The real parts of the nontrivial Riemann zeta function zeros
Igor Turkanov

ABSTRACT

This theorem is based on holomorphy of studied functions and
the fact that nearby of a singularity point the imaginary part of
the specific function can accept zero value.

The colored markers are:
e - assumption or a fact which is not proven at present;
- the statement which requires additional attention;
- statement which is proved earlier or clearly undestandable.

THEOREM

The real parts of all the nontrivial Riemann zeta function zeros p are

1
equal Re (p) = o

PROOQOF:

According to the functional equality [10, p. 22|, [5, p. 8-11]:
1—s

F(g) _§g(s):r(1;8>{ 2 ((1-s), Re(s)>0 (1)

C (s) - the Riemann zeta function, I' (s) - the Gamma function.



From [5, p. 8-11] ¢ (5) = ((s), it means that Vp = o +it: ((p) = 0
and 0 < 0 < 1 we have:

(P =C1—=p)=C(1=p)=0 (2)

From [11], [9, p. 128], [10, p. 45] we know that ¢ (s) has no nontrivial zeros
on the line ¢ = 1 and consequently on the line ¢ = 0 also, in accordance
with (2) they don’t exist.

Let’s denote the set of nontrivial zeros ¢ (s) through P (multiset with
consideration of multiplicitiy):

P={p: ((p)=0,p=0c+it, 0 <o <1}.

def . ]_
And:Plz{p:((p):O,p:0+zt,O<0<§}, (3)

def 1 .
Pzz{p: ¢(p) =0, P:§—I—zt},

1
773:{/): C(p) =0, p=o+it, §<0<1}.
Then:
P=PiUPUPs and PiNPy =P, NP3 =P NP3 =0,
Pr=90 < P;=03.
Hadamard’s theorem (Weierstrass preparation theorem) on the decomposition

of function through the roots gives us the following result [10, p. 30|, [5,
p. 31, [12]:

T2e% s
C(S)S(S_l)r(g)pl;[)(l——>ep, Re(s) >0 (4)

a = In2y/7m — % — 1, v — Euler’s constant and



According to the fact that

[5, p. 23] we have:

() R Eaa) e o

pEP

C = const

From [4, p. 160], [8, p. 272], [3, p. 81]:

1
Z_:1+%—ln2ﬁ:0,0230957... (7)
pEP P
Indeed, from (2):
>3 (5 0)
pEP P 2 peP b= pop

From (5):

22 o few 11 ()

_ e a— 1 -
s—1 | C(s) 1—3+ ¢ 21’17T+2P<2>

pEP

Also it’s known, for example, from [10, p. 49|, [3, p. 98| that the number
of nontrivial zeros of p = o + ¢t in strip 0 < ¢ < 1, the imaginary parts of
which ¢ are less than some number 7" > 0 is limited, i.e.

[{p: peP, p=o+it, |t < T}| < oo,

1
Indeed, it can be presented that on the contrary the sum of » peP would

P
have been unlimited.



Thus VI' > 036, > 0, d, > 0 such that

in area 0 <t < 4,,0 < 0 < 9, there are no zeros p=oc+it € P.  (8)

Let’s consider random root ¢ € P; U Ps
Let’s denote k(q) the multiplicity of the root g.
Let’s examine the area Q (R) = {s: ||s — ¢|| < R, R > 0}.

From the fact of finiteness of set of nontrivial zeros ((s) in the limited
area follows 3 R > 0, such that Q(R) does not contain any root from P

except q.
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Fig. 1.

From [1], [10, p. 31], [5, p. 23] we know that the Digamma function 32
*(3)
in the area @(R) has no poles, i.e. Vs € Q(R)

()

< 0

Let’s denote:

> pep TP
and 1 1 1
Ip\(qy(s) = St LT Z . (9)
peP\{q}



Hereinafter P\ {¢} = P\ {(¢,k(¢))} (the difference in the multiset).

