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Abstract

The second-order approach to the entropy gradient maximization,
for systems with many degrees of freedom provides the dynamic equa-
tions of first order and light-like second order without additional er-
godicity conditions like conservation laws.

The first order dynamics lead to the definition of the conserved
kinetic energy and potential energy. In terms of proper degrees of
freedom the total energy conservation reproduces the Einstein’s mass-
energy relation. The newtonian interpretation of the second order
dynamic equations suggests the definition for general inertial mass
and for the interaction potential.

1 Introduction

The entropy gradient maximization was proposed as an alternative formal-
ism generating the dynamic equations [6] for a closed system with arbitrary
degrees of freedom .

It was originally introduced in order to avoid the reversibility problem of
statistical dynamics which is based on the conventional classical mechanics.

The formalism has been demonstrated to be a successful and promising
approach also for number of other applications.

It is based on the fundamental principle of the entropy maximization of
closed system (2nd law of thermodynamics). In advance to the historically
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entrenched formalisms, it demands no further artificial pre-assumptions re-
lieving both the conventional lagrangian or hamiltonian formalism and sur-
prisingly also the special relativity.

The ultimate philosophy of this approach is thought to be able to generate
all known physical relations, like a newtonian dynamic equations, conserva-
tion laws and interaction phenomena, assuming a minimal number of primary
statements - ideally the only one, the second law of thermodynamics, and the
only one basic object operated thereby - the entropy or statistical weight.

The first-order formalism firstly proposed in [6] provides the first-order
dynamics by the conditional maximizing the first order entropy variation
with one or more additional ”ergodicity” conditions. These conditions can
be interpreted as conservation laws [6, 9]. At the same time they produce an
interaction between degrees of freedom in the framework of the formalism.
The ”ergodicity” condition was firstly introduced on an example of the energy
conservation and represented a conserved energy as a given scalar function
of degree of freedom ’s q: h(q) = E = const

Thus the energy was pre-assumed as an a priori given expression, addi-
tionally to the given entropy function.

The present extension of the formalism to the next-high order of entropy
variation - here the second order - is conditionless. It has been shown to
produce the first order dynamic equation without demanding the energy
conservation, is therefore non-ergodic.

This second-order approach was readily demonstrated to generate a collec-
tive first-order dynamics, as applied for a bosonic quantum system in terms
of occupation numbers. In this problem both the second order entropy vari-
ation and the bosonic number conservation as the ”ergodicity” have been
assumed. The latter has been utilized as an issue of interaction between
bosonic degrees of freedom

In the generalized formulation outlined below, the second order extension
of the entropy variation is shown to be able producing the dynamic equa-
tions without additional conditions. Moreover, the existence of the conserved
scalar quantity -kinetic energy- follows contrariwise from the dynamic equa-
tion and is therefore provided by the entropy itself. As long as the formalism
is restricted on the second order only the potential energy remains constant,
since the generalized interaction force between degrees of freedom disappears
identically. It means in the second order the formalism describes a system of
non-interacting degrees of freedom only

Nevertheless, the dynamic equations are recognizable to recover the iner-
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tial mass and the relativistic mass-energy relation
The potential gradient and the inertial mass entering in the resulting

second order dynamics both are related back to elements of the matrix are
responsible for inertial and interaction properties. Since the only product
appears there the identification of each factor is generically not unique. Es-
pecially, there is no criteria for recognizing the constant inertial mass. It
enables to recover the relativistic velocity-dependence for the inertial factor
and to reconstruct the corresponding entropy function.

For a generalized closed system described by arbitrary chosen degrees
of freedom , this interpretation suggests an existence of proper degrees of
freedom defined straightforwardly from the diagonalized matrix of second
partial derivatives of entropy.

Furthermore, testing more different constructions of entropy derivatives
offers to discover more conservation laws or similar relaxation laws which
appear like conservation ones in a long-time, e.g. quantum scale.

These suggestions cannot be strongly confirmed in a framework of the
second order formalism, since the approach should be treated consequently:
partial entropy derivatives of orders higher than two in dynamic equations
should be omitted, since they disappear in the original entropy variation.
Thus a restriction of the formalism on the second order results only in the
light-like dynamics with a constant generalized velocity. The subsequent
second order dynamics (acceleration) trivially disappear. It means a perma-
nent conservation of generalized momenta, but does not mean a zero inertial
mass. In this context the term ”massless” is unsubstantial, since the inertial
measure is undefined. The linear momentum principle of the mechanics and
the interaction-caused momentum dynamics appear first in a higher-order
formalism, up from the third order. For this reason a straightforward deriva-
tion of the inertial mass as well as potential energy and further conserved
quantities is retained for the third order extension.

