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Abstract: We summarize how the Lorentz Force matioserved in classical electrodynamics
may be understood as geodesic motion derived bymizing the variation of the proper time
along the worldline of test charges in externalgmtials, while the spacetime metric remains
invariant under, and all other fields in spacetimenain independent of, any rescaling of the
charge-to-mass ratio g/m. In order for this to ngdime is dilated or contracted due to attractive
and repulsive electromagnetic interactions respetyi, in very much the same way that time is
dilated due to relative motion in special relatyitwithout contradicting the latter's well-
corroborated experimental content. As such, it bee® possible to lay an entirely
geometrodynamic foundation for classical electradyits in four spacetime dimensions.

PACS: 04.20.Fy; 03.50.De; 04.20.Cv; 11.15.-q
1. Motivation and Purpose

The equation of motion for a test particle alongendesic line in curved spacetime
specified by the metric intervaf’dr? = g,, dX' dX with metric tensorg,, was first obtained by
Albert Einstein in 89 of his landmark 1915 papdriftroducing the General Theory of Relativity.
The infinitesimal linear elemendlz = ds/ ¢ for the proper time is a scalar invariant which is
independent of the chosen system of coordinategewlise the finite proper timezjfdr

measured along the worldline of the test partideveen two spacetime evetsandB has an
invariant meaning independent of the choice of dmates. Specifically, the geodesic of motion
is stationary, and results from a minimizationtd variational equation

o:djfdr. (1.1)

After carrying out the well-known calculation omgilly given by Einstein in [1], the particle’s
eqguation of geodesic motion is found to be:

d’¥ _df o dxX
@ a e -2
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with the Christoffel connection defined byl ”, E%g‘“’(aagw -0,9, —avgaﬂ) and the

relativistic four-velocity given by” =dx* / dr .

The geodesic (1.2) can also be viewed at in alteayet equivalent way. In curved
spacetime, DB? / DrE(a% /ar)a;v B’ defines the “derivative along the curve” for any

contravariant vectoB”, using gravitationally-covariant derivatives B’ =0,B° +I”_ B and
the chain rule. So wheB” =u”, then, in view of (1.2), we may also write:

o7 u’]_ 3‘5 LEd=0. (13)

Du” _ox _oxX
=22 5 u ( -

Dr  dr “  or

6T ax dr

This has exactly the same content as the geodgsatien (1.2). But given thadu” / dr =0
describes Newtonian inertial motion when the getional connectiorfﬁw =0, we may think of
Du? / Dr =0 above as describirmpvariantly-inertialmotion in the presence of gravitation. This

is what gives gravitational geodesics their coliatjuharacterization as “straight lines,” or more
precisely, “inertial lines” in curved spacetime.

Just as ordinary derivativeg, :(6/ 6t,[|) are replaced by gravitationally-covariant
derivativesd., in curved spacetime, so too in gauge theory orglidarivativesd,, are replaced
by gauge-covariant or “canonical’ derivatives, =d, —igA,, whereq is the electric charge
strength andA, is the gauge field / vector potential, and wheeeuse®, rather than the often-
employedD, to distinguish symbolically from th@ of gravitational motion in (1.3). Motivated

by the geodesic nature of gravitationally-covariamdtion for which Du” / Dr =0 rather than

du’/dr=0 and how this motion stems directly from the rephaent of ordinary with
gravitationally-covariant derivatives, the purposé this paper is to summarize how
electrodynamic Lorentz Force motion is likewise dggic motion which iganonically-inertial
and which stems directly from the canonical derixest of gauge theory. As will be shown, this
comes about as a consequence of heretofore unigedgime dilations and contractions which
occur any time two material bodies are electromagaléy interacting.

2. Geometro-electrodynamics and Time Dilations and Contractions: An Overview

To begin, if the test particle, to which we nowverdse a massn> 0, also has a non-zero
net electrical charge#0 and the region of spacetime in which it subsitde &das a nonzero

electromagnetic field strength” # 0, then the equation of motion is no longer givenhy),
but is supplemented by an additional term whichaios the Lorentz Force law, namely:

d*¥ _ df o dk dk
=-r*, FA—=-T" uu + pro U 2.1
a7 dr M dr mqg ey %"” c 1)
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In the above, the field strengf” containing the electric and magnetic field bives® andB

is defined as usual bl#* =9” A” —9° A® in relation to the gauge potential four-vect. The
above force law is of course a well-known, wellrotworated, well-established law of physics.

Given that the gravitational geodesic (1.2) spesia path of minimized proper time (1.1),
the question arises whether there is a way to wl¢fai) from the same variation as in (1.1), thus
revealing the electrodynamic motion to also emgaiticles moving through spacetime along paths
of minimized proper time in four spacetime dimensio Conceptually, it cannot be argued other
than that this would be a desirable state of affaiBut physically the difficulty rests in how to
accomplish this without ruining the integrity oktmetric and the background fields in spacetime
by making them a function of the charge-to-mas® rgf m. This ratio is and must remain a

characteristic of the test particle alone. Itas and cannot be a characteristic of the line eldme
dr, or the metric tensog,, , or the gauge fieldA”, or the field strengtiF#* which define the
field-theoretical spacetime background through Wwitke test particle is moving. And, at bottom,

this difficulty springs from thenequivalenceof the “electrical mass” (a.k.a. charggpnd the
inertial massn, versus the Newtonian equivalence of gravitatiamal inertial mass. In (2.1), this

is captured by the fact thatdoesnot appear in the gravitational teraf * LUAU, while theg/ m

ratio doesappear in the electrodynamic Lorentz Force terat e rewrite a{q/m) F° " in
natural units withc =1.

This may also be seen very simply if we compare tdeig law with Coulomb’s law. In
the former case we start with a forée=-GMm/ r* (with the minus sign indicating that
gravitation is attractive) and in the latt€ =-k Qq/ r* (for which we choose an attractive
interaction to provide a direct comparison to giaion), whereG is Newton’s gravitational
constant and the analogous =1/ 47, = ¢4, / 47 is Coulomb’s constant. If the gravitational
field is taken to stem frorivl and the electrical field fror®, then the test particle in those fields

has gravitational masse and electrical masg But the Newtonian forc& = ma always contains
the inertial massn. So in the former case, because the gravitatiandl inertial mass are

equivalent, the acceleratioa= F/ m=-GMm mf=- GM/ f and these two masses cancel,
giving —I'"”Wu”u“ without any mass in (2.1). But in the latter cabe acceleration

a=F/m=-kQdq mf=-(d m k@ ¥ because the electrical and inertial masses are not

equivalent, hencéq/ m) F# U containing this same ratio in (2.1). Here, theiarois distinctly

dependent on the electrical and inertial magsasim of the test particle. And as aresult, different
chargeqy with different masses may all be moving through the exact same backgtdighds
and yet have different observable motions.

So, were we to pursue the conceptually-attractva of understanding electrodynamic
motion as the result of particles moving througacgtime along paths of minimized proper time,
with (1.1) applying to electrodynamic motion just & does to gravitational motion, the line

elementdr would inescapably have to be a funct'rdm(q/ m) of g/ m. And this in turn would
appearto violate the integrity of the line elemenzr as well as the metric tensa,, in
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c’dr? = g,, dX' dX, because these would aéem to belependent upon the attribugandm of

the test particles that are moving through the sfjpme background. Were this to be reality and
not just seeming appearance, this would be phygirapermissible.

Consequently, despite there being many known d@vivaof the Lorentz Force law, there
does not, to date, appear to be an acceptablengootithe Lorentz Force law in the variational

B
equation0= JIA dr which would reveal electrodynamic motion to be dg=ic motion just like

the familiar gravitational motion. And this is laese it has not been understood how to obtain
electrodynamic motion from a minimized variationil@lsimultaneously maintaining the integrity
of field theory such that the metric and the baokgd fields do not depend upon the attributes of
the test particles which may move through thedddierhis, in turn, is because electrical mass is
not equivalent to the inertial mass, which caustsrdnt test particles to move differently even
when in the exact same background fields, in centta the Newtonian equivalence of the
gravitational and inertial masses from which altigées respond alike in the same background.

So, when a first test particle with electrical mgsd inertial masm is placed in a field
F#", and a second test particle with electrical mgisand inertial massn' of a different ratio
q/m# g/ mis placed at equipotential in the same fi#ld®, there are observably-different

Lorentz Force motions for these two different fstticles even though they are at equipotential.
As a result, having the line elemedr be a mathematical function @f/ m yet be physically

independent ofj/ m may seem paradoxical. Nevertheless, it is passibhave a line element
dr(q/ m) which is a function of the electrical-to-inertialass ratioq/ m, from which the

variational equation0:5jfdr does vyield the combined gravitational and elegtnagdnic
equation of motion (2.1), yet for which the linemlentdr , the metric tensog,,, , the gauge field

A", and the electromagnetic field strengB’ are all independent of thig/ m ratio.

