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Abstract: The major purpose for this article is to reestablish Theorem 9.3.1 for

the EGS, with the modified Robinson approach, and make other improvements

in Section 9 of The Theory of Ultralogics (Herrmann, (1978-93, 1999). Further,

an important improvement is made in the (2013) article on Nonstandard Ultra-

logic-systems.

1. Improvements to Section 9 in Herrmann (1978-93).

[Note: After presenting 27 articles at the arXiv.org, they are apparently discrimi-

nating against me and my research findings. Thus, I will not even attempt to make any

further revisions to my articles that appear there. Any revisions will appear elsewhere.]

Whenever the EGS is employed, the coding i as originally defined might need to

be extended, due to the possible increase in cardinality of the W ′. It may need to be a

bijection onto various if not all of the real numbers as indicated in Herrmann (1978-93,

p. 88). However, incorporating an entire real number alphabet is obviously not neces-

sary since we are using, at least, a two language approach. The actual language being

investigated can vary greatly. On the other hand, the modified Robinson approach can

now be applied. This simply amounts to removing the i notation. This was done in

various cases, where it was suppressed. Various theorems that are extended to the EGS

case may need to be so modified. Some, such as the following Theorem 9.3.1, may need

to be reestablished.

There has actually been a controversy since Gödel first coded the symbols of a first-

order language as to how the symbols and the informal natural numbers are employed.

In Mendelson (1987, p. 149) is a Gödel coding. The individual constant symbols

are denoted as a1, a2, . . . , an, . . .. Thus the usual symbols for the informal natural

numbers are employed. Usually these are taken only as symbolic forms. But the

Gödel coding for these symbols is g(ak) = 7 + 8k, k = 1, 2, 3, . . .. There has been a

group of mathematicians who do not allow this dual meaning for the symbols. That

is they do not accept dissecting the symbolic form in this manner. Kleene suggested
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using his “tick” notation and the intuitive rule for counting to avoid this problem.

That is the actual constant symbol is, say, a||||, where the |||| corresponds to the

informal natural number 4. Since such a symbolic change is possible, I see no need to

actually do it. Having a pure dissectible symbolic form on one hand then bijectively

corresponding it to something else is the mathematicians way of doing such things

via a multi-language approach. This is the “object-language” and “meta-language”

(observer-language) differences.

There is the developmental paradigm, and for nondetailed descriptions the gen-

eral developmental paradigm. But now we have something totally new — the general

paradigm. It is important to note that the general paradigm is considered to be distinct

from developmental paradigms, although certain results that hold for general paradigms

will hold for developmental paradigms and conversely. For example, associated with

each general paradigm GA is an ultraword wg such that the set GA ⊂ ∗S({wg}) and

all other theorems relative to such ultrawords hold for general paradigms. The general

paradigm is a collection of words that discuss, in general, the behavior of entities and

other constituents of a natural system. They, usually, do not contain a time statement

Wi as it appears in section 7.1 for developmental paradigm descriptions. Our interest

in this section is relative to only two such general paradigms. The reader can easily

generate many other general paradigms.

The formal language is the usual first-order set-theoretic language with variables

and constants. And, as used throughout, W ′ is a set of words formed by an alphabet,

where if w ∈ W ′, then there is no set a in our structure such that a ∈ w. Obviously,

if infinite W ′ is not denumerable, then the modified Robinson approach is the most

appropriate, relative to the nonstandard language. Depending upon the application,

the alphabet is assumed to have symbols for informal mathematical entities. Thus,

there are mostly two mathematically styled languages, the symbolic language N, which

is part of the “object language” that denotes the informal natural numbers considered

as constants and the formal natural number IN used to analyze the language. In the form

of constants, members of N, only have, as previously defined, intuitive meaning. This

allows one, as done by Robinson, to consider formal relations that tend to characterize

the intuitive meanings.

Consider the symbol c′ and let n′ ∈ N. These symbols form a denumerable sub-

set of W ′. The symbol 0′ /∈ N. These symbols are considered as alphabet members

and correspond to constants that further correspond to the nonzero natural numbers.

Hence, as set-theoretic entities N ⊂ W ′. In what follows, the intended alphabet symbols

are employed as constants of the formal first-order language. The formal mathematical
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structure also has the usual array of constants that denote the members. [Note: Within

some of my papers on this subject you may find the notation W or W ′. These sets are

the same as equivalence class representations E and E ′, respectively.]

Now consider the following informally defined set of words. Of course, in the

extended case, it can be assumed that the cardinality of W ′ is no greater than that of

IR. It should be noted that the members of GA are but linguistic forms that do, at least,

partially have meaning when interpreted physically. Due to the possible non-countable

cardinality of W ′, the modified Robinson approach is employed in what follows.

