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Abstract: We summarize how the Lorentz Force matioserved in classical electrodynamics
may be understood as geodesic motion derived bymizing the variation of the proper time
along the worldline of test charges in externalgmtials, while the spacetime metric remains
invariant under, and all other fields in spacetimamain independent of, any rescaling of the
charge-to-mass ratio g/m. In order for this to ndime is dilated or contracted due to attractive
and repulsive electromagnetic interactions respetyi, in very much the same way that time is
dilated due to relative motion in special relatyitwithout contradicting the latter's well-
established experimental content. As such, it besgmassible to lay an entirely geometrodynamic
foundation for classical electrodynamics in fouasgtime dimensions.

PACS: 04.20.Fy; 03.50.De; 04.20.Cv; 11.15.-q

The equation of motion for a test particle alongeadesic line in curved spacetime as
specified by the metric intervaf°dr? = g,, dX' dX with metric tensorg,, was first obtained by

Albert Einstein in 89 of his landmark 1916 papdriftroducing the General Theory of Relativity.
The infinitesimal linear elementlr = ds/ ¢ for the proper time is a scalar invariant that is

independent of the chosen system of coordinategewlise the finite proper timer:_[fdr

measured along the worldline of the test partideveen two spacetime evetsandB has an
invariant meaning independent of the choice of doates. Specifically, the geodesic of motion
is stationary, and results from a minimizationlte# variational equation

o:djfdr. (1)

Simply put, a material particle goes from evAnio eventB in the physically-shortest possible
proper time. After carrying out the well-known @aliation originally given by Einstein in [1], the
particle’s equation of motion is found to be:
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with the Christoffel connection defined byl ”, E%g‘“’(aagw -0,9, —avgaﬂ) and the

relativistic four-velocity given by* =dx*/ dr. The geodesic given by (2) represents the path
along which the proper time is minimized, againtresshortest proper time between two events.
Motivated by the geodesic nature of gravitationation, the purpose of this letter is to summarize
how electrodynamic Lorentz Force motion is likewgeodesic motion, as a consequence of
heretofore unrecognized time dilations and conwastwhich occur any time two material bodies
are electromagnetically interacting.

To begin, if the test particle, to which we nowerdse a massn>0, also has a non-zero
net electrical charge #0 and the region of spacetime in which it subsitie &das a nonzero
electromagnetic field strength” # 0 (defined as usual blF#* =9” A” —0“ A’ in relation to the

gauge potential four-vectoh” , with F#? containing the electric and magnetic field bives®
andB), then the equation of motion is no longer giver{d)y but is supplemented by an additional
term which contains the Lorentz Force law, namely:

d’x¥*  df d¥X dk (05'¢ il
— S =—=af = —+_9 FF —==T° uu+—0g, F"—. 3
dr?  dr modr dr mqg"” cdr w m%"" Cc 3

The above force law is of course a well-known, veeltroborated, well-established law of physics.

Given that the gravitational geodesic (2) spesifigoath of minimized proper time (1), the
guestion arises whether there is a way to obtaifr¢d the same variation as in (1), thus revealing
the electrodynamic motion to also entail partichesving through spacetime along paths of
minimized proper time. Conceptually, it cannotlbgued other than that this would be a desirable
state of affairs. But physically the difficultysts in how to accomplish this without ruining the
integrity of the metric and the background fieldsspacetime by making them a function of the
charge-to-mass ratiq/ m, because this ratio is and must remain a charsiitasf the test particle

alone. It is not and cannot be a characteristib@fine elemendr , or the metric tensog,, , or
the gauge fieldA”, or the field strengthF”* which define the field-theoretical spacetime
background through which the test particle is mgviAnd, at bottom, this difficulty springs from

the inequivalenceof the “electrical mass” (a.k.a. charggplnd the inertial mass, versus the
Newtonian equivalence of gravitational and inemess. In (3), this is captured by the fact that

m doesnot appear in the gravitational tern‘fﬁwu”u”, while the q/ m ratio doesappear in the

electrodynamic Lorentz Force term that we rewrit¢g/ m) F*_ 1 in natural units withc =1.

