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Abstract. 
The challenge of this paper is to relate artificial intuition-based intelligence, represented by self-supervised 
systems, to solutions of NP-complete problems. By self-supervised systems we understand systems that are 
capable to move from disorder to order without external effort, i.e. in violation of the second law of 
thermodynamics. It has been demonstrated, [1], that such systems exist in the mathematical world: they are 
presented by ODE coupled with their Liouville equation, but they belong neither to Newtonian nor to 
quantum physics since they are capable to violate the second law of thermodynamics. That suggests that 
machines could not simulate intuition-based intelligence if they are composed only of physical parts, but 
without digital components. Nevertheless it was found such quantum-classical hybrids, [1], that simulates 
some of self-supervised systems. The main achievement of this work is a demonstration that self-
supervised systems can solve NP-complete problems in polynomial time by replacing an enumeration of 
exponentially large number of possible choices with a short cut provided by a non-Newtonian and non-
quantum nature of self-supervised systems. 
 
 
1.Introduction.  
 A human intelligence, and in particular, its most mysterious kind – intuition - has always been an enigma 
for physicists, and an obstacle for artificial intelligence.  It was well understood that human behavior, and 
in particular, the decision making process, is governed by feedbacks from the external world, and this part 
of the problem was successfully simulated in the most sophisticated way by control systems.  However, in 
addition to that, when the external world does not provide sufficient information, a human turns for 
“advise” to his experience, and that is associated with intuition. In other words, intuition is a phenomenon 
of the mind that describes the ability to acquire knowledge without inference or the use of reason. 
    In this paper, intuition-based intelligence is implemented by a feedback from the self-image (a concept 
adapted from psychology), and we will illustrate its physical model in connection with the decision-making 
process.  
   A decision making process can be modeled by a time evolution of a vector π  whose components 

πi i =1,2…N( )  present a probability distribution over N different choices.  The evolution of this 

vector can be written in the form of a Markov chain: 
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where pij  is the transition matrix representing a decision making policy.  If pij =const., the process (1) 

approaches some final distribution π∞  regardless of the initial state π o .  In particular, in the case of 
doubly stochastic transition matrix, i.e., when 
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all the final choices become equally probable 

  
πi = π j =1/ N

       (1) 



 

 

2 

2 

 
i.e., the system approaches its thermodynamics limit which is characterized by the maximum entropy.  

When the external world is changing, such a rigid behavior is unsatisfactory, and the matrix pij  has to be 

changed accordingly, i.e., pij = pij (t) .  Obviously this change can be implemented only if the external 

information is available, and there are certain sets of rules for correct responses.  However, in real world 
situations, the number of rules grows exponentially with the dimensionalities of external factors, and 
therefore, any man-made device fails to implement such rules in full. 
 The main departure from this strategy can be observed in human approach to decision-making 
process.  Indeed, faced with an uncertainty, a human uses an intuition-based approach relying upon his 
previous experience and knowledge in the form of certain invariants or patterns of behavior that are 
suitable for the whole class of similar situations.  Such ability follows from the fact that a human possesses 
a self-image, and interacts with it.  This concept which is widely exploited in psychology has been known 
as far back as to ancient philosophers, but so far its mathematical formalization has never been linked to the 
decision making model (1). 
 First we will start with an abstract mathematical question:  can the system (1) change its evolution, 
and consequently, its limit distribution, without any external “forces”?  The formal answer is definitely 
positive.  Indeed, if the transition matrix depends upon the current probability distribution 

pij = pij (πk )        (4) 

then the evolution (1) becomes nonlinear, and it may have many different scenarios depending upon the 
initial state 0π .  In particular case (4), it could “overcome” the second law of thermodynamics decreasing 
its final entropy by using only the “internal” resources. Indeed let us assume that the objective of the 
system is to approach the deterministic state 

0,1 21 == ππ          (5) 
Then as shown in [1], if the feedback is chosen as 
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 the evolution of the probability 1π  can be presented as: 
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 in which 11p and 22p  are substituted from Eqs. (6). 
    It is easily verifiable that 

0,1 21 == ∞∞ ππ       (8)   
i.e., the objective is achieved due to the “internal” feedback (6) 
    The implementation of the stochastic process which probabilities are described by the Markov chains (1) 
with the feedback (6) has been described in [1]. This stochastic process can be simulated by quantum 
recurrent nets (QRN). (See Fig. 1) 
  
This QRN is described by the following set of difference equations with constant time delay 

nitaUta jiji ...2.1)},({)1( 1 ==+ ∑σ     (9) 

The curly brackets are intended to emphasize that 1σ  is to be taken as a measurement operation with the 
effect similar to those of a sigmoid function in classical neural networks. 
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Fig. 1. A one-dimensional quantum recurrent network. 