The content of the article is ordered conventionally as follows. The Sec-
tion 2 contains the generalized formulation of the second order approach,
providing the first order dynamics and causality restrictions

The problem of energy definition and energy conservation is discussed in
the following Section 3, the issue of the potential energy and interaction is
performed.

The further discussion has rather a speculative status under retention of
claims outlined here to be proven in the framework on higher order expansion
of the approach.
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The second order dynamics is naturally introduced deriving the first oder
equations , the Section 4. The mentioned suggestions on the inertance and
interaction are outlined here and illustrated by examples of different systems.

In the Section 5 the discussion comes back to the second order restriction.
In this context, the renewed revision of conservation laws and suggestion on
relaxation laws instead are performed.

The final Section 6 summarizes and discusses the gained results.

2 Formulation

The formalism starts with the scalar field S(qI) on the space of all degrees
of freedom qI (DoF’s) - the entropy function of the closed system {qI} One
of the DoF’s qI is chosen as the ”time reference” τ , {qI} = {qi, τ} , in that
sense that in each state of the total system the state of the subsystem {qi}
is compared with the one-valued state {τ} [6].

Consider the entropy variation δS with derivatives up to second order:

δS = S,idqi + S,τdτ +
1

2
(S,ijdqidqj + S,iτdqidτ) + S,ττdτ

2 (1)

(the conventional tensor notations

S,i :=
∂S

∂qi
, S,τ :=

∂S

∂τ

are used) No further additional (ergodicity) conditions are demanded. This is
the main difference between the present formulation and the readily outlined
conditional ones - the first order formalism with global ergodicity [6] and the
second-order formalism with local ergodicity [8, 9].

2.1 First-order dynamics

The dynamic equation for a DoF qi is provided by the first-order requirements
[6]:

∂

∂ dqi
δS = 0;

∂

∂ dτ
δS = 0,

leading to

Sττdτ = −Sτ (2)

S,i + S,ijdqj + S,iτdτ = 0
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For the time scale we introduce the notation

Ω := − Sτ
Sττ

and suppose the time reference to be statistically discoupled [7]

S,iτ = 0.

The resulting system of the first-order dynamic equations is

q̇i :=
dqi
dτ

= − 1

Ω
[S,ij]

−1 S,j (3)

where [S,ij]
−1 is the inverse of the matrix S,ij of second partial derivatives of

entropy.
For further discussions we use the simplified notations, where the lower

index on S means the partial derivative, comma is omitted

Si := S,i Sik ≡ Ski := S,ik,

and the tilde means the inverse of the matrix of second derivatives.

S̃ij := [S,ij]
−1

With these notations the dynamic equations have the form

q̇i := − 1

Ω
S̃ikSk (4)

2.2 Causality

As the original formalism claims [6] the time reference τ must obey the time
eligibility

Sτ > 0.

The further requirement of causality for the matrix of second partial deriva-
tives reads: [

Sik 0
0 Sττ

]
− non-positive definite

Here Sik = S,qiqk means the matrix of second partial derivatives with respect
to all DoF’s except the τ , the off-diagonal zeros indicate the discoupled time-
reference.

As it follows from the Sylvester-Jacobi criterion, for all admissible trajec-
tories on {qi, τ} the entropy S(qi, τ) obeys:
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1.

Sττ < 0, concavity with respect to the time-reference τ

2.
Sik positive-definite: convexity with respect to DoF’s qi

Therefore,
Ω > 0

for realized evolution trajectories qi(τ).

3 Second order dynamics and energy conser-

vation

We proceed with the discussion taking only the first order dynamics (4) for
the basis and ”forget” for the present that the generating local functional (1)
does not encountered third order derivatives of entropy. This discussion is
postponed until the Section 5.