This may also be seen very simply if we compare tdeis law with Coulomb’s law. In
the former case we start with a forée=-GMm/ r* (with the minus sign indicating that
gravitation is attractive) and in the lattér = -k Qq/ r* (for which we choose an attractive
interaction to provide a direct comparison to giaion), whereG is Newton’s gravitational
constant and the analogous =1/ 47, = c’y, / 47 is Coulomb’s constant. If the gravitational

field is taken to stem froriMl and the electrical field fror®, then the test particle in those fields
has gravitational mass and electrical masgg But the Newtonian forc& = ma always contains
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the inertial massn. So in the former case, because the gravitatiandl inertial mass are
equivalent, the acceleratioa= F/ m=-GMm/ mf=- GM/ f and these two masses cancel,
giving —I'/’Wu”u“ without any mass in (3). But in the latter case tacceleration

a=F/m=-kQdq mf=-(d m k@ ¥ because the electrical and inertial masses are not

equivalent, hencéq/ m) F_ U containing this same ratio in (3). Here, the motis distinctly

dependent on the electrical and inertial magsasdm of the test particle, even though different
chargegy with different masses may all be moving through the exact same backgtdietds.

So, were we to pursue the conceptually-attractiva @f understanding electrodynamic
motion as the result of particles moving througacgtime along paths of minimized proper time,
with (1) applying to electrodynamic motion justiedoes to gravitational motion, the line element

dr would inescapably have to be a functitd»n(q/ m) of g/ m. And this in turn woulgppear
to violate the integrity of the line elemerdr as well as the metric tensog,, in

c’dr? = g,, dX' dX, because these would aéem to belependent upon the attribugandm of

the test particles that are moving through the sfjime background. Were this to be reality and
not just seeming appearance, this would be is palgiimpermissible. Consequently, despite
there being many known derivations of the LorentecE law, there does not, to date, appear to

be an acceptable rooting of the Lorentz Force lathe variational equatiofl = ijdr which

would reveal electrodynamic motion to be geodesation just like the familiar gravitational
motion. And this is because it has not been utaledshow to obtain electrodynamic motion from
a minimized variation while simultaneously maintagthe integrity of field theory such that the
metric and the background fields do not depend upemttributes of the test particles which may
move through these fields. This, in turn, is beeaelectrical mass is not equivalent to the inertial
mass, in contrast to the Newtonian equivalenceé@fjtavitational and inertial masses.

Nevertheless, it can be shown that we can in facea line elemerd7 ( g/ m) which is a
function of the electrical-to-inertial mass ratgp/ m, from which the variational equation

0= ijdr does yield the combined gravitational and elegtnathic equation of motion (3), yet

for which the line elemerd 7, the metric tensog ,, , the gauge fieldA”, and the electromagnetic

field strengthF#* are all independent of thig/ m ratio. This result of having the line element
be amathematical function af/ m yet bephysically independent @f/ m may seem paradoxical.
And of course, it is well-established that wheirst test particle with electrical magsnd inertial
massm is placed in a field”*, and a second test particle with electrical mgisand inertial

massn of a different ratiog' / mi # g/ r is placed at equipotential in the same fi€lf , there

are observably-different Lorentz Force motionstfase two different test particles even though
they are at equipotential. However, close studsabs that this paradox may be resolved by
recognizing thatime does not flow at the same rate for these ésbparticles in very much the
same way that time does not flow at the same oatewo reference frames in special relativity
which are in motion relative to one another
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Specifically, note that the Lorentz motion in €830 contains a set of coordinat€s, so
that in the absence of gravitation with), =7, and Fﬁw =0, the first test particle will have a

Lorentz motion given by:

dZXﬂ :_q Fﬁ”d_)g

darr m'™ ca

(4)