1 1
Summation - »  cp _— and > cp\ (o) _— further we shall consider as

1 1 1
the sum of pairs ( -+ ) and > pep = s the sum of pairs

s—p s—(1-p) p
1 1 1
-+ — f division of th f 6
(p + T p) as a consequfnce of division of the sum from (6) > p <s -
into > cp p— + D pep > As specifed in [4], [6], [8], [10].
Let’s note that Ip\ 4 (s) is holomorphic function V s € Q(R).
Then from (5) we have:
¢'(s) _ 1 17(3)
S 2
=-lnmr+a— -—F5 + -+ Ip(s). 10
OE 1 () Z;p p(s) (10)
2/ °
And in view of (7):
(S
/ 1F <—>
) 2/ 4 In(s) | . (11)

=g

Let’s note that from the equality of

1 1 1
2, a2y (12

pEP (1—p)eP

follows that:

Ip(1 =) = —Ip(s), Ip\(g(1 = s) = —Ip\1—q3(s), Re(s) > 0.

Besides

Ip\(qy(s) = Ip(s) — Sk(_q>q

and Ip\ (g (s) is limited in the area of s € Q(R) as a result of absence of its
poles in this area as well as its differentiability in each point of this area.

1

P

)



If in (5) to replace s with 1 — s that in view of (7):

o can () v(F)

+ =—c—— 3 +Inm, Re(s)>0. (13)
C(s) C¢(1—ys) 2F<§) 2F<1;3)

Let’s examine a circle with the center in a point ¢ and radius r < R, laying
in the area of Q(R):

Im(s) t
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Fig. 2.
For s = o + 1y, ¢ = o4+ 11,

k k k(q)(t, — t, —
S$—q iy —og—ity (v —0y)? + (y— 1) r?

Consider also the function In ((s) - principal branch function Ln((s) for
which of the (4), in view of (7) V s € Q(R) is true:

In¢(s) = 1“7”5 —In(s(1—s))—Inl (g) +) In (1 - %) . (19)

pEP

The sum as stipulated earlier, is taken in pairs:

1n<1—f>—|—ln(1— i )
p I—p




Let’s designate the real function of two variables for s = x + iy:

w(@,y) 2 Im [ ~In(s(1 - ) =T (5) + pg\‘?q} In <1 _ %>

Note that the function w(x,y) and its partial derivatives on both variables
exist and are limited to V s = z + iy € Q(R), since

In7

w(z,y) =Imn{(x +iy) — Y- k(q)ImIn (1 — ley> :

Inside of area Q(R) we take a point M = (27, yar), does not coincide which
the point gq.

Let’s draw a looped curve from the point M so that it doesn’t pass

through the point ¢ and is described by the function which has a continuous
derivative at each point.

Let’s designate: far(1) = fo(7) +if,(7):

In accordance with the construction let’s denote 7371 and 772 such that:

fu(mar) = oa +iyn, fu(Tare) = o + iy



1
Function ImIn( (s) — %I m(s) is differentiable and therefore continuous

Inm

and differentiable in 7 function I'mIn( (fa(7)) — T[m(fM(T))

It means that continuous on the segment and differentiable in the domestic
range of this segment the real function gets at its ends the same values:

Fmn G (fu(maan)) — 5 Im( () =
= ¢ (fu(rua)) — g Tm(fu(rua) =
= ImInC(fu(zm + tynm)) — ln77”77”6(]'31\4(931\4 + iynr))-

By Rolle’s theorem on the extremum of a differentiable function on the
interval we have:

/
Inm

S € (s ara) (Immc(fM(T))——fm(me)) 0. (15)

2 T=—T1

.e. on a curve described by function fa(7), 7 € (7ar1, Tar2) there is a
point ©,, = 0, (M) = fy () for which it is true (15).

Let’s consider the following option line, as a closed curve which passes
through a point of M.

For any 0 < r < R construct a circle centered at the point ¢ and the
radius r.

The point of intersection of the left semicircle of the circle and the line
y —t, = x — 0, let’s denote as J = (27,y).

Let’s construct a circle with the center in a point J, with radius:

0 <7y <min(r, R —r).



As a point of M let’s take more distant from ¢ point of intersection of the
circle with the line y —t, =z — 0.
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Fig. 4.

As the desired curve, we consider the circle with center at J and the
radius r;.

