The algorithm of the Thinking machine

Dimiter Dobrev

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
d@dobrev.com

Abstract. Throughout my life I’ve tried to answer the question ‘What
is AI?” and write the program that is Al. I've already known the answer
to the question ‘What is AI?’ for 16 years now but the AI algorithm
has eluded me. I've come up with individual fragments but something
has always been missing to put the puzzle together. Finally, I gathered
all the missing pieces and I can introduce you to this algorithm. That
is, in this article you will find a sufficiently detailed description of the
algorithm of the AI. That sounds so audacious that probably you won’t
believe me. Frankly, even I do not fully believe myself. I’ll believe it only
when someone writes a program executing this algorithm and when I see
that this program actually works. Even if you don’t manage to believe
in the importance of this article, I hope that you will like it.

What is AI?

The first definition of Al is given by Alan Turing and it says: ‘If you put behind
curtain a human and a machine, and you talk to them and you can not reliably
tell the machine from the human, then this machine is AI.’

There are many criticisms directed at this definition. Some say it is informal,
while others say it is subjective because it depends on the judgment of the
evaluator. This definition is really informal, but this is not a problem. There is
also a certain element of subjectivity, but that is not a problem also. When we
are examining students there is also an element of subjectivity. However, we say
that a good student is the one who has taken the exams and we do not worry
about the subjectivity of the definition of a good student.

Another criticism of the definition of Turing is that it raises the bar too high.
Some people believe that we must want much less from AI. The problem with
these people is that they do not believe in the existence of Al and therefore
they want the definition of AI to define not something that does not exist, but
something else, something simpler — something that has already been invented.

All these criticisms are completely unfounded. In the definition of Turing
there is only one problem and that is that it defines something more than Al

If T tell you ‘Imagine a beer bottle’, you will imagine a bottle full of beer.
This is your definition, but it would more proper to imagine an empty bottle
because the full bottle is something more than what we want to define.

The same problem lies with the definition of Turing. It defines Al plus edu-
cation. Al without education is like an empty beer bottle, but just as we know



2 The algorithm of the Thinking machine

how to fill an empty bottle of beer, so we know how to educate the uneducated
AL

We need a definition of artificial intelligence that defines Al without educa-
tion. I proposed such a definition in 2000 [1]. It reads: ‘Al is this program that
in any world would do no worse than a man.’

This definition does not depend on education because the machine just like
a human can be born in a different world and get educated differently, so the
program can be run in a different world. The launch of the program corresponds
to the birth in humans.

To formalize this definition we should say what a world is, when one is doing
better than another, and the most difficult of all is to say how high we will raise
the bar, which means to say how smart the program must be. If we say ‘not more
stupid than a human’, this would be quite informal. At least, there are smart
and dumb people to a different extent, although the difference in intelligence
between the smartest and the most stupid person is not that great.

In order to avoid comparison with humans in [2] and [3], we’ve introduced
the concept of I1Q, which is a number which can be calculated for each program.
AT are those programs whose 1Q is above a certain value. We cannot say exactly
how high this value has to be, as we cannot say what the minimum score for
admission to the University next year will be.

This article will not consider the question ‘How intelligent must AI be?’ but
will describe a program that is intelligent enough.

Formulation of the problem

We shall assume that we have a discrete time and that the points in time are
natural numbers. At each step the machine will receive input (information) from
the world and will produce an outcome (action) back to the world.

We shall assume that each step consists of two points in time because later
we will look at some finite automata that will snap twice a step (once when the
machine gets an input and once when an output is generated). They snap, i.e.
change their state.

We shall assume that the input is described by two functions (View and
Score), and the output — by one function (Action). We shall assume that the
input enters at the even points in time and that the output is generated at
odd points in time. That is, the first two functions shall be defined only for
the even numbers, and the Action function will be defined only for odd ones.
We’ve split the input into two functions because we shall assume that the value
of Score has a meaning that does not depend on the particular world but is
common for all worlds. On the contrary, the meaning of the View function
depends entirely on the specific world, and our machine will have to navigate in
this world and understand what the meaning of the information it receives from
the View function is.

