus V ¢ € P multiplier:

l—gq

q 2

1 1 1 1 2
ST + S Re | — 2/ _ £ 0.

Hence the second factor of (26) must be equal to 0, which is equivalent

/ 1 — q !
2
Re =Re| ————% 1| .

@) Y

to:

19



Let’s prove the third lemma:

LEMMA 3 ]
Vs =ux+4 1y, O<JJ<§, y=>4:
r()) . (7())
9 2
R 2 R & (32)
r(2 1—s
(2) F( )
2
N 1
z=3.
PROOF:

From (27), the equality (32) can be written as follows:

i( 2n+2)?*—y*  (2n+1—2) -y >:0 (33)

(C2n+2)2+9y2)? (2n+1—x)2+y?)?

n=0

In its turn:

5= ( @n+a)? -y n+1-2)? -y >:

n=0 o

(Cn+2)2+9?)? (2n+1—1x)2+y?)?

=y 1 1
=\ 2n42)2 42 2+ 1 —13)? +y?

S 1 B 1 -
25" >0 <<(2n +a)2+y2)? (Cn+1-2)%+ yz)Q)

20



(1 —2z)(4n +1)

IR (T RS (TR s s b
D (I—-22)dn+1)(2n+2)* 4+ (2n+1—2)* +2y*)
N O (e e e
4dn +1
=(1-2x ol —
1=20) (S o T
o An+1D(2n+2)2+ 2n+1—12)*+2¢?)
—2y? D n=0 2 212 — 2 2)2 (34)
(2n+2)2+42)2((2n+1—2)2+4?)
Let’s estimate the sum of the general brackets of equality (34):
o dn 41
" @ o+ (@t 1 0P+ )
gy WntD(@nta) 4@ tl-0)"+ 27
Vet @+ 2+ PP (2 1o + )
From [1, p.259], |2, § 6.495] :
= 1 s Y
— — tanh -2
DA TR R
- 1 1 s Y
=55 = —55 T —coth—.
; (2n)2 + 42 207 Ay 2
And then the first composed in the considered sum:
0o dn + 1
— <
20 (@t 2 £ )+ 1 24 )
1 - dn +1
+ Enzl . <

S @A -2+ ) ((2n = 1) +¢2)((2n)* +v°)

<Ly > o ! ! +
yt TN @2n - D)2y (20) 4y

N 2
R e T

21



> 1 1 ™ tanh 2 — T coth T 4
_ = —tanl — — ——coth — + —
@Cn—=12+y* (2n)+y?) 4y 2 4y 22y

ydy \ 4y 2 43 2 8y?eosn2 ™
Ie.
- dn +1
> <
Zn_o (2n+2)?2+9y*)((2n+1—2)>+y?)
! + " tanh ™2 + !
— + —tanh — + — —
22 g 2y
2
7 Y Yy n 1
— (coth 2 — tanh 7Y ) —
4y (CO 2 R 8y? cosh? -2
2

The second composed:

S (4n+1)(2n+2)°+ (2n+1—2)° +2¢°)

@t PP+ T+

oy dn — 3 "
(20 -2+ )2+ y?)((2n - 1 - 2)? +y?)

1 1
>

. dn —1 1 !
> Zn:l < * ) -

(2n =12 +92)((2n)> +y*) \(2n = 1) + 42 (2n)* + 47

- Zn:l ((2n —1)2 4+ y2)((2n)? + y?) ((Qn —1)2+ 92 " (2n)? + y2>

> Zn:l (((Zn _ 1)2 + y2>2 N ((2“)2 + 3/2)2> N
— 2o -
n=1 ((271 . 1)2 + y2)3-

22



Here:

2y dy \ 4y 2 297 4y 2
2 1 1 2 1
T ah Y T _ coth ¥ — T e
8y’ 2 16y cosh2 ™Y 2y y? 2 16y° g2 Y
9 2
And
4

1 d 1d ([« Y
= | ——— | —tanh = =
2udy \ ydy \ 4y 2

1d |« Ty 1
2udy \ 4y? 2 8y%cosh? Y
Y
37Tt L™ 2 1 2 1 o tanh7
= — tanh —= — - - -
8y° 2 16y cosh2 ™Y 8yt cosn2 Y 1617 cosn2 1Y
2 2 2
2 3 07 Yy 3m Y
<2y—|—2an 2)+8y5 an 5

8y3 cosh? %y

23



Hence:

dn + 1 B
(2n+2)2+y2)((2n+1—2)2 +94?)
(An+1)((2n+2)* 4+ (2n+ 1 — 2)* + 2y?)

2 om0

T AN
Y Lo ((2n + :z;)2 + y2)2((2n +1—2)?+y?)?
< L + t h + !
2y° 4y y'
2
1
T <Coth— — tanh — > — 7T2 T
4y 2 2 8Y* cosh? —2
2
2
s Y s 1 1
— 21 —— tanh — — —
Y 8y an 9 16y2 cosh2 7r_y + 2y4
2
2
1
8y? 2 16y ginn2 =2
2
2
3 3
" (—+ztanhﬂ—y)+—ﬂt nh | =
8y cosh? 2 2 2y 2 2) 8y 2
1 1 1 3 Y
== |—=——= — tanh —=
v\ 2 8 cosh2% 8y R
2 2 2 2
e
8 cosh?™ 8 ginh? 5
1 2 3
+—tanh—+—+7r— <—+ztanhﬂ—y> : (3)
4y 2y 8y cosh? ¥ 5 2y 2 2

Let’s consider positive composed inside of the general bracket of the right
part of an inequality (35) at y > 4:

24



Derivative:

2 , 2cosh =¥ _ my sinh ikl
Y _ 2 2
NG Y Ty < 0,
cosh® — cosh® =2
2 2
since for Vy > 4
2
2 coth 2 <.
7 2
Similarly, the derivative:
y? / 2 sinh %y — 7y cosh %y
——7y | =Y <0,
sinh? UL sinh® UEs
2 2
since for Vy > 4
2
2 tanh - <.
7 2
Hence Vy > 4
2 2 2 16
e < T < 0,0002754,
8 cosh? Y 8 cosh” 27w
2 2 2 g
o < <0,0002754.
8 ginh? o 8 sinh” 27
Further Vy > 4
& my
— tanh — < — < 0,1963496,
4y 16
1
— < 0,0625,
y?
s S T ™) < (31T < o,0000084
—— | — + —tanh —= — | =+ = : :
2y 2 2 32cosh?2r \8 2

8 2
Y COS 2
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Hence V y > 4 the total sum of positive composed in the general bracket

does not exceed 5:

2 2 2 2
LR— + — Y = T
8 cosh? Y 8 ginh? 73/

7r my 1 2 3 7 Y

+-—tanh — + - + ————= | o= + 5 tanh — ] < 0,2594088.
4y 2 Y 8ycosh®—=2 \2y 2 2
1
This means that forVy >4, 0 <z < <3 the second factor of the right side

of the equality (34) does not turn into 0,
hence from (33) and (34):

1
xr=—.
2
In a underside the validity of the statement of the Lemma 3 is obvious.

]

So, assuming that an arbitrary nontrivial root ¢ of zeta functions belongs
to the union P; U Py we found that it belongs only to Ps, i.e. P; =

And according to the fact that P, = @ < Py = & we have:

Ps=P =9, P="7Ps.

This proves the basic statement and the assumption which had been made
by Bernhard Riemann about of the real parts of the nontrivial zeros of zeta
function.
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