The real parts of the nontrivial Riemann zeta function zeros
Igor Turkanov

ABSTRACT

This theorem is based on holomorphy of studied functions and
the fact that nearby of a singularity point the imaginary part of
the specific function can accept zero value.

The colored markers are:
e - assumption or a fact which is not proven at present;
- the statement which requires additional attention;
- statement which is proved earlier or clearly undestandable.

THEOREM

The real parts of all the nontrivial Riemann zeta function zeros p are

1
equal Re (p) = o

PROOQOF:

According to the functional equality [10, p. 22|, [5, p. 8-11]:
1—s

F(g) _§g(s):r(1;8>{ 2 ((1-s), Re(s)>0 (1)

C (s) - the Riemann zeta function, I' (s) - the Gamma function.



From [5, p. 8-11] ¢ (5) = ((s), it means that Vp = o +it: ((p) = 0
and 0 < 0 < 1 we have:

(P =C1—=p)=C(1=p)=0 (2)

From [11], [9, p. 128], [10, p. 45] we know that ¢ (s) has no nontrivial zeros
on the line ¢ = 1 and consequently on the line ¢ = 0 also, in accordance
with (2) they don’t exist.

Let’s denote the set of nontrivial zeros ¢ (s) through P (multiset with
consideration of multiplicitiy):

P={p: ((p)=0,p=0c+it, 0 <o <1}.

def . ]_
And:Plz{p:((p):O,p:0+zt,O<0<§}, (3)

def 1 .
Pzz{p: ¢(p) =0, P:§—I—zt},

1
773:{/): C(p) =0, p=o+it, §<0<1}.
Then:
P=PiUPUPs and PiNPy =P, NP3 =P NP3 =0,
Pr=90 < P;=03.
Hadamard’s theorem (Weierstrass preparation theorem) on the decomposition

of function through the roots gives us the following result [10, p. 30|, [5,
p. 31, [12]:

T2e% s
C(S)S(S_l)r(g)pl;[)(l——>ep, Re(s) >0 (4)

a = In2y/7m — % — 1, v — Euler’s constant and



According to the fact that

[5, p. 23] we have:

() R Eaa) e o

pEP

C = const

From [4, p. 160], [8, p. 272], [3, p. 81]:

1
Z_:1+%—ln2ﬁ:0,0230957... (7)
pEP P
Indeed, from (2):
>3 (5 0)
pEP P 2 peP b= pop

From (5):

22 o few 11 ()

_ e a— 1 -
s—1 | C(s) 1—3+ ¢ 21’17T+2P<2>

pEP

Also it’s known, for example, from [10, p. 49|, [3, p. 98| that the number
of nontrivial zeros of p = o + ¢t in strip 0 < ¢ < 1, the imaginary parts of
which ¢ are less than some number 7" > 0 is limited, i.e.

[{p: peP, p=o+it, |t < T}| < oo,

1
Indeed, it can be presented that on the contrary the sum of » peP would

P
have been unlimited.



Thus VI' > 036, > 0, d, > 0 such that

in area 0 <t < 4,,0 < 0 < 9, there are no zeros p=oc+it € P.  (8)

Let’s consider random root ¢ € P; U Ps
Let’s denote k(q) the multiplicity of the root g.
Let’s examine the area Q (R) = {s: ||s — ¢|| < R, R > 0}.

From the fact of finiteness of set of nontrivial zeros ((s) in the limited
area follows 3 R > 0, such that Q(R) does not contain any root from P

except q.
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Fig. 1.

From [1], [10, p. 31], [5, p. 23] we know that the Digamma function 32
*(3)
in the area @(R) has no poles, i.e. Vs € Q(R)

()

< 0

Let’s denote:

> pep TP
and 1 1 1
Ip\(qy(s) = St LT Z . (9)
peP\{q}



Hereinafter P\ {¢} = P\ {(¢,k(¢))} (the difference in the multiset).

1 1
Summation - »  cp _— and > cp\ (o) _— further we shall consider as

1 1 1
the sum of pairs ( -+ ) and > pep = s the sum of pairs

s—p s—(1-p) p
1 1 1
-+ — f division of th f 6
(p + T p) as a consequfnce of division of the sum from (6) > p <s -
into > cp p— + D pep > As specifed in [4], [6], [8], [10].
Let’s note that Ip\ 4 (s) is holomorphic function V s € Q(R).
Then from (5) we have:
¢'(s) _ 1 17(3)
S 2
=-lnmr+a— -—F5 + -+ Ip(s). 10
OE 1 () Z;p p(s) (10)
2/ °
And in view of (7):
(S
/ 1F <—>
) 2/ 4 In(s) | . (11)

=g

Let’s note that from the equality of

1 1 1
2, a2y (12

pEP (1—p)eP

follows that:

Ip(1 = s) = —Ip(s), Ip\1-q}(1 — s) = —Ip\(g3(s), Re(s) > 0.

