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Abstract 

You will be shown the symmetry properties of the Planck’s particle, and will be drawn to its magnetic 

charge. This will unify the gravitational, electrical and magnetic forces in a single force, now known as 

superforce. This is possible by introducing a new constant, symmetrical coupling factor call, which allows 

the transformation between forces. 

 
 

1.1 – Symmetric Particle 

We know that the electrostatic force between two charged particles, as expressed by Coulomb’s 

law, is 
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with 1q  and 2q  being the charges of the two particles, r  their distance, and 
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the dielectric constant of the vacuum. 

Newton’s gravitational force, for two bodies with mass  1m  and 2m  separated by the distance r , is 
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with the gravitation constant G  equal to 
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Suppose to express G  in the form 
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from which it is possible to obtain 
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Consider now the ratio 
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from which it is possible to derive 
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Through the dimensional analysis, we note that Æ  expresses the ratio between a charge and a 

mass: 
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In this analysis, we will refer to a symmetric particle as that particle whose ratio between its 

charge and its mass is equal to Æ , which will be referred to as  factor of symmetric coupling of the 

symmetry relation, as (9). 
 

1.2 – Magnetic monopole of the symmetric particle 

The existence of magnetic monopoles has been formally hypothesised, considering Maxwell’s 

equations as a start point. However, interest for these objects increased after the 1931 article by 

P.A.M. Dirac, in which it is shown that magnetic charges can be introduced in the structure of 

quantum mechanics. Furthermore, the product between the electric charge e  and the magnetic 

charg g  is quantised by Dirac’s relation 
2

c
eg n=

h
, with n  as an integer. This particle was named 

magnetic monopole if it carried only one magnetic charge, and dion if it carries both an electric 

and a magnetic charge (for example, a monopole bound to a nucleus behaves like a dion). 

Another important date in the history of magnetic monopoles is 1974. In that year, ‘t Hooft and 

Polyakov demonstrated that the Grand Unified Theory (GUT) between electroweak and strong 

interactions, implied the existence of magnetic monopoles, with masses in the order of 10
17

 

GeV/c
2
. These masses are too big to be produced in modern particle accelerators. Various 

hypotheses map them onto products generated after the Big Bang or in collision of high energy 

immediately after the transition phase occurred at the end of the GUT era. To date, however, 

despite numerous careful experiments, magnetic monopoles have never been detected. 
 

After this brief rewiev, consider Maxwell’s relation 
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which ensures that the value of speed of light in the vacuum can be expressed via universal 

constants, with 
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which expresses the magnetic permeability in the vacuum. 

From Maxwell’s relation in (10) we derive 
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Considering the expression (7), we can rewrite 
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from which we obtain, considering the first and last term 
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which allows us to introduce the constant oG  in Maxwell’s relation. 

 

In the hypothesis of considering symmetric particles, we analyse dimensionally the product 

between the charge q , the speed of light in the vacuum c  and the constant of magnetic 

permeability oµ : 
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We know that magnetic monopoles are expressed dimensionally in Weber 
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We define another property of symmetric particles, i.e. they have a magnetic charge equal to 
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     og q c µ≡       (17) 

By using the relation in (9), from which we derive q Æ m≡ , we can also write 

     og Æ m cµ≡      (18) 

 

1.3 – Search for a symmetric particle 

What has been discussed so far imposes certain precise limitations on a search for a symmetric 

particle. As said above, the ratio between its charge and its mass not only has to be constant, it 

has to have also a clearly defined value, provided by the factor of symmetric coupling Æ , as 

defined in equation (9). 

Firstly, we turn our attention to the electron, in order to verify whether it has these properties. 

From the scientific literature, we know that the electron has the following charge and mass: 
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As we can see, the electron cannot be a symmetric particle. 

Neither could the proton be such a particle, seeing as its mass is about 2000 times as big as that of 

the electron. 

It is to be added that the electron would verify the relation of symmetric coupling if it had a mass 

equal to that of Stone’s mass, defined as 
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Secondly, instead, we consider Planck’s units, defined exclusively in terms of universal physical 

constants and proposed by Planck in 1899. In this context, we are only interested to their 

definitions. In particular, we will consider the Planck’s mass and charge, defined as follows: 
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In the Planck’s charge, replacing 4 1/
o

G Gπ ≡  , you are obtained 
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For the sake of this discussion, the double sign of (25) is not necessary, even though its meaning is 

quite evident: the electric charge can be either positive or negative, as so happens in nature. 

However, it is interesting to observe that the double sign is attributable to the two terms in (25), 

viz. to the mass pm or to Æ , with apparent conceptual differences on the physical reality that 

follows from this. In other words, if the double sign were attributed to the mass, we would be led 

to admit the presence of matter and anti-matter, conversely, if attributed to Æ , the double sign 

would mean that the vacuum has a double polarity. 

Suppose, for the time being, that (25) is assumed in absolute value 
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q m Æ≡       (26) 

from which it follows that 
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Thus, it clearly appears that Planck’s particle, defined by the characteristic dimensions introduced 

by Planck, is a symmetric particle. 

