
Jay R. Yablon, May 24, 2016 

1 
 

The Geometrodynamic Foundation of Electrodynamics: A Brief 
Summary 

 
Jay R. Yablon 

910 Northumberland Drive 
Schenectady, New York 12309-2814 

yablon@alum.mit.edu  
 

May 24, 2016 
 
Abstract:  We summarize how the Lorentz Force motion observed in classical electrodynamics 
may be understood as geodesic motion derived by minimizing the variation of the proper time 
along the worldline of test charges in external potentials, while the spacetime metric remains 
invariant under, and all other fields in spacetime remain independent of, any rescaling of the 
charge-to-mass ratio q/m.  In order for this to occur, time is dilated or contracted due to attractive 
and repulsive electromagnetic interactions respectively, in very much the same way that time is 
dilated due to relative motion in special relativity.  As such, it becomes possible to lay an entirely 
geometrodynamic foundation for classical electrodynamics. 
 

The equation of motion for a test particle along a geodesic line in curved spacetime as 
specified by the metric interval 2 2c d g dx dxµ ν

µντ =  with metric tensor gµν  was first obtained by 

Albert Einstein in §9 of his landmark 1916 paper [1] introducing the General Theory of Relativity.  
The infinitesimal linear element /d ds cτ =  for the proper time is a scalar invariant that is 

independent of the chosen system of coordinates.  Likewise the finite proper time 
B

A
dτ τ= ∫  

measured along the worldline of the test particle between two spacetime events A and B has an 
invariant meaning independent of the choice of coordinates.  Specifically, the geodesic of motion 
is stationary, and satisfies the variational minimization equation 
 

0
B

A
dδ τ= ∫ . (1) 

 
Simply put, a material particle goes from event A to event B in the physically shortest possible 
proper time.  After carrying out the well-known calculation of [1] for which there is a very good 
online review at [2], this equation of motion is found to be: 
 

2

2

d x du d
u u

x dx

d d d d
β β µ ν

µν

β µ

µ

β ν

ντ τ τ τ
= −Γ= = −Γ , (2) 

 

with the Christoffel connections defined by ( )1
2 g g ggβ

µν α µ
βα

µ να ν αµν−Γ ≡ − ∂∂ − ∂  and the 

relativistic four-velocity by /dx du µµ τ≡ .  This geodesic (2) represents the path along which the 
proper time is minimized, again, the shortest proper time between two events. 
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 If the test particle, to which we now ascribe a mass 0m > , also has a non-zero net electrical 
charge 0q ≠  and the region of spacetime in which it subsists also has a nonzero electromagnetic 

field strength 0F βα ≠  defined by F A Aβα β α α β≡ ∂ − ∂  in relation to the gauge potential four-
vector Aα , with F βα  containing the electric and magnetic field bivectors E and B, then the 
equation of motion is no longer (2), but is supplemented by an additional term which contains the 
Lorentz force law, namely: 
 

2

2

d x du dx dx q dx q u
g F g F

d d d
u

d m cd m c
u

β β µ ν σ σ
βα βα

σ
β β µ ν

µν α µν σατ τ τ τ τ
= −Γ = −Γ= + + , (3) 

 
The above is also well-known, observed, settled physics, see, e.g., the online review [3]. 
 
 Given that the gravitational geodesic (2) specifies a path of minimized proper time (1), the 
question arises whether there is a way to obtain (3) from the same variation (1), thus revealing the 
electrodynamic motion to also be one of particles moving through spacetime along paths of 
minimized proper time.  Philosophically, it cannot be argued other than that this would be a 
desirable state of affairs.  But physically the difficulty rests in how to do this without ruining the 
integrity of the metric and the background fields in spacetime by making them a function of the 
charge-to-mass ratio /q m , because this ratio is and must remain a characteristic of the test particle 

alone.  It is not and cannot be a characteristic of the metric dτ  or the metric tensor gµν  or the 

gauge field Aα  or the field strength F βα  which define the field-theoretical spacetime background 
through which the test particle is moving.  And, at bottom, this difficulty springs from the 
inequivalence of the “electrical mass” a.k.a. charge q and the inertial mass m, versus the Galilean 
equivalence of the gravitational and inertial mass.  In (3), this is captured by the fact that m does 
not appear in the gravitational term u uβ µ ν

µν−Γ , while the /q m  ratio does appear in the 

electrodynamic Lorentz force term that we rewrite as ( )/q m F uβ σ
σ  in natural 1c =  units.   