Besides

Ip\(qy(s) = Ip(s) — Sk(_q>q

and Ip\ (g (s) is limited in the area of s € Q(R) as a result of absence of its
poles in this area as well as its differentiability in each point of this area.

1

P

)



If in (5) to replace s with 1 — s that in view of (7):

o can () v(F)

+ =—c—— 3 +Inm, Re(s)>0. (13)
C(s) C¢(1—ys) 2F<§) 2F<1;3)

Let’s examine a circle with the center in a point ¢ and radius r < R, laying
in the area of Q(R):

Im(s) t

Wl O
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0 '9, 94 % 1 Re(s)

Fig. 2.
For s = o + 1y, ¢ = o4+ 11,

k k k(q)(t, — t, —
S$—q iy —og—ity (v —0y)? + (y— 1) r?

Consider also the function In ((s) - principal branch function Ln((s) for
which of the (4), in view of (7) V s € Q(R) is true:

In¢(s) = 1“7”5 —In(s(1—s))—Inl (g) +) In (1 - %) . (19)

pEP

The sum as stipulated earlier, is taken in pairs:

1n<1—f>—|—ln(1— i )
p I—p




Let’s designate the real function of two variables for s = x + iy:

w(@,y) 2 Im [ ~In(s(1 - ) =T (5) + pg\‘?q} In <1 _ %>

Note that the function w(x,y) and its partial derivatives on both variables
exist and are limited to V s = z + iy € Q(R), since

In7

w(z,y) =Imn{(x +iy) — Y- k(q)ImIn (1 — ley> :

Inside of area Q(R) we take a point M = (27, yar), does not coincide which
the point gq.

Let’s draw a looped curve from the point M so that it doesn’t pass

through the point ¢ and is described by the function which has a continuous
derivative at each point.

Let’s designate: far(1) = fo(7) +if,(7):

In accordance with the construction let’s denote 7371 and 772 such that:

fu(mar) = oa +iyn, fu(Tare) = o + iy



1
Function ImIn( (s) — %I m(s) is differentiable and therefore continuous

Inm

and differentiable in 7 function I'mIn( (fa(7)) — T[m(fM(T))

It means that continuous on the segment and differentiable in the domestic
range of this segment the real function gets at its ends the same values:

P In G (Fr(raas) — 25" T fag () =
= TG (Far(raea)) — 2o I Far(rars) =
= ImIn¢ (fu(zm + tym)) — lDTW~777”L(fz\4(961\4 +iym)).

By Rolle’s theorem on the extremum of a differentiable function on the

interval we have:
dr € (TM,l,TM’Q) : ([mlnC(fM(T)) — ln—wlm(fM(T))> =0. (15)

2 T=—T1

[.e. on a curve described by function fa(7), 7 € (7ar1,7ar2) there is a
point ©,, = 0, (M) = fas() for which it is true (15).

Let’s consider the following option line, as a closed curve which passes
through a point of M.

For any 0 < r < R construct a circle centered at the point ¢ and the
radius 7.

The point of intersection of the left semicircle of the circle and the line
, def
y = t, let’s denote as J = (x,y7).
Let’s construct a circle with the center in a point J, with radius:
0 <rs <min(r, R —r).

As a point of M let’s take more distant from ¢ point of intersection of the
circle with the line y = ¢,.



l':M O'q RG(S)

Fig. 4.

As the desired curve, we consider the circle with center at J and the
radius 7.

Let’s notice that the received curve satisfies to all declared properties for
any as much as small radius since min(r, R — 7).

Let’s lead from a point J two straight lines under angles —(3; and 3, :
tg(B1) >0, tg(B2) > 0.

Pairs of the intersection points of these lines with the circle of radius rg is
denoted by N, E; and Ns, Es accordingly.

Let’s assign:

1

0 <rs=0(r")50, tg(fr) = tg(fe) = 5 (16)



Then 30 < Ry < R: V0 <r < R; the condition is satisfied:

0 <rs <min(r, R —r).