Specifically, close study reveals that this parad@y be resolved by recognizing thiate does

not flow at the same rate for these two test pkgicn very much the same way that time does not
flow at the same rate for two reference framegpecsl relativity which are in motion relative to
one another

In particular, in the absence of gravitation wigh), =7, and I'/’W =0, the first test
particle will have a Lorentz motion given by:

deﬁ :_q [Iﬁ""d_)g

2.2
dr? m'™ car (2:2)

Note that this Lorentz motion also contains a $etoordinatesx”. Now usually it is assumed
that for the second test particle the motion igiby this same equation (2.2), merely with the
substitution ofqg - g andm - ni; that is, by:



Jay R. Yablon, May 31, 2016, revised June 16, 2016

dzxg: d Fﬁ"’d_)g

— 2.3
dr? rri”"” car 2:3)

The particular assumption here is that there ishamge in the rate at which time flows when (2.2)
is replaced with (2.3); and more generally the aggion is that the coordinate intervdk’ in
(2.3) is identical to thelx’ in (2.2). Yet, it is impossible to have both (2ahd (2.3) emerge

B
through the variatio® = 5le dr from the same metric elemedr , and simultaneously maintain

the integrity of the field theory, unless the caonales are different, whereitx” in (2.2) isnot
identicalto what must now bex’ - dX? # dX in (2.3).

In fact, the very physics of having electric charge electromagnetic fields induces a
change in coordinates as between these two tegieshwith differentg’ / m # g/ mr, very similar
to the coordinate change via Lorentz transformatioduced by relative motion. As a result, the
electrodynamic motion of the second test charggvisn, not by (2.3), but by:

d*x” — d Fﬂ”ﬁ.
dr* nm™  cd

(2.4)

Here, x* in (2.2) andx’” # ¥ in (2.4), respectively, are two different setscobrdinates. Yet,
they are interrelated by a definite transformatidost importantly, this results tirme itselfbeing
induced to flow differently as between these twts s# coordinates, making time dilation and
contraction as fundamental an aspect of electradies as it already is of the special relativistic
theory of motion and the general relativistic theafrgravitation. In fact, what is really happegin
— physically — is that the placement of a chargaielectromagnetic field isducing a physically-

observable change of coordinated(q/ m — X*( ¢/ M in the very same way that relative
motion between the coordinate systexfyv) and x#(V) of two different inertial reference

frames with velocities and V' induces a Lorentz transformatiofi(v) — X?(V) that relates the

two coordinate systems to one anotherc/idr? =1, dX (Y dX( y=n,, dX( Yy dx( 'y, with an

invariant line elementlz’ = dr'? and the same metric tenspr, =7, in either reference frame.

As it turns out, the line element that yields J2from (1.1), including electrodynamic
motion, which is quadratic id7 , is:

c?dr? = gw(dw%: o A(j( d¥<+%c d Aj: g 4 ", (2.5)

Above, we have defined a gauge-covariant coordimageval Dx* = dx’ +( g/ mg¢ d¢ A, again

with a canonicab to distinguish from the gravitationBlin (1.3). And it will be seen that upon
multiplying through bym® and dividing through byl7? this becomes:
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M = gﬂv(m(ﬁ_FE AJ( mCK+_q AJ: g/( /p+—:j A}( Vp_l__g V%: lgn’”ﬂ” (2.6)

dr c dr c

This, it will be recognized, is the usual relatibmsbetween the rest massand the canonical
energy-momentunr =mdx'/ &+ qA/ &= P+ gA/ , where ordinary mechanical / kinetic

energy-momentum i9* = mdxX'/ d. Some authors continue to upé to denote the canonical
momentum when there are charges and gauge fietemrewe find it preferable to employ the
different symbolrr* to avert confusion. The gauge interzad” = dx' +( o/ mg @& A defined in
(2.5) is then seen to be merely a restatemeneajalige-covariant derivatives, =0, —igA, and
canonical momentar = p* + gX’/ ¢ which emerge from gauge theory and relate to oothar
viaid, < p, andi9, < 7z , and in particular from the mandate for local gaggally, phase)
symmetry.

Now, the line element (2.5) is clearly a functiong/ m and so has thappearanceof
depending on the ratiq/ m. But this is only appearance. For, when we ntaegthe second
test charge with the second ratjd m # g/ rin the exact same metric measured by the invariant

line elementdz and moving through the exact same fietfJs and A”, this metric gives:

c2dr? = Cr?= gw( ¥+ o AJ( d+- 9 g VAjz g9 4D ", 2.7)
m'c mc
with DxX* =dxX*+(d/ m¢ d¢ A. So despitedr being a function of they/m ratio, this
dr =dr' as a measured proper time element is actiralgriant with respect to thej/ m ratio
becausethe differences between differeq¢ m and q'/ni are entirely absorbed into the

coordinate transformation<” - X*, which is quite analogous to the Lorentz transfation of
special relativity The counterpart to (2.6) now becomes:

PSR (O CNR: RN TN IR
mcz—gw(mdr+cﬂ<](rh?+cA) g, (2.8)

with an invariantdz and unchanged background fields, and A*.

In fact, this transformatiorx” - x* is definedso as to keeplr =dr’ invariant, and
g, =g, and A“ = A* and by implication the field strength bivectef” = F'#* all unchanged,
just as Lorentz transformations are defined so asdintain a constant speed of light for all irerti
reference frames independently of their state aiano That is, combining (2.5) and (2.7), this
transformationx” — X* which results in time dilations and contractiassjefinedby:
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cdr? = gv(d><'+i d‘A(j( dk+- 3 o Ajs g,( g+ o ﬂAj( eI rd“%«.(Z.Q)
" mc mc mec mc

Consequentlydr = dr' is a function of charge and massn yet is invariant with respect
to the same, and there is no inconsistency in lgadin= dr’ be a function of, yet be invariant

under, a rescaling of thg/ m ratio. Likewise, the fieldg,, = g, and A“ = A* are independent

of the charge and the mass of the test particleause again, everything stemming from the
different ratiosq/ m and q'/ n is absorbed into a coordinate transformatidn— xX*. Thus,
while “gauge” is a historical misnomer for what Keally invariance under locabhase
transformationsgy — ¢’ =Uy ="y applied to a wavefunctiogr , we see in (2.9) that the line
elementdr truly is invariant under what can be genuinelyezhbre-gaugingof the g/ m ratio.
And from (2.6) and (2.8), we see that this symmetmeally not new. It is merely a restatement
of the usual relationshim’c’ = g, 777" between rest mass and canonical momentum.

As aresult, each and every different test partiakeies its own coordinates, all interrelated
so as to keem7 invariant, andg,, , A“ and F# unchanged. The coordinate transformation

interrelating all the test particles causes tixie t to dilate for electrical attraction and to contact
for repulsion, with a dimensionless ratid dr/= y, that integrally depends upon the magnitude

of the likewise-dimensionless ratig®¥’ / mé of electromagnetic interaction energ¥’ to the
test particle’s rest energyc. This in turn supplements the ratio/ dr = y, =1/+/1-V* / & for
motion in special relativity andit/ dr =y, =1/,/g,, for a clock at rest in a gravitational field,

and assembles them into the overall product cortibmat/ dr = y, ) v, governing time dilation
and contraction when all of motion and gravitaticarad electromagnetic interactions are present.

Operationally, the electromagnetic contributigp, to this time dilation or contraction

would be measured in principle by comparing the eatwhich time is kept by otherwise identical,
synchronized geometrodynamic clocks or oscillaighich are then electrically charged with

different g/ m ratios, and then placed at rest into a backgrqateintial A“ = (g, A) =(g,0) at

equipotential, wherep, is the proper potential. Or more generally, thculd be measured by
electrically charging otherwise identical clockslahen placing them into the potential to have
differing dimensionlesgyg / m¢ ratios.

