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ABSTRACT

This theorem is based on holomorphy of studied functions and
the fact that nearby of a singularity point the imaginary part of
the specific function can accept zero value.

The colored markers are:
• - assumption or a fact which is not proven at present;
• - the statement which requires additional attention;
• - statement which is proved earlier or clearly undestandable.

THEOREM

The real parts of all the nontrivial Riemann zeta function zeros ρ are•

equal Re (ρ) =
1

2
.

PROOF:

According to the functional equality [10, p. 22], [5, p. 8-11]:•

Γ
(s

2

)
π
−
s

2ζ (s) = Γ

(
1− s

2

)
π
−

1− s
2 ζ (1− s) , Re (s) > 0 (1)

ζ (s) - the Riemann zeta function, Γ (s) - the Gamma function.
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From [5, p. 8-11] ζ (s̄) = ζ (s), it means that ∀ρ = σ + it: ζ (ρ) = 0•
and 0 6 σ 6 1 we have:

ζ (ρ̄) = ζ (1− ρ) = ζ (1− ρ̄) = 0 (2)

From [11], [9, p. 128], [10, p. 45] we know that ζ (s) has no nontrivial zeros•
on the line σ = 1 and consequently on the line σ = 0 also, in accordance
with (2) they don’t exist.

Let’s denote the set of nontrivial zeros ζ (s) through P (multiset with•
consideration of multiplicitiy):

P def
= {ρ : ζ (ρ) = 0, ρ = σ + it, 0 < σ < 1} .

And: P1
def
=

{
ρ : ζ (ρ) = 0, ρ = σ + it, 0 < σ <

1

2

}
, (3)

P2
def
=

{
ρ : ζ (ρ) = 0, ρ =

1

2
+ it

}
,

P3
def
=

{
ρ : ζ (ρ) = 0, ρ = σ + it,

1

2
< σ < 1

}
.

Then:

P = P1 ∪ P2 ∪ P3 and P1 ∩ P2 = P2 ∩ P3 = P1 ∩ P3 = ∅,

P1 = ∅⇔ P3 = ∅.

Hadamard’s theorem (Weierstrass preparation theorem) on the decomposition•
of function through the roots gives us the following result [10, p. 30], [5,
p. 31], [12]:

ζ (s) =
π

s

2eas

s (s− 1) Γ
(
s
2

) ∏
ρ∈P

(
1− s

ρ

)
e

s

ρ , Re (s) > 0 (4)

a = ln2
√
π − γ

2
− 1, γ − Euler’s constant and
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ζ ′ (s)

ζ (s)
=

1

2
lnπ + a− 1

s
+

1

1− s
− 1

2

Γ′
(s

2

)
Γ
(s

2

) +
∑
ρ∈P

(
1

s− ρ
+

1

ρ

)
(5)

According to the fact that
Γ′
(s

2

)
Γ
(s

2

) - Digamma function of [10, p. 31],•

[5, p. 23] we have:

ζ ′ (s)

ζ (s)
=

1

1− s
+
∑
ρ∈P

(
1

s− ρ
+

1

ρ

)
+
∞∑
n=1

(
1

s+ 2n
− 1

2n

)
+ C, (6)

C = const

.
From [4, p. 160], [8, p. 272], [3, p. 81]:• ∑

ρ∈P

1

ρ
= 1 +

γ

2
− ln2

√
π = 0, 0230957 . . . (7)

Indeed, from (2):• ∑
ρ∈P

1

ρ
=

1

2

∑
ρ∈P

(
1

1− ρ
+

1

ρ

)
From (5):•

2
∑
ρ∈P

1

ρ
= lim

s→1

ζ ′ (s)
ζ (s)

− 1

1− s
+

1

s
− a− 1

2
lnπ +

1

2

Γ′
(s

2

)
Γ
(s

2

)
 .

Also it’s known, for example, from [10, p. 49], [3, p. 98] that the number•
of nontrivial zeros of ρ = σ + it in strip 0 < σ < 1, the imaginary parts of
which t are less than some number T > 0 is limited, i.e.

‖ {ρ : ρ ∈ P , ρ = σ + it, |t| < T} ‖ <∞.

