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Abstract 

 We look at early universe space-time and a linkage between quantum bits of information 

along the lines of  what was done by Yan – Gang Miao, Ying- Jie Zhao , and compare it with 

quantum computing and cosmology which was brought up by Ganbini, Porto and Pullin. 

Namely the purported number of quantum computing operations. If the two are 

equivalent, there is an implied relationship to determine an optimal radial distance. 

Afterwards, we use that in conjunction with a modified Heisenberg Uncertainty principle 

to come up with some fundamental cosmological phenomenology. In particular a first 

ever guess as to the value of an initial inflaton. 
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1. Bringing up the screed of quantum bits of information along the lines of  what 

was done by Yan – Gang Miao, Ying- Jie 

Using [1] we will be obtaining a Vacuum energy value, with   ' 'n count n , and if we use [2],, 

  ' 'n count n  is a measure of entropy, so to first order for significant initial entropy, we would have 
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If so, then simply put,  
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This should be compared with [3], namely if      
4/3

' ' # ' 'n count n operations N n    . ,making use 

of  Eq. (3) in [3] then we have using [4] 
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The number, N is operations per second, and in the calculation preliminarily give, , R ~ .1 meter, so that the 

lower calculation, N was given in [4] as N ~ 10^47 operations/ second, with a comparatively very large R term. 

We will be using the same values for L, and for  d(p) as given above as well as Planck time. Our values of R 

will be different. What we will be doing is to compare Eq. (2) and Eq. (3) with a suggested optimal radii, from 

the start of the universe for when the quantum computational effects kick in. 
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2. Comparing Eq. (2) and Eq. (3) to suggest an optimal R value 

Doing so, we get a value which scales as 
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3. Examining the HUP as to uncertainty principles and the value of Eq. (4)  

Start with 
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If we use the following, from the Roberson-Walker metric [5,6,7] [11, 12, 13]. 
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Following Unruh [14, 15], write then, an uncertainty of metric tensor as, with the following inputs  

2 110 35( ) ~10 , ~10Pa t r l meters                 (7) 

Then, the surviving version of Eq. (1) and Eq. (2) is, then, if ~ttT   [5,8,9] [11, 14, and 15] 
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Using the value of  
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A preliminary reading of the last equation of the Eq.(8) grouping could be to first order that in the case of Pre 

Planckian space time, we would see  
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Now, if we use 
2

min~tt initialg a    as given in Giovannini [10] , we can write the expression for an early 

Inflaton as of the order of 

 

                        

63/93
4/7 4/3

3/7 14/7 4/3 2

min2

1

8
initial P

Planck tt

c
c L d t a

t T
 



 
    
              

         (11) 

4. Conclusion, coming to terms with inputs into Eq. (11) 

  In order to do this, we need to have suggestions as to the bounds to some of the inputs. i.e. as an example. 

( , , , )iiT diag p p p                     (12) 

Then by [5]  
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Here, we have that  
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To come up with inputs into Eq(11) and Eq.(15) need inputs into L, the d(p) parameter, and of course the 

cosmological constant. We have only begun to specify an emergent inflaton, and this is a statement of principle 

as to its emergent structure. With a lot more to go.    I.e. examining the issues in [11] and [12] as follow ups. 

Also in examining comparisons with Dr. Corda’s [13] about “gravity’s breath”. 
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