An initial state, |ψ (0) > , is fed into the network, transformed under the action of a unitary operator, U, 
subjected to a measurement indicated by the measurement operator M{ }, and the result of the 
measurement is used to control the new state fed back into the network at the next iteration. One is free to 
record, duplicate or even monitor the sequence of measurement outcomes, as they are all merely bits and 
hence constitute classical information. Moreover, one is free to choose the function used during the reset 
phase, including the possibility of adding no offset state whatsoever. Such flexibility makes the QRN 
architecture remarkably versatile. To simulate a Markov process, it is sufficient to return just the last output 
state to the next input at each iteration.    
      From physical viewpoint, the example described above can be associated with a particle that escapes 
from the Brownian motion using its own “internal effort” in violation of the second law of thermodynamics 
while the entropy decreases from infinity to zero. In other words, as a result of interaction with his own 
image and without any “external” enforcement, the decision maker can depart from the thermodynamics 
limit (3) of his performance “against the second law.”  Obviously, the enforcement in the form of the 
feedback (6) is an internal one since the image (1) is the uniquely defined product of the dynamical 
evolution (9), i.e., such a “free will” effort is in a disagreement with the second law of thermodynamics. 
The philosophical consequences of this result have been discussed in [1].  

The objective of this work is to select an appropriate model from the class of ODE coupled with their 
Liouville equation to demonstrate its capability to solve the problem of search in unsorted database that is 
an NP-complete problem.  

2. Self-supervised systems. 

        In order to illuminate specific features of intuition-based intelligence, we will start with control 
dynamics that described by a system of ODE: 

 
dv
dt
= F[v,U ]    (10)   

Here 
 v = v1,v2,…vn is the vector of state variables to be controlled, 

u = u1,u2 ,...um  is the control vector that represents external actuators. 
Let us compare the control system Eq. (10) with the following system 

dv
dt
= F[ρ(v)]        (11) 

where the probability ρ is introduced via the Liouville equation corresponding to Eq. (11) 

∂ρ
∂t
+∇•(ρF) = 0        (12)   

It describes the continuity of the probability density flow originated by the error distribution  

ρ0 =ρ(t = 0)          (13) 
 in the initial condition of ODE (12).  
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Comparison of Eqs.(10) and (11) shows that they have similar structure, and the role of the external 
actuator U  in the control system (10) is played by the term ρ (v) in the system (11). However the origins 
of these actuators are fundamentally different: the actuator U represents an external force, while the 
actuator ρ (v) is an internal one. Indeed it is defined by Eq. (12) that, in turn, uniquely follows from Eq. 
(11). That is why the system (11),(12) can be called self- controlled, or self-supervised. 
     From the physical viewpoint, the feedback from the Liouville equation is a fundamental step in our 
approach: in Newtonian dynamics, the probability never explicitly enters the equation of motion. In 
addition to that, the Liouville equation generated by Eq. (11) is nonlinear with respect to the probability 
density ρ   

∂ρ
∂t
+∇•{ρF[ρ(V)]}= 0        (14) 

and therefore, the system (11),(12) departs from Newtonian dynamics. However although it has the same 
topology as quantum mechanics (since now the equation of motion is coupled with the equation of 
continuity of probability density as it does in the Madelung version of the Schrödinger equation), it does 
not belong to it either. Indeed Eq. (11) is more general than the Hamilton-Jacoby equation: it is not 
necessarily conservative, and F is not necessarily the quantum potential although further we will impose 
some restriction upon it that links F to the concept of information. The relation of the system (11), (12) to 
Newtonian and quantum physics is illustrated in Fig.2.  