Indeed, it can be presented that on the contrary the sum of
∑

ρ∈P
1

ρ
would•

have been unlimited.
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Thus ∀T > 0 ∃ δx > 0, δy > 0 such that•

in area 0 < t 6 δy, 0 < σ 6 δx there are no zeros ρ = σ + it ∈ P . (8)

Let’s consider random root q ∈ P1 ∪ P2

Let’s denote k(q) the multiplicity of the root q.
Let’s examine the area Q (R)

def
= {s : ‖s− q‖ 6 R,R > 0}.

From the fact of finiteness of set of nontrivial zeros ζ(s) in the limited•
area follows ∃ R > 0, such that Q(R) does not contain any root from P
except q.

6
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From [1], [10, p. 31], [5, p. 23] we know that the Digamma function
Γ′
(s

2

)
Γ
(s

2

)•

in the area Q(R) has no poles, i.e. ∀s ∈ Q(R)∥∥∥∥∥∥∥
Γ′
(s

2

)
Γ
(s

2

)
∥∥∥∥∥∥∥ <∞.

Let’s denote:
IP(s)

def
= −1

s
+

1

1− s
+
∑
ρ∈P

1

s− ρ

and
IP\{q}(s) = −1

s
+

1

1− s
+

∑
ρ∈P\{q}

1

s− ρ
. (9)
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Hereinafter P \ {q} def
= P \ {(q, k(q))} (the difference in the multiset).

Summation -
∑

ρ∈P
1

s− ρ
and

∑
ρ∈P\{q}

1

s− ρ
further we shall consider as

the sum of pairs
(

1

s− ρ
+

1

s− (1− ρ)

)
and

∑
ρ∈P

1

ρ
as the sum of pairs(

1

ρ
+

1

1− ρ

)
as a consequence of division of the sum from (6)

∑
ρ∈P

(
1

s− ρ
+

1

ρ

)
into

∑
ρ∈P

1

s− ρ
+
∑

ρ∈P
1

ρ
. As specifed in [4], [6], [8], [10].

Let’s note that IP\{q}(s) is holomorphic function ∀ s ∈ Q(R).•

Then from (5) we have:

ζ ′ (s)

ζ (s)
=

1

2
lnπ + a− 1

2

Γ′
(s

2

)
Γ
(s

2

) +
∑
ρ∈P

1

ρ
+ IP(s). (10)

And in view of (7):

Im
ζ ′ (s)

ζ (s)
= Im

−1

2

Γ′
(s

2

)
Γ
(s

2

) + IP(s)

 . (11)

Let’s note that from the equality of∑
ρ∈P

1

1− s− ρ
= −

∑
(1−ρ)∈P

1

s− (1− ρ)
= −

∑
ρ∈P

1

s− ρ
(12)

follows that:

IP(1− s) = −IP(s), IP\{1−q}(1− s) = −IP\{q}(s), Re (s) > 0.

Besides•

IP\{q}(s) = IP(s)− k(q)

s− q
and IP\{q}(s) is limited in the area of s ∈ Q(R) as a result of absence of its
poles in this area as well as its differentiability in each point of this area.
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If in (5) to replace s with 1− s that in view of (7):•

ζ ′ (s)

ζ (s)
+
ζ ′ (1− s)
ζ (1− s)

= −1

2

Γ′
(s

2

)
Γ
(s

2

) − 1

2

Γ′
(

1− s
2

)
Γ

(
1− s

2

) + ln π, Re (s) > 0. (13)

Let’s examine a circle with the center in a point q and radius r 6 R, laying•
in the area of Q(R):
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For s = x+ iy, q = σq + itq•

Im
k(q)

s− q
= Im

k(q)

x+ iy − σq − itq
=

k(q)(tq − y)

(x− σq)2 + (y − tq)2
= k(q)

tq − y
r2

,

Consider also the function ln ζ(s) - principal branch function Lnζ(s) for•
which of the (4), in view of (7) ∀ s ∈ Q(R) is true:

ln ζ(s) =
ln π

2
s− ln (s(1− s))− ln Γ

(s
2

)
+
∑
ρ∈P

ln

(
1− s

ρ

)
. (14)

The sum as stipulated earlier, is taken in pairs:

ln

(
1− s

ρ

)
+ ln

(
1− s

1− ρ

)
.
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Let’s designate the real function of two variables for s = x+ iy:

ω(x, y)
def
= Im

− ln (s(1− s))− ln Γ
(s

2

)
+

∑
ρ∈P\{q}

ln

(
1− s

ρ

) .

