
Optimising linear seating arrangements
with a first-principles genetic algorithm

Robert Martin

Abstract. We discuss the problem of finding an optimum linear seat-
ing arrangement for a small social network, i.e. approaching the problem
put forth in XKCD comic 173 [Munroe(2006)], as shown here:

We begin by improving the graphical notation of the network, and
then propose a method through which the total enjoyment for a particu-
lar seating arrangement can be quantified. We then discuss genetic pro-
gramming, and implement a first-principles genetic algorithm in python,
in order to find an optimal arrangement.

While the method did produce acceptable results, outputting an op-
timal arrangement for the XKCD network, it was noted that genetic
algorithms may not be the best way to find such an arrangement. The
results of this investigation may have tangible applications in the organ-
ising of social functions such as weddings.

Key words and phrases. social network, optimisation, genetic algorithm.

1



2 ROBERT MARTIN

Contents

1. Introduction 3

2. Developing the initial model 3

2.1. Examining a social network 4

2.2. An example application 5

3. Refining the model 6

3.1. The total enjoyment for a general arrangement 7

3.2. Application to an example arrangement 8

4. Programming 9

4.1. Overview of the program 9

4.2. Genetic algorithms 9

5. Implementation in python 10

5.1. Input 10

5.2. Generating the population 11

5.3. Evaluating a phenotype’s fitness 11

5.4. Survival of the fittest 12

5.5. Crossover 13

5.6. Mutation 14

5.7. Iteration 14

5.8. Application to the XKCD network 15

6. Conclusion 16

6.1. On the possibility of an analytical solution 17

6.2. Extensions 17

References 18

Appendix A. The complete program 19



OPTIMISING LINEAR SEATING ARRANGEMENTS 3

1. Introduction

Social groups are known to be remarkably complex affairs; one reason
being that there exist different types of relationship between individuals.
There are certain situations in which these difficulties become apparent,
for example, when deciding on seating arrangements. This has has been
comically summarised in one of Randall Munroe’s XKCD comics, shown in
Figure 1 [Munroe(2006)]:

Figure 1. XKCD 173, ‘Movie Seating’.

The precise problem here is that each individual would prefer to sit with
some people rather than others, and that the nonlinear graph has to be
‘compressed’ onto a linear arrangement. Notwithstanding these facts, we
will discuss the ways in which one can optimise linear seating arrangements.

2. Developing the initial model

The key issue in developing this model concerns the manner in which
‘maximum enjoyment’ will be measured – what does it mean for a seating
arrangement to be optimal? We will adopt a utilitarian approach, simply



4 ROBERT MARTIN

calculating the enjoyment per individual, then summing over all individu-
als for a particular arrangement. However, we must first decide on a way of
describing social networks, which will be amenable to our proposed analysis.

2.1. Examining a social network. Let each individual be denoted by
a circular node. We will consider four types of relationships: friends, one-
way ‘crushes’, romantic relationships, and acquaintances. These relationship
types will be differentiated pictorially by the style of the connecting line
between two individuals, as shown in Figure 2.

Figure 2. The four types of relationship between individuals

This notation was chosen, instead of the system adopted in Figure 1,
because it is more simple and elegant. For example, it allows a romantic
relationship to be thought of as a ‘mutual crush’. Though in real life this
may not be the case, it will serve for our purposes. An added benefit of this
notation is that we only have to consider the outgoing connections from a
particular individual. It is clear that there are only four types of outgoing
connections: a solid line, an arrowed line, a dotted line, and no line.

In fact, this feature is what will allow us to conduct a quantitative anal-
ysis. We assign each type of outgoing arrow a weighting, corresponding to
how much enjoyment an individual experiences when sitting with a person
of that relation. Here is one proposed weighting:

• Crush (arrowed line): weight = 2
• Friend (solid line): weight = 1
• Acquaintance (dotted line): weight = 0.5
• Stranger (no line): weight = 0



OPTIMISING LINEAR SEATING ARRANGEMENTS 5

Of course, the actual values are quite arbitrary – what matters is their
relative ordering. We assert that any individual’s seating preferences fol-
low the above list in descending order. That is to say, given free choice,
an individual would enjoy most to sit next to their crush, and least enjoy
sitting next to a stranger. Choosing precise weightings would require one to
quantify exactly how much more one would prefer to sit with a crush than
with a friend, which is no doubt a difficult task.