 
Figure 2. Classic Physics, Quantum Physics and Physics of Life 
 
Remark. Here and below we make distinction between the random variable v(t) and its values V in 
probability space. 
 
3. Selected self-supervised dynamical system. 
In this section we will concentrate on a special type of the self-supervised system Eqs. (11),(12).  
We will start with derivation of an auxiliary result that illuminates departure from Newtonian dynamics. 
For mathematical clarity, we will consider here a one-dimensional motion of a unit mass under action of a 
force f depending upon the velocity v and time t and present it in a dimensionless form 

),( tvfv =          (15)            
referring all the variables to their representative values .,, 00 etctv  
If initial conditions are not deterministic, and their probability density is given in the form 

1,0),(00 =≥= ∫
∞

∞−

dVandwhereV ρρρρ   (16)   

 while ρ  is a single- valued function, then the evolution of this density is expressed by the corresponding 
Liouville equation 

0)( =
∂
∂

+
∂
∂ f

Vt
ρ

ρ    (17)         

The solution of this equation subject to initial conditions and normalization constraints (16) determines 
probability density as a function of V and t: 
 ),( tVρρ =   (18)  
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In order to deal with the constraint (16) let us integrate Eq. (17) over the whole space assuming that 0→ρ  
at ∞→||V  and ∞<|| f  . Then 

∫ ∫
∞

∞−

∞

∞−

==
∂

∂ ,,0 constdVdV
t

ρρ  (19)    

Hence, the constraint (16) is satisfied for 0>t  if it is satisfied for .0=t  
      Let us now specify the force f  as a feedback from the Liouville equation 
 )],([),( tvtvf ρϕ=   (20)  
and analyze the motion after substituting the force (20) into Eq.(16)  

)],,([ tvv ρϕ=     (21)  
Although the theory of ODE does not impose any restrictions upon the force as a function of space 
coordinates, the Newtonian physics does: equations of motion are never coupled with the corresponding 
Liouville equation. Moreover, it can be shown that such a coupling leads to non-Newtonian properties of 
the underlying model. Indeed, substituting the force f from Eq. (20) into Eq. (17), one arrives at the 
nonlinear equation of evolution of the probability density  

0)]},([{ =
∂

∂
+

∂

∂ tV
Vt

ρρϕ
ρ  (22)   

Let us now demonstrate the destabilizing effect of the feedback (20). For that purpose, it should be noticed 
that the derivative v∂∂ /ρ must change its sign at least once, within the interval ∞<<−∞ v , in order to 
satisfy the normalization constraint (16). 
 But since 

v
Sign

d
dSign

v
vSign

∂

∂
=

∂

∂ ρ
ρ
ϕ        (23)                   

there will be regions of v where the motion is unstable, and this instability generates randomness with the 
probability distribution guided by the Liouville equation (22). It should be noticed that the condition (23) 
may lead to exponential or polynomial growth of v (in the last case the motion is called neutrally stable, 
however, as will be shown below, it causes the emergence of randomness as well if prior to the polynomial 
growth, the Lipchitz condition is violated). 
3.1. Emergene of self-generated stochasticity. In order to illustrate mathematical aspects of the concepts of 
Liouville feedback in systems under consideration as well as associated with it instability and randomness, 
let us take the feedback (20) in the form  

f = −σ2 ∂
∂v
lnρ,   (24)              

to obtain the following equation of motion 

v = −σ2 ∂
∂v
lnρ,   (25)           

This equation should be complemented by the corresponding Liouville equation (in this particular case, the 
Liouville equation takes the form of the Fokker-Planck equation) 

∂ρ
∂t
= σ2

∂2ρ

∂V 2
  (26)           

Here v stands for a particle velocity, and σ2 is the constant diffusion coefficient. 
The solution of Eq. (26) subject to the sharp initial condition  

ρ =
1

2σ πt
exp(− V

2

4σ2t
)   (27)       

 describes diffusion of the probability density, and that is why the feedback (24) will be called a diffusion 
feedback. 
Substituting this solution into Eq. (25) at V=v one arrives at the differential equation with respect to v (t) 
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t
vv
2

