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We present the Kochen-Specker (KS) theorem in almost all the two-dimensional states. We
consider whether we can simulate the double-slit experiment in a state by a realistic theory of the
KS type. It turns out that we cannot simulate the double-slit experiment in almost all the states
by a realistic theory of the KS type. An exception is an eigenvector of a measured Pauli observable.

PACS numbers: 03.65.Ud (Quantum non locality), 03.65.Ta (Quantum measurement theory), 03.65.Ca (For-

malism)

I. INTRODUCTION

Quantum mechanics (cf. [1-5]) gives accurate and at
times remarkably accurate numerical predictions. Much
experimental data has fit to the quantum predictions for
long time.

Kochen and Specker present the no-hidden-variables
theorem (the KS theorem) [6]. The original KS theorem
says the non-existence of a real-valued function which is
multiplicative and linear on commuting operators. The
proof of the original KS theorem relies on intricate ge-
ometric argument. Greenberger, Horne, and Zeilinger
discover [7, 8] the so-called GHZ theorem for four-partite
GHZ state. And, the KS theorem becomes very simple
form (see also Refs. [9-13]).

It is begun to research the validity of the KS theorem
by using inequalities (see Refs. [14-17]). To find such in-
equalities to test the validity of the KS theorem is partic-
ularly useful for experimental investigation [18]. One of
authors derives an inequality [17] as tests for the validity
of the KS theorem. The quantum predictions violate the
inequality when the system is in an uncorrelated state.
An uncorrelated state is defined in Ref. [19]. The quan-
tum predictions by n-partite uncorrelated state violate
the inequality by an amount that grows exponentially
with n.

The double-slit experiment is an illustration of wave-
particle duality. In it, a beam of particles (such as pho-
tons) travels through a barrier with two slits removed. If
one puts a detector screen on the other side, the pattern
of detected particles shows interference fringes character-
istic of waves; however, the detector screen responds to
particles. The system exhibits behaviour of both waves
(interference patterns) and particles (dots on the screen).

If we modify this experiment so that one slit is closed,
no interference pattern is observed. Thus, the state of
both slits affects the final results. We can also arrange
to have a minimally invasive detector at one of the slits
to detect which slit the particle went through. When
we do that, the interference pattern disappears [20]. An
analysis of a two-atom double-slit experiment based on

environment-induced measurements is reported [21].

We assume an implementation of the double-slit ex-
periment. There is a detector just after each slit. Thus
interference figure does not appear, and we do not con-
sider such a pattern. The possible values of the result of
measurements are +1 (in %/2 unit). If a particle passes
one side slit, then the value of the result of measurement
is +1. If a particle passes another slit, then the value of
the result of measurement is —1. This is easy detector
model for Pauli observable.

Here we consider whether we can simulate a state by a
realistic theory of the KS type. So, we investigate the re-
lation between easy detector model to a Pauli observable
and the KS theorem.

In this paper, we show we cannot simulate the double-
slit experiment in almost all the states. We assume an
implementation of the double-slit experiment. We as-
sume that a source of spin-carrying particles emits them
in a state. We consider a single expected value of Pauli
observable ¢, in the double-slit experiment. A wave func-
tion analysis says some assumption concerning the quan-
tum expected value. However, the realistic theory of the
KS type cannot coexist with the assuption concerning
the expected value when the state is not an eigenvector
of o,. Hence, we cannot simulate almost all the states
by the realistic theory of the KS type. when the state is
not an eigenvector of o,.

II. THE DOUBLE-SLIT EXPERIMENT AND
THE KS THEOREM

In this section, by using the double-slit experiment,
we present the KS theorem with almost all the two-
dimensional states. Especially, we systematically de-
scribe our assertion based on more mathematical analysis
using raw data in a thoughtful experiment.

We assume an implementation of the double-slit ex-
periment. There is a detector just after each slit. Thus
interference figure does not appear, and we do not con-
sider such a pattern. The possible values of the result



of measurements are either +1 or —1 (in /2 unit). If a
particle passes one side slit, then the value of the result
of measurement is +1. If a particle passes another slit,
then the value of the result of measurement is —1. This
is an easy detector model of a single Pauli observable.

