The real parts of the nontrivial Riemann zeta function zeros
Igor Turkanov

ABSTRACT

This theorem is based on the study of holomorphy functions and
on the fact that near the singularity point of the imaginary part of
some rational function can accept an arbitrary preassigned value.

Registration contains colored markers:
e - a fact which is not proven at present or an assumption;
- the statement which requires additional attention;
- statement which is proved earlier or clearly undestandable.

THEOREM

The real parts of all the nontrivial Riemann zeta function zeros p lie on

1
the line R (p) = 5

PROOQOF:

According to the functional equality [10, p. 22|, [5, p. 8-11]:

S 1—s

r(g) _Eg(s):r(lg‘S’){ 2 ((1-s), RG>0 (1)

C (s) - the Riemann zeta function, I' (s) - the gamma function.



From [5, p. 8-11] ¢ (S) = ((s), it means that Vp = o +it: ((p) = 0
and 0 < o <1 we have:

C(p)=¢=p)=C(1-pn) (2)

From [11], [9, p. 128], [10, p. 45| we know that ¢ (s) it has no nontrivial
zeros on the line ¢ = 1 and consequently on the line ¢ = 0 also, in
accordance with (2) they are not present.

We denote the set of nontrivial zeros ¢ (s) through P:
P={p: ((p)=0,p=0+it, 0 <o <1},

and
1
E{p C()—O,p:0+7§t,0<a<§} (3)
1+'t
) = =—+41
P
1
E{ ) =0, p—0+zt§<a<1}
Then:

P=PiUPyUPsand PLNPy=Pa NP3 =P1NPs=2, ||P:|| = |Psl|

Hadamard’s theorem (Weierstrass preparation theorem) the decomposition

of function through the roots gives us the following result [10, p. 30|, [5,
p. 31], [12]:
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a:1n2ﬁ—%—1,7—Euler’s constant and
(S
Cls) 1 1 L () (1 1) .
10 nm + a P 2F<§>+p§€; PR (5)



()
®

According to the fact that

- Digamma function of [10, p. 31], [5,
p. 23] should be:
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n=1

C = const

From [4, p. 160], [8, p. 272], [3, p. 81]:
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Z—:1+%—1n2\/7_r:0,0230957... (7)
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Indeed, from (2):
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From (5):
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Exactly the same, for example, [10, p. 49], [3, p. 98] the number of
nontrivial zeros of p = ¢ + 4t in strip 0 < ¢ < 1, the imaginary parts of
which ¢ is less than some number 7' > 0 is limited, i.e.

[{p: peP, p=c+it, |t < T}| < oo,

1
Indeed, it can be presented as the sum of ) peP which would be unlimited.
p



Thus VI' > 03 A, >0, A, > 0 such that
inarea 0 <t <A,,0<0 <A, nozeros p=o+1it €P. (8)

Let’s consider that any root ¢ € Py U Py
Let k(q) be the multiplicity of the root of g.
Let’s consider area @ (R) = {s: ||s — q|| < R, R > 0}.

From the fact of finiteness of set of nontrivial zeros ((s) in the limited

area is as follows 3 R > 0, such that Q(R) does not contain any roots from
P except q.
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Let us denote by:

s 1-—s PSP
and { ] {
) =-S+15+ 2 7=, )
peP\{q}



Hereinafter P\ {q} = P\ {(¢, k(¢))}.
Note that Ip\(4(s) complex differentiable function s € Q(R).

Then from (5) we have:

w1 1T (5)

AR

+§:%+b®) (10)

pEP

And in view of (7):

e, [aTG)

KR ere

+Ip(s) | . (11)
Note that the equality of

1 1 1
D e D Dl R D 12

peP

follows that:

Ip(l — S) = —[7)(8), [p\{q}(l — S) = —Ip\{q}(s), %(S) > 0.

Except for that

Iy (s) = Io(s) — 2L

and Ip\ (4} (8) it is limited in the field of s € Q(R) in connection with absence
of poles at it in this area and differentiability in each point of this area.