=   (28)  

and therefore, 
tCv =   (29)  

where C is an arbitrary constant. Since v=0 at t=0 for any value of C, the solution (29) is consistent with 
the sharp initial condition for the solution (27) of the corresponding Liouvile equation (26). The solution 
(29) describes the simplest irreversible motion: it is characterized by the “beginning of time” where all the 
trajectories intersect (that results from the violation of Lipcsitz condition at t=0, Fig3), while the backward 
motion obtained by replacement of t with (-t) leads to imaginary values of velocities. One can notice that 
the probability density (27) possesses the same properties.  
    It is easily verifiable that the solution (29) has the same structure as the solution of the Madelung 
equation [1], although the dynamical system (25), (26) is not quantum! The explanation of such a 
“coincidence” is very simple: the system (25), (26) has the same dynamical topology as that of the 
Madelung equation where the equation of conservation of the probability is coupled with the equation of 
conservation of the momentum (see Fig.2). As will be shown below, the system (25), (26) neither quantum 
nor Newtonian, and we will call such systems quantum-inspired, or self-supervised. 

 
Figure 3. Stochastic process and probability density. 
 
Further analysis of the solution (29) demonstrates that it is unstable since 

 0
2
1
>=
tdv

vd     (30)  

and therefore, an initial error  always grows generating randomness. Initially, at t=0, this growth is of 
infinite rate since the Lipchitz condition at this point is violated  

 0→∞→ tat
dv
vd     (31)                  

This type of instability has been introduced and analyzed in [2]. The unstable equilibrium point ( 0=v ) has 
been called a terminal repeller, and the instability triggered by the violation of the Lipchitz condition – a 
non-Lipchitz instability. The basic property of the non- Lipchitz instability is the following: if the initial 
condition is infinitely close to the repeller, the transient solution will escape the repeller during a bounded 
time while for a regular repeller the time would be unbounded. Indeed, an escape from the simplest regular 
repeller can be described by the exponent tevv 0= . Obviously 0→v if 00→v , unless the time period is 
unbounded. On the contrary, the period of escape from the terminal repeller (29) is bounded (and even 
infinitesimal) if the initial condition is infinitely small, (see Eq. (31)).  

Considering first Eq. (29) at fixed C as a sample of the underlying stochastic process (26), and then 
varying C, one arrives at the whole ensemble characterizing that process, (see Fig. 3). One can verify that, 
as follows from Eq. (27), [3], the expectation and the variance of this process are, respectively 

tvv 22~,0 σ==  (32)    
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 The same results follow from the ensemble (29) at ∞≤≤−∞ C . Indeed, the first equality in (32) 
results from symmetry of the ensemble with respect to v=0; the second one follows from the fact that 

tvv ∝∝ 2~    (33)            
It is interesting to notice that the stochastic process (29) is an alternative to the following Langevin 

equation, [3]   
σ=Γ=ΓΓ=

~,0),(tv   (34)  
that corresponds to the same Fokker-Planck equation (26). Here )(tΓ is the Langevin (random) force with 
zero mean and constant varianceσ .  
Thus, the emergence of self-generated stochasticity is the first basic non-Newtonian property of the 
dynamics with the Liouville feedback.  
3.2. Second law of thermodynamics. In order to demonstrate another non-Newtonian property of the 
systems considered above, let us start with the dimensionless form of the Langevin equation for a one-
dimensional Brownian motion of a particle subjected to a random force, [3]   
v = −kv +Γ(t),     < Γ(t) >= 0, < Γ(t)Γ(t ') >= 2σδ(t − t ') , s/1][ =Γ        (35)                                           

Here v  is the dimensionless velocity of the particle (referred to a representative velocityv0 ), k is the 

coefficient of a linear damping force, Γ(t) is the Langevin (random) force per unit mass,σ  > 0 is the 

noise strength. The representative velocity v0  can be chosen, for instance, as the initial velocity of the 
motion under consideration. 
The corresponding continuity equation for the probability density ρ  is the following Fokker-Planck 
equation  

∂ρ
∂t
= k ∂(Vρ)

∂V
+σ

∂2ρ

∂V 2
, ρdV =1
−∞

∞

∫               (36) 

Obviously without external control, the particle cannot escape the Brownian motion. 