For the total derivative with respect to the time reference τ we use the con-
ventional notation ”dot” as the ”time derivative”. The second time derivative
of a DoF qi following from the dynamic equation (4) then reads

q̈i :=
d2qi
dτ 2

=
d

dτ

[
− 1

Ω
S̃ijSj

]
=

Ω̇

Ω2
S̃ijSj +

1

Ω2

(
S̃ij,kSjS̃klSl + S̃ijSj

)

=
Ω̇ + 1

Ω2
S̃ijSj +

1

Ω2
S̃ij,kSjS̃klSl (5)

On the other hand, we can construct the scalar product like a total ”kinetic
energy” of the closed system q, τ

T :=
1

2
q̇iq̇i =

1

Ω2
S̃ijS̃jkSiSk (6)

and check its variation along the dynamic trajectories.
The derivative with respect to the time reference DoF τ is

d

dτ

q̇iq̇i
2

= q̇iq̈i. (7)
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On the other hand, if we define q̈i to be a gradient of some scalar function
−U ,

−U,i := q̈i (8)

where U = U(q̄) is a scalar field on the space {q̄}, the relationship (7) takes
the form

d

dτ

q̇iq̇i
2

+ U(q̄),iq̇i =
d

dτ
[T + U ] =:

d

dτ
E = 0 (9)

It means, the ”energy conservation” entirely appears to be a consequence
of the definition of E = T + U , by means of (9) where the U is defined in
turn by the (13) - the ”second Newton’s law of mechanics”

Suppose, we aimed to reconstruct the function U(q) - ”potential”- in
terms of entropy derivatives using the second order dynamic equation (5)

Before proceeding we remark that the symmetry property of mixed partial
derivatives for a smooth function S(q) (full commutativity)

S,ijk := Sijk = Sikj = Skij

is in a general case not assured for the inverse matrix S̃lj := [Slj]
−1, since

S̃lj,k 6= S̃lk,j,

even though
Slj = Sjl ⇒ S̃lj = S̃jl.

In order to avoid this inconvenience, we consider a special case of the
entropy function S, which possesses the property

S̃lj,k = S̃lk,j,

for instance if Sik is a diagonal matrix, Sik = 0, i 6= k. In this case the
identity (10)

1

2

(
S̃ljSjS̃lkSk

)
,i≡ S̃lj,iSjS̃lkSk + S̃ikSk (10)

may be rewritten as

1

2

(
S̃ljSjS̃lkSk

)
,i = S̃li,jSjS̃lkSk + S̃ikSk.

For a normal (non-exotic) time reference we expect (see Sec.5)

Ω̇ + 1 = −
[
Sτ
Sττ

]
,τ

+ 1 ∼ O(Sττττ )
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sufficiently smaller than 1 and then we can recover,

−U,i =

[
1

Ω2
S̃ij,kSjS̃klSl

]
,i

Thus, the total potential energy of the closed system

U = − 1

Ω2
S̃ijSjS̃ikSk

is equal to the total kinetic energy with opposite sign

T =
q̇iq̇i
2

and we take the sum of absolute contributions for the total energy of the
system

E = |T |+ |U | = q̇iq̇i

It follows further from d
dτ
E = 0, that this case corresponds to the inertial-less

(massless) or light-like dynamics

q̈i = 0 ⇒ q̇i = c = const

On the other hand, since q̈i = 0 , each q̇i = c represents an extremal change
rate of the DoF q - ”velocity” ui := q̇i. In this view the relation

E = q̇i
2 = c2

with c2 = 1 is a generalization of the mass-energy relation E = mc2 for a
conventional energy E.

By the way it should be mentioned, that there exists a possibility of the
special representation Qk = Qk[qi], where the matrix of second derivatives
∂2

∂Q2S is diagonal.
For this reason Qk can be defined as proper degrees of freedom

and Sp := S[Qk] as the proper representation of entropy. Further properties
of this representation are amongst others

S̃pkk = 1/Spkk

E = Spi S̃
p
ikS̃

p
kjS

p
j =

∑
k

[
Spk
Spkk

]2
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Now we can see that it follows from the the energy conservation

E = T + U = C = const

and from the second-order dynamics:

Ui = − 1

Ω2

(
S̃ij,kSjS̃klSl + S̃ijSj

)
,

where the constants C,C ′ do not depend on DoF’s and consequently on a
representation. But since the potential U in proper representation becomes

Up = C ′ − S̃ijSjS̃ikSk = C ′ − T,

the rest mass m0 in the sense of the rest energy E/c2 can be identified as

m0 = 1/(Ω2Spi S̃
p
ikS̃

p
kjS

p
j ) =

1

Ω2

(∑
k

[
Sk
Skk

]2
)−1

with the entropy Sp as a function of proper degrees of freedom Qk.