Note that the function ω(x, y) and its partial derivatives on both variables•
exist and are limited to ∀ s = x+ iy ∈ Q(R), since

ω(x, y) = Im ln ζ(x+ iy)− ln π

2
y − k(q)Im ln

(
1− x+ iy

q

)
.

Inside of area Q(R) we take a pointM def
= (xM , yM), does not coincide which

the point q.

Let’s draw a looped curve from the point M so that it doesn’t pass•
through the point q and is described by the function which has a continuous
derivative at each point.

Let’s designate: fM(τ)
def
= fx(τ) + ify(τ):
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In accordance with the construction let’s denote τM,1 and τM,2 such that:

fM(τM,1) = xM + iyM , fM(τM,2) = xM + iyM .
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Function Im ln ζ (s)− ln π

2
Im(s) is differentiable and therefore continuous•

and differentiable in τ function Im ln ζ (fM(τ))− ln π

2
Im(fM(τ)).

It means that continuous on the segment and differentiable in the domestic
range of this segment the real function gets at its ends the same values:

Im ln ζ (fM(τM,1))−
ln π

2
Im(fM(τM,1)) =

= Im ln ζ (fM(τM,2))−
ln π

2
Im(fM(τM,2)) =

= Im ln ζ (fM(xM + iyM))− ln π

2
Im(fM(xM + iyM)).

By Rolle’s theorem on the extremum of a differentiable function on the•
interval we have:

∃τ1 ∈ (τM,1, τM,2) :

(
Im ln ζ (fM(τ))− ln π

2
Im(fM(τ))

)′
τ=τ1

= 0. (15)

I.e. on a curve described by function fM(τ), τ ∈ (τM,1, τM,2) there is a
point Θw = Θw(M)

def
= fM(τ1) for which it is true (15).

Let’s consider the following option line, as a closed curve which passes•
through a point of M .

For any 0 < r < R construct a circle centered at the point q and the
radius r.

The point of intersection of the left semicircle of the circle and the line
y = tq let’s denote as J def

= (xJ , yJ).

Let’s construct a circle with the center in a point J , with radius:

0 < rδ < min(r, R− r).

As a point of M let’s take more distant from q point of intersection of the
circle with the line y = tq.
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As the desired curve, we consider the circle with center at J and the•
radius rδ.

Let’s notice that the received curve satisfies to all declared properties for
any as much as small radius since min(r, R− r).

Let’s lead from a point J two straight lines under angles −β1 and β2 :

tg(β1) > 0, tg(β2) > 0.

Pairs of the intersection points of these lines with the circle of radius rδ is
denoted by N1, E1 and N2, E2 accordingly.

Let’s assign:•

0 < rδ = O(r3)r→0, tg(β1) = tg(β2) =
1

r
1
2

. (16)
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Then ∃ 0 < R1 6 R : ∀ 0 < r < R1 the condition is satisfied:

0 < rδ < min(r, R− r).

Let’s assume, that the point Θw lays on any of the opened arches: MN2,•
E1E2 or N1M .

As τ take Im(s) = y, then:

fy(y) = y, x = fx(y) = xJ ±
√
r2δ − (y − yJ)2.

In view of (16) for any point (x(τ), τ), laying on the considered opened•
arches:

0 6 |x(τ)′| < 1

r
1
2

. (17)

According to [1, p. 67, 82]:•

Im ln

(
1− x+ iy

q

)
= Im ln (σq − x+ i(tq − y))− Im ln (q) =

= arctan

(
tq − y
σq − x

)
− arctan

(
tq
σq

)
,

d

dx
arctan(x) =

1

1 + x2
.
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Then:•

d

dτ
Im ln

(
1− x(τ) + iτ

q

)
τ=τ1

=
d

dτ
arctan

(
tq − τ

σq − x(τ)

)
τ=τ1

=

=
1

1 +

(
tq − τ1

σq − x(τ1)

)2

∂

∂τ

(
tq − τ

σq − x(τ1)

)
τ=τ1

+

+
1

1 +

(
tq − τ1

σq − x(τ1)