 Let us now introduce a new force (referred to unit mass and divided by v0 ) as a Liouville feedback   

f = σexp D ∂
∂v
lnρ, [ f ]=1/ s                (37)                             

Here D  is the dimensionless variance of the stochastic processD(t) = ρV 2 dV
−∞

∞

∫ ,  

Then the new equation of motion takes the form 

v = −kv +Γ(t)+σexp D ∂
∂v
lnρ,               (38)                

and the corresponding Fokker-Planck equation becomes nonlinear 

∂ρ
∂t
= k ∂(Vρ)

∂V
+σ(1− exp D ) ∂

2ρ

∂V 2
, ρdV =1

−∞

∞

∫     (39)                         

Obviously the diffusion coefficient in Eq. (39) is negative. Multiplying Eq. (39) by 2V , then integrating it 
with respect to V over the whole space, one arrives at ODE for the variance D  

D = 2[σ(1− exp D )− kD]      (40)                
Thus, as a result of negative diffusion, the variance D  monotonously vanishes regardless of the initial 
value D (0). It is interesting to note that the time T of approaching the point D =0 is finite  
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T = 1
2

dD
σ(1− exp D )− kDD(0)

0

∫ ≤
1
2σ

dD
exp D −10

∞

∫ =
π
6σ

 (41)   

This terminal effect is due to violation of the Lipchitz condition, at D  = 0, [6]. 

Let us review the structure of the force (37): it is composed only out of the probability density and its 
variance, i.e. out of the components of the conservation equation (39); at the same time, Eq. (39) itself is 
generated by the equation of motion (38). Consequently, the force (37) is not an external force. 
Nevertheless, it allows the particle to escape from the Brownian motion using its own “internal effort”. It 
would be reasonable to call the force (37) an information force since it links to information rather than to 
energy. 
One may ask why the negative diffusion was chosen to be nonlinear. Let us turn to the linear version of Eq. 
(40) 

∂ρ
∂t
= −σ2

∂2ρ

∂V 2
, ρdV =1

−∞

∞

∫      (42)        

and discuss the negative diffusion in more details. As follows from the linear equivalent of Eq. (40) 
D = −2σ,i.e. D = D0 − 2σt < 0 at t > D0 / (2σ)    (43)  

Thus, eventually the variance becomes negative, and that disqualifies Eq. (43) from being meaningful. As 
shown in [4], the initial value problem for this equation is ill-posed: its solution is not differentiable at any 
point. Therefore, a negative diffusion must be nonlinear in order to protect the variance from becoming 
negative, Fig.5. The proof of the ill-possednes of linear negative diffusion can be found in [4]. 

 
Figure 4. Negative diffusion. 

 

In the next sub-section we will demonstrate again that formally the dynamics introduced above does not 
belong to the Newtonian world; nevertheless its self-supervising capability may associate such a dynamics 
with a potential model for intelligent behavior. For that purpose we will turn to even simpler version of this 
dynamics by removing the external Langevin force and simplifying the information force.  

 In 1945 Schrödinger wrote in his book “What is life”:  “Life is to create order in the disordered 
environment against the second law of thermodynamics”. The self-supervised dynamical system introduced 
above is fully consistent with this statement. Indeed, consider a simplified version of Eqs. (35) and (36)   

 v = σ D ∂
∂v
lnρ,      (44)                 
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∂ρ
∂t
= −σ D ∂2ρ

∂V 2
, ρdV =1

−∞

∞

∫     (45)              

 Removal of the Langevin and damping forces makes the particle isolated. Nevertheless the particle has a 
capability of moving from disorder to order. For demonstration of this property we will assume that the 

Langevin force was suddenly removed at t = 0 so that the initial variance D0 > 0.  Then  

D = −2σ D                                    (46)                        

whence           D = ( D0 −σt)
2                       (47)                              

As follows from Eq. (47), as a result of internal, self-generated force  

F = σ D ∂
∂v
lnρ,       (48)                           

  

the Brownian motion gradually disappears and then vanishes abruptly:  

D→ 0, D→ 0, d D
dD

→∞ at t→
D0
σ

       (49)                       

(3.36)                               

Thus the probability density shrinks to a delta-function at. Consequently, the entropy 

H (t) = − ρlnρ
V
∫ dV  decreases down to zero, and that violates the second law of thermodynamics.  