A. A wave function analysis

Let 0, be a single Pauli observable. Here,

(5 %) )

We assume that a source of a spin-carrying particle emits
them in a state p. p is not an eigenvector of o,. Thus,
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We consider a quantum expected value Tr[po,]. If we
consider only a wave function analysis, the possible values
of the square of the quantum expected value are

and

(Tr[po.])? = Z, (0< Z < 1). (4)
We define ||Equ|? as
1Equl® = (Tx[po.))*. (5)
We have
1Equl® < Z. (6)
Thus,
1Bqullfax = Z (7)
where ||Equm||2,.x is the maximal possible values of the
product. Hence we have

| Equllnax = Z- (8)

B. The realistic theory of the KS type

A mean value F satisfies the realistic theory of the KS
type if it can be written as
m
~ori(o
= Zlil l( Z)’ (9)
m
where | denotes a notation and r is the result of the
measurement of the Pauli observable o,. We assume the
values of r are either +1 or —1 (in %/2 unit). Assume the
quantum mean values with the system in a state admits

the realistic theory of the KS type. One has the following
proposition concerning the realistic theory of the KS type

Tefpo ] (m) = Za=2"107) (10)

We can assume the following by Strong Law of Large
Numbers [22],

Tr[paz](+oo) = TI‘[pO'Z]. (11)
We define ||Equl|?(m) as

1Equl*(m) = (Tx[po:](m))?. (12)

We can assume the following by Strong Law of Large
Numbers,

[ Equi||*(+00) = | Equil|* = (Tx[po.])*.  (13)

In what follows, we show that we cannot accept the rela-
tion (10) concerning the realistic theory of the KS type.
Assume the proposition (10) is true. By changing the
notation [ into I’, we have same quantum mean value as
follows
m
Tr(po|(m) = 2=t (%) (14)
m
We introduce an assumption that Sum rule and Prod-
uct rule commute with each other [23]. We do not pursue
the details of the assumption. To pursue the details is
an interesting point. It is suitable to the next step of
researches. We have the following

| Equll*(m)
_ Zlﬂil (o) % Z?:l r1(0s)
m m
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m m
_ Zl:l X Zl’:l =1. (15)
m m

Clearly, the above inequality can have the upper limit
since the following case is possible:

H{Ul € NAr(oz) =1} = [{I'll' e N A7y (oz) = 1},
(16)
and
{lll € NAm(oz) = =1} = [[{U'|l' € NArp(o.) = —1}].
(17)

Thus we derive a proposition concerning the quantum
mean value under the assumption that the realistic the-
ory of the KS type is true (in a spin-1/2 system), that
is

[Equ[l*(m) < 1. (18)
From Strong Law of Large Numbers, we have
IBqul* < 1. (19)

Hence we derive the following proposition concerning the
realistic theory of the KS type

| Equlax = 1. (20)

max



We cannot accept the two relations (8) (concerning the
wave function analysis) and (20) (concerning the realis-
tic theory of the KS type), simultaneously. Hence we are
in the KS contradiction. The realistic theory of the KS
type does not meet the wave function analysis and can-
not simulate almost all the two-dimensional states. An
exception is an eigenstate of the measured spin observ-
able.

III. CONCLUSIONS

In conclusion, we have considered whether we can sim-
ulate a state by a realistic theory of the KS type. We

have assumed an implementation of double-slit experi-
ment. There has been a detector just after each slit.
Thus interference figure has not appeared, and we do not
have considered such a pattern. We have assumed that a
source of spin-carrying particles emits them in the state.
We have considered a single expected value of a Pauli ob-
servable o, in the double-slit experiment. A wave func-
tion analysis has said some assumption concerning the
quantum expected value. However, the realistic theory
of the KS type cannot have coexisted with the assump-
tion concerning the expected value when the state is not
an eigenvector of o,. Hence, we cannot have simulated
the double-slit experiment by the realistic theory of the
KS type when the state is not an eigenvector of o,.
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