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The “Problem of Apollonius”, in plane geometry, is to construct all of

circles that are tangent, simultaneously, to three given circles. As Viète showed,

that problem can be solved by reducing it to the so-called “Circle-Circle-Point”

(CCP) case:

Given two circles and a point, all of them in the same plane, construct the

circles that pass through the given point and are tangent to both of the given

circles.

There are four solution circles, two of which are tangent externally to both

of the given circles. Each of the other solution circles encloses one of the givens,

but is tangent externally to the other:

We’ll begin by finding the red circle shown above. First, we’ll label impor-

tant points, vectors, and dimensions:
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Our strategy will be to identify the vector w, thereby dtermining the red

circle: its center will be the intersection of the line C2T2 and the mediatrix of

the segment T2P2. The two keys to our solution are that the angles labeled θ

are equal,

and that the points of tangency T1 and T2 are reflections of each other with

respect to the vector i [c2 + (r2 − r1) ŵ].

More importantly, the vector t1 is the reflection of the vector r1ŵ with

respect to i [c2 + (r2 − r1) ŵ]. For any two vectors u and v, the product uvu

is u2 times the reflection of v with respect to u. Therefore,

t1 =

{[
i [c2 + (r2 − r1) ŵ]

|c2 + (r2 − r1) ŵ|

]}
[r1ŵ]

{[
i [c2 + (r2 − r1) ŵ]

|c2 + (r2 − r1) ŵ|

]}
= −r1

{
[c2 + (r2 − r1) ŵ] ŵ [c2 + (r2 − r1) ŵ]

[c2 + (r2 − r1) ŵ]
2

}
. (1)

To make use of the equality of the angles θ, we write
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[
t2 − p

|t2 − p|

] [
t1 − p

|t1 − p|

]
= ŵ

[
i [c2 + (r2 − r1) ŵ]

|c2 + (r2 − r1) ŵ|

](
= eθi

)
. (2)

Next, in order to make use of postulates about equality of multivectors, we

left-multiply both sides of Eq. (2) by ŵ, and right-multiply by c2+(r2 − r1) ŵ,

to obtain

ŵ [t2 − p] [t1 − p] [c2 + (r2 − r1) ŵ] = |t2 − p| |t1 − p| |c2 + (r2 − r1) ŵ| i︸ ︷︷ ︸
A bivector

;

∴ 〈ŵ [t2 − p] [t1 − p] [c2 + (r2 − r1) ŵ]〉0 = 0.

For convenience, we’ll rewrite that result as

〈ŵ [t2 − p] t1 [c2 + (r2 − r1) ŵ]〉0 − 〈ŵ [t2 − p]p [c2 + (r2 − r1) ŵ]〉0 = 0. (3)

Now, we’ll treat each term of the left-hand side separately. First, we note

that t2 = c2 + r2ŵ. Making that substitution, and using the expression derived

for t1 in Eq. (1), the first term of Eq. (3) becomes

〈ŵ [c2 + r2ŵ − p]

{
−r1

[c2 + (r2 − r1) ŵ] ŵ [c2 + (r2 − r1) ŵ]

[c2 + (r2 − r1) ŵ]
2

}
[c2 + (r2 − r1) ŵ]〉0

= −r1〈ŵ [c2 + r2ŵ − p] [c2 + (r2 − r1) ŵ] ŵ〉0
= −r1〈[c2 + (r2 − r1) ŵ] [c2 + r2ŵ − p]〉0, (4)

because for any three vectors a, b, and c, abca = a2cb. After expansion and

simplification, the expression in Eq. (4) becomes

−r1 (2r2 − r1) c2 · ŵ + r1 (r2 − r1)p · ŵ + +r1c2 · p− r1c22 − r1r2 (r2 − r1). (5)

Turning now to the second term on the left-hand side of Eq. (3), and

making the substitution t2 = c2 + r2ŵ ,

〈ŵ [t2 − p]p [c2 + (r2 − r1) ŵ]〉0 = 〈ŵ [c2 + r2ŵ − p]p [c2 + (r2 − r1) ŵ]〉0.

After expansion and simplification, that result becomes[
2c2 · p− p2

]
c2 · ŵ +

[
r2 (r2 − r1)− c22

]
p · ŵ + (2r2 − r1) c2 · p− (r2 − r1) p2. (6)

Next, as indicated by Eq. (3) , we subtract the expression in (6) from (5), and

set the result equal to zero. After simplifying and rearranging, we find that{[
r1 (2r2 − r1) + 2c2 · p− p2

]
c2 +

[
(r2 − r1)

2 − c22
]
p
}
· ŵ

= (r2 − r1) p2 − r1c22 − r1r2 (r2 − r1)− 2 (r2 − r1) c2 · p.

We can put that result in a more-useful form by factoring, completing squares,

and recalling that w = r2ŵ:{[
(c2 − p)

2 − c22 + (r2 − r1)
2 − r22

]
c2 +

[
c2

2 − (r2 − r1)
2
]
p
}
·w

= r2
2

[
c2

2 −
(

1− r1
r2

)
(c2 − p)

2
+ r1 (r2 − r1)

]
. (7)
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Finally, we’ll define[
(c2 − p)

2 − c22 + (r2 − r1)
2 − r22

]
c2 +

[
c2

2 − (r2 − r1)
2
]
p = z,

and divide both sides of Eq. (7) by |z| to obtain

w · ẑ =
r2

2

[
c2

2 −
(

1− r1
r2

)
(c2 − p)

2
+ r1 (r2 − r1)

]
∣∣∣[(c2 − p)

2 − c22 + (r2 − r1)
2 − r22

]
c2 +

[
c22 − (r2 − r1)

2
]
p
∣∣∣ . (8)

The geometric interpretation of that result is that there are two vectors w,

both of which have the same projection upon ẑ. Because w2 = r2
2 for both of

them, their components perpendicular to ẑ are given by

w⊥ = ±

√√√√√r22 −

 r2
2

[
c2

2 −
(

1− r1
r2

)
(c2 − p)

2
+ r1 (r2 − r1)

]
∣∣∣[(c2 − p)

2 − c22 + (r2 − r1)
2 − r22

]
c2 +

[
c22 − (r2 − r1)

2
]
p
∣∣∣


2

. (9)

We’ve now identified the points where the two externally-tangent solution

circles are tangent to the given circle that’s centered on C2. The points at

which the other two solution circles (those that enclose one of the givens, and

are tangent externally to the other) are tangent to the circle centered on C2

can be found by using the same method. As indicafted in the figure shown

below, ee’d start by noting that the vectors from C1 and C2 to their respective

circles points of tangency are reflections of each other with respect to the vector

i [c2 + (r1 + r2ŷ)]:

The analog of Eq. (7) for this pair of solution circles is{[
(c2 − p)

2 − c22 + (r1 + r2)
2 − r22

]
c2 +

[
c2

2 − (r1 − r2)
2
]
p
}
· y

= r2
2

[
c2

2 −
(

1 +
r1
r2

)
(c2 − p)

2 − r1 (r2 + r1)

]
. (10)
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