2.2. An example application. Having discussed how we might describe
a social network, we will consider how to measure the total enjoyment for a
seating arrangement. We will use the example given in the XKCD comic.
Figure 3 shows the graph, reproduced with our new notation. We have
labelled each individual with a letter of the alphabet.

Figure 3. The XKCD social network

If this group has to sit down in a line, they will form an arrangement
that will be denoted by a sequence of letters. For example, the arrangement
BFGHECDA represents the arrangement wherein F sits to the right of B,
G to the right of F , and so on. For each of the 8! possible arrangements, we
can calculate a total enjoyment, denoted by εtotal, which is done as follows.

Consider the arrangement ABCDEFGH, which is depicted properly in
Figure 4. Each individual has a maximum of two connections (we assume
that an individual can only be affected by the individuals immediately to
their left or right). Each of these connections can assume a value of 2, 1,
0.5, or 0 depending on the type of outgoing connection. For each individual,
we add up these values, then we sum over all the individuals in order to get
our value of εtotal.



6 ROBERT MARTIN

This is very easy to do with just one arrangement, but bear in mind that
we eventually want to find the optimal arrangement, for which we will need
a robust algorithm that can be easily applied to any possible arrangement.

Figure 4. Seating arrangement ABCDEFGH

3. Refining the model

As previously stated, we need to develop a method that allows us to effi-
ciently calculate εtotal for any arrangement.

Let the number of individuals in a network be denoted by n. Each in-
dividual will be arbitrarily labelled 1, 2, 3, . . . , n, rather than using letters
of the alphabet. In order to define an individual’s relationships with other
members of the group, we will associate a vector xi for the ith individual
in the group, where xi ∈ Rn. That is, each vector contains one element for
each member in the network (including itself). The mth entry of the vector
xi encodes the enjoyment produced for individual i by individual m. We
will denote the mth row of the vector xi as [i,m].

This notation may perhaps become clearer with an example. We will
return to the XKCD network, reproduced in Figure 5 with new notation.
For the vector representing the sixth individual’s relationships, we have:

x6 = 〈0, 0, 0, 2, 1, 0, 0.5, 0〉
The explanations for the entries are as follows:

• The first three entries (and the final one) are equal to zero, because
individual 6 has no relationship with individuals 1, 2, 3, and 8.
• The fourth entry is equal to two, because individual 6 has a crush

on individual 4.
• The fifth entry is equal to one, because individual 6 is friends with

individual 5.
• The seventh entry is equal to a half, because individual 6 is an ac-

quaintance of individual 7.

The reader may notice that we have neglected to mention the sixth entry.
x6 represents the sixth individual’s relationships, so [6, 6] represents the en-
joyment produced for the sixth individual by the sixth individual. This entry
is fairly useless, so we will set it to zero. That is to say, if i = m, [i,m] = 0.



OPTIMISING LINEAR SEATING ARRANGEMENTS 7

Figure 5. The XKCD social network, labelled with numbers

A vector can be written for all n individuals in our network; incidentally,
these vectors are all we need to define the network – the graphical represen-
tations are not required. We will now proceed to develop an algorithm that
calculates the total enjoyment for a general arrangement.

3.1. The total enjoyment for a general arrangement. We will denote
a general linear arrangement of individuals as

u1, u2, u3, . . . , un.

In order to calculate εtotal, we need to calculate the enjoyment for each u
term, then sum these up. To clarify, each u term represents one of the indi-
viduals in our network (individuals which are labelled 1, 2, 3, . . . , n).

Because of our simplification that an individual is only affected by the
people immediately adjacent to them, it actually makes sense to group the
arrangement into pairs. So we will think of the arrangement as:

(u1, u2), (u2, u3), (u3, u4), . . . , (un−1, un),

where each pair of parentheses encloses the relationship between two indi-
viduals. It is at this stage that we need to recall the previously-defined
vector notation.

