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Abstract: We summarize how the Lorentz Force matioserved in classical electrodynamics
may be understood as geodesic motion derived bymizing the variation of the proper time
along the worldline of test charges in externalgmtials, while the spacetime metric remains
invariant under, and all other fields in spacetimenain independent of, any rescaling of the
charge-to-mass ratio g/m. In order for this to ngdime is dilated or contracted due to attractive
and repulsive electromagnetic interactions respetyi, in very much the same way that time is
dilated due to relative motion in special relatyitwithout contradicting the latter's well-
corroborated experimental content. As such, it bee® possible to lay an entirely
geometrodynamic foundation for classical electradyits in four spacetime dimensions.

PACS: 04.20.Fy; 03.50.De; 04.20.Cv; 11.15.-q
1. Motivation and Purpose

The equation of motion for a test particle alongeadesic line in curved spacetime as
specified by the metric intervaf’dr? = g,, dX' dX with metric tensorg,, was first obtained by

Albert Einstein in 89 of his landmark 1915 papdriftroducing the General Theory of Relativity.
The infinitesimal linear elemendlz = ds/ ¢ for the proper time is a scalar invariant which is

independent of the chosen system of coordinategewlise the finite proper timezjfdr

measured along the worldline of the test partideveen two spacetime evetsandB has an
invariant meaning independent of the choice of dmates. Specifically, the geodesic of motion
is stationary, and results from a minimizationtd variational equation

o:djfdr. (1.1)

Simply put, a material particle goes from evAnio eventB in the physically-shortest possible
proper time. After carrying out the well-known @aliation originally given by Einstein in [1], the
particle’s equation of motion is found to be:

d>’ _ df a dx
@ e 1.2
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with the Christoffel connection defined byl ”, E%g‘“’(aagw -0,9, —avgaﬂ) and the

relativistic four-velocity given byu” =dx“ / dr. The geodesic given by (1.2), again, represents
the shortest proper time between two events. Mty by the geodesic nature of gravitational
motion, the purpose of this paper is to summarae klectrodynamic Lorentz Force motion is
likewise geodesic motion, as a consequence of dferet unrecognized time dilations and
contractions which occur any time two material lesdare electromagnetically interacting.

2. Geometro-electrodynamics and Time Dilations and Contractions: An Overview

To begin, if the test particle, to which we nowverdse a massn> 0, also has a non-zero
net electrical charge#0 and the region of spacetime in which it subsitése &as a nonzero

electromagnetic field strengtfh” # 0 (defined as usual b #* =9” A” —0“ A in relation to the
gauge potential four-vectoh? , with F#° containing the electric and magnetic field bives®
and B), then the equation of motion is no longer given(by), but is supplemented by an
additional term which contains the Lorentz Forae, laamely:

d’>¥  df d¥ dk dk U
= =Ff —~ 24+ FF—"=1° v +—¢ F"—. 2.1
dr? dr ®odr dr mqg"” w m%"” c 2.1)

The above force law is of course a well-known, veeltroborated, well-established law of physics.

Given that the gravitational geodesic (1.2) spesia path of minimized proper time (1.1),
the question arises whether there is a way to wlffal) from the same variation as in (1.1), thus
revealing the electrodynamic motion to also ergaiticles moving through spacetime along paths
of minimized proper time in four spacetime dimensio Conceptually, it cannot be argued other
than that this would be a desirable state of affaiBut physically the difficulty rests in how to
accomplish this without ruining the integrity oktmetric and the background fields in spacetime
by making them a function of the charge-to-mas® rgf m. This ratio is and must remain a

characteristic of the test particle alone. Itas and cannot be a characteristic of the line efédme
dr, or the metric tensog,, , or the gauge fieldA”, or the field strengthF#* which define the
field-theoretical spacetime background through Wwitke test particle is moving. And, at bottom,

this difficulty springs from thenequivalenceof the “electrical mass” (a.k.a. charggpnd the
inertial massn, versus the Newtonian equivalence of gravitatiamal inertial mass. In (2.1), this

is captured by the fact thatdoesnot appear in the gravitational teraf * LUAU, while theg/ m

ratio doesappear in the electrodynamic Lorentz Force terat e rewrite a{q/m) F°, " in
natural units withc =1.

This may also be seen very simply if we compare tdeis law with Coulomb’s law. In
the former case we start with a forée=-GMm/ r* (with the minus sign indicating that
gravitation is attractive) and in the latt€ =-k Qq/ r* (for which we choose an attractive
interaction to provide a direct comparison to giaidon), whereG is Newton’s gravitational
constant and the analogous =1/ 47, = ¢4, / 47 is Coulomb’s constant. If the gravitational
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field is taken to stem frorivl and the electrical field fror®, then the test particle in those fields
has gravitational masse and electrical masg But the Newtonian forc& = ma always contains
the inertial massn. So in the former case, because the gravitatiandl inertial mass are

equivalent, the acceleratioa= F/ m=-GMm/ mf=- GM/ f and these two masses cancel,
giving —I'"”Wu”u“ without any mass in (2.1). But in the latter cabe acceleration

a=F/m=-kQdq mf=-(d m k@ ¥ because the electrical and inertial masses are not

equivalent, hencéq/ m) F# ' containing this same ratio in (2.1). Here, theiarois distinctly

dependent on the electrical and inertial mags@sdm of the test particle, even though different
chargegy with different massem may all be moving through the exact same backgtdietds.