Now usually it is assumed that for the seconddasticle the motion is given by this same equation
(4), merely with the substitution @f -  andm - ni; that is, by:

deﬂ :ﬂ Fﬂ"d_)g

5
dr? m”"” cdr ®)

The particular assumption here is that there ishramge in the rate at which time flows when (4)
is replaced with (5); and more generally the asgiomps that the coordinate intervek’ in (4)
is identical to thedx’ in (5). Yet, it is impossible to have both (4)daf®) emerge through the

B
variation0= 5le dr from the same metric elemedt , and simultaneously maintain the integrity

of the field theory, unless the coordinates arkedéht, whereindx’ in (4) isnot identicalto what
must now bedx’ - dX? # dX in (5).

In fact, the very physics of having electric charge electromagnetic fields induces a
change in coordinates as between these two tegieshwith differenty’ / n # g/ mr, very similar

to the coordinate change via Lorentz transformatioduced by relative motion. As a result, the
electrodynamic motion of the second test charggvisn, not by (5), but by:

d*x” _d Fﬁﬂﬁ

= 6
dr? m”“” car ©)

Here, x* and x# # x® in (5) and (6) respectively are two different set€oordinates, yet they
are interrelated by a definite transformation. Mimsportantly, this results itime itselfbeing
induced to flow differently as between these twts $# coordinates, making time dilation and
contraction as fundamental an aspect of electradics as it already is of the special relativistic
theory of motion and the general relativistic theofrgravitation. In fact, what is really happegin
— physically — is that the placement of a charganielectromagnetic field isducing a physically-

observable change of coordinated(q/ m — **( ¢/ M) in the very same way that relative
motion between the coordinate systerigv) and x'?(V) of two different reference frames with
velocities v and V' induces a Lorentz transformatior’(v) — X#(V) that relates the two
coordinate systems to one another wfalr® =7, dxX'(y dx( y=7,, dX( Y d( 'y, with the

invariant line elementr® = dr'* and the same metric tensgy, =7, .
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As it turns out, the line element that yields {f®m (1), including electrodynamic motion
is:
c’dr? = gw(dX’ + 4 ¢ A(J( dk+-L o Ajz g Dk D, (7)
mc mc

where we have defined a gauge-covariant coordinggeval Dx* = dx’ +( g/ mg & A. And it
will be seen that upon multiplying through by and dividing through byl this becomes:

2 2 dx“ q dX . q ,)_
mcz—gw(m¥+E A(j( mE+_<: AJ— g, (8)

where the canonical energy-momentum & =mdx'/ d+ gA/ = g+ gA/ and the
ordinary mechanical / kinetic energy-momentum ip¥=mdX/ d. This interval
Dx* =dx'+( g/ mg d Ais a direct analogue of the gauge-covariant déviea D, =0, —igA,
and canonical momenta” = p* + gX’/ ¢ which emerge from gauge theory vy, = p, and
iD, < m, and in particular from the mandate for gaugellfrephase) symmetry.

Now, the line element (7) is clearly a function @f m and so has thappearanceof
depending on the ratiq/ m. But this is only appearance. For, when we ntaggthe second
test charge with the second ratjd m # g/ i in the exact same metric measured by the invariant

line elementdz and moving through the exact same fietgJs and A“, this metric gives:
2dr'? = Edr?= gw( d +- 3 ¢ AJ( ax+- 9 g VA}: 9 D& D% 9)
m'c mc

So despited7 being aunction ofthe g/ m ratio, thisd7 = dr’ as a measured proper time element
is actuallyinvariant with respect to thej/ m ratio becausthe differences between differaptm

and '/ m are entirely absorbed into the coordinate trangfation x* - xX*, which is quite
analogous to the Lorentz transformation of spemhdtivity. In fact, this transformatior” - X*

is definedso as to keepr =dr’, g, = g,,, and A“ = A*, and by implication the field strength

bivector F# = F'#* | all unchanged, just as Lorentz transformatioesdafined so as to maintain
a constant speed of light for all inertial referefimmes independently of their state of motion.