Let us therefore search for other relations. 
 

1.4 – Coupling constants 

The constant of electromagnetic coupling (constant of fine structure) has been calculated in 

relation to the electron in the first stationary orbit of a hydrogen atom as 
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It is therefore legitimate to ask oneself whether there exists a coupling between the mass of the 

electron and Planck’s mass. 

In the scientific literature, various gravitational coupling constants are defined in relation a certain 

particle. As we are considering the relation between the mass of an electron and Planck’s mass, 

the best estimate would be that between a couple of electrons, as given in the relation 
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From (23), it follows that 
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The coupling at stake is therefore estimated by the relation 
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Using (31) and (27) 
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with the value as 

     G
α ≡ 1,762 x 10

-45
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Suppose now that the electron follows a relation of symmetric coupling analogous to the Planck’s 

particle, that is 
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From the coupling costant α , it is possible to obtain 
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Numerically, one obtains 
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As it is possible to notice, the term β  obtained in (38), which expresses the ratio ee m/ , is equal 

to the first relation in (20). 

At this point in the discussion, it becomes relevant to consider whether Æ  could represent a 

coupling constant between an electrostatic field and a gravitostatic field in the primordial phase of 

the universe, during Planck’s era, viz. when the universe is thought of as a state at extremely 

temperatures (close to Planck’s temperature, 10
31

 °K, at around 10
-43

 sec from the birth of the 

universe). In a medium at such a high temperature, every bound state is unrealisable, and the 

matter is therefore decomposed in its constituting elements. According to the Standard Model of 

elementary particles, at the primordial temperatures of the Universe, the three interactions were 

unified in one single form of interaction. The number and the temperature of the particles of the 

primordial plasma were maintained at a thermodynamic equilibrium by this form of unified 

interaction. 

During Plank’s era, the electrostatic force between two identical particles, with charge Pq and 

mass Pm , placed at distance r , would be 
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By virtue of the relation P P
q Æ m≡ , it follows that 
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which is nothing other than the Newtonian gravitational force between to particles with mass Pm . 

The result we have obtained ensures that Planck’s particles will be subjected to the same force, 

both from the gravitostatic and the electrostatic point of view, i.e. they will be in a condition of 

gravitoelectric unification 
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Now, Let us therefore extend the obtained result to magnetic charges. From magnetism theory, 

we know that a magnetic charge, or magnetic pole, has an individuality such is one that pertains to 

an electric charge. Nevertheless, we also know that this is purely formal, because separating a 

magnetic pole from its opposite is impossible, at least in the current conception of a source of 

magnetic charge. Yet, as said above, the magnetic charge is indeed expected in quantum theory, 

also as a parameter for the quantisation of an electric charge. It is to be added that, to date, 

nothing forbids its existence. This formal analogy will therefore be utilised to deduct remarkable 

consequences. 

The magnetic force exerted between two magnetic poles 1g  and 2g , separated at a distance r , 

will be defined as follows 
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Consider now the electrostatic force between two Planck’s particles 
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Considering that Planck’s particle has to have its speed equal to c , we define the magnetic charge 

of a Planck’s particle as 
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which is analogous to the magnetic force between two Planck’s monopoles. 

We therefore can extend the condition of gravitoelectric unification into a gravito-electro-

magnetic unification 
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From (45) we derive 
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which can also be re-written, by exploiting the relation in (26), as 
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We now re-write (45) in a different form, taking into account the equations (23) and (24) : 
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By exploiting Maxwell’s relation (10), we obtain 
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It therefore seems natural to introduce a magnetic coupling constant, on a analogy with the 

coupling constants already introduced, i.e. the relations in (28) and (31) 
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The analogy allows us to define the magnetic coupling constant as 
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where eg  represents the magnetic monopole of the electron. 
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Finally, we turn our attention to the rule of quantisation, considering the product P Pq g⋅ . Using the 

equations (55) and (56), we obtain 

( )P P o o o o
q g c c c

2
4 4 4π ε π µ π µ ε= ⋅ =h h h   (60) 

and eventually exploiting Maxwell’s relation (10), we can obtain 

( ) ( )P Pq g c h
c

2 2

2

1
4 4 4 2π π π= = = =h h h    (61) 

 

1.5 - Maximum force (Superforce) 

Consider the gravitational force between two Planck’s particles, placed at a distance equal to 

Planck’s length Pl : 
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In the same way, the electrostatic force between to Planck’s particles, placed at Planck’s distance 

Pl , would be 
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Again, in the same way, the magnetic force between two Planck’s magnetic charges, placed at a 

distance Pl , would be 
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As already said above, all Planck’s forces, calculated in the three forms of fundamental 

interactions at Planck’s era, are to be found in the condition of gravito-electro-magnetic 

unification, with the further condition that, at the minimum distance possible, i.e. at Planck’s 

length, they are equal to 
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In the scientific literature, this force is referred to as maximum force. 
 

1.6 – Calculation of h  

From the definitions of Planck’s units and from what has been obtained so far, we can further 

derive the following relations: 
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