From (1), (5) follows:

- = —— — =

()= TR %(1—8)

C =const, C € R

s (L=
C(s) ¢ (1—s) 1Fl<§> 1F< 2 )—1—0, (13)
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Let’s consider a circle with the center in a point ¢ and radius r < R, laying

in the field of Q(R):

Im(s)t
M ()
y%jr ...... wr
A .............................................
P — ;)
For s = o + 1y, ¢ = o4+ 11,
k k k(q)(t, — t, —
.| () (q)g( «—Y) k()Y
S$—4q T4y —og—ily  (x—0g)*+ (y —ty) r

On each of the semicircles: left - {s : ||s — ¢|| =7, 0, — r <z < 0,} and the

1S continuous

right - {s: ||s —q| =71, 0y <z < oy+r} function I'm

S—(q
and takes values from — k() to k(Q), r > 0and k(q) > 1 as the multiplicity
r r
of the root.
From (11) function
SO0 1 (3)
s q 2
Im —Im =Im| ——=—>2-+1 s
¢ (s) 5—q 21“(5) P\{q} ()
2
in the field of Q(R) limited so 3H;(R) > 0, H1(R) € R:
¢’ (s) k(q) '
Im —Im < Hi(R), Vs € Q(R). 14
C(S) s—q 1( ) ( ) ( )



From the properties of continuous functions on the interval taking all
intermediate values between its extremes, it follows that 4Ry > 0 :

k
R, < R, ﬁ > Hl(R)
Ry

and Vr > 0, r < R; there is for example on the left point of the semicircle
w, = 1, + i1y, such that:

L) oK) k()

—Im ,
C (wr) Wy — ( Wy — ¢
l.e. ,
&) o s o0 <Ry (15)
C(w?")

From (11), similar to the (14) function

Im

¢(d-s kKa) _
(s P = m 2 (1—$> ~Ina(s)

is limited Vs € Q(R) i.e. 3Hs(R) > 0, Hy(R) € R:

=5 . k9 .
i ] <, e

which means: 4Ry > 0 :

Im

k
Ry < R, % > HQ(R)

2

and Vr > 0, r < Ry there is for example on the left point of the semicircle
2r = T, + 1Yy, such as:

¢'(1—2)

=) =0, Vr>0, r<Rs. (16)



From (11), (15), (16) follows:

(

tg — Yuw 1F/ %) \

#9) 2 —Im 2 r (ﬂ) + IP\{q}(wT))

2
< F/ (1 - Zr) \ (17)
tg — Y, 1 2
k(Q)qT = Im 5 1—-\ Ip\ (g} (2r)
F T
| (=) /

for Vir > 0, 7 < min (R, Ry) .

Le. t; — yu, = O(r?) and t, — y., = O(r*) when r — 0.

For definiteness we will consider that w, and z, we find on the left semicircle
s —q|| =7, R(s) < R(q) = o, because on the right semicircle there are

points with the same - (15), (16) properties.

Let’s choose arbitrary of r1, ry will be right to inequalities:

>0, 79 >0, r9 <71y, 11 <min(R1,R2).

For them: ¢ (wr) ¢ (w,)
Im2nl > W)
" C (le) " C (wT2>
and
[mC/ (1: Zﬁ) _ ]mC/ (1: 27‘2) —0.



Let’s connect the dots w,, and w,, by the curve line given by the function
frim(T) = fo(7) +if,(7) which has a derivative at every point of the
interval:

Im(s)f 'l
tq ....... @
s w%a |
Ay .............................................
0la, o L i Re(s)

In accordance with the construction let’s denote 7,, and 7,, as follows:

f7"177"2 (TTl) - w7‘17 fﬁﬂ‘z (7_7"2) = wrz'

¢'(s)
¢ (s)

consequently in a ring ry < ||s — ¢|| < 1 function I'm

is meromorphic as a quotient of two holomorphic functions,
¢’ (s)
¢ (s)

and therefore continuous and differentiable on 7 function Im

Function

is differentiable

C, (frl,TQ (T))
C (fﬁ,?“Q (T)>

for any differentiable f, ., (7).

This means the real function which is continuous and differentiable on the
segment takes on the ends of the same value:

]mC/ (frl,rg(Trl)) o ]mgl (fT1,7“2(T7”2)) o O

C (fﬁﬂ’z (7_7“1)) C (f7‘1,7’2 (7_7“2)) a

According to the theorem on the extremum of a differentiable function
on the interval we have:

( CUnn@)Y
Ar € (17, Tpy) - <I C(frl,rz(Tl))> = 0. (18)

[.e. on a curve line described by function f, ,,(7), 7 € (7, 7,,) there is a



point of ©1., = f,, ,,(71) for which is true (18).