)2

∂

∂x

(
tq − τ1
σq − x

)
x=x(τ1)

x′(τ1) =

= − σq − x(τ1)

(σq − x(τ1))2 + (tq − τ1)2
+

x′(τ1)(tq − τ1)
(σq − x(τ1))2 + (tq − τ1)2

. (18)

And for the s = x+ iy equation (15) at the point Θw = (x(τ1), τ1) can be•
written as follows:

σq − x(τ1)

(σq − x(τ1))2 + (tq − τ1)2
− x′(τ1)(tq − τ1)

(σq − x(τ1))2 + (tq − τ1)2
=

(19)
= ω(x(τ1), y)′y=τ1 + x(τ1)

′ω(x, τ1)
′
x=x(τ1)

.

At r → 0 and (16):•

(σq − x(τ1))
2 + (tq − τ1)2 6 (r + rδ)

2 + r2δ = θ(r2),

(σq − x(τ1))
2 + (tq − τ1)2 > (r − rδ)2 = θ(r2),

i.e.
(σq − x(τ1))

2 + (tq − τ1)2 = θ(r2).

Hence the equation (19) at r → 0 looks like this:•

θ

(
1

r

)
+O

(
1

r
1
2

)
= O

(
1

r
1
2

)
.
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That is impossible starting from some moment, i.e. ∃ 0 < R2 6 R1 :
∀ 0 < r < R2 the assumption that the point Θw lays on the opened arches
MN2, E1E2 or N1M is false.

Therefore ∀ 0 < r < R2 on closed arcs N2E1 and N1E2 should be the
point Θw for which the equality (15) is true.

Indeed, if to assume that the point Θw lays on the closed arches N2E1•
and N1E2 then the equation (15) in a point Θw = (τ1, y(τ1)) where
fx(τ) = τ, fy(τ) = y(τ) could be written as follows:

y(τ1)
′ σq − τ1
(σq − τ1)2 + (tq − y(τ1))2

− tq − y(τ1)

(σq − τ1)2 + (tq − y(τ1))2
=

(20)
= y(τ1)

′ω(τ1, y)′y=y(τ1) + ω(x, y(τ1))
′
x=τ1

.

Hence the equation (20) at r → 0 looks like this:•

O

(
1

r
1
2

)
+O (1) = O (1) .

I.e. always has a solution, and y(τ1)
′ = O(r)r→0.

More precisely:

y(τ1)
′
(

1− ω(τ1, y)′y=y(τ1)
(σq − τ1)2 + (tq − y(τ1))

2

σq − τ1

)
=

=
tq − y(τ1)

σq − τ1
+ ω(x, y(τ1))

′
x=τ1

(σq − τ1)2 + (tq − y(τ1))
2

σq − τ1
.

And given the (16), where r → 0:

y(τ1)
′ = ω(x, y(τ1))

′
x=τ1

r +O(r2). (21)
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The same reasonings for s = x + iy in the same area s ∈ Q(R) points

q for function Im ln ζ(1− s)− ln π

2
Im(1− s) we shall come to conclusion

that ∃ 0 < R3 6 R2 : ∀ 0 < r < R3 on the closed arches N2E1 and N1E2

there should be a point Θz = Θz(M)
def
= fM(τ2) for some τ2 ∈ (τM,1, τM,2)

for which equality is true:(
Im ln ζ (1− fM(τ))− ln π

2
Im(1− fM(τ))

)′
τ=τ2

= 0. (22)

Indeed, if we apply the (14) value is 1− s instead of s:•

ln ζ(1− s)− ln π

2
(1− s) =

− ln ((1− s)s)− ln Γ

(
1− s

2

)
+
∑

ρ∈P ln

(
1− 1− s

ρ

)
that in view of that ∀ ρ ∈ P :(

1− 1− s
ρ

)(
1− 1− s

1− ρ

)
=

(
1− s

ρ

)(
1− s

1− ρ

)
,

we have:

ln ζ(1−s)− ln π

2
(1−s) = − ln (s(1− s))−ln Γ

(
1− s

2

)
+
∑
ρ∈P

ln

(
1− s

ρ

)
.