So, were we to pursue the conceptually-attractva of understanding electrodynamic
motion as the result of particles moving througacgtime along paths of minimized proper time,
with (1.1) applying to electrodynamic motion just & does to gravitational motion, the line

elementd7r would inescapably have to be a functidn(q/ m) of g/ m. And this in turn would
appearto violate the integrity of the line elemenlr as well as the metric tensa,, in

c’dr? = g,, dX' dX, because these would aéem to belependent upon the attribugandm of

the test particles that are moving through the sjpme background. Were this to be reality and
not just seeming appearance, this would be phygicapermissible.

Consequently, despite there being many known d&sivaof the Lorentz Force law, there
does not, to date, appear to be an acceptablengootithe Lorentz Force law in the variational

B
equation0= 5le dr which would reveal electrodynamic motion to be dg=sic motion just like

the familiar gravitational motion. And this is laese it has not been understood how to obtain
electrodynamic motion from a minimized variationil@lsimultaneously maintaining the integrity
of field theory such that the metric and the baokgd fields do not depend upon the attributes of
the test particles which may move through thedddieThis, in turn, is because electrical mass is
not equivalent to the inertial mass, which caustsrdnt test particles to move differently even
when in the exact same background fields, in cehtta the Newtonian equivalence of the
gravitational and inertial masses from which altigées respond alike in the same background.

Given that when a first test particle with eleatimass) and inertial masm is placed in
afield F#*, and a second test particle with electrical mgisand inertial massn of a different

ratio '/ m # g/ mis placed at equipotential in the same fiElff , there are observably-different

Lorentz Force motions for these two different fgtticles even though they are at equipotential,
having the line elemerdr be a mathematical function gf/ m yet be physically independent of

g/ m may seem paradoxical. Nevertheless, it is passibhave a line elemendtr (g/ m) which
is a function of the electrical-to-inertial massioaq/ m, from which the variational equation

0= ijdr does yield the combined gravitational and elegtnadhic equation of motion (2.1),
yet for which the line elementr, the metric tensorg,, , the gauge fieldA”, and the

electromagnetic field streng®”” are all independent of thig/ m ratio. Specifically, close study

3
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reveals that this paradox may be resolved by razognthattime does not flow at the same rate
for these two test particles in very much the saage that time does not flow at the same rate for
two reference frames in special relativity whicle am motion relative to one another

In the absence of gravitation witp,, =77, and I'ﬁw =0, the first test particle will have
a Lorentz motion given by:

deﬂ :_q [Iﬁo’d_)g

2.2
d? m'*“ cd (2.2)

Note that this Lorentz motion also contains a $etoordinatesx”. Now usually it is assumed
that for the second test particle the motion igiby this same equation (2.2), merely with the
substitution ofqg - q andm - ni; that is, by:

dzxﬂ— q Fﬂad_i

2.3
dr? m”"” cdr (2:3)

The particular assumption here is that there ishange in the rate at which time flows when (2.2)
is replaced with (2.3); and more generally the aggtion is that the coordinate intervdk’ in
(2.2) is identical to thelx” in (2.3). Yet, it is impossible to have both (2ahd (2.3) emerge

B
through the variatio® = 5le dr from the same metric elemedr , and simultaneously maintain

the integrity of the field theory, unless the caonades are different, whereitx” in (2.2) isnot
identicalto what must now bex’ - dX? # dX in (2.3).

In fact, the very physics of having electric charge electromagnetic fields induces a
change in coordinates as between these two tegieshwith differenty’ / n # g/ mr, very similar

to the coordinate change via Lorentz transformatioduced by relative motion. As a result, the
electrodynamic motion of the second test charggvisn, not by (2.3), but by:
2ypB /
dr* ni cdr

(2.4)

Here, x? in (2.2) andx” # x* in (2.4), respectively, are two different setgobrdinates, yet they
are interrelated by a definite transformation. Mimsportantly, this results itime itselfbeing
induced to flow differently as between these twts $# coordinates, making time dilation and
contraction as fundamental an aspect of electradics as it already is of the special relativistic
theory of motion and the general relativistic theofrgravitation. In fact, what is really happegin
— physically — is that the placement of a charganielectromagnetic field isducing a physically-

observable change of coordinated(q/ m — **( ¢/ M) in the very same way that relative
motion between the coordinate systexfyv) and x?(V) of two different inertial reference
frames with velocities and V' induces a Lorentz transformatioff(v) — X?(V) that relates the
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two coordinate systems to one anotherdfidr® =7, dx'(y) dx( y=r7,, dXx( Y d%( 'y, with the
invariant line elementr® = dr'* and the same metric tensgy, =7, .

As it turns out, the line element that yields J2frbom (1.1), including electrodynamic
motion is:

c?dr? = gw(dX’ + g A]( dk+-L o Aj: g DX D, (2.5)
mcC mc

where we have defined a gauge-covariant coordinggeval Dx* = dx’ +( g/ mg & A. And it
will be seen that upon multiplying through by and dividing through byi7? this becomes:

2 2 dx* g dX g ,)_
mcz_g””[mE+CA<J(md_r+cA] g, (2.6)

which is the usual relationship between rest massand canonical energy-momentum
' =mdX'/ o+ gA/ & P+ gAl , where ordinary mechanical / kinetic energy-momsnt

is p* =mdx'/ d. This gauge intervaDx” =dx’ +( ¢/ mg @& Ais indeed merely a restatement

of the gauge-covariant derivative3, =9, —igA, and canonical momenta* = p“ +gA’/ c

which emerge from gauge theory via, - p, andiD, < 7, and in particular from the
mandate for gauge (really, phase) symmetry. Sautieoes continue to use” to denote the
canonical momentum; we find it preferable to emglogy different symbol7 to avert confusion.