Let’s consider the following five versions as a curve line which is connecting
points w;, and w;,:

Im(s)t ey, L L
:ﬁi w
E1tA "
1an
Dl Wy,
Re(s)
Im(s)‘ Dl wT‘1
Ey N
05 P
3 G4
Re(s)
Im(s)t wy g Dy
Jl Al E
Wy,
Gl Fl 61,w
Re(s)
Im(s)t G F1o..,
Wy,
Ji A E,
Wry Dl
Re(s)

10



Re(s)

Taking into account the fact that we have chosen the left semicircle and
ro < 11 these five variants of connection of the points w,, and w,, using the
rounded corner are exhaustive.

The curve line is connecting w,, and w,,, it is consisted of three sections
D\Ey, E1Fy, F'Gq or one - D1G4. Segments D FE;, Fi1G; or like in the
fifth case D1 is a parallel to the relevant axes, in the case of existence of
FE1Fi, we will construct it like a quarter of a circle with radius Ay > 0 and
centered at J; = Ji(xa,, Ya,)-

It’s clear that Ay < [Im(w,, —w,,)|, A <|R(w,, —w,)|.

Way fi, r,(7) strictly speaking f,, (7, A1) = fo(7, Ar)+if, (7, A1) in these
five cases it will be described by the following equations systems.

For the segment D; Ej:

{ fx(Ty Al) - xwr1 (19)

fy(7_7 Al) =T,
where y,, <7 < (wa2 — Ay) for the first case and (ywr2 + A1) <7< Yo,

for the second.
And

{ f:L”(Ta Al) = Luw,, (20)

fy(Ta Al) =T,

where (ywr1 +A;) <7< Yu,, for the third case and Yu,, < T < (ywrl —Ay)
for the fourth.

11



For the segment E1Fi:
fo(m,A) =T

(21)
£o(7 A1) = gy, — Ay + \/A§ — (7 — 2wy, — AL,
where z,, <7 < (24, + Ai) for the first variant.
And for the second variant:
fo(m,Ay) =T )
22
Fo(7 A1) = gy, + Ay — \/A§ — (7 — 2wy, — AL,
where z,, <7 < (T, + A1)
For the third variant:
fx(7-7 Al) =T ( )
23
£y DY) =y, + A — \/A§ — (7 — Tuy, + A1),
where (xwr2 — A1) <7< Tu,, -
For the fourth variant:
fo(T, A) =7 21)
2
FoT, A1) = Y, = Ay 44/ = (7 = 2, + A1),
where (2, — A1) < T < 2y, -
For the segment F1Gy:
ffC(T; Al) =T (25)
fy(7_7 Al) = Yuw,,>
where (xwrl +A)) <7< T, for the first and second cases.
And
fx(T7A1) =T (26)
fy(7_7 Al) = Yuw,, >
where z,, <7 < (2y,, — A1) for the third and fourth cases.
For the segment DG in the fifth case:
fl‘(Ta Al) =T (27)
fy(7-7 Al) = Yuw,,»

12



where T, <7< Tap,, -
Let’s assume that the point ©4 4, lies on the segment D; E}:

def

Then (18) which is given (19) can be written to s = x + iy, yn
fy(Tl)a Try = fx(ﬁ) follows:
"z, +iT
(1o *7) o (18 ()
C (xwrl + ZT) B g (8) 0 (28)
dT - 8y o
T=T §=fryry (T1)

Or given (11):
I (f7’1,7’2 (7_1)

1 2
2" (o) +Imloy gy (f(n)) | =
2
5 k(q)(tq — y)
_ (xwrl —0g)* + (y — 1) . _k(Q)((yﬁ —1y)° — (xwrl —0,)%)
a Iy (= 09+ ((yr, — )?)?

The left part of last equality is limited Vry, ro : vy > 0, 79 > 0, 7y <

r1, 1 < min(Ry, Re) and f, ,,(7) from (19):
Ty 1Y
F/ 1
(™

——Im .
2 r(%n + 1y
2

/

) + Im]?’\{q}(xm + Zy)

y:yrl )

because in brackets is the imaginary part of a holomorphic Vs € Q(R)

functions

(s
;Fé?)) + Ip\yqr(S)- (29)

13



The right part is equal to:

k@ ((yr, = t)* = (2w, —09)") K@) (((yr, — 1) — (2w, — 09)°)
(@, = 9)* + ((yr, = 14)%)? T ’

where rg, - radius from point ¢ to ©1,.