4 Suggestions on mechanics of a single de-

gree of freedom

4.1 Basic principles

Consider the single degree of freedom qi. Its dynamics qi(τ) obeys the
equation (4), which can be interpreted as the equation for thegeneralized
velocity ui

−Ωq̇i := ui = S̃ikSk. (11)

Since the expression in the right-hand side does not depend explicitly on τ ,
we can fit the form of the equation by redefining the time parameter (re-
parametrization of time [7]):

d

dt
= −Ω

d

dτ

so that
d

dt
qi = ui
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Then the second order equation corresponds to the generalized acceleration
of qi, wi = Ω2q̈i

wi =
d

dt
ui = ui,ku

k (12)

The form of (12) does not reproduce the newtonian second law of mechanics

m
d

dt
~v = −∇U (13)

In terms of ui it looks rather similar to the Euler’s equation of hydrodynamics

d

dt
~v = (~v∇)~v

For relatively small velocities, the equation can be understood as an ex-
pansion around some state q0

i having zero velocity

ui(q0
i ) = 0

the i− stationary state.
In order to be interpreted as a newtonian (13), the equation (12) should

be representable in a factorized form like

ai = −m−1U,i,

where the factor m−1 is positive, nearly independent of all degrees of freedom
qi, e.g. [m−1],i should be small compared to m−1.

Obviously, this factorization is not unique, since the resulting equation
is strongly dependent on the construction of the generating entropy function
S(qi)
The expressions for velocity and acceleration contain only combinations of
partial derivatives of entropy S, which can be interpreted relating to the
chosen qi as follows:

The derivatives Sii, Si describe only the qi-dependence of the entropy,
while the mixed derivatives Sik - the cross-dependence of S on the qi and qk
together. In this sense it is a measure of the statistical correlation of qi and
qk, which should be understood as an ”interaction” of the DoF qi with other
DoF’s qk, k 6= i
The elements Slk, l 6= i, k 6= i are responsible for ”background” correlations
between DoF’s except the qi, (although the derivatives

Slk :=
∂2

∂qk∂ql
S(q̄)
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can be explicitly dependent on qi)
The (12) takes than the detailed form:

wi =
[
S̃ikSk

]
,l
S̃lkSk =

[
1

|Smn|

(
S̄iiSi +

∑
k 6=i

S̄ikSk

)]
,l

1

|Smn|
∑
k

S̄lkSk, no summation over i

here S̄ik are algebraic complements of elements Sik in the matrix Sik and

|Smn| = S̄iiSii +
∑
k 6=i

S̄ikSik −

its determinant, here it should be noted that the subdeterminant S̄ii contains
only second derivatives responsible for background correlations.

Remarking that the expression for ui can be rewritten as

ui =

S̄iiSi +
∑
k 6=i

S̄ikSk

S̄iiSii +
∑
k 6=i

S̄ikSik
=

1

Sii/Si
·

1 + 1
S̄iiSi

∑
k 6=i

S̄ikSk

1 + Sii

S̄ii

∑
k 6=i

S̄ikSik

we convince us that if the factor Sii

Si
is constant (or nearly constant), its

square

mi ∼
S2
ii

S2
i

plays the role of the generalized inertial mass of the DoF qi in the closed
system {q̄, τ}. This hypothesis is also in accordance with the interpretation
of the sum

mi = 1/
∑
k

S2
k

S2
kk

over all degrees of freedom as the rest mass-energy of the system.
Thus Sii and Si appear as a measure for statistical inertial properties of

qi, which cannot be irelated directly to the mass
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4.2 Examples

4.2.1 Example I
Bosonic entropy in terms of occupation numbers as DoF’s

The entropy as a function of discrete bosonic occupation numbers ni [9], [4]
is given by

S[ni] = ln

(
N∑

i=−N

ni

)
!−

N∑
i=−N

lnni! (14)

In the continuum limit at very large numbers ni factorials are replaced by
Gamma-functions:

S[n(i)] = ln Γ

[
N∑

i=−N

n(i)

]
−

N∑
i=−N

ln Γ[n(i)] (15)

For the both cases (14 - 15 ) one obtains for partial derivatives [2, 3]

Sni
=
∑
i

ni − ni; Snink
= 1;Snini

= 0

or in the tensor form
Sik = 1− δik,

with the inverse matrix

S̃ik =
1

N − 1
− δik,

where: 1 and 1
N−1

denote a matrix with all elements equal 1 and 1
N−1

respec-
tively, N is the number of equivalent (non distinguished) bosonic degrees of
freedom - ”bosonic dimension” of the system.