Now, the line element (2.5) is clearly a functiongy m and so has thappearanceof
depending on the ratiq/ m. But this is only appearance. For, when we ntaegthe second
test charge with the second ratjd m # g/ i in the exact same metric measured by the invariant

line elementdz and moving through the exact same fietfJs and A”, this metric gives:

c2dr'? = Car®= gw(d%’ g AJ( ax+ 9 VA}: g DK Dk 2.7)
m'c mc

So despited7 being a function of thg/ m ratio, thisdz = dr’ as a measured proper time element

is actuallyinvariant with respect to thej/ m ratio becausthe differences between differaptm

and q'/ m are entirely absorbed into the coordinate transgfation x* - X*, which is quite

analogous to the Lorentz transformation of specéétivity. The counterpart to (2.6) now
becomes:

22 = Lo S| dX" 4 plo e
mcz_g”“[merrch[mFJrcAJ g, (2.8)
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with an invariantdz and unchanged background fielgs, and A“.

In fact, this transformationx” — x* is definedso as to keeplr =dr’, g, = g,,, and

A* = A*, and by implication the field strength bivect&r™ =F'#, all unchanged, just as
Lorentz transformations are defined so as to mairdaconstant speed of light for all inertial
reference frames independently of their state afiano That is, combining (2.5) and (2.7), this

transformationx” — X* which results in time dilations and contractionsléfined by:

cdr? = gw(d)(’ +mic o /xj( dk+%c d Ajs g( d&+%c d ﬂAJ( d#imcrd”}\.(Z.Q)

Consequentlydr = dr' is a function of charge and massn yet is invariant with respect
to the same, and there is no inconsistency in lgadin= dr' be a function of, yet be invariant

under, a rescaling of thg/ m ratio. Likewise, the fieldg,, = g, and A“ = A* are independent
of the charge and the mass of the test partictgus® again, everything steming from the different
ratios q/ m and g’/ ni is absorbed into a coordinate transformatidgh— X*. Thus, while
“gauge” is a historical misnomer for what is realtyariance under locagdhasetransformations

W - ¢ =Uy ="y applied to a wavefunctiog , we see in (2.9) that the line elemattt
truly is invariant under what can be genuinely edlare-gaugingof the g/ m ratio. And from
(2.6) and (2.8), we see that this symmetry is yaadk new. It is merely a restatement of the usual
relationshipm®c® = g, 777" between rest mass and canonical momentum.

As aresult, each and every different test partiakeies its own coordinates, all interrelated
so as to keeml7 invariant, andg,, , A“ and F# unchanged. The coordinate transformation
interrelating all the test particles causes timeéitate for electrical attraction and to contaat fo
repulsion, with a dimensionless ratitt/ dr = d¥ / dr =y, that integrally depends upon the
magnitude of the likewise-dimensionless ratj&’ / mé of electromagnetic interaction energy
gA’ to the test particle’s rest energym¢®.  This in turn supplements the ratio

dt/dr =y, =1/41-V / & for motion in special relativity andt/ dr = Y, =1/, g, for a clock

at rest in a gravitational field, and assemblesmthi@ the overall product combination
dt/dr =y,.y v, governing time dilation when all of motion andgtation and electromagnetic

interactions are present.

Operationally, the electromagnetic contributigp, to this time dilation or contraction

would be measured in principle by comparing the attwhich time is kept by otherwise identical,
synchronized geometrodynamic clocks or oscillatwhsch are then electrically charged with

different g/ m ratios, and then placed at rest into a backgrqateintial A“ = (g A) =(g,0) at
equipotential, wherep, is the proper potential. Or more generally, thculd be measured by
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electrically charging otherwise identical clockslahen placing them into the potential to have
differing dimensionlesgA’ / m¢ = gg/ mé ratios.

Empirically, for qg/ mcé <<1, the interaction energieEem:_[Fdr:+kqu/ r plus
integration constant for an attractive Coulomb éorE =-k Qq/ r* are related to these
electromagnetic time dilations in a manner idehttcahow the kinetic energyg, =i mv is

contained inmcy, = mé/v1- v/ é0 mé+1 mk for nonrelativistic velocitiesv<<c in
special relativity. In fact, the actual expressionthe electromagnetic contribution to the time
dilation for qg / m¢ <<1 interactions isy,, =1-qg / mc¢. And for a Coulomb proper potential
@ =-k.Q/r for an electrical interaction chosen to be ativactike gravitation, this is

Vem=1+kQq/ mér. So the combined time dilationit/dr =y, yy, mentioned earlier,
employing the gravitational factoy, =1/,/g,,(r) 01+ GM /c*r in the weak field Newtonian

limit (where the Reissner—Nordstrom metric tei®@_ Q°/ c'r> may clearly be neglected),

produces an overall energy which, in the low vejgciweak-gravitational and weak-
electromagnetic interaction limit, is given by:

o Ldt - mplrkQa/ mér { J( |5qu( j
E=mé—= mé = 1+ 1+=—
o S v e e 2¢) )
:mc2+1m\?+ k.Qq lngq\; GMm 1GMm GMIng 1GMng€/
2 r 2 c’r r 2 cr r cr 2ct ct

What we see here, in succession, are 1) the resgemc’, 2) the kinetic energy of the mass

3) the Coulomb interaction energy of the chargedand) the kinetic energy of the Coulomb
energy, 5) the gravitational interaction energthefmass, 6) the kinetic energy of the gravitationa
energy, 7) the gravitational energy of the Couloemergy and 8) the kinetic energy of the
gravitational energy of the Coulomb energy. Itlsar that this accords entirely with empirical
observations of the linear limits of these samegas.