Empirically, for qg / m¢ <<1, and for an attractive Coulomb forée=-k.Qq/ r*, the
interaction energiesg,, =I Fdr=+k,Qq/ r plus integration constant are related to these

electromagnetic time dilations in a manner idethttcahow the kinetic energyg, =i mv is

contained inmcy, = mé/v1- v/ é¢ 0 mé+1 mk for nonrelativistic velocitiesv<<c in

special relativity. In fact, the actual expressionthe electromagnetic contribution to the time
dilation for qg / m¢& <<1 interactions isy,,, =1-qg / m¢. And for a Coulomb proper potential

7
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@ =-k.Q/r for an electrical interaction chosen to be ativactlike gravitation, this is
Yem=1tkQq/ mér. So the combined time dilationit/dr =y, y .y, mentioned earlier,
employing the gravitational factoy, =1/,/g,,(r) 01+ GM /c*r in the weak field Newtonian

limit (where the Reissner—Nordstrom metric tei@_ Q°/ c'r> may clearly be neglected),

produces an overall energy which, in the low veigciweak-gravitational and weak-
electromagnetic interaction limit, is given by:

_ oo dt _ 1+k.Qq/ mé r %( GM)( Ingj 1v
E mczdr mMEy, VoV m&\/a\/l—VZ/CZD mg 1+ Z 1+mczr 141 .

k.QqQ 1Ing\? GMm 1GMm\;+ GMIng+_1 GMng%
r 2 c’r r 2 ¢ r c¥ 2ct ct

J. (2.10)

:mc2+% mv +

What we see here, in succession, are 1) the resfjyemc, 2) the kinetic energy of the mass

3) the Coulomb interaction energy of the chargedand) the kinetic energy of the Coulomb
energy, 5) the gravitational interaction energthefmass, 6) the kinetic energy of the gravitationa
energy, 7) the gravitational energy of the Couloemtergy and 8) the kinetic energy of the
gravitational energy of the Coulomb energy. Itlsar that this accords entirely with empirical
observations of the linear limits of these samegas.

Importantly, unlike gravitational redshifts or b#igfts which are a consequence of
spacetime curvatures, these electromagnetic titadiatisdo not stem directly from curvature
They only affect curvature indirectly through anyanges in energy to which they give rise
because gravitation still “sees” all energy. Hemm¥Veyl's ill-fated attempt from 1918 until 1929
in [2], [3], [4] to base electrodynamics ogal gravitational curvature foreclosed any such real
curvature explanation. This is because Weyl'sahdattempt was rooted in invariance under a

non-unitary local transformationy — ¢' =€**y which re-gauges the magnitude of a
wavefunction, rather than under the correct tramsévion ¢ — ¢' =Uyw ="y with an
imaginary exponent that simply redirects the phas&pecifically, the latter correct phase
transformation is associated with emaginary, not real, curvature that places a fadterv/-1

into the geodesic deviatioB’¢* / D7* when expressed in terms of the commutatiyidy,,0,, |

of spacetime derivatives. So at best, electrodyceroan be understood on the basis of a
mathematically-imaginary spacetime curvature. @heration of time flow in electrodynamics

that we suggest here, is therefore much more akihe time dilation of special relativity than it
is to the gravitational redshifts and blueshiftgeheral relativity. It may transpire entirelyfiat

spacetime, and real spacetime curvature only besamicated when the energies addednid
reach sufficient magnitude beyond their linear {emshown in (2.10) to curve the nearby
spacetime.

Also importantly, the similarity of the ratiogg / m¢ and v’/ c® as the driving number
in y,.=1-qg /mc andy, =1/~/1-Vv* /¢, respectively, is more than just an analogy. asst
v<c (a.k.a.mv < mé) is a fundamental limit on the motion of mategabluminal particles, so

8
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too, it turns out thatjg, < m¢é is a material limit on the strength of the int¢i@e energy between
a test chargg with masaninteracting with the sources of the proper potdrgj. This transpires

by requiring particle and antiparticle energiesatoways be positive and time to always flow
forward in accordance with Feynman-Stueckelberd, lnmaintaining the speed of light as the
material limit which it is known to be. Furtherturns out that whegg =k.,Q/ r is the Coulomb

potential whereby this limit becomésQq/ r< mé (a.k.a.r >k,Qq/ m¢), we find that there is

a lower physical limit on how close two interactitigarges can get to one another, thereby solving
the long-standing problem of how to circumvent theO singularity in Coulomb’s law.

To be sure, these electromagnetic time dilatione aminiscule for everyday
electromagnetic interactions, as are special wesat time dilations for everyday motion. So
testing of dt/ dr changes for electrodynamics may perhaps be bestigu with experimental
approaches similar to those used to test relatvishe dilations. As a very simple example to
establish a numeric benchmark, consider two bodige chargesQ=qg=1C (Coulomb)
separated by =1 m (meter). In this event, the Coulomb interactiorergly has a magnitude
k,Qa/ r=k =1/4m,=8.897 10 (Joules). Yet, if the test particle which we taéérave the
chargeq has a rest massmm=1kg (kilogram), then the electrodynamic time dilatiactor
contained in (2.10) iy, =1+k_/¢* =1+ 4, / 4r= 1+ 10" = 1.00000C. This is a very tiny time
dilation for a tremendously energetic interactidhe release of this much energy per second
would yield a power of approximately 8.99 GW (gigsts), which roughly approximates seven
or eight nuclear power plants, or roughly four tintke power of the Hoover Dam, or the power
output of a single space shuttle launch, or thegvaf about seventy five jet engines, or that of a

single lightning bolt. For a special relativisitomparison, consider an airplane which flies one
mile in six seconds, versus light which travelstaoker one million miles in six seconds. Here,

v/c010° and the time dilation ig/;, =1/+/1-v? /¢* 1.00000000000C. So in fact the

exemplary electrodynamic time dilation is subgtdiytless miniscule than this exemplary special
relativistic dilation. However in daily experienadiere one encounters watts and kilowatts not
gigawatts, these time dilations would be of simiteagnitude.

In short, in order to be able to obtain equat@i) for gravitational and electrodynamic
motion from the minimized proper time variationl(Lin a way that preserves the integrity of the
metric and the background fields independentlyhef ¢/ m ratio for a given test charge and
thereby achieves the conceptually-attractive gbalnolerstanding electrodynamic motion to be
geodesic motion just like gravitational motion, vaee forced to recognize that attractive
electrodynamic interactions inherently dilate aegdulsive interactions inherently contract time
itself, as an observable physical effecthis is identical to how relative motion dilatawe, and
to how gravitational fields dilate (redshift) orntoact (blueshift) time. In this way, it becomes
possible to have a spacetime metric which — alth@uiginction of the electrical charge and inertial
mass of test particles — also remains invarianh wifspect to those charges and masses and
particularly with respect to a re-gauging of tharge-to-mass ratio. This preserves the integrity
of the field theory, and establishes that electnaghyic motion is in fact geodesic motion which

satisfies the minimized proper time variati® ijdr from (1.1). As a result, it becomes
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possible to lay an entirely geometrodynamic fouiothafor classical electrodynamics in four
spacetime dimensions.

In the next section we shall review in detail gékalcow (2.1), which includes gravitational
and electrodynamic motion, is deductively deriviehf minimizing the action (1.1) using the line
element (2.5) and the related equation (2.6) fercédmonical energy-momentum. As we shall see
in (3.4), this derivation produces an additionaitén the Lorentz force that is not gauge-invarjant
and thus leaves an unobservable ambiguity in tlysigdl motion. To address this, as reviewed
in section 4, it is necessary to impose two coadgion the gauge field. The first condition fixes
the gauge field to the Maxwell Lagrangian in lidutlie often-imposed Lorenz gauge, but still
leaves some residual ambiguity in the gauge fieldhe second condition fixes the additional
Lorentz force term to zero, thereby removing theaiming gauge ambiguity. Then, in section 5,
we reformulate the former Lagrangian-based gaugedition in terms of the Maxwell action. In
sections 6 and 7, respectively, we use these gaarghtions to uncover a covariant scalar equation
for power, and a scalar field equation for enedgy,fin the presence of both gravitational and
electrodynamic interactions and sources. In essesections 3 through 7 directly explicate the
derivation of the Lorentz force (2.1) from the mmmzed variation (1.1) and the immediate
consequences of this in terms of required gaugedigonditions and resulting power and energy
flux equations. Section 8 then shows precisely trentime dilation and contraction summarized
above, as well as the time flow / energy relatidriQ), are derived by simply requiring that the
metric line element must remain invariant and thekiground fields in spacetime must remain
unchanged, under a re-gauging of the electrodynahange-to-mass ratiq/ m. Finally, section

9 contains concluding remarks.
3. Derivation of L orentz Force Geodesic M otion from Variation Minimization

The foundational calculation to derive (2.1) irdihg the Lorentz force from the
minimized variation (1.1) begins with the spacetimetric c*dr? = g,, dX' dX which is multiplied

through by m* and turned into the free particle energy-momentetation m’c*= g, ¢ §§
containing the mechanical momentysfi = mdx'/ d". This in turn is readily turned into Dirac’s
(iy*a, —m)y =0 for a free electron in flat spacetime making usg ={y*.y’} . Then, we
simply use Weyl's well-known gauge prescription [4jich transforms the mechanical
momentum to the canonical momentupd - 77 = p* + gX'/ ¢ thus the energy-momentum
relation tom’c® = g, 777" in (2.6), and the ordinary derivatives to gaugeaciant derivatives
0, - 9D, =0, —-igA, and thus Dirac’s equation (d)y”@y —m)(// =0 for interacting particles. All
of this emerges by requiring “gauge” symmetry undbe local phase transformation
¢ - ¢ =Ug=6""99 acting generally on the scalar fielgs= ¢ of the Klein-Gordon equation
and the fermion fieldgp =¢ of Dirac’s equation, redirecting phase but presgrmagnitude.
This is all well-known, so it is not necessary &ail this further. The point is that the relation
m’c’ = g, 7“1’ in (2.6) is easily derived from the metédr? = g,, dX' dX using local gauge

symmetry, and that nothing more is needed to fartiie starting point to minimize the variation
and arrive at the combined gravitational and etelytnamic motion (2.1).