What is the meaning of the Score function? The possible values of this func-
tion will be the constant Nothing or a number. The aim of our machine will be



The algorithm of the Thinking machine 3

to sum up the largest possible average of all the results of the Score function,
which are different from the constant Nothing.

We shall assume that the function View returns an n-tuple of scalars, the
Action function, respectively m-tuple of scalars, and the Score returns a single
scalar (Nothing or a number).

In [1] we assumed that the input and output are Boolean vectors because in
this way we can encode any final information. Later we decided it was better to
avoid unnecessary coding because the goal is to understand the world, and an
additional coding can make the world more difficult to understand. Now we will
assume that the scalar functions are final. We could generalize and assume that
the value of the scalars can be even a whole or real number, but this article will
not do this generalization and we shall limit ourselves to finite scalars.

The arbitrary world comprises a set of internal states S, (one of which, so,
is initial) and the functions World, View and Score. The World function tells
us what will be the next state of the world on the next step.

Si4+2 = WO’I“ld(SZ', ai+1)

Here a;41 is the vector that returns from Action(i+ 1). The Action function
is not part of the world, its values are the actions of our machine. The World
function is defined only for even values of ¢ because one step is made of two
points in time.

The Score and View functions take s; for a value and return an n-tuple for
the first one and a one scalar for the second one.

We will assume that the function World is not determined and that given
a certain argument it may return different states, each of which has a non-zero
probability to be returned. In the private case, when World is determined for a
given argument, it will return exactly one specific state and will return it with
a probability of one.

Incorrect Moves

We will further assume that the World function is not total. That is, not every
move is possible. In particular state some moves will be correct, others will not
be correct. It is better to assume that each state has at least one correct move.
That is, to assume that there is no lock-up where the machine cannot make any
further moves. If such lock-ups exist, we could easily associate them with the
end of life (no further moves possible). When life happens to be shorter, we will
assess it to the point it has reached. The natural heuristics of the machine will
be to avoid lock-ups and generally seek situations where there are more possible
moves. This instinct is natural to humans as well. They do not like narrow,
confined spaces; do not like to be tied down, etc.

We will permit the machine to try incorrect moves and will not punish it
for it. Normally, incorrect moves are used to collect information. For example,
people grope in the dark and touch the walls to find their way. The human hand
can not pass through the wall, and that’s why we could say that groping the
wall is an incorrect move.



4 The algorithm of the Thinking machine

Incorrect moves will not change the state of the world and will not increase
the counter of steps t. The machine has nothing to lose when it tries incorrect
move. It will also not gain anything except acquiring the information that this
move has been an incorrect one.

Specific example

To get out of the swamp of abstraction we will take a specific example. Let’s
look at the world where the machine plays the game Tic-Tac-Toe.

The life of the machine should be long enough for it to have time to learn
how to play. So we will assume that it does not play just one game but that after
each game the panel is cleared and a new game is started.

The machine will not see the entire board of the game; it will see only one of
the cells. That means that it will have one eye that can move along the board
and the machine will only see the cell on which the eye is positioned.

left/& right

Fig. 1. Specific example.

The operation of the machine will consist of a 3-tuple consisting of:

< horizontal move, vertical_move, marking_-by_-X >

Each of these three coordinates can take one of the following values:

horizontal_move € {to_the left,to_the_right, stay_where_you_are}

vertical_move € {upwards, downwards, stay_ where_you_are}
marking-by_X € {mark_by_X, do_not_mark}

That means that the eye will be able to move in all directions, even diagonally
(but only by one step). The machine will be able to mark by X but only the cell
on which the eye is positioned on.

We must point out that not all moves are correct. For example, when we
are in the left column, the move to the left will be incorrect (regardless of the
other two coordinates of the output). The move ‘mark by X’ will also be incorrect
except in cases where the eye is positioned on an empty cell. The incorrect moves
will carry valuable information. For example, we will know that we are in the
left column by the fact that the move to the left is incorrect.