GA = {An|||elementary|||particle|||α(n′)|||with|||

(9.3.1) kinetic|||energy|||c′+1/(n′). | n′ ∈ N}

Of particular interest is the composition of members of ∗GA − GA.

Theorem 9.3.1 A set [g] ∈ ∗GA − GA if and only if there exists a f ∈ ∗(P55)

and a nonstandard ν ∈ ∗N − N such that f ∈ [g], and f(55) = A, f(54) = n, f(53) =

|||, · · · , f(30) = f(2), · · · , f(3) = (, f(2) = ν, f(1) =), f(0) = .

Proof. From the definition of GA the sentences

∀z((z ∈ GA) → ∃x∃w((w ∈ N) ∧ (x ∈ P55) ∧ (x ∈ z) ∧

((55,A) ∈ x) ∧ ((54,n) ∈ x) ∧ · · · ∧ (x(30) = x(2)) ∧ · · · ∧

((3, () ∈ x) ∧ (x(2) = w) ∧

((1, )) ∈ x) ∧ ((0, .) ∈ x))). (9.3.2)

∀x∀w((x ∈ P55) ∧ (w ∈ N) ∧

((55,A) ∈ x) ∧ ((54,n) ∈ x) ∧ · · · ∧ (x(30) = x(2)) ∧ · · · ∧

((3, () ∈ x) ∧ (x(2) = w) ∧ ((1, )) ∈ x) ∧ ((0, .) ∈ x) →

∃z((z ∈ GA) ∧ (x ∈ z))).

hold in M, hence in ∗M. There is in the standard structure bijection j[N] = IN
′. Hence,

bijection ∗j[ ∗N] = ∗
IN

′. Consequently ∗j[ ∗N−N] = ∗
IN−IN. Since ∗j[N] = j[N] under

our notational convention, where, for atoms a, ∗a = a, then there is a nonstandard

ν ∈ ∗N − N that satisfies the *-transformed statements 9.3.2 for a [g] ∈ ∗GA − GA,

where internal partial sequence f ∈ [g] is the member that characterizes the alphabet

members and, thus, also varies over members of ∗N − N for f(2) and f(2) = f(30).

Using Theorem 9.3.1, each member of ∗GA − GA, when interpreted, has only

two positions with a single missing standard object since positions 30 and 2 do not

correspond to any symbol string in our language W ′. This interpretation still retains

a vast amount of content, however. The members of ∗
IN− IN = IN∞ correspond to the
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infinite Robinson numbers. Thus, considering “new” constant symbols not used in our

language, such as ≀, and let them denote infinite numbers, we have symbolic forms such

as

G′
A = An|||elementary|||particle|||α(≀)|||with|||

kinetic|||energy|||c′+1/(≀). (9.3.3)

9.4 Interpretations

Recall that the Natural world portion of the NSP-world model may contain un-

detectable objects, where “undetectable” means that there does not appear to exist

human, or humanly constructible machine sensors that directly detect the objects or di-

rectly measure any of the objects physical properties. The rules of the scientific method

utilized within the micro-world of subatomic physics allow all such undetectable Nat-

ural objects to be accepted as existing in reality.[1] The properties of such objects are

indirectly deduced from the observed properties of gross matter. In order to have indi-

rect evidence of the objectively real existence of such objects, such indirectly obtained

behavior will usually satisfy a specifically accepted model.

Although the numerical quantities associated with these undetectable Natural (i.e.

standard) world objects, if they really do exist, cannot be directly and exactly mea-

sured via any known instrumentation, these quantities are still represented by standard

mathematical entities. By the rules of correspondence for interpreting pure NSP-world

entities, such entities with a property being described by G′
A must be considered as

undetectable pure NSP-world objects, assuming any of them exist in this background

world. On the other hand, physical entities could satisfy this behavior, when viewed

from the substratum. The G′
A type statements are actually being predicted by the

mathematical method employed. Consequently, some such measures may be as-

sumed to have an indirect affect within the Natural world. The predicted measure 1/≀

is that of an infinitesimal. From a substratum viewpoint, when c′ is interpreted as the

0 ∈ IN, it rationally verifies a stance original held by Newton that such measures are

“real” as well as a remark by Robinson that such measures may be of significance in

the world of particle physics.

The concept of realism often dictates that all interpreted members of a math-

ematical model be considered as existing in reality. The philosophy of science that

accepts only partial realism allows for the following technique. One can stop at any

point within a mathematically generated physical interpretation. Then proceed from

that point to deduce an intuitive physical theory, but only using other not interpreted

mathematical formalism as auxiliary constructs or as catalysts. Entities having such
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infinitesimal measures could be restricted to the substratum. Or, as mentioned, they

could be physical entities that exhibit such behavior only when viewed from the sub-

stratum. With respect to the NSP-world, another aspect of this interpretation enters

the picture. Assuming realism, then the question remains which, if any, entity with

infinitesimal behavior actually indirectly influences Natural world processes? Partial

realism allows for the possibility that none of these pure NSP-world measures has any

affect upon the standard world. These ideas should always be kept in mind.