Letting ro — r1 and r; — 0.
While considering (17):

ro, = O(r1), (yn —t)* = 0(r), (2w, —0g)* =007).  (30)

Therefore the expression

__kOD(«yn-—tﬂz-—($w1“002)::er‘% ri—0

w

i.e. unlimited with a decrease r;, which leads us to contradiction and means
that the vertical stretch of the D E; consideration of the curve line doesn’t
have the point ©1 .

On the basis of similar reasonings it is also true for the second, third and
fourth version of a curve line. l.e. point ©;, should be on a curve line
between points E; and G in first four versions of a curve line.

Suppose that ©;, lies in the quarter circle between points £ and Fj
as shown in the first four versions of a curve.

Considering that J; = Ji(za,, ya,) and O1, = O1 (2, Y7, ) we have:
(1'71 - $A1)2 + (yTl - yA1)2 - A%

Then the equations (21), (22), (23) and (24) can be written as a function
of y = y():

Y=yn + \/A% - (.%’ - ZEA1)2, Yy = yn,

and

Y=yYan, — \/A% - (x - xA1)27 Y < YA, -

14



For definiteness we will consider that y > ya,, then:

/ T — TA L — TA
ylz) = — = — 31
(@) VA — (x — zp,)? Y —ya, 1)

And the equation (18) can be written as follows:

==

1
——Im

+ [mlp\{q} ([IZ + Zy(:C)) =

T=Tr

The expression on the left side of the last equality in the partial derivatives:

v T+ 1y
0 5‘ 2 + ImlI (x +iy;,) +
— | —=Im m T+ 1y,
ox 2 r (% + 1y, P\la} Y
2 r=x
1
1—\/ (le + Zy
0 1 2 .
+y(zr,)' oy —Im—— P + ImlIp (g (z7, + iy) =
(=)
2 Y=Yn

= OT1—>0(1) + y(xﬁ)/oﬁ—ﬂ)(l)

Considering continuity of sums in brackets at Vs = x + iy(z) € Q(R) we
have:

k(g)(ty —y(z))

_ (x —0g)* + (y(z) — 1y)*
dx

= O(1) + y(x,,))O(1), 1 —0. (32)

T=Tr,

15



And reveal the derivative:

y(:z: )/ (yﬁ — tQ)Q - (xﬁ — 06])2 . 2(061 — xﬁ)(tq _ yﬁ)
YV(@n =0+ (Y — 1)) ((wr, = 09)* + (yr, — 1)?)?
- OT1—>0(1) + y(x7'1),07‘1—>0(1)'

At small Ay, for example, A; = O,, ,0(r#) in accordance with (17) it follows
that:

tq —Yr = 07“1—>0(7“%)7 O¢g = Tmy = OT1—>0(T1)

and (32) can be written as:
y(r,)O(r;?) — O(ry') = O(1) + y(z,,) O(1), 1 — 0,

- y(2n) = O salry). (33)

Let’s note, that a sign in the case of y < ya, does not affect on the

result (33) i.e. the ratio T TA tends to 0at r; — 0 for VA; >0, Ay =
Y —yan
OT1—>0(T%)'
And besides:
/ L — TN Ly — LA, /
Yy = S| | = ylxn) |,
o] =[S < [ S o

Vr @ x;, < x < xp, in the first and second version of the curve line or
Vz :xa, <z < 2, in the third and fourth.

ILe.
y(z)" = Or,50(r1) (34)

for all the real parts of the x points s = x + 1y lying on the curve line under
consideration between Fy and O, for VA; > 0, Ay = O, _,o(r).

Let’s consider the third circle with the center in the point ¢ and radius
rg >0, r3 <nro.

For couples (79, r3) apply the same reasoning as for couples (71, r2).

16



This means that on the left semicircle s : ||s —q|| = r3, R(s) < R(q)
where there is a point w;,, in accordance with the (15):

C/ (wm)
C(wT:s)

Let’s connect points w,, and w,, by a curved line in a same way as how we
have connected w,, and wy.,.

= 0.

Im

At the same time we will choose those options of the curve lines at which
point w,, lies on the segment parallel to the real axis, so that at this point
there were equal right and left derivative of the function describing the line
connection points w,, and wy.,.