The algorithm of the Thinking machine 5

The View and Score functions will return scalars

View(s;) € {X, 0, empty}

Score(s;) € {win,loss, draw, Nothing}

Since we said that the Score values must we numbers, we will replace win,
loss and draw by the numbers 1, -1, 0 but will keep in mind the meaning of these
numbers.

The internal state si of this world consists of a 3x3 board with nine cells, each
of which can take three possible values plus the coordinates of the eye, plus the
Score results for this state. We have to add the latter because when the game
is over the board is cleared and is empty, but the value of Score is determined
by the previous state on the board, the last move of the machine and possibly
the move of the imaginary opponent.

What happens when the machine marks an X7 The imaginary opponent
responds by marking an O in one of the empty cells. We shall assume that this
happens immediately, on the same step, and that the very next step we can see
the O marked by the imaginary opponent (as long as we moved the eye to that
cell). In cases where the game ends after the move of the machine or after the
move of the imaginary opponent, the board is cleared and Score returns 1, -1
or 0, depending on how the game ended.

This seems to be enough to describe the world in which the machine plays
Tic-Tac-Toe. This world seems absolutely simple and there is a big chance the
machine understands it completely. Still, we miss something very important and
it’s the imaginary opponent. He is a part of the world because in the world there
is someone who plays against the machine. That someone is the most complex
and the most difficult concept of the world.

Imagine that the imaginary opponent is a professor of mathematics or a
student in love. It is assumed that the actions of the professor are quite logical
and it would not be difficult to understand and predict his next move. Much
more difficult will be with the student in love because she will play illogically
and unpredictably. Below we will see that we can take the imaginary opponent
out of the model of the world and thus the model will greatly simplify.

The conclusion is: Although the world of Tic-Tac-Toe game is quite simple,
it has all the elements that are important to the Al program. If our program
manages to cope with this world, there is a chance it could cope in any world,
which would mean that it actually meets the definition of Al. Of course, we
should not palter. Our program should make out the rules of the game all by
itself and learn how to play without us embedding the rules in some way in the
program in advance.

History

We shall refer to ‘History’ as the values of the functions View, Score and Action
in the range of 0 to ¢ (from birth to the current moment). Along with these three
functions, we will also add the function IncorrectMoves, which for each even ¢
will return the set of incorrect moves that the machine has unsuccessfully tried



6 The algorithm of the Thinking machine

at the moment t. IncorrectMoves will return a set and not a list because it does
not matter in what order these moves have been made.

On the basis of the history, the machine will collect statistics and will try
to understand the world. Based on the last few moves from the history, it will
determine the true values of the statements without memory. On the basis of
the entire history, it will determine the true values of finite-memory statements.
We will not consider infinite-memory statements.

Statements without memory are conjunctions from past literals. Past literals
are literals whose value we already know, while future literals are those whose
value is yet to be found out.

Definition: Each literal will be of the type: View;(t + k) = constant, where
View; is the i-th coordinate of the vector View, t is the current point in time,
and constant is a constant. Here, in place of the function View can be taken by
any of the functions Action and Score.

Definition: Depending on the value of k, we will call the literals past or
future. When k < 0, the literals will be past. If k& > 1, the literals will be future
and they will apply to the future.

Why will we discuss conjunctions only and not discuss the more complex
Boolean functions? That’s because every Boolean function can be represented as
a disjunction of conjunctions of literals and therefore, if we examine the behavior
of conjunctions, this will give us the behavior of all Boolean functions.

Basically, we are only interested in the future, but the only way to understand
and predict the future is to analyze the past.

We will not assume that the machine remembers its entire history because
it would need a lot of memory and also it would be quite laborious to analyze
the whole history to extract some information.

What will be remembered from the history is a little buffer from the last &
steps and a large amount of statistics for a huge number of statements without
memory. By huge number we mean millions and billions. I did a simple exper-
iment [4], where the length of the conjunction was limited to four or five, yet
the number of axioms rose to several million. I say axioms, not conjunctions,
because I was then only interested in conjunctions that have always been a lie
(i.e. their negations are axioms, at least so far). Now controversial conjunctions
are still the most interesting, but now we will be interested in the others as well.