 
This may also be seen very simply if we compare Newton’s law with Coulomb’s law.  In 

the former case we start with a force 2/F GMm r= −   (with the minus sign indicating that 
gravitation is attractive) and in the latter 2/eF k Qq r= −  (for which we choose an attractive 

interaction), where G is Newton’s gravitational constant and the analogous  

0
2

01/ 4 / 4ek c πµπε= =  is Coulomb’s constant.  If the gravitational field is taken to stem from M 

and the electrical field from Q, then the test particle in those fields has gravitational mass m and 
electrical mass q.  But the Newtonian force F ma=  always contains the inertial mass m.  So in 
the former case, because the gravitational and inertial mass are equivalent, the acceleration 

2 2/ /a Fm GMm mr GM r= = − = −  and these two masses cancel, hence u uβ µ ν
µν−Γ  without any 

mass in (3).  But in the latter case the acceleration ( )2 2/ / / /e ea F m k Qq mr q m k Q r= = − = −  

because the electrical and inertial masses are not equivalent, hence ( )/q m F uβ σ
σ  containing this 

same ratio in (3), and the motion is distinctly dependent on the electrical and inertial masses q and 
m of the test particle, even though different charges q with different masses m may all be moving 
through the exact same background fields. 
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So, were we to pursue the philosophically-attractive goal of understanding electrodynamic 
motion as the result of particles moving through spacetime along paths of minimized proper time, 
with (1) applying to electrodynamic motion just as it does to gravitational motion, the metric 
element dτ  would inescapably have to be a function ( )/d q mτ  of /q m .  And this in turn would 

appear to violate the integrity of the metric element dτ  as well as the metric tensor gµν  in 
2 2c d g dx dxµ ν

µντ = , because these would all seem to be dependent upon the attributes q and m of 

the test particles that are moving through the spacetime background.  Were this to be reality and 
not just seeming appearance, this would be is physically impermissible.  Consequently, despite 
there being many known derivations of the Lorentz force law, there does not, to date, appear to be 

an acceptable rooting of the Lorentz force law in the variational equation 0
B

A
dδ τ= ∫  which would 

reveal electrodynamic motion to be geodesic motion as is gravitational motion.  And this is 
precisely because it is not understood how to do this while simultaneously maintaining the integrity 
of field theory such that the metric and the background fields do not depend upon the attributes of 
the test particles which may move through these fields.  This, in turn, is because electrical mass is 
not equivalent to inertial mass in contrast to what is the Galilean equivalence of gravitational and 
inertial mass. 

 
Nevertheless, it can be shown that we can in fact have a metric element ( )/d q mτ  which 

is a function of the electrical-to-inertial mass ratio /q m , from which the variational equation 

0
B

A
dδ τ= ∫  does yield the combined gravitational and electrodynamic equation of motion (3), yet 

for which the metric dτ  and the metric tensor gµν  and the gauge field Aα  and the field strength 

F βα  are all independent of this /q m  ratio.  This seemingly-paradoxical result of having the metric 
be a mathematical function of /q m  yet be physically independent of /q m  reveals that when a 

first test particle with electrical mass q and inertial mass m is placed in a field F βα , and a second 
test particle with electrical mass q′  and inertial mass m′  and a different ratio / /q m q m′ ′ ≠  is 

placed at equipotential in the same field F βα , the observably-different Lorentz force motions for 
these two different test particles even though they are at equipotential is the consequence of the 
fact that time does not flow at the same rate for these two test particles in very much the same way 
that time does not flow at the same rate for two reference frames in special relativity which are in 
motion relative to one another. 
 