Consequentlydr = dr' is a function of chargg and massn yet is invariant with respect
to the same, and there is no inconsistency in lgadin= dr' be a function of, yet be invariant

under, a rescaling of thg/ m ratio. Likewise, the fieldg,, = g, and A“ = A* are independent
of the charge and the mass of the test particleause againgeverythingemanating from the
different ratiosq/ m and q'/ m is absorbed into a coordinate transformatidn— xX*. Thus,
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while “gauge” is a historical misnomer for what #eally invariance under locgbhase
transformationsy — (' =Uyw ="y applied to a wavefunctiogy, what we see contrasting

(7) and (9) is that the line elemedrt truly is invariant under what can be genuinelyezhbre-
gauging of the g/ m ratio. From (8), this symmetry is merely a resta¢nt of the usual

relationshipm®c® = g, 777" between rest mass and canonical momentum.

As a result, each and every different test partialeies its own coordinates all interrelated
so as to keem7 invariant, andg,, , A“ and F# unchanged. The coordinate transformation

interrelating all the test particles causes timelitate for electrical attraction and to contaat fo
repulsion, with a dimensionless ratitt/ dr = d¥/ dr =, that integrally depends upon the
magnitude of the likewise-dimensionless ratj& / m¢é of electromagnetic interaction energy
gA’ to the test particle’s rest energyn¢.  This in turn supplements the ratio

dt/dr =y, =1/41-V* /& for motion in special relativity andt/ dr = y, =1/,/ g, for a clock

at rest in a gravitational field, and assemblesmthi@ the overall product combination
dt/dr =y,.y v, governing time dilation when all of motion andgtation and electromagnetic

interactions are present.

Operationally, the electromagnetic contributigp, to this time dilation or contraction

would be measured in principle by comparing the eatwhich time is kept by otherwise identical,
synchronized geometrodynamic clocks or oscillaighich are then electrically charged with

different g/ m ratios, and then placed at rest into a backgrqateintial A“ =(g,A) =(g,0) at

equipotential, whereg, is the proper potential. Or more generally, theuld be measured by
electrically charging otherwise identical clocksdahen placing them into the potential to have
differing gA°/ mé = ag / mé ratios.

Empirically, for g/ mc <1, the interaction energieEem:der:+kqu/ r plus
integration constant for an attractive Coulomb €orE =-k,Qq/ r* are related to these
electromagnetic time dilations in a manner idehticdnow the kinetic energy in special relativity

is observed to be the quantitf, =imV in mcy,=mé/vJ1- v/ é0 mé+i mkt for
nonrelativistic velocitiesy < ¢. In fact, the actual expression for the electrgnegdic contribution
to the time dilation ig/,,, =1-qg / m¢. And for a Coulomb proper potenti@ = -k.Q/ r for an

electrical interaction chosen to be attractive fikavitation, this isy,,, =1+k Qq/ mé r. So the
combined time dilationdt/ dr =y, )y, mentioned earlier, employing the gravitationaltéac
Y, =1/,/0y,(r) O1+GM /cr in the weak field Newtonian limit, produces an m@leenergy
which, in the low velocity, weak-gravitational aabctromagnetic interaction limit, is given by:
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2 1t qu/mc’-r { GMJ( |5qu( j
mg 1+—; 1+ 5
\/a =\ /& r mc’r . (10)

k.Qq lngq\; GMm 1GMm\;+ GMIng+_1 GMng%
r 2 c’r r 2 ¢ r c¥ 2ct cft

E=me - MEy,.V o, = mE
dr

=me + % mé + e
2

What we see here, in succession, are 1) the resgemc’, 2) the kinetic energy of the mass

3) the Coulomb interaction energy of the chargedand) the kinetic energy of the Coulomb
energy, 5) the gravitational interaction energthefmass, 6) the kinetic energy of the gravitationa
energy, 7) the gravitational energy of the Couloemergy and 8) the kinetic energy of the
gravitational energy of the Coulomb energy. Itlsar that this accords entirely with empirical
observations of the linear limits of these samegas.