 

 
 
Figure 5. Vanishing Brownian motion. 
 
3.3. Self-supervised system for solving NP problem. Let us introduce the following inhomogeneous 
version of Eq. (44) 

 v = − 1
ρ
[a2 ∂ρ

∂v
e−ωt l

2πk
sin 2πk

lk=1

k=m

∑ v],0 ≤ v ≤ l,t > 0,       (50)           

Then the corresponding Liouville equation takes the form of an inhomogeneous parabolic equation subject 
to an aperiodic force  
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1
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2
2 2cos πρρ ω  (51)    

It should be noticed that the sums in Eqs. (50) and (51) are finite, and they do not represent even 
truncated Fourier expansions, while all the harmonic terms are equally powerful. Obviously this system is 
still self-supervising, but not isolated any more. 

We will solve this equation subject to the following initial and boundary conditions 

0),(,0),0(),5.0()0,( =
∂
∂

=
∂
∂

== tl
V

t
V

lvv ρρ
δρ   (52)  

and the normalization constraint  

∫ =
l

dt
0

1),( ζζρ        (53)          

Before writing down the solution, we will verify satisfaction of the constraint (53). For that purpose, let us 
integrate Eq. (2) with respect to v  

     ζζ
πρ

ζρ ω d
l
ke

V
ad

t

mk

k

l
t

ll

∑∫∫∫
=

=

−=
∂

∂
−

∂
∂

1 0
2

2

0

2

0

2cos       (54)  

As follows from the boundary conditions in (52), 

0|| 0 =
∂
∂

=
∂
∂

== lVV VV
ρρ  , and therefore, ∫ =

∂

∂
l

d
V

0
2

2
0ζ

ρ ; obviously, 02cos
0

=∫ ζζ
π d
l
k

l

as well. 

Hence, ∫ =
∂
∂
l

d
t
0

0ζρ . But, according to the initial condition in (52) 1)5.0( ===∫ ∫ ζζδζρ
l

o

l

o

dld at t=0. 

Therefore, the normalization constraint will be satisfied for all 0≥t  
Exploiting the superposition principle for the linear equation (2), we will represent the solution as a sum of 
free and forced components. These components are, respectfully 
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jV

l
je

l j

ta
l
j

1
2

coscos2

1
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1

22

+⋅= ∑
∞

=

− ππ
ρ

π

    (55)                                                                                                                     
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=
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 (56)   

22
2 )(2cos* a

l
kifV

l
kte t π

ω
π

ρ ω
==

−    (57)  

Here we will be interested only in the case (57) that represents a resonance between two aperiodic terms, 
namely: exponentially decaying force and exponentially decaying free motion. Indeed, the solution (57) has 
a well-pronounced maximum at  

22)(/1* a
i
kift π

ωω ==          (58)            

while the solutions (55) and (56) are monotonously decay. 

Let us now reaffirm the scenario of transition from deterministic to random state described by Eqs. 
(25),(26).   For that purpose, rewrite Eq. (55) in a different, but an equivalent form (based upon reflections 
from the boundaries) 
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It can be verified that for vanishingly small times 

 00*),
4

exp(
2
1

22

2

1 →→−→ tatand
ta

V
ta

ρ
π

ρ   (60)   

 and therefore, the transition scenario remains the same.  

It should be noticed that prior to running Eq. (50), the analytical solution of Eq. (51) in the form of the sum 
of Eqs. (55), (56), and (59) is to be substituted for ρ. 

Before moving to n-dimensional case, we will discuss the basic properties of the solution to Eqs. (25), 
(26). Although there are many similarities to quantum systems, we will concentrate again on superposition 
since it will be essential for the described approach.  

In quantum mechanics, any observable quantity corresponds to an eigenstate of a Hermitian linear operator. 
The linear combination of two or more eigenstates results in quantum superposition of two or more values 
of the quantity. If the quantity is measured, the projection postulate states that the state will be randomly 
collapsed onto one of the values in the superposition (with a probability proportional to the square of the 
amplitude of that eigenstate in the linear combination). Let us compare the behavior of the model of  self-
supervised systems from that viewpoint. As follows from Eq. (29), all the particular solutions intersect at 
the same point v=0 at t=0, and that leads to non-uniqueness of the solution due to violation of the Lipcshitz 
condition. Therefore, the same initial condition v=0 at t=0 yields infinite number of different solutions 
forming a family (29); each solution of this family appears with a certain probability guided by the 
corresponding Fokker-Planck equation, Fig. 6 . 

