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Abstract: We summarize how the Lorentz Force motion observed in classical electrodynamics
may be understood as geodesic motion derived by minimizing the variation of the proper time
along the worldline of test charges in external potentials, while the spacetime metric remains
invariant under, and all other fields in spacetime remain independent of, any rescaling of the
charge-to-massratio g/m. In order for thisto occur, timeisdilated or contracted dueto attractive
and repulsive electromagnetic interactions respectively, in very much the same way that time is
dilated due to relative motion in special relativity. As such, it becomes possible to lay an entirely
geometrodynamic foundation for classical electrodynamics.

The equation of motion for a test particle alongemdesic line in curved spacetime as
specified by the metric intervaf’dr?® = g,,dx“dx” with metric tensorg,, was first obtained by

Albert Einstein in 89 of his landmark 1916 papdriftroducing the General Theory of Relativity.
The infinitesimal linear elementlr =ds/c for the proper time is a scalar invariant that is

independent of the chosen system of coordinategewlise the finite proper timer:_[fdr

measured along the worldline of the test partideMeen two spacetime evetsandB has an
invariant meaning independent of the choice of doates. Specifically, the geodesic of motion
is stationary, and satisfies the variational miziaion equation

o:djfdr. (1)

Simply put, a material particle goes from evAntio eventB in the physically shortest possible
proper time. After carrying out the well-known @aliation of [1] for which there is a very good
online review at [2], this equation of motion isufa to be:

d’ _d” _ _p dx ok
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with the Christoffel connections defined byr”,, =1 g* (aagw -0,09, —avgaﬂ) and the

relativistic four-velocity byu” = dx* / dr . This geodesic (2) represents the path alongtwihie
proper time is minimized, again, the shortest prdipee between two events.
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If the test particle, to which we now ascribe assra> 0, also has a non-zero net electrical
chargeq# 0 and the region of spacetime in which it subsits has a nonzero electromagnetic

field strengthF#* #0 defined by F#* =3 A" -0 A* in relation to the gauge potential four-

vector A7, with F#% containing the electric and magnetic field biveste andB, then the
equation of motion is no longer (2), but is supmeted by an additional term which contains the
Lorentz force law, namely:
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The above is also well-known, observed, settlecdsjgsy see, e.g., the online review [3].

Given that the gravitational geodesic (2) spesifigoath of minimized proper time (1), the
guestion arises whether there is a way to obtgifr¢& the same variation (1), thus revealing the
electrodynamic motion to also be one of particlesvimg through spacetime along paths of
minimized proper time. Philosophically, it canrm# argued other than that this would be a
desirable state of affairs. But physically thdidiflty rests in how to do this without ruining the
integrity of the metric and the background fieldsspacetime by making them a function of the
charge-to-mass ratig/ m, because this ratio is and must remain a charsiitesf the test particle

alone. It is not and cannot be a characteristithefmetricdz or the metric tensog,,, or the
gauge fieldA” or the field strengtiF#* which define the field-theoretical spacetime baokgd
through which the test particle is moving. And, baittom, this difficulty springs from the

inequivalence of the “electrical mass” a.k.a. chargand the inertial mags, versus the Galilean
equivalence of the gravitational and inertial maks(3), this is captured by the fact timtdoes

not appear in the gravitational terml’ﬁwu”u”, while the q/m ratio does appear in the

electrodynamic Lorentz force term that we rewrd @/ m) F” u’ in naturalc =1 units.

This may also be seen very simply if we compare tdeis law with Coulomb’s law. In
the former case we start with a forée=-GMm/r> (with the minus sign indicating that
gravitation is attractive) and in the latt€r=-k.Qq/r? (for which we choose an attractive
interaction), where G is Newton's gravitational constant and the analsgo
k, =1/ 4, = c*u, | 47 is Coulomb’s constant. If the gravitational fiéddtaken to stem frori
and the electrical field fror®, then the test particle in those fields has gatiaibhal massn and

electrical mass|. But the Newtonian forcé& =ma always contains the inertial mass So in
the former case, because the gravitational andiahenass are equivalent, the acceleration

a=Fm=-GMm/mr?>=-GM /r? and these two masses cancel, heﬁﬁéﬂvu"u“ without any
mass in (3). But in the latter case the accefemati=F /m=-k.Qq/mr*=~(q/m)kQ/r?