Importantly, unlike gravitational redshifts or b#lefts which are a consequence of
spacetime curvatures, these electromagnetic titagiaisdo not stem directly from curvatyre
and they only affect curvature indirectly througty a&hanges in energy to which they give rise
because gravitation still “sees” all energy. Hemm¥Vey!'s ill-fated attempt from 1918 until 1929
in [2], [3], [4] to base electrodynamics ogal gravitational curvature foreclosed any such real
curvature explanation. This is because Weyl'sngbtewas rooted in invariance under a non-

unitary local transformatiog — ¢' =&y which re-gauges the magnitude of a wavefunction,

rather than under the correct transformation. ¢' =Uy =€y with an imaginary exponent
that simply redirects the phase. Specifically, ltter correct phase transformation is associated

with animaginary, not real, curvature that places a facter/~1 into the geodesic deviation
D"/ Dr* when expressed in terms of the commutatifty,,0,, | of spacetime derivatives, so

at best, electrodynamics can be understood onahbis bf mathematically-imaginary spacetime
7
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curvature. The alteration of time flow in electypdmics we suggest here, is therefore much more
akin to the time dilation of special relativity thi is to the gravitational redshifts and bluethif

of general relativity. It may transpire entiretyflat spacetime, and real spacetime curvature only
becomes implicated when the energies addechdo reach sufficient magnitude beyond their
linear limits shown in (2.10) to curve the nearpgcetime.

Also importantly, the similarity of the ratiogg / m¢é andv®/c¢® as the driving number

in y,,=1-qg /mc andy, =1/~/1-Vv* /¢?, respectively, is more than just an analogy. dsst

v<c (a.k.a.mv < mé) is a fundamental limit on the motion of mategabluminal particles, so
too, it turns out thatig < m¢ is a material limit on the strength of the intéi@e energy between

a test chargg with massninteracting with the sources of the proper potdrgj. This transpires

when we develop the electrodynamic time dilationd aontractions through to their logical
conclusion, by requiring particle and antipartieteergies to always be positive and time to always
flow forward in accordance with Feynman-Stueckeadband by maintaining the speed of light as
the material limit which it is known to be. Furthé turns out that wherg =k.,Q/ r is the

Coulomb potential whereby this limit become®q/ r< m¢é (a.k.a.r >k, Qq/ mé), we find that

there is a lower physical limit on how close twtenacting charges can get to one another, thereby
solving the long-standing problem of how to circiemt/ther =0 singularity in Coulomb’s law.

To be sure, these electromagnetic time dilatione aminiscule for everyday
electromagnetic interactions, as are special wesat time dilations for everyday motion. So
testing of dt/ dr changes for electrodynamics may perhaps be bestigu with experimental
approaches similar to those used to test relatvishe dilations. As a very simple example to
establish a numeric benchmark, consider two bodige chargesQ=qg=1C (Coulomb)
separated by =1 m (meter). In this event, the Coulomb interactiorergly has a magnitude
k,Qa/ r=k =1/4m®,=8.897% 10 (Joules). Yet, if the test particle which we taéénave the
chargeq has a rest massmm=1Kkg (kilogram), then the electrodynamic time dilatiactor
contained in (2.10) iy, =1+k_/¢* =1+ y, / 4r= 1+ 10" = 1.00000C. This is a very tiny time
dilation for a tremendously energetic interactidhe release of this much energy per second
would yield a power of approximately 8.99 GW (gigsts), which roughly approximates seven
or eight nuclear power plants, or roughly four tintke power of the Hoover Dam, or the power
output of a single space shuttle launch, or thegva about seventy five jet engines, or that of a
single lightning bolt. For a special relativisitomparison, consider an airplane which flies one
mile in five seconds, versus light which travel®atbone million miles in five seconds. Here,

v/c010° and the time dilation i/, =1/+/1-v? /¢* 1.00000000000C. So in fact the

exemplary electrodynamic time dilation is subs#diytless miniscule than this exemplary special
relativistic dilation. However in daily experienadiere one encounters watts and kilowatts not
gigawatts, these time dilations would be of simiteagnitude.

In short, in order to be able to obtain equat@i) for gravitational and electrodynamic

motion from the minimized proper time variationl(Lin a way that preserves the integrity of the
metric and the background fields independentlyhef ¢/ m ratio for a given test charge and

8
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thereby achieves the conceptually-attractive gbalnalerstanding electrodynamic motion to be
geodesic motion just like gravitational motion, waee forced to recognize that attractive
electrodynamic interactions inherently dilate aagdulsive interactions inherently contract time
itself, as an observable physical effecthis is identical to how relative motion dilatéwe, and

to how gravitational fields dilate (redshift) ornteact (blueshift) time. In this way, it becomes
possible to have a spacetime metric which — alth@uiginction of the electrical charge and inertial
mass of test particles — also remains invarianh watspect to those charges and masses and
particularly with respect to a re-gauging of tharge-to-mass ratio. This preserves the integrity
of the field theory, and establishes that electnaghlyic motion is in fact geodesic motion which

B
satisfies the minimized proper time variati®+ JjAdr from (1.1). As a result, it becomes

possible to lay an entirely geometrodynamic fouiothafor classical electrodynamics in four
spacetime dimensions.