10
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Starting with (2.6) and dividing through b’ ¢, we form the number 1 as such:

o (X a (X g s (Y, g )b, as).,, YUY
! g”v[cdr+méAJ[cd+ m&AJ gw[ o m?cNJ[ g rﬁcAj S .(3.1)

This will be useful in a variety of circumstancéhe above includes the mechanical four-velocity
u“ =dx’/ dr and a canonical four-velocity defined by =u” + gX‘/ mc. From here, we shall
work in natural unitc =1 and use dimensional rebalancing to restasaly after a final result.

The first place that “1” above will be useful ,s(i1.1), where, distributing the expression
after the first equality while absorbing,, into the electrodynamic term indices, we write:

o' ¥
V'dr dr

df 4

0=0] dr(1) :ijdr[ g, + 272 At A /XJ . (3.2)

From here, we carry out the variational calculatiwhich deductively culminates in:

d2x 1 d¥ d¥
0=0[ dr=] ox‘dr 9o, g7z * 5000 048 =0, Gy )3 (3.3)
I +da,A-a A,)£+lia (A &) |
m* 7 da 2m* ‘

Going from (3.2) to (3.3) is straightforward. Tio@ line contains the same result usually obtained
for gravitational geodesics, which is the resulseftingg=0 in (3.2). This is the calculation

Einstein first presented in 89 of [1], and doesmexd to be reviewed further. The terms on the
bottom line emerge as a direct and immediate caeseg of starting with the canonical

m’c’ = g, m“n’ rather than the ordinary mechanicaic®= g, ' § energy-momentum

relation, which is to say, the bottom line is aufesnerely of mandating local gauge symmetry.
Some specific guides to note when performing thailéel calculation include: a) we assume no
variation in the charge-to-mass ratio, i.e., tﬁéta/ m) =0, over the path frorA to B; b) applied

to gauge field terms, the variations a¥@, =Jx“0,A, and J(AUA”) =0x0, ( A A"); c) we
also usedA /dr=0, Ad%/ d@; and d) there is an integration-by-parts in thkwation. This
integration-by-parts produces a boundary teffnd(ﬁbdx"):(&df)‘izo that can be

eliminated, and for the remaining term causes ithe reversal appearing i, A, —0_ A, .

The proper timedr #0 for material worldlines, and between the boundaa®A andB
the variationdx” Z 0. So the large parenthetical expression in (31®troe zero. The connection
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-r’,, =+9 (0,9, -0,9,, -9, 0,,) and field strengti¥,, =3,A, -9,A, =0,,A -9, A. So
with c restored, this enables us to extract:
dx‘ d_)Z+ s OdX 1 4

d?x? B . 3
22 -ps 22 Hpr 2242 A A, 4
dr? “dr dr m “cd 2 mé (A” ) 3.4)

This clearly reproduces (2.1) and includes the htzrdorce motion alongside the gravitational
geodesic, all obtained from the minimized varia({®:2). Therefore, (3.4) does represent geodesic

motion, although when contrasted to the Lorentziondt contains an additional tergf (AJA”)
that we shall shortly review in depth.

As with (1.3), we may view (3.4) in an alternatiaieit equivalent way that highlights
how Lorentz motion plus the extra term is nhow meegelconsequence of local gauge symmetry:

It is well-known how imposing gauge symmetry spawresheuristic rule®, - 9, =0, —igA,

and p¥ - = p’+gA'/ ¢ for gauge-covariant derivatives and canonical nuoma, and
m’c=g, ¢ g - nié= g n“n for the energy momentum relation. Here, refertmgl.3),
we see another heuristic rule which emerges inslegkwith these others, namely:

DU’ _duf o _ DI q 14
WO s gy L ar= 22U P8 Aps e 2 9 as(a &) =0, 3.5
Dr dr ¥ or Dr nt 7 2ntd (A’ ) 59
which in the absence of gravitation we may write as
d o _ddf ¢ 1 4
LA A0 Aps e 19 gs(a x)=0. 3.6
dr  9r dr mc ° 2mé (A’ ) 59

In the abovedu” /D1 symbolizes the gauge-covariantaanonical accelerationwhich
is rooted in the further heuristidx’ - 9x' = dX' +( ¢ m¢ @ A defined in (2.5). And more

generally, using the boldfacg notation whenever there are both gravitationaleladtrodynamic
fields, we have usedA” =9u” /9r=0 to denote thegravitationally- and gauge-covariant

acceleration. The equatichu” / 97 =0 in (3.5) states thatovariant canonical acceleratiois
gravitationally-covariant and gauge-covariant, hige shall refer to generally as “canonical

covariance.” Yet, when shown in terms wfechanical four-velocities u” = dx‘/ dr, the
mechanical acceleratiooontains the geodesic motion of gravitation ardlibrentz force motion
of electrodynamics. In the absence of any chargdextromagnetic potential / field the above

reverts back tdDu’ / Dr =du’ / dr +I'? ,, i i =0 for gravitationally-covariant motion (1.3). In
the absence of gravitation we reduce to (3.6) lier danonically-covariant Lorentz force alone.

And in the absence of both gravitation and elecagnetism what remains is meredy” / dr =0
for the Newtonian inertial motion governed by spérlativity alone. From this view, all physical

motion is inertial and geodesic becaude”’ / Dr =0; the motion is simplycovariantly and

12
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canonically-inertialwith any gravitational curvature and any canongaalge elements. What we
observe physically are the mechanical counterpautise covariant canonical motion.

All of the above provides a conceptually-compellinigw of classical physical motion.
However, (3.4) yields a terra"}(AaA") which is not ordinarily a part of the Lorentz ferlaw.
And in fact, this term needs to be removed for empirical reason and two theoretical reasons:

The empirical reason is that this term is not pdrthe well-established, well-corroborated.
universally-observed Lorentz Force law (2.1). Titst theoretical reason is that the motion cannot

depend upon a terrﬂﬁ(AUA") which in turn depends upon and changes as a tumofi the

unobservable local phagg(t,x). Specifically, the gauge transformatigh, — gA = gA -0\
would introduce the phase into (3.4) and thus lg&eeobservable motion ambiguous and in
violation of gauge symmetry. The second theorktEason is that by removing this term, (3.4)
now does fully describe the Lorentz motion as gemdeotion, which is conceptually attractive.
So the question arises whether there is some égaral basis upon which this term does in fact
get removed in the physical world.

A simple fix would be to modify the metric (2.5) Bubtracting out the second-order term
with A A”, and to then start the variation of (3.2) on thsi$ of:

2472 _ 9 _ q A -
ccdr?=pxd¥X mzczdr A K (dgﬁmcdﬁj( 0‘5<+mCdAj rﬁ%:zdgA/. (3.7)

When turned into the number “1” as in (3.1) andchtheed in the variation as in (3.2), it is clear
that this will result in (3.4) but without the eatrerm aﬁ(A,A”) because the source of that term
is subtracted out of (3.7). So the result is theehtz force plus gravitational motion, precisely,
desired. However, this approach loses some comalegtrength, because the Lorentz force does

not emerge simply from applying local gauge symgneird the heuristic rules which emerge from
this symmetry as reviewed in equations (3.5) ané)(3Now the rule becomes: apply gauge

symmetry,and then take the extra step subtracting off the”A A’ term to get a desired result.
Occam's razor would in this circumstance compdbusee if this second step can be eliminated,
and whether the terd” (A, A’) can be removed from (3.4) in some other, morerabway.

As we shall now see in sections 4 through 7, thisagerm in (3.4), and the process for its
prospective removal from (3.4), is intimately cocteel with gauge fixing, Maxwell’s electric
charge equation, the electrodynamic Lagrangian aotabn, electrodynamic and gravitational

power, and the sourc8" in Einstein’s field equation for gravitation.