Depending on the location of the points w,, and wy,, let’s choose line connection
like in the first, second or fifth variant that was taken into consideration
carlier.

These three variants exhaustive, noting that ro < 7.

To connect w,, and w,, we choose respectively third, fourth or fifth a variant
considered earlier connection.

Without loss of generality, let’s assume that Im(w,,) < Im(w,,) < Im(w,,)
then the searched line will look as follows:

Im(s)f

17



On a line that passes through the points G, F, FEs there is a point
O, < Z7, + 1Y, Such as:

(mGErmar)  —o

where y(x) = Imf,, r,(x).

So that on a line which passes through points Ey, Fi, Gi, Fb, FE»
and consists of a horizontal site F1F, and two quarters of circles with
appropriating radiuses Ay > 0, As > 0, Ay = O, 0(r?), Ay =

C/((j) at all points s € Q(R) \ {q}

)
(1n 6 +zy<x>>)

¢ (z+iy(x))

O,,0(r%) by virtue of holomorphy

function

is differentiable everywhere along the stated line and takes in the points x,,
and z,, the same value that is equal to 0.

Let’s note that z,, < x,,. This follows from the theorem on the extreme
of it the point where the derivative becomes 0 does not coincide with the
end point of the segment, i.e., it lies strictly inside it. So ©;,, # G; and

62,111 7& Gl-

Applying again the theorem on the extreme of the function, differentiable on
the segment and takes the same values at the ends, we find that between ©4

and O3, on the line £ F1G1FoEy must be a point O, o Try + 1Yry, To €

(11, T2):
¢ (z+iy(x)\"
(Imé (z + iy(fﬂ))) - ()

T=Tq,

This can be rewritten as follows:

18



)

__]mF (aj—l—z'y(x) +[mlp\{q}($+iy(x)) =
2 T=T,
_( k(q)(tg — y(x)) ’
a ( (0 — )%+ (t; — y(a:'))2>xx70. 59

The left part of last equality in private derivatives looks as follows:

o 51 Iml
dx | Ox 2 mF x + 1y(x) + Imip gy (2 +1y(z)) +
2 =X
0
r r +iy(x)
L gy 2 —2im - + ImIp g (2 + iy(2)) -
dv | ¥ dy r x+zy(w)> P\ y -
2 T=Tr,
Y=Yry
T+ 1Yr
o1, " (72")
~ 022 __]mp L IR +
2 T=x
0
T+ 1y
F/
+2y(x )/ 7 _lfm ( 2 >—|-Im[ (x 4+ iy) T
) aray | 2 - (xﬂy) P\ (T + iy
2 ,'E::'ETO
Y=Yy
Ty, T2y
F/ 0
+ (y(x )/)28_2 —llm ( : >+Im[ (xr, + 1Y) +
Y\ Ty 8y2 9 F(x70+zy) P\{q} L1y Yy
2 Y=Y



o
-

Y=Yry

1 2
1 . - .
2
A (‘rTo yTo) + Al(zTo yTo)y(‘rTo)/ +
—’_A?(xTo?yTo)( (':ETO)) + A3(Q?7-0 yTo)?J(xTo)”'

This is similar to (29) all A;(z,y), ¢ € [0; 3] limited to Vs = x +1y € Q(R).

The right side of (36) in turn:

ST >> -

)
(@) (= @) — (=)
= o) (U o o )

o 2 y@)e ) Y
K0 (oo )) -

e e
+k(Q)Z/(xTO)/8%c ((((Z - ?aJ:T)()?)Z—F—t(qUz;j))QQ)Q) vy '
+/€(Q)<?J($To)/)2(% ((((;Z - Z)Tj);féq_ _x;));)Q) Y=t !
_k;(Q)(% (((Uj(iqx_)f:f)((tjq—_yz))%?)/ —
—k(Q)y(aﬁm)'g% (((aj(fq:c:o?;?) (:q(t; fmy))2>2>, vty )

:e BO('CET(ﬂ yTo) + BI(ZUTo) yT())y(xTo)l +
+BQ(:E7'07 yTo)(y(xTo)/)2 + B3(x7'07 yTo)y(xTo)//'

20



And (36) can be written as follows:

Ao(Try5 Yry) + A5, yro)y(xro)/ +

+As (37707 yTO)(y(xTO)/)Q + As (xT()? yTo)y(xTo)” -
= By(ry, Yny) + B1(ry, yr )y (27,) +