Another thing that will have to be remembered from the entire history is
the current state of the finite-memory statements. Each of these statements is
determined by the finite-state automaton. The current state of the automaton
should be monitored and known (remembered).

Definition: The term ‘Signal’ will refer to any function whose argument is
a point in time and whose value is a scalar.

We will further expand the set of literals by adding some other signals to the
coordinates of the functions View, Action and Score. The current state of each
of the automata corresponding to the finite-memory statement will be such a
signal.



The algorithm of the Thinking machine 7

Another possible expansion of the set of literals is to add an abstract signal.
(The abstract signal is determined by an experiment. These abstract signals will
be discussed below.) Specifically, we will add the probability of the experiment to
return a truth. This probability is a number between 0 and 1. The values of this
probability may be one, two, finite and even infinite number. If the possible value
is just one (i.e. the probability the experiment returns true is always the same),
we will not add such a literal because we are not interested in literals which are
constant. If the possible values are infinite number, we can, by rounding them
off to some extent, reduce the same to a finite number. It is best if the possible
values are two and they are 1 and 0. Then we will have two types of states: those
in which the experiment will surely succeed and those in which it will surely not
succeed. In the latter case we can make only one experiment to see if the state
is of the first or of the second type.

Abstract signals

So far we’ve talked about the past only. Let’s look at the future. With a fixed
number of steps, the analogue of statements without memory (the conjunction of
past literals) are abstract signals (conjunctions of future literals). The future is
a bit more complicated than the past because the past is absolutely determined.
With it we know the exact move we've chosen and the information we have
received. All this is saved in the history. In the future we have a natural non-
determinism. First, we do not know what we’ll see, because the function World is
non-determined. Second, we do not know what move the machine would choose
because it has the right to choose any move it wants. To deal with this non-
determinism we will assume that the value of the conjunction is not true or false
but true with a certain probability and that with the assumption that the move
of the machine is exactly the one it has to be.

The conjunction of future literals will be true with a certain probability on
condition that the moves of the machine are the ones they have to be (i.e. all
literals associated with the Action are true). We can assume that each abstract
signal is equal to the probability of a particular experiment to return true.

In the example with the Tic-Tac-Toe game, the following implication is true
in the left column of the board:

horizontal(t) = left & wertical(t) = nowhere & put_cross(t) =no =
bad_-move

That is, in this column the next conjunction is impossible:

horizontal(t) = left & wertical(t) = nowhere & put_cross(t) = no

In all other columns the conjunction is possible with a probability of one.
That is, if the move of the machine is the one it has to be, the move will be
correct and the other will also be fulfilled (actually, there is no other because all
literals are associated with Action).

This conjunction fully determines the move of the machine, but it is too long
(three literals). Let’s look at the conjunction with one literal:

horizontal(t) = left



8 The algorithm of the Thinking machine

This conjunction is impossible in the left column. In the other two columns it
is possible with a probability that we can not calculate because we do not know
for sure the move the machine will play. For example, the machine can play left
and up and the move would be incorrect, not because you cannot move to the
left but because you cannot move upwards.

Conjunctions of future literals have another drawback to the conjunctions
of past literals. We know the value with the past literals, but do not know the
value with the future ones, and we have to guess. We could, on the basis of
some implication and the information we have obtained from the past, predict
the value of the abstract signal. We want, based on these abstract signals, do
statistics and later on — draw conclusions. We can easily do statistics with the
past literals. We count how many times the result was truth and that’s it. With
future literals, however, we do not know how many times it was truth. We have
not made the required experiment each single time, and even if we did, the fact
that the experiment has succeeded once or failed once does not mean that it will
succeed each time (or it will fail each time).

Take for an example the experiment ‘If you touch the stove, you will get
burned.” This is true when the stove is hot. We would like to conclude that if
the stove is hot, we can brew coffee. If you do statistics based on the moments
when we touched the stove and we got burned, it can be inferred that if the
stove is hot, it will hurt our hand, but this is not because the stove is hot but
because we have touched it. Therefore, we will collect statistics based not on the
moments when we made the required experiment, but on the moments when we
can believe, with sufficient reason, that the stove was hot.