because the electrical and inertial masses arequavalent, hencéq/m) F#_u’ containing this

same ratio in (3), and the motion is distinctly elegeent on the electrical and inertial massaad
m of the test particle, even though different chageith different masses may all be moving
through the exact same background fields.
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So, were we to pursue the philosophically-attracgeal of understanding electrodynamic
motion as the result of particles moving througacgtime along paths of minimized proper time,
with (1) applying to electrodynamic motion just iagloes to gravitational motion, the metric

elementdr would inescapably have to be a funct'rdm(q/ m) of g/ m. And this in turn would
appear to violate the integrity of the metric elemedr as well as the metric tensa,, in

cldr? = g,,dx“dx”, because these would atem to be dependent upon the attribugandm of

the test particles that are moving through the sfpme background. Were this to be reality and
not just seeming appearance, this would be is palgiimpermissible. Consequently, despite
there being many known derivations of the Loreotzé law, there does not, to date, appear to be

B
an acceptable rooting of the Lorentz force lavhmariational equatiofl = JIA dr which would

reveal electrodynamic motion to be geodesic mo#enis gravitational motion. And this is
precisely because it is not understood how to dotthile simultaneously maintaining the integrity
of field theory such that the metric and the baokgd fields do not depend upon the attributes of
the test particles which may move through thedddieThis, in turn, is because electrical mass is
not equivalent to inertial mass in contrast to whdhe Galilean equivalence of gravitational and
inertial mass.

Nevertheless, it can be shown that we can in face la metric elemerdz (¢/ m) which
is a function of the electrical-to-inertial massioaq/ m, from which the variational equation

0= ijdr does yield the combined gravitational and elegtmadhic equation of motion (3), yet

for which the metricdz and the metric tensay,, and the gauge field\” and the field strength

F#* are all independent of thig/ m ratio. This seemingly-paradoxical result of havine metric
be amathematical function of q/ m yet bephysically independent of g/ m reveals that when a
first test particle with electrical magsand inertial masm is placed in a field=*" , and a second
test particle with electrical mass and inertial massn and a different ratiay’/m' #q/m is

placed at equipotential in the same fi#ld” , the observably-different Lorentz force motions fo
these two different test particles even though thieyat equipotential is the consequence of the
fact thattime does not flow at the same rate for these two test particlesin very much the same way

that time does not flow at the same rate for two reference framesin special relativity which arein
motion relative to one another.

Specifically, it will be appreciated that the Lotz motion in (3) also contains a set of
coordinatesx”, so that in the absence of gravitation wgf), =7, and Fﬁw =0, the first test
particle will have a Lorentz motion given by:
d*>* _q o OX°

=dy a2 4
dr? mn"" cdr “)

Ordinarily, it is assumed that for the second pasticle, the motion is given by this same equation
(4), merely with the substitution @f - g andm - m', that is, by:
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The particular assumption is that there is no ckanghe rate at which time flows as between (4)
and (5), and more generally the assumption isthieatoordinate intervadx’ in (4) is identical to
the dx? in (5). Yet, it is impossible to have both (4)datb) emerge through the variation

B
0= JIA dr from the same metric elemedt , and simultaneously maintain field theory integrit

unless the coordinates are different, wherexi in (4) is not identical to what must now be
dx? - dx'? £dx? in (5).

In fact, the very physics of having electric charge electromagnetic fields induces a
change in coordinates as between these two tegieshwith differenty’ / m' # g/ m, very similar

to the coordinate change via a Lorentz transforwnatinduced by relative motion, whereby the
electrodynamic motion of the second test charggvisn not by (5), but by:

dZX’ﬁ — q' Fﬂa%g

= ) 6
dr? rﬁ”"" cdr ©)

Here, x* and x'” # x* are different sets of coordinates, yet they aterialated by a definite
transformation one to the other. Most importartthys results irtimeitself being induced to flow
differently as between these two sets of coordsmateaking time dilation and contraction as
fundamental an aspect of electrodynamics, as éadir is of the special relativistic theory of
motion and the general relativistic theory of gtation. In fact, what is really happening —
physically — is that the placement of a chargenirla@ctromagnetic field ismducing a physically-

observable change of coordinates x*(q/m) — x#(q'/m) in the very same way that relative
motion between the coordinate systerigv) and x?(v)) of two different reference frames with
velocitiesv and V' induces a Lorentz transformatiorf (v) — x'# (V') which with relates both
coordinate systems to one another efalr® =7, dx"(v)dx’(v) =7,,dx* (V)dx" (V) with the
invariant metric element’dr? =c”dr'? and with the same metric tenspy, =7,,, .