For large N we have
lim
N→∞

S̃ik = −δik.

With
Si =

∑
k

qk − qi

the resulting dynamic equations are:

ui =

[
1

N − 1
− δik

](∑
m

qm − qk

)
= qi
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and the newtonian equation is

wi = ui,ku
k = δikqk = qi

as well.
Since qi = 0 is the only stationary point, the dynamics describes a DoF

with the mass unity in a square potential.

This non-physical behavior of this model occurs due to the the fact, that
there are no interactions between degrees of freedom (as it will be discussed
below in Sec.6), since there are no derivatives of order higher than second.

In the corresponding ”ergodic” model [9] the collective interaction is im-
plied directly by the additional ergodicity condition - here the conservation
of the total bosonic number.

In a contrast, in the above example the bosonic degrees of freedom ”do
not see” each other, hence the unrestricted increase of each bosonic degree
of freedom ni independently is the expected dynamics, providing the locally
increasing entropy variation.

By the way, the fermionic entropy with

Sik = S̃ik = δik, Si =
∑
m

qm

provides the same dynamics for discrete DoF’s only valued by 0, 1.

4.2.2 Example II
Quantum von Neumann entropy

For the entropy function of von Neumann type [1] like

S(q) = −
∑
i

qi ln qi (16)

with

Sk := S,k = − (ln qk + 1) , Skl := S,kl = − 1

qk
δkl, no summation overl

Consequently
S̃km = −diag {qk, k = m}
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and the dynamic equation for this system

ui = S̃ikSk = diag {qk, i = k}(ln qk+1) =



.
.

qk−1

qk
qk+1

.
.





.

.
ln qk−1 + 1
ln qk + 1

ln qk+1 + 1
.
.


in the tensor form reads finally

ui = qi ln qi + qi. (17)

For the acceleration we obtain further

wi =
∑
k

(qk ln qk + qk)(qi ln qi + qi),k = qi ln
2 qi + 3qi ln qi + 2qi

From the ”zero velocity” condition

ui = qi ln qi + qi = 0

we find two stationary points for each degree of freedom qi of this system

q0
i = 0 and q0

i = 1/e.

For a chosen degree of freedom qi ≡ q the newtonian dynamics around the
second stationary state results from the expansion:

w(q) = w

(
1

e

)
+ wq

(
1

e

)(
q − 1

e

)
+

1

2
wqq

(
q − 1

e

)2

+ ...

Since

w

(
1

e

)
= 0, wq

(
1

e

)
= ln2 q + 5(ln q + 1)

∣∣∣∣
q=1/e

= 1,

the expansion begins at first order

w(q) = q̈ =

(
q − 1

e

)
=

1

2

∂

∂q

(
q − 1

e

)2

2
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which corresponds to the harmonic oscillation around q = 1/e with the mass
unity.

The divergent derivative uq is remarkable for the first stationary point
q0 = 0, which suggests an interpretation either as an infinite inertial mass,
or as an infinitely strong attraction, preventing an escape from this point -
a kind of a quantum black hole.

4.2.3 Example III
Lorentzian relativistic dynamics and recovering the entropy

The ambiguity of factorization of second-order dynamics (12) mentioned
there by the comment to this equation allows various interpretation of a
non-constant factor responsible for the inertial mass, for example as a rela-
tivistic velocity-dependent mass.

Obviously, if the acceleration is considered in a state with a non-zero
velocity rather than stationary point, the solution q0

ui(q) = S̃ik(q)Sk(q) = v = const

provides another newtonian equation (12) for acceleration w, where the co-
efficient m−1 contains a dependence on v.

Especially, if we need to recover the Lorentzian dependence

m(v) =
m0√
1− v2

for the inertial mass under acceleration by a constant external force
f = const in the state q0 obeying

u(qv) = v, (18)

we have to solve the reverse problem starting with the acceleration

w(q) = u′(q)u(q) =
f

m0

√
1− u2, (19)

that means in general the system of partial differential equations:

wi = uk
dui

dqk
=

f i

m0

√
1− ukuk

ui(q) = S̃ik(q)Sk(q), summation over k (20)
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The backward recovery of the entropy is therefore not unique. It may be any
scalar function S(q) obeying (20).

