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1 Introduction

Let (Xn, n ≥ 1) be independent and identically distributed (iid) random sequence with cumula-
tive distribution function (cdf). Let Mn = max(Xk, 1 ≤ k ≤ n) represent the partial maximum of
(Xn, n ≥ 1). A cdf F is said to belong to the max domain of attraction of a non-degenerate distri-
bution function H under power normalization (or nonlinear normalization), written as F ∈ Dp(H),
if there exist normalized constants αn > 0, βn > 0 and n > 1, such that

lim
n→∞P

( |Mn/αn|1/βn sign(Mn) ≤ x
)

= lim
n→∞Fn

(
αn|x|βn sign(x)

)
= H(x)

for all x ∈ C(H),the set of continuity points of function H, where sign(x) = −1, 0 or 1 according
as x < 0, x = 0 or x > 0. Pancheva (1985) showed that H can be one of only power types of the
following six power max stable laws:

H1,α(x) =

{
0, if x ≤ 1,

exp{−(log x)−α}, if x > 1,

H2,α(x) =





0, if x ≤ 0,

exp{−(− log x)α}, if 0 < x < 1,

1, if x ≥ 1,
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H3,α(x) =





0, if x ≤ −1,

exp{−(− log(−x))−α}, if − 1 < x < 0,

1, if x ≥ 0,

H4,α(x) =

{
exp{−(log(−x))α}, if x < −1,

1, if x ≥ −1,

H5,α(x) = Φ1(x) =

{
0, if x ≤ 0,

exp{−x−1}, if x > 0,

H6,α(x) = Ψ1(x) =

{
exp{x}, if x < 0,

1, if x ≥ 0,

where α is a positive parameter. Mohan and Ravi (1993) showed that max stable laws under linear
normalization attract less distributions than under power normalization. Necessary and sufficient
conditions for F belonging to Dp(H) can be found in Christoph and Falk (1996), Mohan and
Subramanya (1991) and Subramanya (1994). Barakat et al. (2010) established the relationship
between the convergence rates under linear and power normalization. As one of very important
problem in extreme value analysis, the asymptotic property of extreme of special distribution
under power normalization has been considered in plenty of literatures in recent years. Chen
et al. (2012) obtained the exact uniform convergence rates of limit distribution of maximum
from general error distribution under power normalization. Chen and Feng (2014) and Huang
et al. (2016) proved a similar result respectively for the short-tailed symmetric and logarithmic
normal distribution. Peng et al. (2013) considered the convergence of moments and densities of
extremes under power normalization. Yang and Li (2015) investigated the distributional expansions
of maximum of logarithmic general error distribution. Jiang et al. (2016) got the high-order
expansions of extremes for skew-normal distribution. For limit property of maximum of given
distribution under linear normalization, Nair (1981) investigated the asymptotic expansions of the
distribution and the moments of extremes for standard normal distribution. Liao et al. (2013,
2014) extended the result to the case of skew-normal distribution. Jia and Li (2014) gained the
higher-order expansion for the distribution of normalized maximum from general error distribution.
Jia et al. (2015) derived the higher-order expansion for the moment of normalized maximum from
general error distribution. Other related works, see Li and Li (2015), Du and Chen (2015, 2016).

In this article, the aim to establish the high-order expansion of cdf and probability density
function (pdf) of normalized maxima for generalized Maxwell distribution (GMD for short) under
power normalization. Vodă (2009) used a modified Weibull hazard rate as generator to obtain a
generalized Maxwell distribution which pdf is given by

fk(x) =
k

2k/2σ2+1/kΓ(1 + k/2)
x2k exp

(
−x2k

2σ2

)
, x > 0, (1.1)

where k, σ is positive and Γ(·) represents the Gamma function. For k = 1, GMD(1) reduces to the
classic Maxwell distribution. The tail behavior and the limit distribution of maxima from GMD
was studied by Huang and Chen (2015). To our knowledge, there is no works about the high-order
expansion of extremes of GMD under nonlinear normalization. This paper is to fill this gap.

In order to gain the high-order expansions of maxima for GMD under nonlinear normalization,
we will give the power norming constants. In this sequel, let Fk stand for the cdf of GMD. Huang
and Chen (2015) showed that Fk belongs to the domain of attraction of the Gumbel extreme value
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distribution. It follows Theorem 3.1 of Mohan and Ravi (1993) that we have Fk ∈ Dp(Φ1). Huang
and Chen (2015) proved that:

1− Fk(x)
fk(x)

∼ σ2

k
x1−2k, (1.2)

as x →∞.