That is, we will try to predict with some probability that the stove is hot
and on this basis to conclude that we can brew coffee. We will try to also guess
when the stove was hot so that we can collect statistics from these moments.
Here, the prediction is different, first because we need more confidence so as
not to spoil the statistics, and secondly because we can use later moments. For
example, if we touched the stove or someone else touched it. This happened at a
later moment and we could not use it to make the necessary conclusion at that
moment, but for the statistics it is important that we have come to know it,
albeit belatedly.

How would we represent the internal state of the world?

We would like to somehow represent the internal state of the world. We are not
interested in unattainable states of the world and therefore we will take care
only of those who are attainable, starting from the initial one. Also we are not
interested in equivalent states, and if we have two indistinguishable states, we
will take only one of them. So we will assume that S consists of only attainable
states and that it is factorized by equivalence relation.

As the set S consists of some arbitrary elements which we know nothing
about, for us it would be sufficient to find a larger set in which S can be nested
injectively.



The algorithm of the Thinking machine 9

Would it be sufficient to describe the state, if we take the n+1-tuple created
by View(s;) and Score(s;). Yes, if the function View is an injective function,
it would be sufficient, but worlds in which the machine sees everything are not
interesting. More interesting is when the machine sees only part of the world
(i.e. when View is not an injective function).

If there are two distinct states s’ and s”, these states would be either imme-
diately distinguishable, i.e. the Score and View functions distinguish them, or
there is some experiment that distinguishes them. The experiment may be with
a fixed number of steps or be related to an algorithm whose results distinguishes
the two states.

Here are examples of experiments with a fixed number of steps (i.e. one step):

‘If T touch the stove, I will get burned’ or ‘If I roll the die, a 6 will come up.’

Here is an example of an experiment related to an algorithm:

‘If T roll the die consecutively many times, a 5 will come up before a 6.’

Here’s the algorithm:

‘T'll roll the die until something bigger than 4 comes up, and then if it is 5
then ‘Yes’, if it is 6 then ‘No’.

We will call an experiment with a fixed number of steps a conjunction of
future literals. We’ve already explained what future and past literal is.

We will get the number of steps of the experiment by taking the biggest k of
the conjunction and divide it by 2 and round up the result.

We will call a closed (or completely determined) experiment the one involving
all literals of Action (with values of k from 1to the biggest odd number that is
smaller or equal to the biggest k of the conjunction). That is, the operation of
the machine is completely determined for the steps of the experiment.

We will call an open (or partially determined) experiment any experiment
which is not closed, i.e. the operation of the machine is partly determined. We
can say the open experiment is a set of closed ones because the missing literals
of Action can be added in all possible ways.

For each state, if we hold a closed experiment, we will get a result ‘Yes’ or
‘No’ with a certain probability of ‘Yes’. If the function World is determined, this
probability would be exactly 0 or 1. If the World is not determined, this number
will be a number in the range [0, 1]. That is, every closed experiment gives us a
function that at each state gives us the probability the experiment results with a
“Yes’. We've already discussed the number of possible values this function could
have. It is best if the possible values are only 0 and 1. For example, if you touch
the stove, it is either hot and you get burned, or cold and you do not get burned.
The worst case is when the possible value is just one. For example, if I roll the
die, will a 6 come up? The answer is ‘Yes’ with probability of 1/6 and this is true
for all states of the world. Of course, there may be a world in which the dice may
have curves and if you roll curved dice the probability might be greater than
1/6. There may be a world where mascots help and if you wear your favorite
mascot the probability might again increase. That is, two states are discernible
with by an experiment not only if one of them results with an ‘Yes’, and the
other with a ‘No’. They are discernible even if both experiments result with an



10 The algorithm of the Thinking machine

‘Yes’ with a different probability. For example, it does not matter whether we
roll straight or curved dice because the likelihood of a 6 to come up is different.
If you think that the function World is determined, the result of the closed
experiment will be determined but that won’t help us a lot because we will not
be able to predict it accurately and we will expect the result to be ‘Yes’ with a
certain probability. That is, with both possible models of the world (determined
and non-determined) we will expect a result of the experiment with the same
probability because the facts on which our prediction is made are the same.