The scheme for this procedure can be sketched for a system with one de-
gree of freedom q. We need to search for the entropy function S(q) producing
the second-order dynamics

w(q) = u′(q)u(q) =
f

m0

√
1− u2, (21)

which initially obeys

w(qv) = u′(qv)u(qv) = u′ (qv(v)) v =
f

m0

√
1− v2,

where qv(v) is now the solution of (18)

qv(v) = u−1(v).

By integration of the inverse mapping q(u) in (19)

uq =
du

dq
=

f

m0

√
1− u2

u

we obtain
f

m0

(q − q0) = −
√

1− u2,

keeping in mind we consider only positive values for degree of freedom q,
which are physically and statistically meaningful, like e.g. quantum occu-
pation numbers, Example I. The displacement from the stationary point
(qv − q0) is rather positive, because it seems unlikely for a single statistical
degree of freedom, that the entropy would increase for decreasing q.

The starting point for acceleration is given by

qv(v) = q0 −
m0

f

√
1− v2.

and restoring the function u explicitly

u(q) = ±

√
1−

[
f

m0

(q − q0)

]2

.
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we conclude that entropy S(q) obeys

S̃qqSq =
Sq
Sqq

=

√
1−

[
f

m0

(q − q0)

]2

(22)

with the first and the second integral

Sq = Cqq exp

−m0

f

√
1−

[
f

m0

(q − q0)

]2

 ;

S = Cqq

∫
exp

−m0

f

√
1−

[
f

m0

(q − q0)

]2

 dq + Cq

respectively, Cqq, Cq are constants; It follows from (22), that the rest mass
(rest energy) for this system is according to (??)

mr =

[
Sq(q0)

Sqq(q0)

]2

= 1

and does not coincides necessary with the stationary inertial mass m0. In
this concern the following remark is in order:

The m0 is introduced in (20) artificially as a predefined inertial factor for
influence by the external force f , as well as the f itself.

However no external forces are allowed in the framework of this formal-
ism. Since the system {q, τ} is subject to any external action, it cannot be
considered as �closed anymore and thus the formalism can not be applied. In
order to keep the formalism consistent, any external force f acting on the
DoF q should arise inside the system through the interaction (in this context
- the statistic correlation, see the discussion above) between its own DoF’s.

5 Restriction on the second order variation

At this point we remember the original formulation of the approach (Sec.2).
The generating local functional is the entropy variation (1), which con-

tains only contributions of entropy derivatives up to second order. All deriva-
tives of order three (Sijk, Sτττ ) and higher are omitted and should be conse-
quently disregarded in all further relationships derived from this functional.
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The first order dynamics remains unchanged under this restriction:

q̇i =
d

dτ
qi = − 1

Ω(τ)
S̃ikSk

Here, the variation of time reference

dτ = Ω(τ) := − Sτ
Sττ

contains the second order derivative. It follows that

Ω̇ :=
d

dτ
Ω(τ) = −1 +O (S,τττ ) .

Even if the variation δS contain the τ derivatives of S up to third order
it results for the time reference:

dτ = Ω(τ) :=
−Sττ ±

√
S2
ττ − 2SτττSτ

Sτττ
;

Ω̇ :=
d

dτ
Ω(τ) = −1 +O (S,ττττ )

respect the derivatives Si, Sik (only up to second order, i.e. omitting Sikj
and higher )

u̇i =
d

dτ
q̇i =

Ω̇ + 1

Ω2
S̃ikSk +

1

Ω2
O (S,ijk)

Concerning interaction forces between DoF’s fi := −U,i, they should
identically disappear in the second order restriction, since the potential is a
bilinear combination of second derivatives of entropy, as follows from (??).
The acceleration q̈i and the causing accelerating force −U,i of a single degree
of freedom qi appears firstly if the third oder contributions are encountered
in the entropy variation δS

Consequently, this non-ergodic formalism provides in the second order the
only dynamics of non-interacting degrees of freedom (trivially interacting
with a constant potential U), defined above as a light-like dynamics

The subsequent second order dynamics trivially disappear. It means a
permanent conservation of generalized momenta, but does not mean that
inertial mass m0 is zero. In this context the term ”massless” is unsubstantial,
since the inertial mass is undefined.
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5.1 Conservation laws

Among this trivial conservation of momentum and consequently also the
kinetic energy,the restriction of the formalism on the second order implies
some local conservation laws additionally.