4, The Lagrangian Gauge and the Geodesic Gauge, and Canonically-Inertial Motion

To study the extra terd’ (AUA”) in (3.4), we start with Maxwell’'s equatiai’ = 4., F*

for the electric charge density. Via the usualrespionF* =9 A’ —0* A" =97 A’ -9” K for
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the field strength we write this in terms of theuge fields asJ” -9,.0" A’ +970., A’ =0. But
we donotuse the Lorenz conditiod,, A" =0 to fix the gauge; rather for now we leave thisrter
as is. We then multiply this Maxwell equation thgh by A;, thus writing the scalar equation:

A - AD.,0° K+ ADFD, R =0. (4.1)

For the second term above we hav&,d.,0° A” =0, A0 X —a;a( AO° A@) , using the product
rule. We may also form the identi%a”Aﬁ =107 ( A AF). Using both of these in (4.1) yields:

A +0,A0" K -10,0°( A K)+ Ad®a, A=0. (4.2)

The second termd,, A0 A’ =0, A0° K =1 F,F”, and with this, the first two terms are

equivalent to minus the electrodynamic Lagrangiamsity, AﬁJﬁ +:Fy F% =-L, . Therefore,
(4.2) is simply:

-10,0° (AN )+ K00, K =L, (4.3)

Again, this is an alternative way of saying th@a;;\]ﬁ = A0, F? , which is a four-dimensional
scalar product of Maxwell’'s charge equation wita gauge field. Note that,0 ,A" =9 ,0 , A
because the gravitationally-covariant derivativamwy scalar is equal to the ordinary derivative of
the same. As is easily seen, the first term aloowains the extra ter@y’ (AUA”) that appeared

in (3.4). And the second term contaidgA” which in the Lorenz gauge is fixed &, A" =0.

The latter is a covariant scalar condition whicmoges one degree of freedom from the gauge
field A”.

Now, because photons which comprise the gauge die®dldnassless, we are meguired
to used.,A” =0 as we would be if photons were massive. Inste@dare permitted to fix the

gauge directly to the physical Maxwell Lagrangigrsktting:

Ao, A =L, (4.4)
This is also a covariant scalar gauge conditiorctvinemoves one degree of freedom, so it would
be a suitable replacement for the Lorenz gauge.obaous reasons we shall refer to this as the

“Lagrangian gaug€ If we were to impose this condition, then asoasequence of combining
(4.4) with Maxwell’'s equation represented via (4\8¢ would also find (renaming indexes) that:

9.,0° (A,A)=0. (4.5)
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Therefore, at the very least, twair-gradiento. ,0” (A,A") of the terma” (AUA”) would become

zero. The question now is: may we and should vepttthe Lagrangian gauge (4.4), and also, the
stronger condition thad” (AUA") =0 itself?

Were we to impose the conditicﬂ’?(A,A”) =0 and thus add further constraint beyond

the covariant scalar relation (4.4), then (4.5) aitill remain true and thus be compatible with
the Lagrangian gauge condition (4.4). And alltoé twould remain compatible with the scalar

representation (4.3) of Maxwell’s equationAng"} = A0, F“ . So there is no apparent conflict
or contradiction that arises from settid@(AUA”) =0. Butitis also well-known that a covariant

scalar gauge condition such as the Lorenz gayg¥&’ =0 or the Lagrangian gauge of (4.4) still

leaves some residual ambiguity in the gauge figldch ambiguity still needs to be removed. The
question is how we do so. Because setﬂﬁéA, A”) =0 would be an even stronger constraint
than (4.5), clearly this would squeeze out somth&urambiguity. The question now is whether

this would remove just enough ambiguity to elimewedlt residual ambiguity, and at the same time
not over-determine the results by imposing too mafstraint.

This brings us back to (3.4). As noted in theageaph prior to (3.7), a gauge
transformation gA, - gA = gA-9d,/A applied to (3.4) would leave the physical motion

ambiguous because of the extra te}ﬁ(A,A"). Further, there is no way to completely remove

this ambiguity without removing this term entirelyhe weaker condition (4.5) which via (4.3) is
a proxy for the Lagrangian gauge (4.4), which imti$ a substitute for the Lorenz gauge, would
remove all traces of this extra term from theed-derivativeexpression that would result were we

to taked. ,d*x’ / dr? by applyingd., to (3.4). But there would still remain some amiifigat the
second derivative which is (3.4) because of whaipbas when we apply the transformation
gA, - 0A = gA-0d,/\. Therefore, to removall ambiguity from the physical motion, we do
need to apply the stronger conditidﬁ(AUA”) =0. Once we do so, all of the remaining ambiguity

is removed from the physical motion of (3.4), ameltesult is no more and no less than the Lorentz
force law. And because the Lorentz force law tgely symmetric under the gauge transformation
gA, - gA = gA-0d A\, we are assured that not only have we removeazhglical ambiguity by

setting a"’(AJA") =0, but also that we have not removed too much anitjigo as to over-

determine the physical result. Rather, we haveigggcdetermined the physical result. And, we
are assured from the derivation (4.1) through (th8) there is no contradiction whatsoever with

Maxwell's equationd” = 9., F .

Therefore, we shall now formally take the following steps First, to covariantly remove
one degree of freedom from the gauge field, wel dixalhe gauge using the Lagrangian gauge

condition Aﬁaﬁa;aA" =L,, of (4.4). This is in lieu of applying the Loremgauge condition
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d.,A” =0. Second, to remove any additional ambiguity ftbengauge field, we shall impose the
condition:

9o’ (A,A)=0 (4.6)

on the four-gradient of the scalar quanfjyA” . The d'Alembertian of this scalar will then also
be zero as shown in (4.5), which is fully compatillith Maxwell's electric charge equation
J# =0,F%. Byimposing both conditions (4.4) and (4.6), tesult in (3.4) now reduces to:

A" _ _pp d¥ dX qp, df

dr2 “odr dr m 7 cd

4.7)

that the additional use of the Lorenz gauge

Note, because we now hav&’d 0., A" =L,
d.,A” =0 is not permitted imposing this condition would causé, =0 and thereby over-

determine the physical results.

Now, the Lorentz force law has been derived fromriinimized variatiorD = 5_|fdr of

(1.1) starting at (3.2) by merely requiring locabige symmetry and, true to Occam's razor, nothing
more. The extra terrd” (AHA") has been removed not by the unnatural fix of (®u) rather by

the natural solution of fixing the gauge to entinrldmove any ambiguity from the physical motion
without over-determination. Following all of thi8.5) reduces to:

s
Aﬁz% EDTUB—F?IF/} u"=dTlf+F’3Wu"u“ —r—gF/}guU=O, (4.8)
r Dr

and the combined Lorentz and gravitational acceterdruly is geodesic motion. Specifically,
the motion (4.8) is inertial in both a gravitatilga and canonically-covariant manner. As a
shorthand, we shall refer to this simply asrionically-inertial motior This is a generalization

of Newtonian inertial motiondu’/dr=0 to the circumstance where gravitational and
electromagnetic fields are present and the tedicfghas a chargeg that interacts with the

electromagnetic fields. Here, the canonigal” / 97 =0 instead, while the mechanical motion
du? / dr 20, which is not inertial, describes what is obsdrwden the motion is referred to the

coordinatesx” of u? =dx’/ dr and then clocked in relation to the proper tinmedir metric
elementdr . Given all of this, we shall refer to (4.6) as tigeodesic gaugecondition.

The foregoing is yet another example of the gdriezaristic rule that when gauge fields
and charges are present, canonical quantities beimthe same way that their counterpart
mechanical quantities behave in the absence ajdbge fields and charges. Thus, for example,

the mechanica(iy”au —m)z/J =0 is inherited by Dirac’s canonic&(ily”@” —m)z// =0; while the
mechanical energy relatiom’c® = g,, ¢ § is inherited by the canonicah’c® = g, 7“7’ of
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(2.6); and the mechanicaflu’ / dr =0 is inherited (absent gravitation) by the canonical
Pu” /D1 =0 for the Lorentz force, see (3.6) without the exéran. And for yet another example,
absent gauge fields and charges, the momenta aldfegent space axes are compatible,
[ 0, p' |=0. But once gauge fields and charges are addedlttiethe canonica 77,77 |=0
which inherit this compatibility. Using = p* + g&X’ and the canonical commutativity relation
[p‘ A ] =-ind A, it is then straightforward to show that the metbal momenta
[P, P |=ignP now become incompatible, where! =9' A -3’ A ~ig[ A, A |/ are the
space components of a non-abelian field strengtr.the electromagnetic field which is abelian,
this become% p', p ] = ighe™ B whereB* =B is the magnetic field bivector and the Levi-Civita

tensor £**=-1 given that the lower-indexed,,,=+1. So the magnetic fields measure the
incompatibility of the mechanical momentum compdeen

This last example, via the heuristic interchange - p,, is simply a variant of the

fundamental premise that in gauge theory, the fislcength is animaginary measure
[9#,9" |@=-igF*¢ of the extent to which the gauge-covariant (cacaipiderivatives do not

commute when acting on a generalized figld This iswhy Hermann Weyl pursued gauge theory
to begin with, as an effort to generalize into latynamics, general relativistic curvatures for
whichR, A = [a;v,aw] A;. And this is whyF*" is often referred to as the “curvature” tensor.