+Bo (T, Yry) (Y(2,))* + B3 (@, Yy )y ()"

(B3(x7'07 yTo) - A3(x7'07 yTo))y(xTo)H -
AO(xToa yTo) - BO(xTov yTo) + (Al(me yTo) - Bl(xToa yTo))y(xTo)/ + (37)
+<A2(5C7'07 yTo) - BQ(SUTM yTo))(y(xTo),)Q'

o Still to be specific we will assume that y > ya,, then from the (31):

7 T — TA, ,:
y(a:)( Vi —$A1)2>

AT —(z—x r—x T IA
V )7 = (@ —aa,)( VI x_xk))
A%_(x_xﬁl)

Af
(AT = (z — za,)?)

Do

e Let’s suppose that O, lies in one of the quarters of circles centered at the
points Ji, Jy and radius Ay, Ay, between the points ©; ,, and F} or between
F5 and ©9,,. To be specific we will assume that it is - the first quarter of
the circle.

Then using the (34) we have:

Ty, — TA
—— = OT1—>0(T1)7 (CETO - 'CEAl)Q + (yTQ - yA1)2 - A%
Yry — YA,

Consequently:

A
1+ OT1—>0(T%)

(xTo - xA1)2 =

21



and

y(xT())” == — 3 == — 1
? Aq(1—
1( (]. + Or1_>0(7n%)

S

)

[t means that 3 Ry > 0, R3 < min(Ry, Ry):for any fixed r; < Rj
and YW r3 < 19 < 11, 19 > 0, 73 > 0, the second derivative y(x)” at the
point ., is unlimited at A; — 0.

Then function

_ (ty = yn)* = (04 — @7)° _
B3(I'TO, yTO) = k(Q) ((Uq — 337—())2 n (tq — y70)2)2 =
]{Z(C]) (tq B yTo) 7:1 (

Oq — xTo)

Y

where r;, the length of the radius of a circle with center at the point ¢
passing through ©¢,, such VM; > 03 Ry >0, Ry < R3:Vr; < Ry, 30 >
0, Vro, r3:|ry —r3| <0

|B3(5C7'07 yTo)| > Ml-

This follows from the (30).

As a M; constant we will take:

My = max (|Asz(x, ,
(= max (Ag(eg)

then Vry < Ry, 30 >0, Vrg, r3:|ri—r3| <9

‘B3(x7'07y7'0> - A3(x7'07y7'0>‘ > 0. (38)

22



Then for VMy > 0 d Ry > 0, Ry < Ry:Vri < Ry, 36 >0, Vro, 13 :
|7’1—T3|<5,3A1>02

|(Bs(ry, ym) — A3y, ym)) y(w7,)"| > Mo,

Le. in the left part of equality (37) is infinitely increasing function with
Ay — 0 for any fixed three ry, 79, r3 that satisfies the condition (38).

In the right part (37), in view of (34) there is a sum of the limited functions
for the same fixed three r1, r9, r3 and Ay — 0.
Indeed, from the (34) it follows that Ve > 0, 3Rs > 0 : Vr; < Ry fulfilled

[y(zr,)] <€

And taking M, for fixed r1, 79, 73 that satisfy the condition (38) and
r1 < Rg:

M,=  max (JAo(z,y) — Bo(w,y)| + [Ai(z,y) — Bi(x,y)| e+
s=x+iy:rs<||s—ql|<r
+ ‘AQ(ZE7Q) - Bz(l’,y)‘ 62) )

we come to the contradiction in (37).

It means that the assumption that the point ©g, lays on the open arch of
the circle between points ©1,, and Fj since instant place is incorrectly.

Similarly it is false from a certain moment and the assumption that the
point O, lays on the opened arch of the second circle between points F

and @2’11).
[.e. for any r; since some threshold exist ro > 0, r3 > 0, Ay > 0 so

that the point ©g,, lies on the segment F7F5.