Since S̃ik is the inverse of Sik, regarding the second order restriction we
arrive at (

S̃ikSk

)
,j

= δij,

d

dτ
S̃|S >:=

d

dτ
S̃ikSk = − 1

Ω
S̃ikSk =: − 1

Ω
S̃|S >= q̇i, (23)

where the natural notations are introduced for the matrix

S̃ := S̃ik

and the vector
|S >:= Sk

respectively.
The restriction on the second order enforces further for traces of second-

derivative matrix:

d

dτ
|S| := d

dτ
Sii = 0;

d

dτ
|S̃| := d

dτ
S̃ii = 0 (24)

and
d

dτ
|S|2 =

d

dτ
|S̃|2 =

d

dτ
SikSki =

d

dτ
S̃ikS̃ki = 0 (25)

as well as for all traces of all powers Snik, S̃
n
ik. Each of these traces can

represent a scalar conserved quantity - ”charge” or ”number”.
It is also worth remarking that

div S̃|S >:= div S̃ikSk = −Ω ˙qi,i = dim{q̄} = const

in the second order restriction. It is the fundamental invariant of the space
{q̄} of DoF’s - its dimension.
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5.2 Relaxation laws

The first-order dymanics (4) leads to the evolution equation for the entropy
S(q̄)

d

dτ
S = − 1

Ω(τ)
SiS̃ikSk =: − 1

Ω(τ)
< S|S̃|S >

It describes the total entropy production rate of the closed system along the
evolution trajectories.

Ṡ :=
d

dt
:= −Ω

d

dτ
S =< S|S̃|S >

The entropy production rate obeys in turn the first order dynamics:

d

dτ
< S|S̃|S >= − 2

Ω(τ)
< S|S̃|S > Ω > 0 (26)

that provides for the entropy itself using the (5.2):

d2

dτ 2
S =

1

Ω2
< S|S̃|S >

We established that the scalar < S|S̃|S > for a closed system {q̄, τ} is subject
to exponential extinction (relaxation) as

< S|S̃|S > [τ ] =< S|S̃|S > [0] = exp

−1

2

τ∫
0

dt

Ω(t)

 .
As long as the formalism remains in the framework of the second order, the
same holds also for

d

dτ
SiS̃ijS̃jkSk =

d

dτ
< S|S̃2|S >= − 2

Ω(τ)
< S|S̃2|S > Ω > 0 (27)

as well as for an arbitrary power S̃n of the matrix S̃. It provides the series
of relaxing scalar quantities of the system. The first of this series possessing
such behavior is the scalar trace (n = 0)

d

dτ
(SiSi)

±1 = ∓ 2

Ω(τ)
SiSi. (28)
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In a long-time scale Ω << 1, for example in a quantum system observed in
a classic time, like the postulation of quantum mechanics, these fast relaxing
quantities are considered as nearly constant.

The corresponding scalar quantities inverse to < S|S̃n|S >, n = 1, 2, ...

d

dτ

1

< S|S̃|S >
=

2

Ω

1

< S|S̃|S >
(29)

d

dτ

1

< S|S̃2|S >
=

2

Ω

1

< S|S̃2|S >
, ... (30)

are exponentially increasing or nearly singular in a long-time scale.
The entropy itself follows the law

S(τ) =

τ∫
0

exp

−1

2

t∫
0

dθ

Ω(θ)

 dt+ S(0)

for the entropy change between states (instances) τ = 0 and τ and becomes
nearly constant in a long-time scale. For this reason the long-time scale
quantities which are fast relaxing and nearly conserved, can be also deter-
mined as adiabatically conserved quantities or adiabatic invariants (adiabatic
charges). The other obeying the inverse laws are the adiabatic singularities
respectively.

The vector quantities with similar properties are the vector Si

d

dτ
Si :=

d

dτ
|S >= − 2

Ω(τ)
|S > (31)

as well as all products of kind

S̃n|S >:=
[
S̃n
]
ik
Sk (32)

which can be related to adiabatic momenta of order n.

6 Discussion and conclusion

The extension of the local formalism of the entropy gradient maximization to
the second order entropy variation reveals the ability to reproduce the first
order dynamics without demanding any additional conditions.
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It has been proposed as alternative to the first order formalism recently
developed. This primary approach provides the first order dynamic equations
based on the maximization of the first order entropy variation and using
additional ergodicity conditions. As such additional requirements, several
balance equations can be utilized, e.g. conventional conservation laws, like
the energy conservation. Thus, the conservation laws had to be pre-assumed
in order to apply the formalism.