(23)

Let’s designate the real function of two variables for s = x+ iy:

ω−(x, y)
def
= Im

− ln (s(1− s))− ln Γ

(
1− s

2

)
+

∑
ρ∈P\{q}

ln

(
1− s

ρ

) .
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Note that the function ω−(x, y) and its partial derivatives on both variables•
exist and are limited to ∀ s = x+ iy ∈ Q(R), since

ω−(x, y) = Im ln ζ(1− x− iy) +
ln π

2
y − k(q)Im ln

(
1− x+ iy

q

)
.

And all reasonings for functions ln ζ(1− s)− ln π

2
(1− s) and ω−(x, y) are

similar to reasonings for appropriate functions ln ζ(s)− ln π

2
(s) and ω(x, y).

Hence at r → 0:

y(τ2)
′ = ω−(x, y(τ2))

′
x=τ2

r +O(r2). (24)

And note that from (21), (24) at r → 0:•

(y(τ1)
′ − y(τ2)

′)ReIP(xJ + iyJ) =

= (y(τ1)
′ − y(τ2)

′)

(
ReIP\{q}(xJ + iyJ)− 1

r

)
=

= −ω(x, y(τ1))
′
x=τ1

+ ω−(x, y(τ2))
′
x=τ2

+O(r) =

= − ∂

∂x
Im

(
− ln Γ

(
x+ iyJ

2

)
+ ln Γ

(
1− x− iyJ

2

))
x=xJ

+O(r) =

= −Im d

ds

(
− ln Γ

(s
2

)
+ ln Γ

(
1− s

2

))
s=xJ+iyJ

+O(r) =

= −1

2
Im

−Γ′
(
xJ + iyJ

2

)
Γ

(
xJ + iyJ

2

) − Γ′
(

1− xJ − iyJ
2

)
Γ

(
1− xJ − iyJ

2

)
+O(r). (25)

So, for ∀ 0 < r < R3 in closed arcs N2E1 and N1E2 are two points of•
Θw and Θz, for which the equalities (15) and (22) respectively.
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For ∀ s : ‖s− (xJ + iyJ)‖ < rδ derivative of function

− ln (s(1− s)) +
∑

ρ∈P ln

(
1− s

ρ

)
is continuous and equal to:

d

ds

− ln (s(1− s)) +
∑
ρ∈P

ln

(
1− s

ρ

) = IP(s).

Hence for fixed 0 < r < R3 from the continuity of the given above function
at the point J :
∀ εr > 0, ∃ δεr > 0 : ∀ s : ‖s− (xJ + iyJ)‖ < δεr follows:

|ReIP(s)−ReIP(xJ + iyJ)| < εr,

|ImIP(s)− ImIP(xJ + iyJ)| < εr.

Let’s assign εr = r2 then ∀ 0 < rδ < δεr at r → 0 with the condition (16)•
on the closed arches N2E1 and N1E2 where fx(τ) = τ, fy(τ) = y(τ) and
y(τ1)

′ = O(r), y(τ2)
′ = O(r) it is carried out in a similar way (20):

d

dτ
Im

(
− ln (fM(τ)(1− fM(τ))) +

∑
ρ∈P ln

(
1− fM(τ)

ρ

))
τ=τ1

−

− d

dτ
Im

(
− ln (fM(τ)(1− fM(τ))) +

∑
ρ∈P ln

(
1− fM(τ)

ρ

))
τ=τ2

=

= (−y(τ1)
′ReIP(Θw) + ImIP(Θw))−

− (−y(τ2)
′ReIP(Θz) + ImIP(Θz)) =

= −y(τ1)
′ReIP(Θw) + y(τ1)

′ReIP(xJ + iyJ)−
−y(τ2)

′ReIP(xJ + iyJ) + y(τ2)
′ReIP(Θz) +

−y(τ1)
′ReIP(xJ + iyJ) + y(τ2)

′ReIP(xJ + iyJ) +

+ImIP(Θw)− ImIP(xJ + iyJ) +

+ImIP(xJ + iyJ)− ImIP(Θz) =

= O(r3) +O(r3)− (y(τ1)
′ − y(τ2)