And (36) can be written as:
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iz

")
1
—§Im + ImIp gy (7 + iyr,) =

(:E + zyTO>
L=,

_(_ k(q)(t; — yr) "
- ( (g — x)? + (tg — Yn)® >z%' (39)
Or
_ k(q) (tq — yTo) " _
( (g —2)? + (g = y70)2>x$70 = Onoll) (40)

Let’s open the brackets of the last equality:

(_ k(q)(tq — yn) )” =
(Oq —z)*+ (tq ~ Yn)? =Tz

- —2(0q — ) (ty — Yr,) /

¥a) <<<aq —aP (- y>>>

_ . (tg — y70)2 — 3(oq — 5670)2

= Qk(Q)(tq yTo) ((O'q _ xTo)Q + (tq - y70)2)3

From (17) with condition r3 — ry — 71 — O:
2

(tq o y70)2 - O(Til)7 (Uq T 1‘7-0)2 - O(rl)
and (40) can be written as follows:
(ty — Y, )O(r() = O(1), r3 —ry — 1 —0.
According to the fact that y,, = y,, because the point O, lies on the
segment FiFh we get:

tq —Yrn = O(T§)7 ro — 07
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or
ty — Yu, = O(fr4), r — 0. (41)

If our assumption that for any Ry > 0, Ry < R: d 1 < Ry : point Oq,,
lays on an arch of a circle of one of versions about connection of points w,,
and w,, is incorrect that dR7; > 0, Ry < R: V r; < Ry : point Oy, lies
on the segment F1G; so we will not constract a third circle with a radius
rs and search for the point ©g .

That’s enough to rewrite (18) as

<a: ﬂ%) ’
1
——Im

9 (LL‘ n Zy7-1> + [mlp\{q} T + Zyﬁ)

- (T iy )

(0g — 2 )(tg — Yr,)
((og = 2r)? + (tg — yn)?)?

T=Try

Or
2k(q)

= 0(1), Ty — 11 — 0.

Then on the basis of (17), under condition of 9 — r; — 0:

(ty — yr)O(r{®) = O(1), ry — 1 — 0.

And according to the fact that y; = yu, as the point Oy, lies on the
segment F1G1 we receive:

ty = Yuw,, = O(r3), 19— 0,

l.e.
tg — Yu, = O(r?’), r — 0. (42)
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Let’s combine all of the cases from (41) and (42):

tg — Yuw, = O(TS), r — 0.

Similarly acting with the point z, we come to conclusion that:

ty—y., = O(r*), r—0.

Let’s consider the limit:

lim (I m

r—0

CI (wr) C/ (1 - Zr)
C(wy) ”mcu—m) '

By the construction of (15) and (16):

. C, (wr) C/ (1 B ZT) _
iy (s + Im =2y ) =0

And if we expand:

1—=2
wr 1—1/ T
(5) ( 2 )

lim I'm —§F(%>—§ =2 s (wn) = ey () +
2 F'{—
tq = Yuw, tq — Yz \ der
+k(Q)T—k(Q)T =N + I+ I3,
where:
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(45)



Iy = lim Im. (Ip\ g (wy) = Ip\(qy (2))

r—0 r r

I3 =lim Im <k(q) o _Qyw’“ — k(q)—tq _Qyz’") :

By the continuity of the digamma function and the function ImlIp\ (4 (s), Vs €
Q(R) we have:

1—gq
q (14
1 (3) 1F< 2 )
Ilzlm

2r (9) 2r<%> ,

(4 (2 —4
1 (3) 1F( 2 )
=0, VgePLUP:s. (46)




From (6) equality (46) can be written as follows:

> (Grreyre - @rTeaprn) =
“\(2n+oy)?+1;  (2n+1-0y)*+1

ILe.
i (2n+1—0y)*—(2n+0y)%)
n:l 2n + o) +12)((2n + 1 —0,)* + t2)
= (1 —20,)(4n +1) B
—~ ((2n+0y)? +)((2n + 1 — 04)* + £7)
- ty(dn+1)
1-2 =
= (1=20, n; (@n+ 0,2+ 2)(2n+1—0,2 +12)
Sum

= ty(dn +1)
2 (o T B+ 1= P )

n:1

exists and is not equal to 0 when ¢, # 0 so the equality (46) is performed
exclusively at

1
O'qzé.

So, assuming that an arbitrary nontrivial root of zeta functions ¢ belongs
to the union P; U Py we found that it belongs only to Ps, i.e. Py =

And according to the fact that ||Ps|| = [|P1]] = 0 we have:

Ps=P =9, P="7P,,

Which is given above proves the basic statement and the assumption which
had been made by Bernhard Riemann about the location of the real parts
of the nontrivial zeros of zeta function.
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