In contrast, an extended formalism, especially the second order extension,
is shown to be able to generate the first-order dynamic equations together
with conservation principles without any additional pre-assumptions.

In this framework it is possible to define a generalized kinetic and poten-
tial energy for generalized degrees of freedom , as well as the total rest mass
energy associated with the rest mass in the special relativity.

The approach has been formulated in a general case for a closed system
with arbitrary number of DoF’s.

The main object determining the dynamics and causality is the matrix
Sik of second order partial derivatives of entropy as well as its inverse.

Based on this concept, the proper degrees of freedom are determined,
in terms of them this matrix is diagonal. Then, the sum

∑
i

(Spi /S
p
ii)

2 in the

proper representation of entropy is regarded as the inverse of the rest mass,
related to the rest energy. This gives rise to assumption that the diagonal
elements Sii are responsible also for inertial properties of dynamics of the
i-th degree of freedom .

A prolongation to the second order dynamics speaks also for this hy-
pothesis. The second order equations in terms of the statistical degrees of
freedom appear in the form of the eulerian equation of hydrodynamics, in-
stead of the usual newtonian equation of mechanics. Since the corresponding
general acceleration should be caused by non-vanishing off-diagonal elements
Sik - partial derivatives with respect to i-th degree of freedom mixed with
other DoF’s k 6= i, they are related to the interaction between i and k.
Thus it gives rise to conclude that the issue of interaction phenomena is the
statistical correlation between degrees of freedom .

Consequently, several contributions of these correlations, being collected
together as a gradient of some scalar expression, can be defined and inter-
preted as the interaction potential.

Considered as a generalization of the framework of 2nd newtonian law, a
factorization into potential gradient and inverse of inertial measure (e.g.mass)

22



as a pre-factor, is generally not unique, since such a pre-factor is generally
not constant.

On the other hand, this evidence can be interpreted as the relativistic
velocity-dependence of the inertial mass. This dependence results originally
from a special form of the entropy function.

A restriction on the second order dynamics demands to omit constitu-
tively all entropy derivatives of order higher than two not only in the gen-
erating functional δS but also in subsequent dynamic equations. In this
case however, the second order dynamics vanishes, what means that only the
massless dynamics like light propagation exist.

It implies the permanent momentum conservation as well as the conserved
kinetic energy. Since the omitting the 3rd order entropy derivatives provide
only constant potential energy, the dynamics correspond to the dynamics of
non-interacting degrees of freedom .

The higher order dynamics should be constitutively derived by a pro-
longation of the entropy variation to contain higher order contributions with
subsequent first and second order dynamics for a single degree of freedom de-
termining the generalized velocity and generalized acceleration respectively.

Speculations about this scenario suggest that this rest mass related to
the rest energy seems likely to be also interpreted as the generalized inertial
mass.

A re-parametrization of a time scale makes suggestions to distinguish be-
tween true local conservation laws like (24 - 25) and fast relaxations down
to a constant value like (26 - 32) for a short time scale Ω(τ). Among the
conventional true, (or exact) conservation, several quantities are subject to
”statistical relaxation”- the exponential decay down to constant. The ques-
tion how to distinguish between a true conservation and a fast relaxation
is related to the resolution of the time reference DoF τ . A relaxation in
fine-time scale appears as a conservation as being observed in a rough-time
scale. For instance, a change of any quantity inside the interval of τ -values
considerable in the quantum scale is observed as a quantum jump between
constant values in a macroscopic scale. The instances between (eventually
unobserved) jumps can be associated with the macroscopic conservation laws.

6.1 Concluding statement

The second order extension of the statistical EGM formalism is able to repro-
duce the structure and general relationships of mechanics. This formalism is
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a promising alternative approach to conventional hamiltonian or lagrangian
ones.

The approach is based on the only single governing principle - local max-
imization of the entropy variation. The producing functional is the scalar
entropy function and no additional conditions are needed. It suggest that
the second law of thermodynamics in form of the local entropy maximization
is the general founding principle of physics. All physical relationships and
postulates which are conventionally hold for fundamental, can be derived
from this principle and are in fact corollaries of certain constructions entropy
function.
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