However, as discussed after (2.10), it took West pver a decade [2], [3], [4] to finally realize
that gF* ¢= i[@”,@”]gp must bear an imaginary, not real, relation to atuxe, and that the root

symmetry was not under a re-gauging, but ratheeuade-phasing, of electron wavefunctions.

Now, let us explore some further significant réswhich arise from the Lagrangian gauge
(4.4) and the geodesic gauge (4.6). As notedeagtial of the previous section, these result relate
to the electrodynamic Lagrangian and action (thenér already seen in the Lagrangian gauge

A°0,0,,A =L, of (4.4)), electrodynamic and gravitational powand the source*’ in

em

Einstein’s equation.
5. The Electrodynamic Action in Lagrangian Gauge
It is very illustrative to rewrite the Lagrangigauge (4.4) using the product rule as

Lon=A0,0, K =0,(N0,K)-0,Kd, K, (5.1)

and then obtain the electrodynamic actigp = I d' ... Once inside the action integral, we may

set Id“xaﬂ(A”a;a A(’) =0 via the boundary conditior,(t,x) =0 at the extremunt,X = tco.
What we then end up with is an action:

17



Jay R. Yablon, May 31, 2016, revised June 16, 2016
Sw=|d A, =] &8, Ko, A=-[ d fo, o, A+T", B, A, (5.2)

noting also thal “_, :agw/—g/w/—g whereg is the metric tensor determinant. In flat spaeti
with d,/—g =0, this becomes the very simple action:

Sn=[dx,=-] d {0, A). (5.3)

It will be seen that (5.3) is analogous to tRegauge conditions, which are ordinarily written as

oL = —(aaA")2/2£. However, (5.2) and (5.3) are not local condiiotiey are global because
they represent an integral over the entire voluftbefour-dimensional spacetime.

Once we are working with the action, we are buttep saway from Quantum
Electrodynamics, which is generated through thé pdegrationZ, :I DA” exp(iSem /h). As

usual, we may start WithAﬁJﬁ+% F(,/;F"‘?:—Eem to obtain the electrodynamic action
Sem:jd“><% e,( gr“aga”—aﬂaV) A-J A). Note that this has no expressly-appearing

gravitationally-covariant  derivatives, because ohe t cancellations that occur via
F#=07A -0* A" =0 A -9” K. However, there is an implicit gravitational terbecause
JF = 0, F? . This is the exact origin starting at (4.1) af th, appearingin (5.1) and (5.2). Then
we use Gaussian integration to path integrate @&l .u8ut the upshot of (5.2) is to tell us that:

Sm=[ a2 A 0,07 -040") p- J A)=-[ & é{aa A e, B, fis) (5.4)

This provides a second expression for the actiaedan employing the Lagrangian gauge (4.4)
in the process of deducing the combined gravitatiand Lorentz force motion of (4.7) and (4.8)
from the minimized variation (1.1) as applied in2)3 The other constraint, of course, is the

geodesic gauge conditiaf (A,A”) =0 of (4.6) to which we now turn. This constrairades to

a relation for electrodynamic and gravitational powand leads to a direct connection with the
sourcesT *in Einstein’s equation.

6. The Geodesic Gauge and the Electro-Gravitational Power Equation

Next, we study the effect of the geodesic gaugdlition (4.6) on the canonical energy-
momentum relation (2.6). We first return to (2.&hich, with indices summed and witt=1,
we expand without commuting the left-right orderioigthe momenta and the gauge fields, to

obtain M= p @+ gA §+ gp A+ § A2 The reason we refrain from commuting is to
highlight that were we to combine the two middlereintogA, p” + gp, A =2 gA f we would
need to commutg_ and A’ which needs to be done with care given the Heisentommutation
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relation [ o] B] =—ind; B for any field B(t,x) which is a function of the spacetime coordinates.

And as to the time component, we would also warieanindful of the Heisenberg equation of
motion [HO,O] =-ihd,O for an operatolO with no explicit time dependence, together with

relationship H, /) = p,|¢) between the Hamiltoniaii, operator and the observable energy
P, = E which contains its eigenvalues. Therefore, e¥eveiwere to commute the energy with
the time component of the potentia’ = ¢ thus setting[ Py Ao] =0, we would still have to

recognize thatp, A = A p - 9, A and thus include a term of the forrimid, A’ if not ~ind A’

, If it was our desire to move beyond classicalgits/ and account for the quantum mechanical
non-commutativity.

For present purposes, to be completely general, uet use the relationship
[ p,, A |==ind, A aka.p, A= A f - hd, K covariantly extended into the time dimension,
recognizing that we may always restrict this togpace components by setti@go, A°] =0, thus
d,A° =0, and may additionally ignore quantum effects ehfiby setting[ I A‘] =0, thus the
space divergence, A’ =0O[A =0. Therefore, we start by writing (2.6), with=c =1, as:

m =p F+20A F+ 4 A A- id, A (6.1)

The final termd A’ arises from the commutativity just discussed,mag be removed or ignored
under the circumstances just discussed.

Now, let us take the covariant spacetime gradiptof the above. The rest mass is
invariant, and so its four-gradieat,m=9 ,m=0. Therefore, after reduction we obtain:

0=p,0,p + P, A F+ahd, B+ @,( AA)-1 a0, A (6.2)

Now we apply the geodesic gauge (4.6), so the ﬁ;};r(rA,A") =0, ( A A(’) =0 isremoved. We
may also use the field strength to replacgA, = F,, +0.,A;,. Additionally, p” =mu is the

ordinary mechanical momentum, so we can divide mutvhereby p’ — u’ throughout the

contravariant momentum terms in the above. Thegregating the field strength term on the left,
(6.2) becomes:

qF,, U =-pd,0 -qAd, 0~ @, Al+i (d o9, A 6.3)

We of course recognizgF,,u” as a variant of the Lorentz force term in (2.1).
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Now, we wish to express the terms on the righelation to the passage of proper time,
that is, as derivatives along the curve, see @) (3.7). For the next-to-last term in (6.3) we

may substitute d,,A,u” =dA/ d-T'", Ad derived using the gravitationally-covariant
derivative and the chain rule. So also W?gpagA" =0,0,A”, (6.3) advances to:

o d . 1, "
AR == R0, ~ B0, 0= G 7+ @ ALHE (4 39,0, P 64

As to the remaining terms, we now multiply b§ = dx’ / dr throughout, giving us aﬁa;ﬁu"in

the first two terms after the equality. Then weynsamilarly derive and then substitute

u’d.,u” = df / dr+7, o . Alsowriting p, = my, for the remaining mechanical momentum,

and seeing that the terms Wifﬁgﬂﬂ,uﬁu" cancel identically, and using the chain rule ia final

term u’0,0, A’ =(d/ dr)o, K/ =0, dA/ d, with renamed indices anki=c=1 restored, we

now have:

q v q d q .dA 1.9, dA

-F Uy ==-my+-A|l—-—"Ud—2-n t u+=n—a,— 6.5

c (q, %)drc ar w Y 2 " mc’ & (6:5)
This (q/ c) F,,u“U term on the left is a scalar number, and it hasedsions of power.

So this is an expression for electrodynamic angligigonal power. However, becausg, is an

antisymmetric tensor, this term vanishes identycallherefore, moving all of the mechanical and
gravitational terms to the left and keeping thectetmlynamic terms on the right, we may
consolidate to:

du’ gd 1
o, ud (=== (Ad)+Z h—0,—. 6.6

It is easily seen that when the right hand sidebwes zero in the absence of electrodynamics, the
left hand side contains the gravitational geodesation (1.1). The final term may also be
vanished by setting =0, i.e., in the classical limit. In terms of spacet coordinates with all
terms expanded, and isolating all the acceleraéons on the left, another way to express this is:

o o& cd)d 2 mc’ d

( 0% A&'J d2x _[ T, d¥' dX _ g dAJ dx, 1, q, dA 6.7)
In the absence of gravitation, we merely Eé};u =0. And if we neglect the non-commutativity

discussed in the first paragraph of this sectioentwve may set =0 to vanish the final term. The
effect of the geodesic gauge (4.6) in all of thedoing, starting at (6.3), is to have removed the

terms A, A’ which are of second order in the gauge field.
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Now let us see how this connects to Einstein’saqn and gravitational curvature.
7. The Electro-Gravitational Energy Flux Field Equation

As already reviewed, by fixing to the Lagrangiauge Aﬂaﬂa;a A" =L of (4.4)in lieu
of the Lorenz gaugé.,A” =0, Maxwell’s equationd” = a;aF""} also constrains us to require the
relation 6;[,6" (A, A") =0 of (4.5). The stronger geodesic galﬁj‘e(pb A") =0 of (4.6) was used

to remove the remaining gauge ambiguity from theatiqn of motion (3.4), or (3.5), thereby
producing the combined gravitational and Lorentcdolaw of motion (4.7). This raises an
interesting question: if we want to explore the atijpon the equation of motion of the weaker

condition 6;/30/3 (A,A") =0 which is required for compatibility with Maxwell'squation, then it
is clear that this impact can be seen by takingcthariant gradiend , of the original equation
of motion (3.4) from before we imposed the strongendition of (4.6). What makes this

interesting is that this ties together the sourmdsoth the Einstein equation for gravitation and
Maxwell’'s equation for electric charges, as we lshalv see.