The enjoyment produced in individual u1 by individual u2 can be found by
looking in the u2th entry of the vector xu1 . The subscript-within-subscript
notation is quite confusing, so it is fortunate that we have previously defined
an alternative notation, at the end of Section 3. Thus, the u2th entry of the
vector xu1 is simply denoted by [u1, u2].



8 ROBERT MARTIN

However, note that in the pair (u1, u2), individual u1 also produces some
enjoyment in u2. Thus the total enjoyment produced within the pair (u1, u2)
is equal to:

[u1, u2] + [u2, u1] (1)

Now all we need to do is sum over all the n− 1 pairs. Thus we see that

εtotal =

n−1∑
r=1

([ur, ur+1] + [ur+1, ur]) , (2)

where r is a dummy variable.

3.2. Application to an example arrangement. We will examine the
XKCD network in Figure 5. For the sake of variety, we will not use the ar-
rangement 1, 2, 3, 4, 5, 6, 7, 8. Generating a random sequence using an online
tool [Random.org(2016)], we will use the sequence 3, 2, 8, 5, 4, 6, 1, 7.

To begin with, we need to know the vectors xi, which need to be hard-
coded. In Section 3, we showed the full form of x6. We repeat the same
process to find xi, 1 ≤ i ≤ 8 | i ∈ N (because n = 8).

x1 = 〈0, 2, 0, 0, 0, 0, 0, 0〉
x2 = 〈2, 0, 1, 0, 0, 0, 0, 1〉
x3 = 〈0, 1, 0, 1, 0, 0, 0, 0.5〉
x4 = 〈0, 0, 1, 0, 0.5, 2, 0, 0〉
x5 = 〈0, 0, 0, 0.5, 0, 1, 0, 0〉
x6 = 〈0, 0, 0, 2, 1, 0, 0.5, 0〉
x7 = 〈0, 0, 0, 0, 0, 0.5, 0, 2〉
x8 = 〈0, 1, 0.5, 0, 0, 0, 1, 0〉

In order to calculate εtotal, we just need to apply Formula 2. Doing so,

εtotal =

7∑
r=1

([ur, ur+1] + [ur+1, ur])

= [3, 2] + [2, 3] + [2, 8] + [8, 2] + . . .+ [1, 7] + [7, 1]

= 1 + 1 + 1 + 1 + 0 + 0 + 0.5 + 0.5 + 2 + 2 + 0 + 0 + 0 + 0

= 9

It is worth commenting on the fact that all of the above values come
in identical pairs (that is, [ur, ur+1] = [ur+1, ur]). This is not true gener-
ally. However, for this particular network, there is only one asymmetrical
relationship, the one-way crush between individuals 7 and 8 – and in our
particular random arrangement, 7 is never next to 8.



OPTIMISING LINEAR SEATING ARRANGEMENTS 9

We could have found εtotal without our vector notation, and simply with
arithmetic by looking at the linkages on the graph (as described in Section
2.2). However, the process that we have elucidated in this section does not
require actually looking at the networks, meaning that we can easily employ
a computer program to do the calculations for us.

4. Programming

Equation 2 allows us to effectively calculate εtotal for a particular arrange-
ment. We will now discuss the process of writing a computer program which
finds the optimal arrangement.

4.1. Overview of the program. Here is a summary of what we will need
our program to do:

(1) Accept an input of n vectors, which represents the social network.
(2) Somehow, find the arrangement which has the highest value of εtotal.
(3) Output the optimal arrangement, with it’s value of εtotal.

Steps 1 and 3 just require a knowledge of the programming language’s
syntax. However, the actual optimisation which occurs in Step 2 is not
so simple. A brute force search (i.e, calculating εtotal for every possible
arrangement and returning the maximum), is not feasible due to the the
computational complexity, which is Θ(n!) [Weisstein(2016)]. We therefore
need to implement an optimisation algorithm. The majority of these rely
on calculus, which in turn requires a continuous independent variable. Our
independent variable is the arrangement, which is neither continuous nor
ordered, meaning that we cannot use many of these algorithms. How, then,
do we approach this problem?