Let’s notice that the received curve satisfies to all declared properties for
any as much as small radius since min(r, R — 7).

Let’s assign:
0 <rs=0(r), 0. (16)

Then 30 < Ry < R: V0 <r < R; the condition is satisfied:

0 <7y <min(r, R —r).



As 7 take I'm(s) =y, then:

) =y, o= fuly) =252~ (4 — )2

According to [1, p. 67, 82|

ImIn (1— x+zy) =Imn(o,—x+i(t,—y)) —Imln(q) =
q
ty — t
= arctan( a y> — arctan <—q> ,
tan(z) = —
— arctan(z) = :
dx 1+ 22
Then:

dr q T=T] dr Oq — 513(’7') T=T]

_ L 9 (L) N
1+( tq_Tl ))287— O-q—l'(Tl) r=m

o, — x(m

1 o (t,—
+ 28_( - _Tl> () =
1 ( tq — T1 ) L \Og— x=x(71)
+ -t
O¢g — x(71)
oy — x(71) ' (1) (tg — 1)

T (0 — (1)) + (t; — 11)? i (0, —x(m1))? + (t, — 11)? (17)

10



And for the s = x + iy equation (15) at the point ©,, = (z(71), 1) can be
written as follows:

oy — x(71) 2'(11)(tg — 1)

(0g —2(m)? + (tg —7)* (o —2(m))* + (tg —70)*
(18)

= w(x(m), y);:ﬁ + x(n) w(x, 71);:$(Tl).

At r — 0 and (16):

Hence from the equation (18) at r — 0 2'(m):

2(m) =1—w(x(n),y) _. V2r+0(?). (19)

Y=T1

Similar reasonings for s = x + iy in the same area s € Q(R) points ¢

1
for function ImIn((1 — s) — MIm(l — s) we shall come to conclusion

that on the circle with the center in J and radius rs there should be a point
0, =0,(M) e far(me) for some 1o € (Tar1, Tar2) for which equality is true:

(It ¢ (1= fu) - 2T rm(— fu(r) =0, (20)

2 T=—T2

11



Indeed, if we apply the (14) value is 1 — s instead of s:

1ng(1—s)—m7”(1_5):
~In((1—-s)s)—InT (1;S> + 2 pep I (1— 1;‘9)

that in view of that V p € P:

(-5 (=)= 00) ()

1ng(1—s)—m7”(1—s) — “In(s(1—s))—InT <1 > S)—I—Zln (1 - f) .

peEP P
(21)

Let’s designate the real function of two variables for s = x + y:

wiz,y)_ < Im —1n(s(1—s))—1nr(1;3>+ T 1n<1_£>

peP\{a) P

Note that the function w(z, y)_ and its partial derivatives on both variables
exist and are limited to V s = z + iy € Q(R), since

| .
w(z,y)- =ImIn(1 —z —iy) + %y— k(q)ImIn (1 — x—;zy) :

1
And all reasonings for functions In¢(1 — s) — %(1 —s) and w(x,y)_ are

Inm
similar to reasonings for appropriate functions In {(s) — T(s) and w(zx,y).

So, on the circle with the center in J and radius rs are two points of
O, and ©,, for which the equalities (15) and (20) respectively.

12



And similarly (19) at » — 0

?(1) = 1= w_(2(m). 4))pyr + O(). (2

For Vs :||s — (x; 4+ iys)| < rs derivative of function

—In(s(1—s))+>  cpln|1- 2 ) is continuous and equal to:
p

d% —In(s(1—s)+» In (1 - ;) = Ip(s).

pEP

Hence for fixed 0 < r < R; from the continuity of the given above
function at the point J:
Ve, >0,30., >0:Vs:|s—(x;+iys)| <9 follows:

|Relp(s) — Relp(xy +iyy)| < %»

. Er
[ImIp(s) — ImiIp(xy+iyy)| < T

Let’s assign €, = r then V 0 < rs < J., at r — 0, with the condition
(16) similar to (17) where f,(7) =7, fu(7) = x(7) is true:

dirlm (—ln (S ()X = far(7))) + 22 jep In (1 - fMp(T)))Tzn i
_%]m (— In (far(7)(1 = fa(7))) + 2 pep In (1 h fMp(T)))sz B