Mindful that AﬁJ‘g +3Fp F% =-L, ., we start by taking the covariant gradiehf of

(3.5), and then applying (4.3) which stems from Mak's charge equation, to obtain:
pu” __ DU’ q

a;ﬂAﬁzaiﬁ DT _a;ﬂ Dr _Ea;B(FBJUJ)-'-%(Eem_Aﬁaﬁa;aAa):O' (71)

To be clear, the above via the development laidfar (3.2) to (3.5) is a direct deductive
consequence of taking the variatiOrF 5_[de based on the canonical mass-energy-momentum

relation m*c’ = g, 777" of (2.6) in combination with Maxwell's charge edjoa J* =9, F%.

No additional assumptions are used to obtain (@rid,in particular, no gauge conditions have yet
been imposed on (7.1).

First, let us focus on the terﬁjﬁDuﬁ/ Dr. Using the expressioR?, B, :[6;V,6W] B,

which relates the Riemann tensor to the degreehiohagravitationally-covariant derivatives do
not commute when operating on an arbitrary vect®y, from which we deduce

R%,u, = R,y =[d,,0,] ¢ for the velocity four-vector”, it is easily seen that:

Du” ox’ oxX oX
0,——=0, —0,u" |=0,—0, U +——0.,0,u =0.,Ud, S+ 19,0, 4~ B, t (7.2
* Dr ’ﬂ[al' v j Foar Y ar *V s v BV (7:2)
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So the Ricci tensor which is part of the Einstedoation -«T , = R,
to the energy tensaor,, which is the source of gravitation, is seen t@betained in (7.1). This

-3 g, Rand thus related

4

is especially direct using the inverse foRy), = —K(-l;w —3 O, T) :

Next let us insert (7.2) into (7.1) and also expdarms while applying Maxwell's
J, :a;/,FﬁJ. With some index renaming, this now yields aa&cabuation:

B
0,A =0, 2% - R -9y weo, 0, d+ ti0,0, d-3 Eo, G
‘ T DT m ’ ’ T m ' (7.3)

2

o)

+

(Lom—A%0,0.,A7)=0

2

3

We now find both gravitational sources R, = —K('I;N -3 0. T) and electric charge sources

Hod, :a;ﬁF/’U (with g, =1/&,c* balancing dimensionality) all as part of the sasyaamical
equation. Now, to eliminate the entire second bifg€7.3), we impose the Lagrangian gauge
condition A%d 0., A” = £, of (4.4) which covariantly removes just as muatettom from this

equation as does the Lorenz gauggA” =0. We may also writéd d,u” =0,0,U" because

d,u” is a scalar. We also multiply the above throughmh while noting thatmR,, U’ U has

dimensions of energy per area i.e. energy flux. thiéa restore so as to give all terms this same
dimensionality, while mindful thak =87G /c* and y,e,c> =1. And, we make explicit use of

R, = K('I;N -3 0. T) while isolating all sources on the left. With aflthis, these sources are

v -

now seen to bring about motion via the differengiqliation:
kT, mud +ikTmy +u, q) U= &, 9, ‘v mao, "wv( /q)c’fp, 7. (7.4)

This is a combined differential equation for thexgtational and electrodynamic motion of
material bodies with a four-velocity’ and its first and second covariant derivativegained in
the foregoing. Because all terms have dimensibeseargy per area, i.e. energy flux, we recognize
this to be a scalar energy flux equation.

In general one may find it helpful to keep this &tipn in the form of (7.4). To the extent
one wishes to be more explicit about the derivativevolved in (7.4), we may expand using

d,u’=0,u’+I* U and the like. So the first term after the eqyast

mo,uo U =m, do, d+2r”, mbo, u+r" r“_  mu (7.5)

14

a

Because d,u” =0 by the chain rule, we haved, u’=r"_u’. Noting as well that

av

M, =0,4-9/y-9=%(1/9)d, g, with further use of the chain rule the next témn(7.4) is:
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1
mwa,a, U = mea, (v, d)= 2 (1 199 dfj

m JE—
dr ox*{2goX o

1 1(dgj2 1d’g 1dg X
=—m|-—=|=| += + =
2 g®\dr gdr? goX do?

(7.6)

Placing (7.5) and (7.6) into (7.4) and also expagdhe F’_0..u’ term, we then obtain the final
expanded form of the energy flux equation:

—KkT,mu'd +3xTmy G+, q) U

=md,wo,u +2r“, mdo, i+re r’ mt : (7.7)
2 2
2 g°\dr 2 gdr© 2 goX d° c c

In regions of spacetime where there is no gramgatnatter, i.e.in vacug we setT,, =0 and

T =0 above, and then solve for the motion, given ohky probability density contained in the
time component ofl, = p,u, :Zygt// . In the further absence of electrodynamic souvoeset
J, =0 so the entire top line of the above equation besorero.

One interesting way to use (7.7) is to remove adirgy sources except for the Maxwell-
Poynting electromagnetic field tensor which #mqc’T, =-F F°, +ig, F,F” with
dimensional balancing, with,e,c® =1. This tensor of course has no trace, which iateel to

why electromagnetic fields travel at the speedgiftland photons are massless. So when this is
the only energy present — and recognizing thaethesgy still gravitates and thus affects the roetri

and the spacetime curvature — then, with the saeroe 1,cqJ, U isolated on the left, and with

the constants reorganized via/ 4r,c* = G/ 2rrc'k, to display the embedded rati®/ k, of
Newton’s to Coulomb’s constant, (7.7) becomes:

HeQd, 0

=m6vu“6ﬂlJ’+2F“WmLi’6ﬂlﬁ+[r"wrﬁm— C_ I'—”VJ mti u+8L E P mua(7.8)

277'(.:4ke o o
2 2

_lmiz(ﬂj romil 8, Imi29 O Ap s 0o,
2 g \dr 2 gdr? 2 gaxX d° c C

An equation free of electrodynamic source charfges tesults from setting, =0 in the above.

It is important to keep in mind that (7.7) may dexived directly from the known Lorentz
force law (2.1) as represented in (4.8), even hadet obtained this from the minimization of the
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action (1.1). This is because (7.7) is simplyghacetime gradierd. , applied to (4.8) as starting

at (7.1), and (4.8) is true whether or not we abiigirom a variation. But the motivation to opera
on the Lorentz force law in this way comes fromftt that when we do obtain the Lorentz force
from a variation, Maxwell’'s equation]” = 2, F? together with the Lagrangian gauge

A"’aﬁa;aA" =L, of (4.4) mandate the gauge conditi@r)gaﬁ(ﬁbA”) =0, which is a weaker

m

condition than the geodesic gau@%(A,A") =0 of (4.6). So when we study the impact of this
weaker conditiona;ﬁaﬁ(A’A"):O on the Lorentz force, the result is the energx flield
equation (7.7). When we impose the stronger cimmd” (AHA") =0, the result is the Lorentz
force itself. What is important about (7.7) andBfs that they put the energy source tengpr

or the spacetime curvaturg,, (as chosen for best convenience in any given [zion), directly
into the dynamical equation for energy flux.

Having now reviewed how the combined gravitaticarad Lorentz motion (2.1) is derived
from the variational equation (1.1), and the reggiigauge conditions and the immediately-
consequent power and energy flux equations, westmw how to derive the electrodynamic time
dilation and contraction summarized in sectionAQjain, this is premised on requiring the line
element to remain invariant and the backgroundgi@ spacetime to remain unchanged, under a
re-gauging of the electrodynamic charge-to-mass gt m.