Let’s assume, that the point O, lays on any of the opened arches: M N,
ElEQ or NlM

As 7 take I'm(s) =y, then:

fy(y) =y, v=foly) =25+ \/7’? —(y —ys)*

In view of (16) for any point (z(7),7), laying on the considered opened

arches: .
0 < |z(r)] < —. (17)

r2

According to [1, p. 67, 82|

x+2y) = Imn (o, —  +i(t, — y)) — ImIn (q) =
q

ty — t
= arctan ( a y) — arctan <—q> ,

tan(z) = —
— arctan\xr) = .
dz 1+ 22

ImlIn (1 —

10



Then:
A (1= DTN (T )
dr q AT og— (7)) _.,

_ L 9 (L) N
1+ ( tq_Tl ))287_ O-q—f[,'(Tl) S

o, —x(7

1 5‘ tq—Tl , B

+1_|_< tq_Tl )2% (Uq_x>a::a:(ﬁ)x(7_l)_
oq — (1)

_ og — x(n) 2'(11)(tg — 1)

R T R A L AT o) e N

And for the s = x + iy equation (15) at the point ©,, = (x(m), 1) can be
written as follows:

oy — (71) 2'(11)(tg — 1)

(0g —2(n))* + (g =n)*  (og = 2(n))? + (g = 1)*
(19)

= w(x(m), y);:ﬁ + x(n) w(z, Tl)lx:x(ﬁ).

At r — 0 and (16):
(0, —2(1))* + (ty — 1)* < (r +75)* + 73 = 0(r?),

(04 — (1) + (ty — 1) > (r — 15)? = 6(r2),
B (0g — 5(r))? + (ty — )% = 0(r2).

Hence the equation (19) at r — 0 looks like this:

(0)0(2)-o(2)



That is impossible starting from some moment, i.e. 3 0 < Ry < Ry :
V0 < r < Ry the assumption that the point ©,, lays on the opened arches
MNQ, ElEQ or NlM is false.

Therefore V 0 < r < Ry on closed arcs NoF; and NiFE5 should be the
point ©,, for which the equality (15) is true.

Indeed, if to assume that the point ©, lays on the closed arches NoFE
and N1 FEs then the equation (15) in a point ©,, = (71, y(71)) where
fo(m) =1, fy(7) = y(7) could be written as follows:

, og— T tg —y(m) _
y(11) 2 2 2 2~
(0g = 1)* + (tg — y(11)) (0q = 1)* + (tg — y(11))
(20)
= y(1)'w(70,Y)y iy + (T Y(T1))omry -
Hence the equation (20) at » — 0 looks like this:
1
O <—1) +0(1)=0(1).
T2
[.e. always has a solution, and y(71)" = O(r),—.
More precisely:
(0g — 1) + (tg — y(11))?
y(m) <1 = w(T,Y)) =y () : g — 7({1 =
t. — _ 2 t. — 2
_ y(Tl) 4 w<$’y(7_1));:ﬁ (U(] Tl) + ( q y(Tl)) .
O¢g —T1 O¢g—T1
And given the (16), where r — 0:
y(m)" = w(@,y(n))oer,r + O(%). (21)

12



The same reasonings for s = x + iy in the same area s € Q(R) points

1
q for function ImIn((1 — s) — EIm(l — s) we shall come to conclusion

that 30 < R3 < Ry : V0 < r < R3 on the closed arches NoFE; and Ny FEs
there should be a point ©, = ©,(M) = < far(me) for some 1 € (Tar1, Tar2)
for which equality is true:

Inm '

(1mn¢ (= fulr) = BT tm(1 = fur)) =0 (2

2 T=T2

Indeed, if we apply the (14) value is 1 — s instead of s:

1ng(1—s)—m7”(1_s):
—In((1-s)s) —InT (1;S> +3,epln (1— 1;S>

that in view of that V p € P:
(1_1—3> (1_1—s>
p IL—p

Inn

lng(l—s)—T(l—s) =—In(s(1—s))—Inl <

(30
)Ea(-)

pEP
(23)

we have:

Let’s designate the real function of two variables for s = x + y:

)+ 3 m(1-3)

pEP\{q}

w_(z,y) = Im | —In(s(1 —s)) —InT <

13



Note that the function w_(x, y) and its partial derivatives on both variables
exist and are limited to V s = z + iy € Q(R), since

1 .
w_(z,y) =ImIn{(l —z —iy) + %y — k(g)Imln (1 _rT zy) :
q
: : Inm
And all reasonings for functions In (1 — s) — T(l —s) and w_(x,y) are

Inm
similar to reasonings for appropriate functions In {(s) — 7(3) and w(z,y).

Hence at » — 0:

y(r2)' = w-(2,y(72))pryr + O(%), (24)

And note that from (21), (24) at r — 0:
(y(m) —y(r) ) Relp(zs +iys) =

= (y(11) — y(m)") <R€[P\{q}(93J +iyy) — %) N

= —w(x, y(Tl))/x=7'1 +w- (l‘, y(TQ));‘:D + O(T) -

B 0 T+ iy 1l —x—wyy .
——axlm< lnF( 5 >+lnF< 5 ))x:x.]jLO(r)—
d S 1—s
= —Im£ (— IHP <§> —|—1I1F < 9 ))S:xJ+iyJ -+ O(T’) =
1 F/(xj_;iyj> F’(1_$‘;_iyj)
= ——Im | — — +O(r). (25)

r xy+ 1y r Il —x5—1yy
2 2

So, for V 0 < r < Rz in closed arcs NoFE; and N;FEy are two points of
O, and O, for which the equalities (15) and (22) respectively.