4.2. Genetic algorithms. A genetic algorithm is a “search heuristic that
mimics the process of natural selection” [Mitchell(1996)]. Loosely speaking,
it is a ‘shortcut’ method of optimisation based on Darwinian natural selec-
tion. The relevant features of natural selection are stated here:

(1) There is a population of phenotypes, that is, individual members
with different genetics and hence different characteristics.

(2) This variety means that certain individuals are better suited to their
environment.

(3) The ‘fitter’ individuals survive and reproduce, passing on their ge-
netic information to the next generation.

(4) During the process of reproduction, random mutations may occur,
resulting in slight changes to the child phenotype.

(5) The process repeats, and over time, the species gets increasingly
better adapted to the environment.



10 ROBERT MARTIN

The functioning of a genetic algorithm corresponds very well to the above
description of natural selection. For our particular problem, the genetic al-
gorithm needs to find the optimal arrangement. An overview of the possible
functioning of a genetic algorithm for our purposes is as follows:

(1) There is a population of different possible arrangements.
(2) Some of these arrangements have a higher εtotal.
(3) These phenotypes survive, and some of the survivors reproduce, that

is, their arrangements are ‘combined’. In computer science, this step
is known as the crossover [Whitley(1994)].

(4) Random mutations occur, i.e. some arrangements may be changed
slightly.

(5) The process repeats, and over time, the mean εtotal of the population
increases. Eventually, it may reach the true optimum.

We will now attempt to implement the ideas presented in this section in
python. Python was chosen for its simple syntax and relative ease of use.

5. Implementation in python

As discussed in Section 4.1, we can split the program into three sections:
input, optimisation, and output. In Section 4.2, we further subdivided opti-
misation into five steps. We will explain the key concepts behind the code,
and later apply it to the XKCD network.

While there exist python packages that implement genetic programming,
we will code our basic genetic algorithm from first principles.

5.1. Input. Though we are not going to fully calculate the optimal ar-
rangement for the XKCD network just yet, we will use it to demonstrate
how we will input data into our program. Of the many possible data struc-
tures, a python list will be used, for its simplicity. However, we will need
to use a ‘list of a list’, that is, a list wherein each entry is also a list. For
clarity, we will refer to the outer list as a ‘superlist’. Our network is then
represented as:

1 network = [[0, 2, 0, 0, 0, 0, 0, 0],

2 [2, 0, 1, 0, 0, 0, 0, 1],

3 [0, 1, 0, 1, 0, 0, 0, 0.5],

4 [0, 0, 1, 0, 0.5, 2, 0, 0],

5 [0, 0, 0, 0.5, 0, 1, 0, 0],

6 [0, 0, 0, 2, 1, 0, 0.5, 0],

7 [0, 0, 0, 0, 0, 0.5, 0, 2],

8 [0, 1, 0.5, 0, 0, 0, 1, 0]

The parallels between this format and that in Section 3.2 are evident.



OPTIMISING LINEAR SEATING ARRANGEMENTS 11

It may be worth noting now that there may be an added confusion due to
the way python indexes lists. For example, in order to obtain the third entry
of the fifth vector, one would be forgiven for thinking that network[5][3]

would return the needed result. This code would return the second entry of
the fourth vector. The reason for this that python lists/arrays begin their
indexing with zero, meaning that to return the first entry of the list, you
would need to use yourlist[0].

5.2. Generating the population. In order to generate a population, we
need to know the network size (the number of individuals) and the desired
population size.

1 import random

2

3 population = []

4 # Empty superlist, which will contain the arrangements

5 # Superlist because each arrangement is itself a list

6

7 def generate_population(network_size, population_size):

8 # input the network size and the population size

9

10 test_phenotype = []

11 for i in range(1, network_size + 1):

12 test_phenotype.append(i)

13 # The above code produces the simplest arrangement,

14 # which is just the integers in order.