3. Derivation of Lorentz Force Geodesic Motion from Variation Minimization

The foundational calculation to derive (2.1) irdihg the Lorentz force from the
minimized variation (1.1) begins with the spacetimegric c’dr? = g,, dX' dX which is multiplied

through bym and turned into the free particle energy-momentefation m*c’ = g, P
containing the mechanical momentymti = mdx'/ d. This in turn is readily turned into Dirac’s
(iy“ay —m)(// =0 for a free electron in flat spacetime making usg‘d :%{y”,y”} . Then, we
simply use Weyl's well-known gauge prescription [4iich transforms the mechanical
momentum to the canonical momentupf - 77 = p + gX'/ ¢ thus the energy-momentum
relation tom?c® = g, 777" in (2.6), and the ordinary derivatives to gaugeac@nt derivatives
d, - D, =0, —igA, and thus Dirac’s equation (d)y”D” —m)z// =0 for interacting particles. All
of this emerges by requiring “gauge” symmetry undbe local phase transformation
¢ - ¢'=Ug=€""Yg acting generally on the scalar fielgs= ¢ of the Klein-Gordon equation
and the fermion fieldgp =¢ of Dirac’s equation, redirecting phase but presgrimagnitude.
This is all well-known, so it is not necessary &dail this further. The point is that the relation
m’c® = g, 1“n’ in (2.6) is easily derived from the metrin’c® = g,, g’ ¢ using local gauge

symmetry, and that nothing more is needed to fhrthie starting point to minimize the variation
and arrive at the combined gravitation and elegtnadhic motion (2.1).

Starting with (2.6) and dividing through b’ ¢, we form the number 1 as such:

= % _q H d_)( _q Vo= _U]J _q _tj _q _ _w_w
NPT T I P

which will be useful in a variety of circumstance$he above includes the mechanical four-
velocity u” = dx‘ / dr and the canonical four-velocity” =u” + gX’/ mc. From here, we shall
work in natural unitc =1 and use dimensional rebalancing to restasaly after a final result.
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The first place that “1” above will be useful is(i1.1), where, distributing the expression
after the first equality while absorbingj, into the electrodynamic term indices, we write:

5 d¢“d¥ _q. df 4§
0=9| dr(1)=4o| dr +2— —+— A . 3.2
IA s I [ W ar dr me} dr % j (32)

From here, we carry out the variational calculatiwhich deductively culminates in:

d’x 1 dx' dx
_gav +_(aag |/_a gva_av ga )
(B4 _[Bsua dr? 2 K H “Idr dr
o_ajAdr_jAax dr o 1 g ) (3.3)
(0 A, -0 A”)?JrEF (A K)

Going from (3.2) to (3.3) is straightforward. Tio@ line contains the same result always obtained
for gravitational geodesics, i.e., the result dfisg =0 in (3.2). This is the calculation Einstein

first presented in 89 of [1], and does not nedaktoeviewed further. The terms on the bottom line
emerge as a direct and immediate consequencerthgtaith the canonicaim®c® = g,
rather than the ordinary mechanicalc® = g, B B energy-momentum relation, which is to say,

the bottom line is a result merely of mandatingalagauge symmetry. Some specific guides to
note when performing the detailed calculation idelua) we assume no variation in the charge-

to-mass ratio, i.e., thai(e/ m) =0, over the path from to B; b) applied to gauge field terms, the
variations are J0A =Jx0,A, and J(A,A") =Jx’0, ( A A(’) ;, C) we also wuse
dA /dr=0,A df/ d; and d) there is an integration-by-parts in thewation. This integration-
by-parts produces a boundary telv{rid(ﬁbdf) = ( A&JX’)E =0 that can be eliminated, and

for the remaining term causes the sign reversatampg ind, A, -0, A, .

The proper timed7 #0 for material worldlines, and between the boundaa®A andB
the variationdx” #0. So the large parenthetical expression in (3:®troe zero. The connection
-r*,, =+9(0,9,, -0,9,, —9,4,,) and field strengti¥,, =3,A, -9,A, =0,,A —0,, A (the
expression with gravitationally-covariant derivasvmeaning this result can be applied in curved
spacetime), witlt restored, enable us to extract:

dr2 “dr dr m “cd 2 m e

2B
O o pp WX Ay ARG G (p ae). (3.4)

This clearly reproduces (2.1) and includes the htzréorce alongside the gravitational geodesic,
all obtained from the minimized variation (3.2)herefore, (3.4) does represent geodesic motion.

However, this also contains an additional term vﬁﬁ(AUA”) that does not appear and is not

10
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observed in the Lorentz force. But unlike all diker terms in (3.4), neither is this term invatian

under the gauge transformatie&’ — eA’ = eA+0“/\, so in fact it is unobservable. Thus, we
can and should always chooAét,x) so as to gauge this term out of (3.4). Doing s&naw fix

the gauge bymposingthe gauge condition:
d,(AA)=0. (3.5)

This gauge condition is imposed for one empiriealson and two theoretical reasons: The
empirical reason is that this term needs to be veihdrom (3.4) to match the well-established,
well-corroborated Lorentz Force law (2.1). Thetfitheoretical reason is that the motion cannot

depend upon a terrﬁﬁ(AUA") which in turn depends upon and changes as a tumofi the

unobservable local phas&(t,x). This would leave the observable motion ambiguolifie

second theoretical reason is that by removingtéris, (3.4) now does fully describe the Lorentz
motion as geodesic motion, which is conceptuallsaative. Because the gauge condition (3.5)
causes (3.4) derived from (3.2) a.k.a. (1.1) toobex synonymous with (2.1) and reveal the
Lorentz force motion to be geodesic motion emagdtiom the metric line element (2.5), we shall
refer to (3.5) as thegeodesic gaugéIn this geodesic gauge, the combined gravitatiqrius
Lorentz motion is geodesic motion.