′)ReIP(xJ + iyJ) +O(r2) +O(r2) =

= Im
d

ds

(
− ln Γ

(s
2

)
+ ln Γ

(
1− s

2

))
s=xJ+iyJ

+O(r). (26)
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Let’s consider a difference of the equations (15) and (22) which on construction•
is equal 0 for ∀ 0 < r < R3:

limr→0 0 = limr→0

((
Im ln ζ (fM(τ))− ln π

2
Im(fM(τ))

)′
τ=τ1

−

−
(
Im ln ζ (1− fM(τ))− ln π

2
Im(1− fM(τ))

)′
τ=τ2

)
=

= limr→0

(
−
(
Im ln Γ

(
fM(τ)

2

))′
τ=τ1

+

(
Im ln Γ

(
1− fM(τ)

2

))′
τ=τ2

+

+
d

dτ
Im

(
− ln (fM(τ)(1− fM(τ))) +

∑
ρ∈P ln

(
1− fM(τ)

ρ

))
τ=τ1

−

−

(
d

dτ
Im

(
− ln (fM(τ)(1− fM(τ))) +

∑
ρ∈P ln

(
1− fM(τ)

ρ

))
τ=τ2

))
=

And then from (26) follows:

= limr→0

(
−
(
Im ln Γ

(
fM(τ)

2

))′
τ=τ1

+

(
Im ln Γ

(
1− fM(τ)

2

))′
τ=τ2

+

+Im
d

ds

(
− ln Γ

(s
2

)
+ ln Γ

(
1− s

2

))
s=xJ+iyJ

)
=

= limr→0

(
− ∂

∂x

(
Im ln Γ

(
x+ iy(τ1)

2

))
x=τ1

−

−y(τ1)
′ ∂

∂y

(
Im ln Γ

(
τ1 + iy

2

))
y=y(τ1)

+

+
∂

∂x

(
Im ln Γ

(
1− x− iy(τ2)

2

))
x=τ2

+

+y(τ2)
′ ∂

∂y

(
Im ln Γ

(
1− τ2 − iy

2

))
y=y(τ2)

+

+Im
d

ds

(
− ln Γ

(s
2

)
+ ln Γ

(
1− s

2

))
s=xJ+iyJ

)
=

16



= limr→0

(
− ∂

∂x

(
Im ln Γ

(
x+ iy(τ1)

2

))
x=τ1

+

+
∂

∂x

(
Im ln Γ

(
1− x− iy(τ2)

2

))
x=τ2

+

+Im
d

ds

(
− ln Γ

(s
2

)
+ ln Γ

(
1− s

2

))
s=xJ+iyJ

)
=

= 2Im

(
− d

ds
ln Γ

(s
2

)
s=q

+
d

ds
ln Γ

(
1− s

2

)
s=q

)
=

= Im

−Γ′
(q

2

)
Γ
(q

2

) − Γ′
(

1− q
2

)
Γ

(
1− q

2

)
 = 0.

Thus for the selected root q is:•

Im

−Γ′
(q

2

)
Γ
(q

2

) − Γ′
(

1− q
2

)
Γ

(
1− q

2

)
 = 0, ∀q ∈ P1 ∪ P2. (27)

From (6) equality (27) can be rewritten as follows:•

∞∑
n=0

(
tq

(2n+ σq)2 + t2q
− tq

(2n+ 1− σq)2 + t2q

)
= 0.
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I.e. ∑∞
n=0

tq((2n+ 1− σq)2 − (2n+ σq)
2)

((2n+ σq)2 + t2q)((2n+ 1− σq)2 + t2q)
=

=
∑∞

n=0

tq(1− 2σq)(4n+ 1)

((2n+ σq)2 + t2q)((2n+ 1− σq)2 + t2q)
=

= (1− 2σq)
∑∞

n=0

tq(4n+ 1)

((2n+ σq)2 + t2q)((2n+ 1− σq)2 + t2q)
= 0.

Sum ∞∑
n=0

tq(4n+ 1)

((2n+ σq)2 + t2q)((2n+ 1− σq)2 + t2q)

exists and is not equal to 0 when tq 6= 0 so the equality (27) is performed
exclusively at

σq =
1

2
.

So, assuming that an arbitrary nontrivial root q of zeta functions belongs
to the union P1 ∪ P2 we found that it belongs only to P2, i.e. P1 = ∅.

And according to the fact that P1 = ∅⇔ P3 = ∅ we have:

P3 = P1 = ∅, P = P2.

This proves the basic statement and the assumption which had been made
by Bernhard Riemann about of the real parts of the nontrivial zeros of zeta
function.
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