 Specifically, it will be appreciated that the Lorentz motion in (3) also contains a set of 
coordinates xµ , so that in the absence of gravitation with gµν µνη=  and 0β

µνΓ = , the first test 

particle will have a Lorentz motion given by: 
 

2

2

d x q dx
F

d m cd

β σ
βα

σαη
τ τ

= . (4) 

 
Ordinarily, it is assumed that for the second test particle, the motion is given by this same equation 
(4), merely with the substitution of q q′→  and m m′→ , that is, by: 
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2

2

d x q dx
F

d m cd

β σ
βα

σαη
τ τ

′
′

= . (5) 

 
The particular assumption is that there is no change in the rate at which time flows as between (4) 
and (5), and more generally the assumption is that the coordinate interval dxσ  in (4) is identical to 
the dxσ  in (5).  Yet, it is impossible to have both (4) and (5) emerge through the variation 

0
B

A
dδ τ= ∫  from the same metric element dτ , and simultaneously maintain field theory integrity, 

unless the coordinates are different, wherein dxσ  in (4) is not identical to what must now be 
 dx dx dxσ σ σ′→ ≠  in (5).   

 
In fact, the very physics of having electric charges in electromagnetic fields induces a 

change in coordinates as between these two test charges with different / /q m q m′ ′ ≠ , very similar 
to the coordinate change via a Lorentz transformations induced by relative motion, whereby the 
electrodynamic motion of the second test charge is given not by (5), but by: 
 

2

2

d x q dx
F

d m cd

β σ
βα

σαη
τ τ

′ ′
′

=
′

. (6) 

 
Here, xβ  and x xβ β′ ≠  are different sets of coordinates, yet they are interrelated by a definite 
transformation one to the other.  Most importantly, this results in time itself being induced to flow 
differently as between these two sets of coordinates, making time dilation and contraction as 
fundamental an aspect of electrodynamics, as it already is of the special relativistic theory of 
motion and the general relativistic theory of gravitation.  In fact, what is really happening – 
physically – is that the placement of a charge in an electromagnetic field is inducing a physically-
observable change of coordinates ( / ) ( / )x q m x q mβ β′ ′ ′→  in the very same way that relative 

motion between the coordinate systems ( )x vβ  and ( )x vβ′ ′  of two different reference frames with 

velocities v and ν ′  induces a Lorentz transformation ( ) ( )x v x vβ β′ ′→  which with relates both 

coordinate systems to one another via 2 2 ( ) ( ) ( ) ( )c d dx v dx v dx v dx vµ ν µ ν
µν µντ η η′ ′ ′ ′ ′= =  with the 

invariant metric element 2 2 2 2c d c dτ τ ′=  and with the same metric tensor µν µνη η ′= . 

 
 The metric which in fact yields (3) from (1) so as to include electrodynamic motion is: 
 

2 2 q q
c d g dx d A dx d A g Dx Dx

mc mc
µ µ ν ν µ ν

µν µντ τ τ  = + + =  
  

, (7) 

 
where we define a gauge-covariant coordinate interval ( )/Dx dx q mc d Aµ µ µτ≡ + .  And it will be 

seen that upon multiplying through by 2 2m c  and dividing through by 2dτ  this becomes: 
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2 4 dx dx
m c g mc qA mc qA

d d

µ ν
µ ν

µν τ τ
  

= + +  
  

 (8) 

 
for the squared rest energy of the invariant rest mass.  This ( )/Dx dx q mc d Aµ µ µτ≡ +  is a direct 

outgrowth of the gauge-covariant derivatives D ieAσ σ σ≡ ∂ +  and canonical momenta 

p eAσ σ σπ ≡ −  which emerge from gauge theory and in particular from the mandate for gauge 
(really, phase) symmetry. 
 

Now, this metric (7) is clearly a function of /q m  and so has the appearance of depending 
on the ratio /q m .  But this is only appearance.  For, when we now place the second test charge 
with the second ratio / /q m q m′ ′ ≠  in the exact same metric measured by the invariant element 

dτ  and moving through the exact same fields gµν  and Aµ , this metric becomes: 

 

2 2 2 2 q q
c d c d g dx d A dx d A g Dx Dx

m c m c
µ µ ν ν µ ν

µν µντ τ τ τ′ ′  ′ ′ ′ ′ ′= = + + =  ′ ′  
. (9) 