According to Huang and Chen (2015), for large x we have

1− Fk(x) = c(x) exp
(
−

∫ x

1

g(t)
f(t)

dt
)

(1.3)

where

c(x) → exp
(− 1/(2σ2)

)

2k/2σ1/kΓ(1 + k/2)
,

as x →∞

f(x) = k−1σ2x1−2k, (1.4)

and
g(x) = 1− k−1σ2x−2k.

By Theorem 3.1 of Mohan and Ravi (1993) and (1.4), we may choose the suitable power norming
constants αn and βn in such a way that

1− Fk(αn) = 1/n, (1.5)

βn = k−1σ2α1−2k
n , (1.6)

such that

lim
n→∞Fn

k

(
αnxβn

)
= exp

(− x−1
)

= Φ1(x), (1.7)

for all x > 0. By (1.2) and (1.5), for large n we could obtain

α2k
n ∼ 2σ2 log n. (1.8)

The reminder of this paper is organized as follows: Section 2, we give the main results. Section
3, some auxiliary lemmas and associated proofs are provided. Section 4, the proofs of the results
are presented.

2 Main result

In this section, we present the high-order expansions of the cdf and pdf of normalized maxima for
GMD with parameter k > 0 under nonlinear normalization. First of all, the high-order expansions
of the cdf of normalized maximum from GMD with k > 0 under nonlinear normalization are stated
as follows.
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Theorem 2.1. Let Fk(x) represent the cdf of GMD with k > 0. For normalizing constants αn and
βn determined respectively by (1.5) and (1.6), we have

α2k
n

(
α2k

n

(
Fn

k (αnxβn)− Φ1(x)
)− Sk(x)Φ1(x)

)
→

(
Tk(x) +

S2
k(x)
2

)
Φ1(x)

as n →∞, where Sk(x) and Tk(x) are respectively defined by

Sk(x) = σ2x−1
(
log x− k−1

)
log x

and

Tk(x) = σ4x−1

(
− 1

2
(log x)3 +

(
2
3

+ k−1

)
(log x)2 − 1

2
k−2 log x + 2k−1

)
log x.

Remark 2.1. For the case of parameter k = 1, i.e., the classic Maxwell case, the associated result
follows.

Noting that α−2k
n ∼ 1/(2σ2 log n), it follows Theorem 2.1 that we can establish the convergence

rate of the distribution of maxima to its limit described as follows.

Corollary 2.1. Let αn and βn given respectively by (1.5) and (1.6) and for x > 0, we have

Fn
k (αnxβn)− Φ1(x) ∼ (log x− k−1) log x

2x log n
Φ1(x)

for k > 0 and large n.

In the following the high-order expansion of the pdf of normalized maxima is established. In
this sequel, set Vn(x) = (Fn

k (αnxβn))′ − Φ
′
1(x), where (Fn

k (αnxβn))′ and Φ
′
1(x) respectively denote

the pdf of (Mn/αn)1/βn and Φ1(x) for x > 0.

Theorem 2.2. Under the condition of Theorem 2.1, we have

α2k
n

(
α2k

n Vn(x)− Pk(x)Φ
′
1(x)

)
→ Qn(x)Φ

′
1(x)

as n →∞, where Pk(x) and Qk(x) are respectively defined by

Pk(x) = σ2
((

x−1 − 1
)
(log x)2 +

(− k−1x−1 + k−1 + 2
)
log x− k−1

)

and

Qk(x) =σ4

(
1
2
(x−2 − 3x−1 + 1)(log x)4 +

(
−k−1x−2 + (3k−1 +

8
3
)x−1 − 8

3
− k−1

)
(log x)3

+
(

1
2
k−2x−2 − (

3
2
k−1 + 3)k−1x−1 +

1
2
k−2 + 3k−1 + 2

)
(log x)2

+
(
(k−1 + 2)k−1x−1 − (k−1 + 2)k−1

)
log x + k−1

)
.

Remark 2.2. As parameter k = 1, that is the classic Maxwell distribution, the corresponded result
cloud be gained.
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Observing that α−2k
n ∼ 1/(2σ2 log n), by utlizing Theorem 2.2, we can derive the convergence

rate of the density of maxima tending to its extreme value limit depicted as follows.