The metric which in fact yields (3) from (1) sotasnclude electrodynamic motion is:
c’dr’=g,, (dx" +idrA”J(dx“ +idrA“J =g,,Dx*Dx’, (7)
mc mc

where we define a gauge-covariant coordinate iateDx” = dx* +(q/mc)d7A“. And it will be
seen that upon multiplying through Imy’c® and dividing through byl7r?® this becomes:
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U v
mc*=g, mcdi+qA” mch + QA (8)
a dr dr

for the squared rest energy of the invariant remssn ThisDx* = dx” +(q/ mc)drA“ is a direct
outgrowth of the gauge-covariant derivative®, =9, +ieA and canonical momenta

7° = p? —eA” which emerge from gauge theory and in particulamfthe mandate for gauge
(really, phase) symmetry.

Now, this metric (7) is clearly a function gff m and so has thappearance of depending
on the ratioq/ m. But this is only appearance. For, when we ntaggthe second test charge
with the second rati@'/ m' # g/ m in the exact same metric measured by the invaakment

dr and moving through the exact same fieffJs and A“, this metric becomes:

c’dr'*=c4dr*=g,, (dx'” +%drA”j(dx’” +%drA“j =g,,DX*Dx". 9)

So despited7 being aunction of the g/ m ratio, thisdr =d7' as a measured proper time element
is actuallyinvariant with respect to thej/ m ratio becausthe differences between different g/ m

and g'/m’ are entirely absorbed into the coordinate transformation x* - x'# which is wholly
analogousto the Lorentz transformation of special relativity. In fact, this transformatior” - x'#

is defined so as to keepgzr =d7’ andg,, = g,, and A“ = A* and by implication the field strength

bivector F#* = F'#* all unchanged, just as Lorentz transformationsiafimed so as to maintain a
constant speed of light for all inertial refererfig@nes independently of their state of motion. So
dr =dr’ is a function of chargg and massn yet is invariant with respect to the same, andethe
is no paradox in havingr =d7’ be a function of, yet be invariant under, a reagabf theq/ m

ratio. Likewise, the fieldg,, = g,, and A“ = A* are independent of the charge and the mass
of the test particle, because agavrerything emanating from the different ratieqg m andq' / n

is absorbed into a coordinate transformaticth— x'#. Thus, while “gauge” is a historical
misnomer for what is really invariance under Iqutase transformationgy — ' =Uy ="y
applied to a wavefunctiogr , what we see contrasting (7) and (9) is that tet&imtruly is invariant
under what can be genuinely calledeagauging of the g/ m ratio.

As a result, each and every different test partiakeies its own coordinates all interrelated
so as to keegr invariant andg,, , A“ and F#* unchanged. The coordinate transformation

interrelating all the test particles causes timelitate for electrical attraction and to contaat fo
repulsion, with a dimensionless ratiti/dr =dx°/dr =y, that integrally depends upon the

magnitude of the likewise dimensionless rati&¥’ / mc® of electromagnetic interaction energy
gA” to the test particle’s rest energy’. This supplements the ratith/ dr =y, =1/+/1-V* /c?
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for motion in special relativity andt /dr =y, =1/,/g,, for a clock at rest in a gravitational field,
and assembles them in the overall product comboinati / dr =y, y, y, governing time dilation
when all of motion and gravitation and electromadignateractions are present.

Operationally, the electromagnetic contributigy, to this time dilation or contraction

would be measured in principle by comparing the attwhich time is kept by otherwise identical,
synchronized geometrodynamic clocks or oscillatwhsch are then electrically charged with

different g/ m ratios, and then placed at rest into a backgrqatential A“ = (g A) =(g,0) at

equipotential, whergp, is the proper potential. More generally, this Wobe measured by
electrically charging otherwise identical clockslahen placing them into the potential to have
differing gA° / mc? = qg / mc? ratios.

Empirically, for qg/mc®> <1, the interaction energie€,, :_[Fdr =+k,Qq/r sans
integration constant for an attractive Coulomb éorE =-kQq/r? are related to these
electromagnetic time dilations in a fashion ideaitio how the kinetic energy in special relativity
is observed to be the quantitf, =imv’ in mc®y, =mc?/v1-v?/c? Omec?+imv? for
nonrelativistic velocitiesy < ¢. In fact, the actual expression for the electrgnegic contribution
to the time dilation isy,, =1-qg /mc® and for a Coulomb proper potentig =k Q/r , this is
V., =1-k.Qq/mc’r for an electrical interaction chosen to be ativaclike gravitation. So the
earlier-referenced combined time dilatialt/ dz =y, y,y,, employing the gravitational factor

Yy =110 (r) 01+ GM /c’r in the weak field Newtonian limit, produces an mleenergy
which, in the low velocity, weak-gravitational aabctromagnetic interaction limit, is given by:

2 2
2 dt 2 mc +kqu/r D(1+GM /CZr)(rnCZ_'_qm_o)(l.Flv_

— =y, V. y,mc’ = Zj
dr ’ 9o V1-V? /C? 2¢) (10)

Qq, 1kQq . GMm_ 1GMm , GM kQgq 1GM kQq .
r 2 cir r 2 cr r ¢ 2c¢cr c*

E=nmc

:rm2+%rnv2+ke

Above we see, in succession, 1) the rest enemcfy, 2) the kinetic energy of the mass 3) the
Coulomb interaction energy of the charged masthelkinetic energy of the Coulomb energy, 5)
the gravitational interaction energy, 6) the kinetnergy of the gravitational energy, 7) the
gravitational potential energy of the Coulomb pdaedrenergy and 8) the kinetic energy of the
gravitational potential energy of the Coulomb pdiedrenergy. Itis clear that this accords enirel
with empirical observations of the linear limitstbese same energies.

Importantly, unlike gravitational redshifts or b#lefts which are a consequence of
spacetime curvatures, these electromagnetic tita¢iatis do not stem directly from curvature,
and they only affect curvature indirectly througtya&hanges in energy to which they give rise
because gravitation still “sees” all energy. Hemm#&Vey!'s ill-fated attempt from 1918 until 1929
in [4], [5], [6] to base electrodynamics ogal gravitational curvature rooted in invariance under

6
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a non-unitary local transformatio — ¢' =€**y which re-gauges the magnitude of a
wavefunction, rather than under the correct tramsédion — ' =Uy =€y which simply
redirects the phase, foreclosed this possibiliggause the latter correct phase transformation is
associated with an imaginary, not real, curvatheg places a factor=+/-1 into the geodesic
deviation D?¢* / Dr* when expressed in terms of the commutati\ﬂ%,a;vj of spacetime

derivatives. The alteration of time flow in elextynamics, is therefore much more akin to the
time dilation of special relativity, than it is tbe gravitational redshifts and blueshifts of gaher
relativity, and may transpire entirely in flat spime but to the degree that the electrodynamic
energies associated with any particular time ditama as shown in the linear limit of (10), may
reach sufficient magnitude to curve the nearby spae.

Also importantly, the similarity of the ratiogg / mc®> andv®/c® as the driving number

in y,. =1-qg /mc® and y, =1/4/1-Vv* /c® respectively, is more than just an analogy. asst

v<c a.k.a.mv’ <mc? is a fundamental limit on the motion of materiabkiminal particles, so
too, when we develop the electrodynamic time ditediand contractions through to their logical
conclusion, and if we likewise require that padiahd antiparticle energies always be positive and
that time always flows forward in accordance wittyfRman-Stueckelberg and that the speed of
light must remain the material limit that it is kmo to be, then it turns out thagg <mc? is a
material limit on the strength of the interactiomesgy between a test chargewith massm
interacting with the sources of the proper poténgja just as ismv> <mc®. And, it turns out that

when ¢ =k.Q/r is the Coulomb potential whereby this limit becameQq/r <mc* a.k.a.
r >k.Qq/mc?, we find that there is a lower physical limit oovirclose two interacting charges

can get to one another, thereby solving the loagdgibhg problem of how to circumvent the=0
singularity in Coulombs law. To be sure, thesetetenagnetic time dilations are miniscule for
everyday electromagnetic interactions, as are apeelativistic time dilations for everyday
motion. So testing ofit/dr changes for electrodynamics may perhaps be bestgd with
experimental approaches similar to those usedstaddativistic time dilations.

In short, in order to be able to obtain equati8pfor gravitational and electrodynamic
motion from the minimized proper time variation (ft)a way that preserves the integrity of the
metric and the background fields independentlyhef ¢/ m ratio for a given test charge and
thereby achieves the philosophically-attractivel gbanderstanding electrodynamic motion to be
geodesic motion just like gravitational motion, \&ee required to recognize that attractive
electrodynamic interactions inherently dilate apguisive interaction inherently contract time
itself, as an observable physical effect. This is identical to how relative motion dilatése, and
how gravitational fields dilate (redshift) or caatt (blueshift) time. In this way, it becomes
possible to have a spacetime metric which — alth@uiginction of the electrical charge and inertial
mass of test particles — also remains invarianh wéispect to those charges and masses. This
preserves the integrity of the field theory, andstablishes that electrodynamic motion is in fact

geodesic motion that satisfies the minimized prdpee variationO:5jfdr from (1). As a
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result, it becomes possible to lay an entirely gewodynamic foundation for classical
electrodynamics.
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