 
So despite dτ  being a function of the /q m  ratio, this d dτ τ ′=  as a measured proper time element 
is actually invariant with respect to the /q m  ratio because the differences between different /q m  

and /q m′ ′  are entirely absorbed into the coordinate transformation x xµ µ′→  which is wholly 

analogous to the Lorentz transformation of special relativity.  In fact, this transformation x xµ µ′→  
is defined so as to keep d dτ τ ′=  and g gµν µν′=  and A Aµ µ′=  and by implication the field strength 

bivector F Fβα βα′= all unchanged, just as Lorentz transformations are defined so as to maintain a 
constant speed of light for all inertial reference frames independently of their state of motion.  So 
d dτ τ ′=  is a function of charge q and mass m yet is invariant with respect to the same, and there 
is no paradox in having d dτ τ ′=  be a function of, yet be invariant under, a rescaling of the /q m  

ratio.   Likewise, the fields g gµν µν′=  and A Aµ µ′=  are independent of the charge and the mass 

of the test particle, because again, everything emanating from the different ratios /q m  and /q m′ ′  
is absorbed into a coordinate transformation x xµ µ′→ .  Thus, while “gauge” is a historical 
misnomer for what is really invariance under local phase transformations ( , )i tU eψ ψ ψ ψΛ′→ = = x  
applied to a wavefunction ψ , what we see contrasting (7) and (9) is that the metric truly is invariant 
under what can be genuinely called a re-gauging of the /q m  ratio. 
 

As a result, each and every different test particle carries its own coordinates all interrelated 
so as to keep dτ  invariant and gµν , Aµ  and F βα  unchanged.  The coordinate transformation 

interrelating all the test particles causes time to dilate for electrical attraction and to contact for 
repulsion, with a dimensionless ratio 0/ / emdt d dx dτ τ γ= ≡  that integrally depends upon the 

magnitude of the likewise dimensionless ratio 2/qA mcµ  of electromagnetic interaction energy 

qAµ  to the test particle’s rest energy 2mc .  This supplements the ratio 2 2/ 1/ 1 /vdt d v cτ γ= = −  
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for motion in special relativity and 00/ 1/gdt d gτ γ= =  for a clock at rest in a gravitational field, 

and assembles them in the overall product combination / em g vdt dτ γ γ γ=  governing time dilation 

when all of motion and gravitation and electromagnetic interactions are present. 
 
Operationally, the electromagnetic contribution emγ  to this time dilation or contraction 

would be measured in principle by comparing the rate at which time is kept by otherwise identical, 
synchronized geometrodynamic clocks or oscillators which are then electrically charged with 
different /q m  ratios, and then placed at rest into a background potential ( ) ( )0, ,Aµ φ φ= =A 0  at 

equipotential, where 0ϕ  is the proper potential.  More generally, this would be measured by 

electrically charging otherwise identical clocks and then placing them into the potential to have 
differing 0 2 2

0/ /qA mc q mcφ=  ratios.   

 
Empirically, for 2

0 / 1q mcφ ≪ , the interaction energies /em eE Fdr k Qq r= = +∫  sans 

integration constant for an attractive Coulomb force 2/eF k Qq r= −  are related to these 

electromagnetic time dilations in a fashion identical to how the kinetic energy in special relativity 

is observed to be the quantity 21
2vE mv=  in 2 2 2 2 2 21

2/ 1 /vmc mc v c mc mvγ = − ≅ +  for 

nonrelativistic velocities v c≪ .  In fact, the actual expression for the electromagnetic contribution 
to the time dilation is 2

01 /em q mcγ φ= −  and for a Coulomb proper potential 0 /ek Q rφ = , this is 
21 /em ek Qq mc rγ = −  for an electrical interaction chosen to be attractive like gravitation.  So the 

earlier-referenced combined time dilation / em g vdt dτ γ γ γ= , employing the gravitational factor 
2

001/ ( ) 1 /g g r GM c rγ = ≅ +  in the weak field Newtonian limit, produces an overall energy 

which, in the low velocity, weak-gravitational and electromagnetic interaction limit, is given by: 
 

( )( )
2 2

2 2 2 2
0 22 2

00

2 2 2 2 2
2 2 2 2 2

/ 1
1 / 1

21 /

1 1 1 1

2 2 2 2

e
em g v L

e e e e

mc k Qq rdt v
E mc mc GM c r mc q

d cg v c

k Qq k Qq k Qq k QqGMm GMm GM GM
mc mv v v v

r c r r c r r c r c r c r

γ γ γ φ
τ

 += = = ≅ + + + 
−  

= + + + + + + +

. (10) 

 
Above we see, in succession, 1) the rest energy 2mc , 2) the kinetic energy of the mass m, 3) the 
Coulomb interaction energy of the charged mass, 4) the kinetic energy of the Coulomb energy, 5) 
the gravitational interaction energy, 6) the kinetic energy of the gravitational energy, 7) the 
gravitational potential energy of the Coulomb potential energy and 8) the kinetic energy of the 
gravitational potential energy of the Coulomb potential energy.  It is clear that this accords entirely 
with empirical observations of the linear limits of these same energies.  