Importantly, unlike gravitational redshifts or b#lefts which are a consequence of
spacetime curvatures, these electromagnetic titagiaisdo not stem directly from curvatyre
and they only affect curvature indirectly througty a&hanges in energy to which they give rise
because gravitation still “sees” all energy. Hemm¥Vey!'s ill-fated attempt from 1918 until 1929
in [2], [3], [4] to base electrodynamics ogal gravitational curvature foreclosed any such real
curvature explanation. This is because Weyl'sngbtewas rooted in invariance under a non-

unitary local transformatiog — ¢' =€y which re-gauges the magnitude of a wavefunction,
rather than under the correct transformation. ¢’ =Uy =€y with an imaginary exponent
that simply redirects the phase. Specifically, ltter correct phase transformation is associated
with animaginary, not real, curvature that places a facterv/-1 into the geodesic deviation

D?é* | Dr? when expressed in terms of the commutati?ﬁyl,a;v] of spacetime derivatives, so
at best, electrodynamics can be understood onahbis bf mathematically-imaginary spacetime
curvature. The alteration of time flow in electypdmics we suggest here, is therefore much more
akin to the time dilation of special relativity th# is to the gravitational redshifts and bluethif

of general relativity. It may transpire entiretyflat spacetime, and real spacetime curvature only

becomes implicated when the energies addechd¢d reach sufficient magnitude beyond their
linear limits shown in (10) to curve the nearbycgiane.

Also importantly, the similarity of the ratiogg / m¢ and v’/ c® as the driving number

in y,,=1-qg /mc andy, =1/4/1-V* /¢?, respectively, is more than just an analogy. dsst
v<c (a.k.a.mv < mé) is a fundamental limit on the motion of mategabluminal particles, so
too, it turns out thatjg, < m¢& is a material limit on the strength of the int¢i@e energy between
a test chargg with masaninteracting with the sources of the proper potdrgj. This transpires

when we develop the electrodynamic time dilationd aontractions through to their logical
conclusion, by requiring particle and antipartietergies to always be positive and time to always
flows forward in accordance with Feynman-Stueckglpband by the speed of light remaining the
material limit that it is known to be. Furthertitrns out that wherg =k Q/ r is the Coulomb
potential whereby this limit becomésQq/ r< mé (a.k.a.r >k,Qq/ mé), we find that there is

a lower physical limit on how close two interacticitarges can get to one another, thereby solving

7
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the long-standing problem of how to circumvent theO singularity in Coulombs law. To be
sure, these electromagnetic time dilations aresoiute for everyday electromagnetic interactions,
as are special relativistic time dilations for gy motion. So testing afit/ dr changes for
electrodynamics may perhaps be best pursued wtergmental approaches similar to those used
to test relativistic time dilations.

In short, in order to be able to obtain equati8nfér gravitational and electrodynamic
motion from the minimized proper time variation (ft)a way that preserves the integrity of the
metric and the background fields independentlyhef ¢/ m ratio for a given test charge and
thereby achieves the conceptually-attractive gbalnolerstanding electrodynamic motion to be
geodesic motion just like gravitational motion, vaee forced to recognize that attractive
electrodynamic interactions inherently dilate aegdulsive interactions inherently contract time
itself, as an observable physical effecthis is identical to how relative motion dilatawe, and
to how gravitational fields dilate (redshift) orntoact (blueshift) time. In this way, it becomes
possible to have a spacetime metric which — alth@uiginction of the electrical charge and inertial
mass of test particles — also remains invarianh wifspect to those charges and masses and
particularly with respect to a re-gauging of tharge-to-mass ratio. This preserves the integrity
of the field theory, and establishes that electnaghyic motion is in fact geodesic motion which

B
satisfies the minimized proper time variatior 5_[A dr from (1). As aresult, it becomes possible
to lay an entirely geometrodynamic foundation flassical electrodynamics.

The author wishes to acknowledge and thank Joys@ani for his encouragement and his input
throughout the conduct of this research.
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