Corollary 2.2. Let the normalizing constants αn and βn given respectively by (1.5) and (1.6) and
for x > 0, we have

(Fn
k (αnxβn))′ − Φ

′
1(x) ∼

(
(x−1 − 1)(log x)2 + (−k−1x−1 + k−1 + 2) log x− k−1

)

2x2 log n
Φ1(x)

for k > 0 and large n.

3 Some Technical lemmas

The following lemmas are been utilized in the process of the proofs of main results.

Lemma 3.1. Let Fk(x) represent the cdf of GMD with k > 0. For large x, we have

1− Fk(x) =fk(x)
σ2

k
x1−2k

(
1 + k−1σ2x−2k + k−2(1− 2k)σ4x−4k + O(x−6k)

)

=
exp(−1/(2σ2))

2k/2σ1/kΓ(1 + k/2)

(
1 + k−1σ2x−2k + k−2(1− 2k)σ4x−4k

+ O(x−6k)
)
exp

(
−

∫ x

1

g(t)
f(t)

dt
)

(3.1)

with f(t) and g(t) given by (1.4).

Proof. The proof can be found in Lemma 3.1 of Huang and Liu (2015).

Lemma 3.2. For fixed x > 0 and k > 0, set

An(x) = 1 + k−1σ2x−2k + k−2(1− 2k)σ4x−4k + O(x−6k)

and

Cn(x) =
An(αnxβn)

An(αn)

with the norming constants αn and βn defined by (1.5) and (1.6). Then,

α2k
n (Cn(x)− 1) → 0

and
α4k

n (Cn(x)− 1) → −2k−1σ4 log x,

as n →∞.

Proof. It is easy to check that n(1−F (αnxβn)) → x−1 as n →∞ by (1.7). By some elementary
calculations, we have Cn(x) → 1 as n →∞. By applying (1.5) and (1.6), for large n we have

(αnxβn)−2k − α−2k
n = −2σ2α−4k

n log x + 2σ4α−6k
n (log x)2 + O(α−8k

n )

and
(αnxβn)−4k − α−4k

n = −4σ2α−6k
n log x + 8σ4α−8k

n (log x)2 + O(α−10k
n ),
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which implies

Cn(x)− 1 =
(

k−1σ2
(
(αnxβn)−2k − α−2k

n

)
+ k−2(1− 2k)σ4

(
(αnxβn)−4k − α−4k

n

)
+ O(α−8k

n )
)

× (1 + o(1))

=
(
−2k−1σ4(log x)α−4k

n + 2k−1σ6(log x− 2k−1 + 4)(log x)α−6k
n + O(α−8k

n )
)

× (1 + o(1)).

Then, we have
lim

n→∞α2k
n (Cn(x)− 1) = 0

and
lim

n→∞α4k
n (Cn(x)− 1) = −2k−1σ4 log x.

The proof is complete.

Lemma 3.3. Let Mn(x) = kσ−2α2k
n βnx2kβn−1 − βnx−1 − x−1 with norming constants αn and βn

defined by (1.5) and (1.6). Then,

α2k
n Mn(x) → σ2x−1(2 log x− k−1) (3.2)

and

α4k
n

(
Mn(x)− σ2x−1(2 log x− k−1)α−2k

n

)
→ 2σ4x−1(log x)2 (3.3)

as n →∞.

Proof. Through some fundamental computations, the desired result follows, so the detailed
process is omitted.

Lemma 3.4. Let Un(x) = n log Fk(αnxβn) + x−1 with norming constants αn and βn defined by
(1.5) and (1.6). Then,

α2k
n

(
α2k

n Un(x)− Sk(x)
)
→ Tk(x),

as n →∞, where Sk(x) and Tk(x) are determined by Theorem 2.1.