 
Importantly, unlike gravitational redshifts or blueshifts which are a consequence of 

spacetime curvatures, these electromagnetic time dilations do not stem directly from curvature, 
and they only affect curvature indirectly through any changes in energy to which they give rise 
because gravitation still “sees” all energy.  Hermann Weyl’s ill-fated attempt from 1918 until 1929 
in  [4], [5], [6] to base electrodynamics on real gravitational curvature rooted in invariance under 
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a non-unitary local transformation ( , )teψ ψ ψΛ′→ = x  which re-gauges the magnitude of a 

wavefunction, rather than under the correct transformation ( , )i tU eψ ψ ψ ψΛ′→ = = x  which simply 
redirects the phase, foreclosed this possibility, because the latter correct phase transformation is 

associated with an imaginary, not real, curvature that places a factor 1i = −  into the geodesic 

deviation 2 2/D Dµξ τ  when expressed in terms of the commutativity ; ;, vµ ∂ ∂   of spacetime 

derivatives.  The alteration of time flow in electrodynamics, is therefore much more akin to the 
time dilation of special relativity, than it is to the gravitational redshifts and blueshifts of general 
relativity, and may transpire entirely in flat spacetime but to the degree that the electrodynamic 
energies associated with any particular time alterations as shown in the linear limit of (10), may 
reach sufficient magnitude to curve the nearby spacetime. 

 
Also importantly, the similarity of the ratios 2

0 /q mcφ  and 2 2/v c  as the driving number 

in 2
01 /em q mcγ φ= −  and 2 21/ 1 /v v cγ = −  respectively, is more than just an analogy.  Just as 

v c<  a.k.a. 2 2mv mc<  is a fundamental limit on the motion of material subluminal particles, so 
too, when we develop the electrodynamic time dilations and contractions through to their logical 
conclusion, and if we likewise require that particle and antiparticle energies always be positive and 
that time always flows forward in accordance with Feynman-Stueckelberg and that the speed of 
light must remain the material limit that it is known to be, then it turns out that 2

0q mcφ <  is a 

material limit on the strength of the interaction energy between a test charge q with mass m 
interacting with the sources of the proper potential 0φ , just as is 2 2mv mc< .  And, it turns out that 

when 0 /ek Q rφ =  is the Coulomb potential whereby this limit becomes 2/ek Qq r mc<  a.k.a. 
2/er k Qq mc> , we find that there is a lower physical limit on how close two interacting charges 

can get to one another, thereby solving the long-standing problem of how to circumvent the 0r =  
singularity in Coulombs law.  To be sure, these electromagnetic time dilations are miniscule for 
everyday electromagnetic interactions, as are special relativistic time dilations for everyday 
motion.  So testing of /dt dτ  changes for electrodynamics may perhaps be best pursued with 
experimental approaches similar to those used to test relativistic time dilations. 
 
 In short, in order to be able to obtain equation (3) for gravitational and electrodynamic 
motion from the minimized proper time variation (1) in a way that preserves the integrity of the 
metric and the background fields independently of the /q m  ratio for a given test charge and 
thereby achieves the philosophically-attractive goal of understanding electrodynamic motion to be 
geodesic motion just like gravitational motion, we are required to recognize that attractive 
electrodynamic interactions inherently dilate and repulsive interaction inherently contract time 
itself, as an observable physical effect.  This is identical to how relative motion dilates time, and 
how gravitational fields dilate (redshift) or contract (blueshift) time.  In this way, it becomes 
possible to have a spacetime metric which – although a function of the electrical charge and inertial 
mass of test particles – also remains invariant with respect to those charges and masses.  This 
preserves the integrity of the field theory, and it establishes that electrodynamic motion is in fact 

geodesic motion that satisfies the minimized proper time variation 0
B

A
dδ τ= ∫  from (1).  As a 
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result, it becomes possible to lay an entirely geometrodynamic foundation for classical 
electrodynamics. 
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