If we add to the n+1-tuple the probability of success of all experiments, the
result would be an infinite row of signals, but this row will describe fully the
state of the world with accuracy to equivalence.

There is no way to add all possible abstract signals. Also, it is better to not
restrict ourselves to closed experiments. That’s why we will add open experi-
ments as well. They are shorter and in some sense — more representative. For
the probability of the open experiment will only consider three possible values:
‘firm Yes’, ‘firm No’ or ‘maybe’. We will assume that they have at least two
values, i.e. at least one of them is something firm. When we unite a set of closed
experiments we can not say what the probability of the union is because we
do not know what is the probability of each of the actions (that depends on
the machine and no one could say what it will do). The case in which we can
say what that probability will be is when all experiments result with ‘firm Yes’.
Then their union is ‘firm Yes’. Similarly, if all are ‘firm No’. In any other case,
the value of the union is ‘maybe’.

In our example with the Tic-Tac-Toe game, if the eye is positioned in the left
column, its move to the left is incorrect (i.e. impossible). That is, the experiment
consisting of only one literal returns a ‘firm No’ when we are in the left column
and ‘maybe’, if we are in the middle or right column.

Why are abstract signals important?

Abstract signals are very important for understanding the world. When you want
to jump over a puddle, it is much easier if in the middle of the puddle there is
a stone on which you can step. For example, we find a relationship according to
which the stove is hot and the dependence, according to which, if the stove is
hot, we can brew coffee. Then based on these two steps, we conclude that we can
brew coffee. Could we find a direct rule that under those circumstances we could
brew coffee? Yes, but that direct rule would be much longer and more difficult to
find. Moreover, it would be very difficult to gather statistics for that direct rule
because its precondition could almost never happen. It would be much easier
if it is in two steps. We do have some rules that tell us that the stove is hot.
Each of these rules has gathered enough statistics for itself. We have statistics
that tell us that if the stove is hot, we can brew coffee. This is based on all the
cases when for some reason we think that the stove was hot. That is, here we
have a generalization of many different preconditions. If you do not use such
generalization, the time for the machine to learn will be huge (i.e. the number



The algorithm of the Thinking machine 11

of steps before it learns will be huge). In theory, we can train ourselves without
generalizations, but in practice this cannot happen because when the time for
learning tends to infinity, the intelligence of the machine tends to zero.

The importance of abstract signals for Al can be compare with the impor-
tance of the Alpha-beta pruning for the game of chess. The Min-Max algorithm
can work without this trick, but then the depth of the tree reduces twice. This
does not make the algorithm twice slower, but let say a million times slower.
The situation is similar with abstract signals. Not only the computing time is
tremendously increased but also the training time is tremendously increased.
You would not recognize a program to be Al if that program will learn to play
Tic-Tac-Toe only after a huge number of moves (such as a million or billion).

Multi-agent world

What we’ve said so far seems enough to understand any world. In theory, this
is really enough, but in practice it is not. In the example with the Tic-Tac-Toe
game we saw that in the world there is an imaginary opponent who is part of
the world. If we want to describe the world with imaginary opponent then the
state of the world would have to reflect the state of this imaginary opponent;
whether he is distracted, tired or angry. This would make the description of the
world too complicated, so we would like to take out this imaginary opponent of
the world so that he is no longer part of the World function.

The old version of World, which included the imaginary opponent was:

Si4+2 = WO’I“ld(Si, ai+1)

The new version would be:

Sira = Worldy(si, a;v1, opponent; o)

That is, we will have a new function Worlds, which will take as an argument
the activity of the opponent as well (added to the state of the world and the
activity of the machine). The new function Worlds will be quite simple, because
it will not describe the behavior of the imaginary opponent but will only mark
the cells by X and O on the game board.