In the next section we shall examine the geodesugg condition (3.5) in further detail.
But first it is important to see just how Lorentotion is now merely a consequence of local gauge
symmetry: It is well-known how imposing gauge swairy spawns the heuristic rules

0, - D,=0,-igA, and p* - 7 = p* + g/X'/ ¢ for gauge-covariant derivatives and canonical
momentum, andn’c’= g, g’ § - ni é= g 7“n" for the energy momentum relation. Here,
we see another heuristic rule which emerges inslegkwith these others, namely:

DU’

ﬁ:—rﬁwu”u” _,_=—|_'GWU”LY+—q FBUUJ, (3.6)
dr Dr mc

where Du” / Dr symbolizes the gauge-covariantaanonical acceleration This is tied to the
further heuristic dx* - DX'= d¥'+( o m§ @ A defined in (2.5). To avoid notational

confusion, note that this is not a “derivative gathe curve” defined using gravitationally-
covariant derivative®,,B? for a given four-vectoB” by DB” / Dr E(d)( /ar)a;v B’. But they

are closely related, because the latter yiédg / Dr :(GX’ lar)a;vuﬁ =df/ d+r?, ot for
B =u~.
In fact, if we useA” =9u” /Dr to denote thegravitationally and gauge-covariant

acceleration and thus remove any notational amigigie may combine what is in the preceding
paragraph with (3.4) and (3.5) and the usual gatigital Du” / Dr = (c)x” lar)a;vuﬂ to write:

11



Jay R. Yablon, May 31, 2016, revised June 3, 2016

B
A? E—q;)u EDTUB——qFﬁUu‘T:dT;fH'BWU”UV ——qFﬁUu‘T =0. (3.7)
4 I m m

Here, A? =9u” /D1 =0 is another way of representing the variatidn 5Ifdr considered in

(1.1). It states that acceleration generally @/gationally-covariant and gauge-covariant, which
is why A? =9u” /Dris equal to zero; yet when shown in terms of meidiarfiour-velocities

u“ =dx*/ dr, this acceleration contains the geodesic motiogra¥itation and the Lorentz force
motion of electrodynamics. In absence of any aharg electromagnetic potential the above

reverts back toDu’/Dr=du’/dr+I” U i =0 for gravitationally-covariant motion. In
absence of gravitatiou’ /dr=du’/ d&r—( ¢ m E, 6 =0 for the Lorentz force alone. And in

the absence of both gravitation and electromagnetiat remains is merelgu? / dr =0 for the
Newtonian inertial motion governed by special figlgt alone. From this view, all motion is

inertial becausedu” / D7 =0; it is simply covariantly-inertialwith any gravitational curvature
and any canonical gauge elements.

4, The Geodesic Gauge and the Action Gauge: Intrinsic Effects on Gauge fields

Now let us study closely the geodesic gauge cumda , (AUA") =0 specified in (3.5).
We begin with Maxwell’s equatiod” =9, F* for the electric charge density which we rewrite

via the usual expression for the field strengthf =97 A? -9” A in terms of the gauge fields as
J?-0,0°A° +0%0, A =0. But we donotimpose the Lorenz gaugg A" =0; rather for now

we leave this term as is. We then multiply thisell equation through by, , thus writing the
scalar equation:

A I - A0,0" K+ AdP0, K =0. (4.1)

For the second term above we hava,0,0° A’ =0, A0 K —6a( Ad” AQ) using the product
rule. We may also form the identit,0? A” =107 ( A AF). Using both of these in (4.1) yields:

A +0,A0" K -10,0°( A R)+ Ad’d, A=0. (4.2)

The second ternd , A,0° A =1 Fs F, and with this, the first two terms are equivalenminus

the electrodynamic Lagrangian densiAbJﬁ +5 Fyp F% = -L,,- Therefore, (4.2) is simply:

-19,0° (A, A°)+ AD%0, K =L, (4.3)

Until now we have done nothing to remove any efghauge redundancy that arises when
the four-vectorA” with four degrees of freedom is used to repreadigld of massless photons,
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each of which has only two degrees of transvers$arigation freedom. However, the first term
in the above containg” (ABA") , which, imposing the geodesic gauge condition)(3rfust be set

to zero. This leaves us merely with:
A0P0, N =L,.. (4.4)

This term contains the expressiapA” , which, if we were to employ the Lorenz gauyA” =0
in addition to the geodesic gauge, would over-aeitee the gauge freedom and leave us with
L,,=0. But because the photon is massless, we aneqoiredto used,A” =0 as we would

be if photons were massive with a third longitutishegree of freedom. Therefore we leave (4.4)
as is, and impose this as a further gauge condiutich we shall refer to as thédgrangian
gauge for obvious reasons. With the Lagrangian gaubd)(and the geodesic gauge (3.5) both
imposed, all redundant freedom is removed from rfessless gauge field and the physical
equations become unambiguous.

It is also very useful to write the above diredthlyterm of the electrodynamic action
S :j d* xC,,, via the product ruleh,079,, A” = 9* ( Ad, A’) -0, Ko, A. Butwithin the action
we may set_[d“mﬁ(,%aa,&’):o via the boundary conditiom,(t,x)=0 at the extremum
t,x =xc0. What we then end up with, is a very simple actio

So=[d'x,=-[ d fo, Ao, A)=-[ d fo, A" (4.5)

We shall refer to this as thaction gaugé condition, and it clearly fixes the ter@, A", which
otherwise becomes zero in the Lorenz gauge. Bberdhan fix the gauge with an auxiliary
conditiond, A" =0, we instead fixd, A" =dg@/dt+0O[A to the physical Lagrangian density and

the physical action. It will be seen that (4.5pisousin of theR, gauge conditions, which are

ordinarily written asoL = —(aaA")2 /2. Once we are working with the action, we aredsiep

away from Quantum Electrodynamics, which is gemelathrough the path integration
Z.. :I DA” exp(iS,,, /7). As usual, we may start witd,J” +1 F,F¥ ==L, to obtain the

action S, :j d' ><% ,9)( g“o,0? —6"6”) A=) A) and then use this via Gaussian integration
to path integrate. But the upshot of (4.5) isalbus, alternatively, that:

So=[d {3 A(d"0,07-0") p- J A)=-[ b fo, B (4.6)

The foregoing are all consequences of using theegc gauge (3.5), whichtrinsically
affect the freedom of the gauge field itself. lrtpcular, using the geodesic gauge requires us to
also fix the fields to the Lagrangian gauge of 4.4
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5. The Geodesic Gaugeand the Action Gauge: Extrinsic Effectsand the Power Equation

Next, we study thextrinsiceffects on the canonical energy-momentum relg2o8). We
first return to (2.6), which we write as” =77 =(p, + qu\)( g+ qﬁ(). The mass is

invariant, so its four-gradient,m=0. Therefore, if we distribute the terms in (2.6)idhen take
the gradient of both sides of (2.6), then afteuctidn we obtain:

0= paa;p p” + qa;ppé; g+ q'%a;,e g+3 6ﬁ;p( A A)' (5.1)

Here again we apply the geodesic gauge (3.5), sdattt terma;ﬁ(AﬂA”) :aﬁ(A,N) =0 is
removed. We may also use the field strength tdacepd.,A, = F,, +0.,A,. Additionally,

a

p’ =mu is the ordinary mechanical momentum, so we caidéeioutm, whereby p’ - u

throughout the remaining terms in the above. Thaygering the free index and segregating the
field strength term on the left, (5.1) becomegendesic and action gauges:

qF,u° =-p0,0 - gAd, i - @4, A G. (5.2)
We of course recognizgF,,u’ as a variant of the Lorentz force term in (2.1).

Now, we wish to express the terms on the rightelation to the passage of proper time,
that is, as derivatives along the curve, see (@) (3.7). For the last term in (5.2) we may

substituted.,A,u” = dA / or —T'* ; A derived using the gravitationally-covariant detiva
and the chain rule. So (5.2) advances to:

d
qFﬁo‘uJ - poa;ﬁLf - q%a;ﬂ q - q%'i' ﬁraﬁ A @ (53)

As to the remaining terms, we now multiply b§ = dx’ / dr throughout, giving us aﬁa;ﬁu"in
the first two terms after the equality. Then weynsamilarly derive and then substitute
u’d.,u” = df / dr+7, o 4. Alsowriting p, = my, for the remaining mechanical momentum,

and seeing that the terms withi , AU’ f’ cancel identically, with renamed indices anéstored,
we now have:

q v q ,\df _q . dA o
JF, ufl = - +2 A|l—-—"d—E-m t 1. 5.4

This (q/c) F, WU is a scalar number, and it has dimensions of pov8s this is an
expression for electrodynamic power. However, bse& , is an antisymmetric tensor, the term
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on the left vanishes identically. Therefore, magvall of the mechanical and gravitational terms
to the left and keeping the electrodynamic termgherright, we may consolidate to:

du’ gd
+M7 ud |=-———( Ad). 5.5
mua( dr w ] C dr( & ) (5-5)

It is easily see that when the right hand side mEsozero in the absence of electrodynamics, the
left hand side contains the gravitational geodesion (1.1). In terms of spacetime coordinates

with all terms expanded, and isolating all the &medion terms on the left, another way to express
this is:

2
(md_xuﬂpﬁj%:_ pre GX X, qdAldx, (5.6)
dr ¢ ) ar woar a cd ) d

In the absence of gravitation, we merely E&f, =0. It is important to keep in mind that (5.5),
(5.6) is fixed to the geodesic gau@%(AaA") =0 of (3.5), thus also to the action gauge

S.=-[ d'}0, &) of (4.5).

6. Electrodynamic Time Dilation and Contraction

As noted earlier, the number “1” constructed iri)3s useful in a variety of circumstances.
Another such circumstance is to explicitly introdudhe Lorentz contraction factor

¥, =1/41-v* /¢® and the ordinary four-velocity” / c=(1v/c). With g,, =7, it is easily
shown and well-known thay, (yvv“)(yv\/’)/ ¢ =1, which is another “1.” So if we write (3.1)
in flat spacetime ag,,U“U" /¢® =1, we see that the canonical velodity', not the mechanical

velocity u”, is related expressly tg, andv* by:
U#=yv-. (6.1)

This may then be generalized into curved spacetideditionally, we may ascertain from the
final equality in (3.1), which we then combine w{thl), that:

Ur=ur e L= Aoy (6.2)
mc a mc

This may be conversely rewritten in terms of théirairy mechanical velocity as:

U
u”:di:U”——qA"=y\,v"——q X' (6.3)
ar mc mc
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With these relationships, we return to (2.9), hstates that the metric line elemeit
must be invariant, and the metric tengpy and the gauge fiel&V (the latter now subject to the
geodesic and action gauge conditions (3.5) and)(fbist be unchanged under a rescaling of
g/ m- d/ m. Thus, itis (2.9) whiclefinesthe coordinate transformatioti’ - X* leading to
electrodynamic time dilation and contraction. Nee show exactly how this occurs.

Generally, we will wish to compare the rate atathiime flows for a massive body which
has a net charge of zero and so is neutral, itioaléo a material body with a nonzero net charge.
We assume for now that there is no gravitationa §4.9), this means that we shall sgt 0

(neutrality) and leavey' as is (charged). Therefore, (2.9) becomes:

c2dr? = g, dx d¥ = gv( d¥+1 g Aj( e % (6.4)
mc mc

From this, we can immediately extract the coordineansformation:

dXt = dx' - o A, (6.5)

/

Because the coordinateg are associated with a neutral net charge, asadioél convenience
we shall drop the primes from the mass and chandenaite this asdx” = dx' —( ¢/ m¢ ¢ A.