 
Figure 6. Resonance in the probability space 
 
Turning to n-dimensional case we have 
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  If the excitation ω in Eqs. (61) and (62) are selected as following 
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it will generate resonance with the eigen-value (63), and the corresponding “decay” will dominate over the 
rest of decays; in terms of Eq. (62) this means that the probability density ρ will tend to its maximum at 
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along that trajectory which is the “winning” solution of the system (61), Fig. 6. The value of this maximum 
is irrelevant, but its location is important: it is given by the following values of the coordinates 

.,...2,1*),(* nitvv ii ==           (66)                   

                                              4. Search in unsorted database. 
In this section we will apply the self-supervise dynamics introduced above to solve the problem of search in 
unsorted database by improving the Grover’s algorithm. Grover's algorithm is a quantum algorithm that 
finds with high probability the unique input to a black box function that produces a particular output value, 
using just O(N1/2) evaluations of the function, where N is the size of the function's domain. It was originated 
by Lov Grover in 1996. The analogous problem in classical computation cannot be solved in fewer 
than O(N) evaluations (because, in the worst case, the Nth member of the domain might be the correct 
member). Unlike other quantum algorithms, which may provide exponential speedup over their classical 
counterparts, Grover's algorithm provides only a quadratic speedup. However, even quadratic speedup is 
considerable when N is large. At roughly the same time that Grover published his algorithm, it was proved 
that no quantum solution to the problem can evaluate the function fewer than O(N1/2) times, so Grover's 
algorithm is asymptotically optimal [5]. However that proof does not contradict our claim to improve the 
Grover algorithm since the self-supervised dynamics is neither quantum nor Newtonian: it represents a 
quantum-classical hybrid capable to violate the second law of thermodynamics. 
    The algorithm formulated as the following. Consider an unsorted data-base consisting of nn  items 
labeled with a string of numbers njjj ,..., 21 as shown in Eq.(63) for n=m. Obviously a label includes 
permutations of these numbers. Turning to Eqs. (61), notice that each solution to this system can be labeled 
similarly if the winning solution in Eqs. (62) has its maximum at a point with the 
coordinates nvvv **,...*, 21 defined by Eqs (65). Then one can introduce the forced excitation defined by Eq. 
(64) that provides the resonant solution of Eq. (62), and as a result, the coordinates nvvv **,...*, 21  of this 
maximum will represent the address of the item in question. According to Eq. (64), the number of possible 
values of forced excitations ω  providing required resonances is equal to nn , and that is exactly the 
number of the items to be retrieved. Therefore, each item can be retrieved by the corresponding resonance 
with the forced excitation (having the values from the set (64)) with the probability that dominates over the 
probabilities for wrong addresses to occur. Strictly speaking, a non-resonance solution has a smaller, but 
non-zero probability to occur; then by a few number of Bernoulli trials, the most probable solution can be 
found. Indeed, the probability of success sρ  and failure fρ  after the first trial is, respectively 

ρs = ψ1, ρ f =1−ψ1         (67) 

Then the probability of success after M trials is 

ρsM =1− (1−ψ)
M →1 at M →∞     (68) 

 Therefore, after polynomial number of trials, one arrived at the solution to the problem (unless the function 
ψ  is flat).  
  



 

 

13 

13 

Let us now briefly review the procedure of the retrieval. Assume that the label of the item to be found 
is

.1
...

nkk jjω . The first step is to write down the analytical solution to Eq. (62) that consists of free and 

forced motions as in the one-dimensional case: 

*21 ρρρ +=        (69)  
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where Cj are constants to be found from the initial conditions, and  

  ω*=ω jk1 ,... jkn
= (a2π2
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i=1
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∑ , j =1,2,...n,i =1,2,...n,k =1,2...m       (73) 

     The second step is to substitute the solution (69) into Eq. (61). The third step is to run the system (61), 
measure the values of iv at */1 ω=t and obtain the address of the item in the form of a string of 
coordinates nvvv **,...*, 21 , Fig. 7. 