Proof. For k > 0, by utilizing (1.2) and (1.5), for all positive integers j and j > 1 we have

lim
n→∞

(1− Fk(αnxβn))i

n−1α−jk
n

= 0. (3.4)

By (1.4), (3.1) and Lemma 3.2, 3.3, we have

1− Fk(αnxβn)
1− Fk(αn)

x

=Cn(x) exp

(
−

∫ αnxβn

αn

(
k

σ2
t2k−1 − 1

t

)
dt + log x

)
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=Cn(x) exp
(
−

∫ x

1
Mn(t)dt

)

=Cn(x)

(
1−

∫ x

1
Mn(t)dt +

1
2

(∫ x

1
Mn(t)dt

)2

(1 + o(1))

)
. (3.5)

By applying (1.5), (3.2), (3.4), (3.5), Lemma 3.2 and Combining with the dominated convergence
theorem, we get

lim
n→∞α2k

n Un(x)

= lim
n→∞α2k

n

(
n log Fk(αnxβn) + x−1

)

= lim
n→∞α2k

n n
(
log

[
1− (1− Fk(αnxβn))

]
+ x−1n−1

)

= lim
n→∞α2k

n n

(
−(1− Fk(αnxβn))− 1

2
(1− Fk(αnxβn))2(1 + o(1)) + (1− Fk(αn))x−1

)

= lim
n→∞α2k

n n(1− Fk(αn))x−1

(
−1− Fk(αnxβn)

1− Fk(αn)
x + 1

)

=x−1 lim
n→∞α2k

n

(
(1− Cn(x)) + Cn(x)

∫ x

1
Mn(t)dt(1 + o(1))

)

=x−1

∫ x

1
lim

n→∞α2k
n Mn(t)dt

=σ2x−1
(
log x− k−1

)
log x

= : Sk(x)

and by using (1.5), (3.3), (3.4), (3.5), Lemma 3.2 and the dominated convergence theorem, we
obtain

lim
n→∞α2k

n

(
α2k

n Un(x)− Sk(x)
)

= lim
n→∞α4k

n n

(
− (1− Fk(αnxβn))− 1

2
(1− Fk(αnxβn))2(1 + o(1))

+ (1− Fk(αn))x−1
(
1− Sk(x)α−2k

n

) )

= lim
n→∞α4k

n x−1

(
−1− Fk(αnxβn)

1− Fk(αn)
x + 1− Sk(x)xα−2k

n

)

=x−1

(
lim

n→∞α4k
n

∫ x

1

(
Mn(t)− σ2t−1(2 log t− k−1)α−2k

n

)
dt

− lim
n→∞

1
2
Cn(x)

(
α2k

n

∫ x

1
Mn(t)dt

)2

(1 + o(1)) + lim
n→∞α4k

n (1− Cn(x))
)

=σ4x−1

(
− 1

2
(log x)3 +

(
2
3

+ k−1

)
(log x)2 − 1

2
k−2 log x + 2k−1

)
log x

= : Tk(x).

The desired result follows.
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Lemma 3.5. Let Fk(x) represent the cdf of GMD and norming constants αn and βn defined by
(1.5) and (1.6). For large n we have

Fn−1
k (αnxβn) =

[
1 + α−2k

n Sk(x) + α−4k
n

(
1
2
S2

k(x) + Tk(x)
)]

(1 + o(1))Φ1(x)

=: Bn(x)Φ1(x) (3.6)

where Sk(x) and Tk(x) are respectively determined by Theorem 2.1.

Proof. By utilizing Lemma 3.4, for large n we have

Fn
k (αnxβn) =

[
1 + α−2k

n Sk(x) + α−4k
n

(
1
2
S2

k(x) + Tk(x)
)

+ O(α−6k
n )

]
Φ1(x). (3.7)

It is easy to check that 1− Fk(αnxβn) = O(n−1) by (1.7). By employing (1.8), we have

Fn−1
k (αnxβn) = Fn

k (αnxβn)[1− (1− Fk(αnxβn))]−1

= Fn
k (αnxβn)

(
1 + O(n−1)

)
. (3.8)

Combining (3.7) with (3.8), we have

Fn−1
k (αnxβn) =

[
1 + α−2k

n Sk(x) + α−4k
n

(
1
2
S2

k(x) + Tk(x)
)]

(1 + o(1))Φ1(x).

The conclusion can be deduced.

4 Proofs

Proof of Theorem 2.1. By using Lemma 3.4, we have

α2k
n

(
α2k

n (Fn
k (αnxβn)− Φ1(x))− Sk(x)Φ1(x)

)

=α2k
n

(
α2k

n

(
exp

(
n log Fk(αnxβn) + x−1 − x−1

)
− Φ1(x)

)
− Sk(x)Φ1(x)

)

=
(

α2k
n

(
α2k

n Un(x)− Sk(x)
)

+
(
α2k

n Un(x)
)2

(
1
2

+ O(Un(x))
))

Φ1(x)

→
(

Tk(x) +
1
2
S2

k(x)
)

Φ1(x),

as n →∞, here Sk(x) and Tk(x) are defined by Theorem 2.1. The needed result is complete.