14



ForV s : ||s — (xj 4+ iyy)|| < rs derivative of function

—In(s(1—=s))+>  cpln|1-— ) is continuous and equal to:
p

% s(1—s)) +Zln(1——> = Ip(s).

pEP

Hence for fixed 0 < r < R3 from the continuity of the given above function
at the point J:
Ve, >0,30., >0:Vs:|s—(xy+iyy)| <. follows:

|Relp(s) — Relp(xy+iyy)| < &,
[ ImIp(s) — ImiIp(xy+iys)| < e

Let’s assign €, = 72 then V 0 < r5 < §., at r — 0 with the condition (16)
on the closed arches NoE; and Ny Ey where f.(7) = 7, f,(7) = y(7) and
y(m) = O(r), y(r)" = O(r) it is carried out in a similar way (20):

; ).

E]m<—hl(fM(T)(1_fM( )+ 2 pepln <1
7))

Lt ()0 = () + S peptn (1~ L2

= (—y(n1)'Relp(Oy) + Imip(©y))
— (—y(r )ReIP(®)+Im]P(@z>)

= —y(n) Relp(©y) +y(m) Relp(xy + iyy) —
—y(m2)' Relp(z; +iys) + y(12)' Relp(©.) +
—y(m) Relp(xy +iyy) + y(m) Relp(zy +iyy) +
+ImIp(©y) — Imlp(xy +iyy) +
—|—]m[p(l‘J + iyj) — Im[p(@z) =

= 0(r®) + 0(r°) = (y(n)' — y(r2)") Relp(x; + iys) + O(r*) + O(r?) =
_ ]mdis (—lnF (g) +InT (1 ; ))FWHW + O(r). (26)

15



Let’s consider a difference of the equations (15) and (22) which on construction
is equal 0 for V0 < r < Rj:

Inm

lim,_,o 0 = lim,_, <<Im In¢ (fa(7)) — 7[m(fM(T))> -

2

(e () o (52

2t (=1 ()1 = () + Speptn (1-

B (d%]m (_1n (far(T) (X = faur(7))) + X pepIn (1 - fM(T)) )) -

And then from (26) follows:

= lim, (— ([mlnf(fMQ(T)))/ —l—([mlnF(l_J;M(T))), +
d S 1—s
—|—Im£ (—lnF <§> +1nF< 5 ))SWHW) =
9 .

— <Im1n§(1 — fu(7m)) — 1Il—7TI77”L(1 — fM(T))) ) ) —

0 1 —z—iy(m)
+(9a: (ImlnF( 5 ))x:m—l—
+y(7'2)’§ (Im InT (#)) +
Y y=y(72)
1

16



o <_£ <]m L (Ly(ﬁ)» .
ox 2 —
0 1 —x—iy(m)
+8_x <ImlnF< 5 >>x272+
d S 1—s
+]m£ (—lnF(§)+lnF< 5

d s d 1—s
f— e — — e F o
2Im < 7 InI’ <2>S_q + o In < 5 )Sq>

N~
N~
VA
Il
8

<
s
&
<
N~
I

l—gq
q (—2
Pl(ﬁ) ( 2 >
Im | — — =0, Vge PLUP;,.

From (6) equality (27) can be rewritten as follows:

(2n+ 02 +1t2 (2n+1—0,)? +12

n=0

17
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Le.

W@ 41—~ @nt o))
(2n+0y)?+2)((2n+1—0y)? +1t2)
. ty(1 —20,)(4n+1) B
= 2n= (2n+ 0 +12)((2n+ 1 —0y)? +12)

ty(4n+1) B
"((2n+ 0y +12)(2n+1 -0y +12)

2 =0

= (1=209) 32—

Sum

i (4n+1)
(2n+o0,)? +12)((2n + 1 —0y)* +12)

n:O

exists and is not equal to 0 when ¢, # 0 so the equality (27) is performed
exclusively at

1
O'q:§.

So, assuming that an arbitrary nontrivial root ¢ of zeta functions belongs
to the union P; U Py we found that it belongs only to Ps, i.e. P =

And according to the fact that P, = @ < Py = & we have:

Ps=P1=0, P="Pa.

This proves the basic statement and the assumption which had been made
by Bernhard Riemann about of the real parts of the nontrivial zeros of zeta
function.
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