 

 
 

Figure 7. Maximum probability, selected (1) and not selected (2) items.  

It should be noticed that the capacity of the unsorted database is of order )( nnO i.e. exponential with 
respect to its dimensionality n, while all the resources providing its implementation are of order O(n), i.e. 
polynomial since the number of equations in the system (61) is n, and the number of terms in the analytical 
solution to Eq.(62) (to be substituted into Eqs. (61)) are of the order O(n) as well. Indeed, the infinite sum 
in Eq. (70) converges very fast to equal distribution of the probability density, and practically, only the 
forced component of the solution represented by Eq. (71) is important, and this component contains O(n2) 
number of terms. 

5. Discussion and conclusion 

The basic idea of this paper is to create a new kind of dynamical systems that would preserve superposition 
of random solutions, while allowing one to measure its state variables using classical methods. In other 
words, such a hybrid system would reinforce the advantages and minimize limitations of both quantum and 
classical aspects. These systems have been analyzed in [1] and [6]. It has been shown there that along with 
preservation of superposition, such an important property of quantum systems as direct-product-
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decomposability in hybrids is lost. Let us recall that the main advantage of this property in terms of 
quantum information is in blowing up an input of a polynomial complexity into an output of exponential 
complexity, with no additional resources required, Fig. 8. 

 

Figure 8. Mapping combinatorial optimization to quantum mechanics. 

The greatest challenge of our approach in this paper was in finding a ‘‘replacement” for the fundamental 
property of the Schrödinger equation in quantum-classical hybrids. It turns out that eigen-values of linear 
parabolic PDE possess similar property. Indeed, consider a linear n-dimensional parabolic PDE subject to 
boundary conditions. Then the eigen-values corresponding to each variable form a sequence of 

monotonously increasing positive numbers λi
(1)...λ(n)i . However, each linear combination of these eigen-

values represents another eigen-value of the solution, and that is the same ‘‘combinatorial explosion” that is 
illustrated in Fig. 8. Due to that property, for each n-string-number label, one can find an excitation force 
that activates the corresponding eigen-value. The second challenge was to satisfy a global (normalization) 
constraint imposed upon the probability density (in addition to boundary conditions). That was achieved via 
a special form of the excitation force. Finally these work ads a positive comment to a question posed in [7]: 
Can NP-complete problems be solved efficiently in the physical universe? The answer given by the 
author, Scott Aaronson, is negative. To our opinion, it could be positive if we complement the “physical 
world” with self-supervised systems capable to violate the second law of thermodynamics in order to find 
short cuts to solutions of combinatorial problems. Another evidence of a “mysterious” power of self –
supervise systems has been demonstrated in [6] where a different type of the ODE that belongs to the same 
class of self-supervising systems finds the global maximum of an integrable, but not necessarily 
differentiable function. The idea of the algorithm is very simple: introduce a positive function to be 
maximized as the probability density to which the solution is attracted. Then the larger value of this 
function will have the higher probability to appear. Special attention is paid to simulation of integer 
programming, NP-complete problems and information retrieval. 

    Thus the challenge of this paper is to relate artificial intuition-based intelligence, represented by self-
supervised systems, to solutions of NP-complete problems. By self-supervised systems we understand 
systems that are capable to move from disorder to order without external effort, i.e. in violation of the 
second law of thermodynamics. It has been demonstrated, [1], that such systems exist in the mathematical 
world: they are presented by ODE coupled with their Liouville equation, but they belong neither to 
Newtonian nor to quantum physics since they are capable to violate the second law of thermodynamics. 
That suggests that machines could not simulate intuition-based intelligence if they are composed only of 
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physical parts, but without digital components. Nevertheless it was found such quantum-classical hybrids, 
[1], that simulates some of self-supervised systems. The main achievement of this work is a demonstration 
that self-supervised systems can solve NP-complete problems in polynomial time by replacing an 
enumeration of exponentially large number of possible choices with a short cut provided by a non-
Newtonian and non-quantum nature of self-supervised systems. 
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