If you accept that such particle measures as described by GA can exist in reality,

then the philosophy of realism leads to the next interpretation.

(1) If there exists an elementary particle with Natural system behavior

described by GA, then there exists an entity that displays the behavior

described by statement G′
A.

The concept of absolute realism would require that the acceptance of entities with

behavior described by GA is indirect evidence for the existence of the G′
A described

behavior. I caution the reader that the interpretation we apply to such sets of sentences

as GA are only to be applied to such sets of sentences.

The EGS may, of course, be interpreted in infinitely many different ways. Indeed,

the NSP-world model with its physical-type language can also be applied in infinitely

many ways to infinitely many scenarios. I have applied it to such models as the MA-

model and the GGU-model among others. In this section, I consider another possible

interpretation relative to those Big Bang cosmologies that postulate real objects at or

near infinite temperature, energy or pressure. These theories incorporate the concept

of the initial singularity(ies).

One of the great difficulties with many Big Bang cosmologies is that no meaningful

physical interpretation for formation of the initial singularity is forthcoming from the

theory itself. The fact that a proper and acceptable theory for creation of the universe

requires that consideration not only be given to the moment of zero cosmic time but

to what might have occurred “prior” to that moment in the nontime period is what

partially influenced Wheeler to consider the concept of a pregeometry.[3], [4] It is totally

unsatisfactory to dismiss such questions as “unmeaningful” simply because they cannot

be discussed in your favorite theory. Scientists must search for a broader theory to

include not only the question but a possible answer.

Although the initial singularity for a Big Bang type of state of affairs apparently

cannot be discussed in a meaningful manner by many standard physical theories, unless

one adjoins to the theory an ad hoc quantum field, it can be discussed by application
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of our NSP-world language. Let c′ be a symbol that represents any fixed real number.

Define

GB = {An|||elementary|||particle|||α(n′)|||with|||

total|||energy|||c′+n′. | n ∈ IN}, (9.4.1)

Application of Theorem 9.3.1 to GB yields the form

G′
B = An|||elementary|||particle|||α(ζ ′)|||with|||

total|||energy|||c′+≀ (9.4.2)

(2) If there exist an elementary particle with Natural system behav-

ior described by GB, then there exist an entity that displays behavior

described by G′
B.

The entities being described by G′
B have infinite energy. This infinite energy

does not behave in the same manner as would the real number energy measures

discussed in GB. As is usual when a metalanguage physical theory is generated from a

formalism, we can further extend and investigate the properties of G′
B described entities

by imposing upon them the corresponding behavior of the positive infinite hyperreal

numbers. This produces some interesting propositions. Hence, we are able to use a

nonstandard physical world language in order to give further insight into the state of

affairs at or near a cosmic initial singularity. This gives one solution to a portion of

the pregeometry problem. I point out that there are other NSP-world models for the

beginnings of our universe, if there was such a beginning. Of course, the statement G′
B

need not be related at all to any Natural world physical scenario, but could refer only

to the behavior of pure NSP-world entities.

Notice that Theorems such as 7.3.1 and 7.3.4 relative to the generation of develop-

mental paradigms by ultrawords, also apply to general paradigms, where M,MB,P0 are

defined appropriately. The following is a slight extension of Theorem 7.3.2 for general

paradigms. Theorem 9.4.1 will also hold for developmental paradigms.

Theorem 9.4.1 Let GC be any denumerable general paradigm. Then there exists

an ultraword w ∈ ∗P0 such that for each F ∈ GC, F ∈ ∗S({w}) and there exist

infinitely many [g] ∈ ∗GC −GC such that [g] ∈ ∗S({w}).

Proof. In the proof of Theorem 7.3.2, it is shown that there exists some ν ∈
∗
IN − IN and a bijection h such that ∗h[[0, ν]] ⊂ ∗S({w}) and ∗h[[0, ν]] ⊂ ∗GC. Since

| ∗h[[0, ν]]| ≥ |M1|
+
, then | ∗h[[0, ν]]− h[IN]| ≥ |M1|

+
. This completes the proof.

Corollary 9.4.1.1 Theorem 9.4.1 holds, where GC is replaced by a developmental

paradigm.
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(3) Let GC be a denumerable general paradigm. There exists an intrin-

sic ultranatural process, ∗S, such that objects described by members of

GC are produced by ∗S. During this production, numerously many pure

NSP-objects as described by statements in ∗GC − GC are produced.

2. The Nonstandard Ultra-logic-system Article.

The last two paragraphs of Section 1 (page 13 - 14) of Herrmann (2013) should be

removed since they do not properly convey what was intended.
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