8. Electrodynamic Time Dilation and Contraction

As noted earlier, the number “1” constructed iri)3s useful in a variety of circumstances.
Another such circumstance is to explicitly introdugche Lorentz contraction factor

¥, =1/V1-v* /¢* and the ordinary four-velocity” /c=(1,v/c). With g, =7, it is easily
shown and well-known thay,, (yvv”)(yv\/’)/ ¢ =1, which is another “1.” So if we write (3.1)
in flat spacetime ag,U“U" /c* =1, we see that the canonical velodity', not the mechanical
velocity u”, is related expressly tg, and v by:

U¥ =y V-, (8.1)

This may then be generalized into curved spacetiddditionally, we may ascertain from the
final equality in (3.1), when combined with (8.fhat:

U=+ Lo = ooy (8.2)

mc da mc

This may be conversely rewritten in terms of théirmairy mechanical velocity as:
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d_Xﬂ:U#__qAﬂ:yv“—_qA(’_ (8.3)
dr mc Y mc

u =

With these relationships, we return to (2.9), Whstates that the line elemetit must be
invariant, and the metric tensag,, and the gauge fieldd” [the latter now subject to the
Lagrangian and geodesic gauge conditions (4.4)4u6d] must be unchanged under a rescaling
of g/ m- d/ m. Thus, itis (2.9) whiclefinesthe coordinate transformatiorf — X* leading
to electrodynamic time dilation and contractionovNwe show exactly how this occurs.

Generally, we will wish to compare the rate atethiime flows for a massive body which
has a net charge of zero and so is neutral, itioaléo a material body with a nonzero net charge.
We assume for now that there is no gravitationa §4.9), this means that we shall sgt 0

(neutrality) and leavey' as itis (i.e., charged). Therefore, (2.9) became

c2dr? = g, dx' d¥ = gv( d¥+1 g Aj( de+-9 o % (8.4)
mc mc

From this, we can immediately extract the coordineansformation:

I

dXt = ' - o A, (8.5)

/

Because the coordinateg are associated with a neutral net charge, asadiowél convenience
we shall drop the primes from the mass and chandenaite this asdx” = dx'—( ¢/ m¢ ¢ A.

Thus, dX* represents the coordinates of the body wjthm, and dx* the coordinates of the
neutral body. With this notational adjustment, divlding through byd7 , we obtain the relation:

SRS YT e Y (8.6)
dr dr mc mc

The time component of this witk” =(ct x) and A* =(@A) is easily seen to be:

d _dt op
at _dt_ o 8.7
dr dr mdé 8.7)

So in the rest frame whed / dr =1 for the neutral body (because we have positedantgtion
for now) and A = (%,O) with ¢ being the proper scalar potential, this becomes:

_dt a%
= —1- ) 8.8
Ven =47 2 (8.8)
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This is where we define the factgr,, first introduced between (2.9) and (2.10), tdleerate of
time flow for a net-charged bodyin a proper potentiag, in relation to the rate of time flow for

a net-neutral body, all at relative rest. And tkisvhere the dimensionless ratigg / m¢ which

is central to this variable time flow first ariseds obtained from (8.4), the above (8.8) is what
allows the Lorentz force motion (2.1) to be dedufredh the minimized variation (1.1) without
compromising the integrity of the background fields

Now, because” :(%,O) at rest, the question also arises how to speaifygenerally
when there is motion. Specifically, the choice ldobe betweenA” =gU*/c using the
canonical velocity, olA” = gu” / c using the mechanical velocity. But we see fldrm= y,v* in
(8.1) that A¥ =gU* / c is the proper choice, that is:

A =qU"c=qy V' c, (8.9)
because at regtv* / ¢=(1,0), and this yields the correct result th&t = (¢,0) at rest.

With (8.9) we may now obtain several other impatrt@sults. Using this in (8.3) yields:

i
v % i (l_r?]_@ YV = Ve V=V el (8.10)

So we see that the mechanical veloaity is related to the canonical velocity” through a
multiplicative factor given byy, . The inverse result ¥ =u”/y,  can be combined with (8.2)
with everything multiplied through by to also obtain:

mU“ =~ m =L g=md+9d A=n". (8.11)

yem yem C

This contains the relationship” =y, 77 between the mechanical and canonical momentum,
mirroring u” =y, U* in (8.10). For the gauge field itself, we may ¢ne (8.9) and (8.10) thus:

u U u
Aﬂ_%u eyt _ 1 gu 1 %(1_ qwéjyvvu_ (8.12)
m

Then, we may multiply (8.10) through bwyc to obtain the energy-dimensioned four
vector, and also use (8.11), to write:

M
cp’ = med = m%: mg..v, = me, U= . (8.13)
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All of this finally leads us to take the time conmgmt of (8.13) in the non-relativistic limit, nangel

a%
1-— 2
=cp’ = = mc’ _9% |41V 1 1 .
E=cp’ = méy, y,= mé 1_\/2 O m%{l mczj(lJch?j rr’rclrz v ¢ > @ .(8.14)
c?

This is how the key energy relationship (2.10) imi¢es. Here, in succession, we see 1)

the rest energync, 2) the kinetic energy of the mass3) the electrical interaction energy of the
charged mass, and 4) the kinetic energy of thdarelatenergy. If we then choose a Coulomb

proper potentialy = -k, Q/ r so that the charges haopposite signgnd so are attracting in the
same way that gravitation attracts, then we arpnegisely at the first four terms of (2.10).

Then to add gravitation, it is convenient to staith the metric (2.5) in the form
c’dr? = g,, DX* DX’ for the charged mass that has #é coordinates. We take this mass to be

at rest in the gravitational field so thdt® = g,,Dt?, a.k.a.Dt'/dr =1/,/qg,,. Earlier, we set
dt/ dr =1 to arrive at (8.8), which was appropriate for aitred body because we assumed an
absence of gravitation. But when gravitation isgent, then even for a neutral body, we must use
(8.8) in the formdt'/dr =dt/ dr— gg/ mé, because time dilation and contraction in the
gravitational field will causalt/ dr to be some number that is not precisely equal tdHat is,

dt/ dr cannot be summarily set to 1 once there is gramita So, if we were to write out
c’dr®= g, DX* DX’ using Dx*=dX*+(q/ m¢ & A, and also use (8.8) in the form

dt'/ dr = dt/ dr — qg / mé for the reasons just mentioned, we obtain:

1 _DtU_dt og _dt_oag  ap _ dt (8.15)
O, dr dr mé d mé mt d

The electrodynamic terms cancel, leaving the ugelationshipdt/ dr =1/,/ g,, =y, for time
dilation or contraction for a particle at rest ingeavitational field. This then supplements
Vv = V¥ ok, In (8.10), (8.13) and (8.14). Particularly, (8.14ow becomes
E=cp’ = méy, ..., Which is synonymous with (2.10), and it then beee possible to

simultaneously represent the combined effects a¥itation, electrodynamics and motion, upon
time and energy. The widely-corroborated, welbbished energy relatioR = cp’ = méygyenyV
shown in (2.10) , then results directly from megy(8.14) and (8.15).

9. Conclusion

The fact that (2.10) correctly reproduces widelyrgborated, well-established energy
relations, is an important point of validation thila¢ geometro-electrodynamic viewpoint which
has been presented here is empirically correctveider, the mainspring which enables everything
to fit together without contradiction is the timel relationship
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dt _ _ 1+qg/mé ( ij( %j 1v

contained within (8.14) when supplemented by (8alfs) applied to gravitation in the Newtonian
limit. This is the time-component of the four-veity, by which (8.10) becomes extended to:

u

dx
u” a5 VoVerd/ W' =V . (9.2)

This is turn is the four velocity that appears tigioout the key dynamical equations developed
here. For example, this four velocity (9.2) wille time component (9.1) appears in the equation
of motion (4.8) itself, in the power equations {G6éd (6.7), and in the energy flux equations (7.7)

and (7.8). Given the direct relation between (@rid the energy relation (2.10), it should be clear
that the energies and powers governed by theserdgabequations are the energies of motion,

and of gravitational and electrodynamic interacti@htaken together.

Consequently, it becomes most important to perfexperimental tests of these predicted
time flow changes for charged bodies in electroretigriields. Although these time flow relations
(9.1) go hand-in-hand with the energy relationd@. it is (9.1) which nevertheless is the
theoretical foundation of the energy relations Q2.1 That is, the widely-corroborated energy
relations (2.10) are seen in the present analygdie rooted in geometrodynamic measurement of
the flow rates of time. Experimental observatidra@hange in the rate at which time flows for
charged bodies in electromagnetic fields in acamdavith (9.1) — or possibly the explanation of
additional known physics on the basis of these tiloe@ rates — would therefore support the
validity of this geometrodynamic foundation for sd&cal electrodynamics in four spacetime
dimensions.

The author wishes to acknowledge and thank Joys@ani for his encouragement and his input
throughout the conduct of this research.

References

[1] A. Einstein,The Foundation of the General Theory of RelatiAtygnalen der Physik (ser. 49, 769-822
(1915)

[2] H. Weyl, Gravitation and Electricity Sitzungsber. Preuss. Akad.Wiss., 465-480. (1918).

[3] H. Weyl, Space-Time-Mattef1918)

[4] H. Weyl, Electron und GravitationZeit. f. Physik, 56, 330 (1929)

28