Thus, dX* represents the coordinates of the body wgthm and dx* the coordinates of the
neutral body. With this notational adjustment, divlding through byd7 , we obtain the relation:

u
LSS S [ VP ) (6.6)

dr dr mc mc

The time component of this witk” =(ct x) and A* =(@ A) is easily seen to be:

dt _dt_ oo (6.7)

dr dr mé’
So in the rest frame whedt / dr =1 for the neutral body (because we have positedantgtion
for now) and A" = (%,O) with ¢ being the proper scalar potential, this becomes:
dt a%
=—=1-—. 6.8
Ven =47 . (6.8)

This is where we define the factgr,, first introduced between (2.9) and (2.10), tdheerate of

time flow for a net-charged bodyin a proper potentiag, in relation to the rate of time flow for
a net-neutral body, all at relative rest. As afedi from (6.4), the above (6.8) is what allows the
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Lorentz force motion (2.1) to be deduced from théenimized variation (1.1) without
compromising the integrity of the background fields

Now, becauseA” :(%,0) at rest, the question also arises how to spesifygenerally
when there is motion. Specifically, the choice ldobe betweenA” =gU*/c using the
canonical velocity orA” = gu” / ¢ using the mechanical velocity. But we see fid= y,v* in
(6.1) thatA* =gU* / ¢ is the proper choice, that is:

A =qU"c=qyV'/c, (6.9)
because at regtv* / ¢=(1,0), and this yields the correct result tht = (g,0) at rest.

With (6.9) we may now obtain several other impatrt@sults. Using this in (6.3) yields:

U
ut = ZXT (1 :ﬁgj YV =Y.y M=y U (6.10)

So we see that the mechanical veloaity is related to the canonical velocity” through a
multiplicative factor given byy,,. The inverse resul“ =u”/y,, can be combined with (6.2)
with everything multiplied through by to also obtain:

muU# = imu’——;ﬁ‘ ml‘j+q A= (6.11)
yem yem

This contains the relationship” =y, 77 between the mechanical and canonical momentum,

mirroring u” =y, U* in (6.10). Then, we may multiply (6.10) througi Inc to obtain the
energy-dimensioned four vector, and also use (ptddyrite:

U
cp’ =mcd’ = m%: mg,.y, Y= mg, U= g 17", (6.12)

All of this finally leads us to take the time conmagmt in the non-relativistic limit, namely:

an
1-
—orf = - mc a% v 21 _lop .
E=cp’ = méy, y,= mé 1_v O E{l mczj(“ c?j rr’rclrz v ¢ > e .(6.13)
c?

This is how the key energy relationship (2.10) imid¢es. Here, in succession, we see 1)

the rest energync®, 2) the kinetic energy of the mass3) the electrical interaction energy of the
charged mass, 4) the kinetic energy of the eledtanergy. If we then choose a Coulomb proper
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potential g = -k ,Q/ r so that the charges hawpposite signgnd so are attracting in the same
way that gravitation attracts, then we arrive el at the first four terms of (2.10).

Then to add gravitation, it is convenient to staith the metric (2.5) in the form
c’dr? = g,, DX* DX’ for the charged mass which has & coordinates, which mass is taken to

be at rest in the gravitational field so thiat® = g,,Dt* a.k.a.Dt'/dr =1/,/g,, . If we write this
out using Dx* =dX* +( g/ mg¢ & A, also using (6.8) in the forrdt'/ dr = dt/ dr - g/ mé

because settinglt/ dr =1 was appropriate for a neutral body with no grdita but dt/ dr
cannot be summarily set to 1 once there is grasitathen we have

9, dr dr mé o mé me d

1 _Dt_df qg _dt_ap  op _ dt (6.14)

The electrodynamic terms cancel, leaving the ugelationshipdt/ dr =1/,/ g,, =y, for time
dilation or contraction for a particle at rest ingeavitational field. This then supplements
VoVy = V¥ N (6.10), (6.12) and (6.13). Particularly, (6.b&comesE = cp’ = méy, y../.,

which is synonymous with (2.10), and it then becsmpessible to simultaneously represent the
combined effects of gravitation, electrodynamicd arotion, upon time and energy.

7. Conclusion

The energy relatiorE = cp’ = méygyemyV shown in (2.10) , results from combining (6.13)

and (6.14). The fact that (2.10) correctly repekiwidely-corroborated, well-established energy
relations, is an important point of validation thila¢ geometro-electrodynamic viewpoint which
has been presented here is empirically correctveider, the mainspring which enables everything
to fit together without contradiction is the timel relationship

dt_ __1tag/mc D(1+GMJ(1+ %J(Hifj 7.1

contained within (6.13) when supplemented by (6.1d)applied to gravitation in the Newtonian
limit. Consequently, it becomes most important@éofgrm experimental tests of these predicted
time flow changes for charged bodies in electromagfietis. Although these time flow relations
(7.1) go hand-in-hand with the energy relations (2.10)s if7.1) which nevertheless is the
theoretical foundation of the energy relations (2.10hat is, the widely-corroborated energy
relations (2.10) are rooted in geometrodynamic measuteohapace lengths and the flow rates
of time. Experimental observation of a change in the aawhich time flows for charged bodies
in electromagnetic fields an accordance with (7.1)ld/therefore confirm this geometrodynamic
foundation for classical electrodynamics in four spacetiiimensions.

The author wishes to acknowledge and thank Joys@ani for his encouragement and his input
throughout the conduct of this research.
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