Proof of Theorem 2.2. It follows Lemma 3.1 that, for large n we have

fk(x) =
(
1− k−1σ2x−2k + k−1σ4x−4k + O(x−6k)

) k

σ2
x2k−1(1− Fk(x))

=:Gn(x)(1− Fk(x)). (4.1)
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By employing (3.2), (3.5), (3.6), (4.1) and the dominated convergence theorem, we have

lim
n→∞α2k

n Vn(x)

= lim
n→∞α2k

n

(
nαnβnxβn−1Fn−1

k (αnxβn)fk(αnxβn)− Φ
′
1(x)

)

= lim
n→∞α2k

n

(
k−1σ2α1−2k

n xβn−1Bn(x)Gn(αnxβn)
1− Fk(αnxβn)

1− Fk(αn)
Φ1(x)− Φ

′
1(x)

)

= lim
n→∞α2k

n

(
k−1σ2α1−2k

n xβnCn(x)

(
1−

∫ x

1
Mn(t)dt +

1
2

(∫ x

1
Mn(t)dt

)2

(1 + o(1))

)

×Bn(x)Gn(αnxβn)− 1
)

Φ
′
1(x)

= lim
n→∞α2k

n

(
Cn(x)

(
1−

∫ x

1
Mn(t)dt +

1
2

(∫ x

1
Mn(t)dt

)2

(1 + o(1))

)

×
(

1 + α−2k
n Sk(x) + α−4k

n

(
1
2
S2

k(x) + Tk(x)
))

(1 + o(1))

×
(
1 + 2σ2α−2k

n log x + 2σ4α−4k
n (log x)2 + O(α−6k

n )
)

×
(
1− k−1σ2α−2k

n + k−1σ4(2 log x + 1)α−4k
n + O(α−6k

n )
)
− 1

)
Φ
′
1(x)

= lim
n→∞α2k

n

( (
Cn(x)− Cn(x)

∫ x

1
Mn(t)dt +

1
2
Cn(x)

(∫ x

1
Mn(t)dt

)2

(1 + o(1))

)

×
(

1 +
(
Sk(x)− (k−1 − 2 log x)σ2

)
α−2k

n +
[
(k−1 + 2(log x)2)σ4 − (k−1 − 2 log x)σ2Sk(x)

+
1
2
S2

k(x) + Tk(x)
]
α−4k

n + O(α−6k
n )

)
− 1

)
Φ
′
1(x)

=
(

Sk(x)− (k−1 − 2 log x)σ2 − lim
n→∞α2k

n

∫ x

1
Mn(t)dt

)
Φ
′
1(x)

=σ2

((
x−1 − 1

)
(log x)2 +

(− k−1x−1 + k−1 + 2
)
log x− k−1

)
Φ
′
1(x)

=:Pk(x)Φ
′
1(x)

and by applying (3.3), (3.5), (3.6), (4.1) and the dominated convergence theorem, we derive

lim
n→∞α2k

n

(
α2k

n Vn(x)− Pk(x)Φ
′
1(x)

)

= lim
n→∞

([
(k−1 + 2(log x)2)σ4 − (k−1 − 2 log x)σ2Sk(x) +

1
2
S2

k(x) + Tk(x)
]

− α4k
n

∫ x

1

(
Mn(t)− σ2t−1(2 log t− k−1)α−2k

n

)
dt

− (
Sk(x)− (

k−1 − 2 log x
)
σ2

)
α2k

n

∫ x

1
Mn(t)dt

+
1
2

(
α2k

n

∫ x

1
Mn(t)dt

)2

(1 + o(1)) + α4k
n (Cn(x)− 1)

)
Φ
′
1(x)
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=σ4

(
1
2
(x−2 − 3x−1 + 1)(log x)4 +

(
−k−1x−2 + (3k−1 +

8
3
)x−1 − 8

3
− k−1

)
(log x)3

+
(

1
2
k−2x−2 − (

3
2
k−1 + 3)k−1x−1 +

1
2
k−2 + 3k−1 + 2

)
(log x)2

+
(
(k−1 + 2)k−1x−1 − (k−1 + 2)k−1

)
log x + k−1

)
Φ
′
1(x)

= : Qn(x)Φ
′
1(x).

The wanted result follows.
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