= (—Relp(©y) + x(1)' Imlp(©y)) —

— (—Relp(0,) + z(m)'ImIp(©,)) =

13



= —Relp(©,) + Relp(zy +iy;) — Relp(xy + iyy) + Relp(©,) +
+x (1) ImIp(©y,) — x (1) Imlp(x; +iyy) +
+x () Imip(zy +iyy) — x(r) Imip(©,) +
+a(m) Imip(xy +iyy) — x(r) Imip(zy + iyy) =
=0 (F+7+ 3+ le(n)]) +
+ (x(m) — z(r)") ImIp(x; + iys) =

= (z(n)" = a(n)") ImIp(x; +iy;) + O (r) =

= (W (2(2), Y)yery V2r — w(@(71), )y V21 + O(r?))

: tg — YJ
x| Iml 7+ + 4 ) +0(r) =
( P\{q}( ! yJ) (Uq_ZUJ)Q"' (tq_yJ)Q ( )

/ /

= W_ (x(TQ), y)y:T2 - w(x(Tl)u y)y:rl + O(T) —

oy 2

+Relp\(1(Ow) — Relp(4y(0:) + O(r) =

Y 2

+o(1).

14

—glmlnf’<1_x(7_2)_zy) +glmlnf’<w> +
Y=T2 Y=

—ﬁlmlnF(l_x(T2)_zy> +glmlnf‘<m> +
Y Y= 0 2 Yy=7



Let’s consider a difference of the equations (15) and (20) which on construction
is equal 0 for VO < r < Ry:

Inm

lim,_, 0 = lim,_q ((]m In¢ (fa(7r)) — T[m(fM(T))) -

_ (]mln{(l—fM(T))—lnTﬂ-[m(l—fM(T))) ) ) —

(- (42 (40

+%Im (— In (far (7)(L = fur(7))) + 3 ep In (1 - fM(T))

_ (di]m (—ln (fu(T)(X = far(7)) + 2 cpIn (1 - fM(T)) )) -

T

And then from (23) follows:

. 8 T + iTl
= lim,_, <—x(7'1)’— ([m InT" ( >> —
O 2 x=x(7)
_2 (ImlnF (:13(7’1) + Z?J)) i
8y 2 y=7

0 l—2—1im

—I—x(TQ)’a—x <Im Inl < 5

)
+a% ([m InT <1 - x(? - ’y>
)

—g <[mlnF <1 _I<7_2) — W
0 2

Y
-I-2 (ImlnF (x(ﬁ) + zy))
ay 2 Y=T1

15

+

x=x(T2)




d S d 1—s
=Im|——Inl(2 —InT =
m( ds (2)3:q+dsn ( 2 )Sq>

I—g¢q
OGS
=Im| —— 2 — 2 | =0.

) (L)

Thus for the selected root ¢ is:

OGS
Im|———22 =0, Vg€ PiUPs.

) (5

From (6) equality (24) can be rewritten as follows:

S L tq
_ — 0
nz:% ((2n+aq)2+t3 (2n+1—0q)2—|—t3>

Le.

o t(2n+1—0,)*—(2n+0,)%
R N e (T
ty(1 —20,)(4n+1)

— ZZO:O (2n+ 0,2+ tg)((Qn +1—0,)2+ tg) —

(1= 20,) T ty(dn+1)

16
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(24)



Sum

i (4n+1)
(2n +0y)* +2)((2n + 1 — 04)* + 12)

n:O

exists and is not equal to 0 when ¢, # 0 so the equality (24) is performed
exclusively at

1
O'q:§.

So, assuming that an arbitrary nontrivial root ¢ of zeta functions belongs
to the union P; U Py we found that it belongs only to Py, i.e. P = &

And according to the fact that P, = @ < Py = & we have:

Ps=P1=0, P="Pa.

This proves the basic statement and the assumption which had been made
by Bernhard Riemann about of the real parts of the nontrivial zeros of zeta
function.
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