The idea of multi-agent representation of the world is that we are not alone
in this world. Apart from us there are many other players (agents). These may
be people, animals, Gods or computer programs. Where are the actions of these
agents manifested in our world? Once someone does something then that some-
thing must appear in some way in the world. The relationship between the agents
and the world are abstract signals. There is a signal that we can check in some
way. We are trying to predict the value of this signal based on the past or we de-
cide that it is arbitrary and happens with a certain probability. Instead, we can
assume that this signal is determined by the will of some other player, unknown
for us. That other player may have the power to change this signal whenever he
wants, but it is better to think that he is restricted by some rules. For example,
in the Tic-Tac-Toe game O’s appear in the empty cells. We have an experiment
by which we can check what happens to the empty cell. (We go there and see



12 The algorithm of the Thinking machine

what’s in it.) You can assume that the imaginary opponent is restricted and can
only mark by O, but cannot remove the mark after that.

To understand the multi-agent world we must have a theory about other
agents.

The first thing is to unite a group of abstract signals into an agent. For
example, in the Tic-Tac-Toe game someone marks O in the upper left corner or
marks O in the lower right corner. It would be better to assume that this is the
same agent. Conversely, an abstract signal can be caused by the actions of many
agents. For example, if your phone rings, it may not be just one person; it may
be a call from a lot of different people.

In the theory that we will build there must be a number of different agents
and different abstract signals to associate with different agents. For example,
Mom that gives us the bottle of milk, or God responsible for everything.

The main thing to understanding other agents is to split them into good
and bad, i.e. partners and opponents. This will help us predict their actions.
Whether they will try to help us or hinder us. We should not consider this
division permanent. Any partner could become an enemy and vice versa. At
the heart of our strategy must stand the desire to enter in contact with these
other agents and to make conclusion with them in some way. Examples of such
contact is when we give bribe to propitiate a clerk or when we make a sacrifice
to propitiate a deity.

Another important thing to understanding other agents is to have a theory
about who sees what and who knows what. Does the agent have an opportunity
to perform a certain action? As we said there are rules. The agent may be
currently unavailable or to be unable to act. It is important whether the agent
is smart or stupid. We can hope that he will do something, but to know that he
is stupid and will not come up with the idea of doing it.

What we’ve described looks much like the way people think. All this would
be just a small talk if we haven’t said what the activity of the agent is and it is
the changing of an abstract signal.

Centralized planning

Everything we’ve considered so far works on a decentralized basis. Indeed, the
search for relationships and the building of a model of the world can become
decentralized, but when the machine wants to do something it will have to plan
its moves. Let’s take our example with the Tic-Tac-Toe game. The aim is to win,
but the interim aim may be to mark by X the upper left corner of the dashboard.
To reach this interim aim we must first move the eye to the upper left corner.
In other words, we must have a planning module to make us a plan of action.
The plan may represent a number of aims that the machine consistently should
reach. The plan may be more complex and not a line but a complicated graph
because there may be options.

In the Min-Max algorithm there is no centralized planning of actions. There,
on every move it is calculated which is the best move for the machine and that



The algorithm of the Thinking machine 13

move is played. This algorithm plays successfully chess, but can not play the
game Go.

Imagine the following scenario. Let’s say you want to go around an obstacle.
You can go left or you can go right. If you plan, you will choose where to go and
will go around. If you do not plan, you can go left, thing again and go right, then
left again and right again. Such behavior would be rather strange, but the worse
is that if you do not plan your interim aim and if at every move you ponder on
the direction the general goal is, it would be too slow and inefficient. Even the
Min-Max algorithm does not seek to win, and instead pursues an increase in the
value of the current position of the board. That is, an interim aim has been built
in, which is easily visible and easy to pursue. The ultimate aim is too far away
and is virtually invisible.

References

1. Dobrev D., Al — What is this. In: PC Magazine — Bulgaria, November’2000, pp.12-13
(www.dobrev.com/Al/definition.html).

2. Dobrev D., Formal Definition of Artificial Intelligence. In: International Jour-
nal “Information Theories & Applications”, vol.12, Number 3, 2005, pp.277-285
(www.dobrev.com/Al/).

3. Dobrev D., Comparison between the two definitions of Al In: arXiv:1302.0216
[cs.Al], January, 2013.

4. Dobrev D., Generator of simple implications. In: www.dobrev.com/AI/app4.html,
made in 2001 and published in 2008.