15 # e.g for the XKCD network,

16 # test_phenotype = [1,2,3,4,5,6,7,8].

17

18 for i in range(1, population_size + 1):

19 random.shuffle(test_phenotype)

20 population.append(list(test_phenotype))

Lines 18-20 are the important part of this process. Within the for-loop,
we shuffle the test phenotype, then append the result to the population
superlist. The result is that the superlist population contains a list of
random possible phenotypes.

5.3. Evaluating a phenotype’s fitness. We now need to write a function
which will accept an input of a particular phenotype (that is, a list repre-
senting a possible arrangement), and then return εtotal, i.e. implementing
Formula 2. We do this by initially setting εtotal = 0, then cumulatively
adding the contributions from each pair.



12 ROBERT MARTIN

1 def evaluate_etotal(arrangement):

2 etotal = 0

3 # Calculating
∑n−1

r=1 [ur, ur+1] + [ur+1, ur]
4 # using a for-loop.

5

6 for r in range(0, network_size - 1):

7 u_r = arrangement[r] - 1

8 u_r1 = arrangement[r + 1] - 1

9 # u_r1 is meant to represent ur+1

10 # When defining u_r and u_r1, we subtracted 1,

11 # because indices in python start at zero.

12

13 epair = network[u_r][u_r1] + network[u_r1][u_r]

14 # network[u_r][u_r1] is the same as [ur, ur+1]
15 # epair represents the contribution by the pair

16

17 etotal += epair

18 # We add the contribution from the pair

19 # to the running total.

20

21 return(etotal)

In Section 3.2, we worked out εtotal with Formula 2. Let us instead use
the function that we have just defined, by running:

evaluate_etotal([3, 2, 8, 5, 4, 6, 1, 7])

This returns a value of 9.0, which concurs with our previous calculation.

5.4. Survival of the fittest. We have defined a function to measure the
fitness of an arrangement, which should be applied to all of the arrange-
ments in the population. We then need to find a way to remove the ‘weak’
individuals.

1 import statistics

2

3 population_fitness = []

4

5 for phenotype in population:

6 phenotype_fitness = evaluate_etotal(phenotype)

7 population_fitness.append(phenotype_fitness)

8 # population_fitness is a sibling list of population.

9 # Each element in population_fitness is the etotal

10 # of the corresponding arrangement in the population list.

11

12



OPTIMISING LINEAR SEATING ARRANGEMENTS 13

13 elements_to_remove = []

14 median = statistics.median(population_fitness)

15

16 for i in range(0, len(population)):

17 if population_fitness[i] < median:

18 elements_to_remove.append(i)

19 # If a phenotype’s etotal is lower than the median,

20 # we schedule it for execution.

21

22 survivors = [i for j, i in enumerate(population)

23 if j not in elements_to_remove]

24 # A survivor list is created, made of ‘fitter’ phenotypes

Clearly, the survivor list is smaller than the population list, because some
phenotypes have died. Thus, in our next section, we will devise a way for
the survivors to reproduce such that the population size is maintained.

5.5. Crossover. The essential characteristic of reproduction, when it comes
to genetic algorithms, is that the offspring receives features from both par-
ents (who are themselves ‘fit’) – there is a crossover of genetic material.

With regard to our problem wherein the phenotypes correspond to differ-
ent arrangements, a näıve method of crossover could be to take the first half
of one arrangement and combine it with the second half of another arrange-
ment. This approach was initially adopted by the author, who soon realised
his mistake: such a method allows for duplicates within the arrangement.
Consider two potential parent phenotypes, [1,2,3,4] and [3,2,4,1]. The
offspring phenotype would be [1,2,4,1]. This is clearly not an acceptable
phenotype – how can someone be seated on both ends of a row?

We thus require a more ingenious way of combining two arrangements.
However, it was beyond the author to devise such a method. Thus, we will
have to forsake one of the main aspects of crossover: that the offspring re-
ceive genetic material from two parents. Instead, our offspring will be made
by modifying a parent.

1 import random

2

3 next_generation = survivors

4 # We define the new generation, which begins with the survivors.

5

6 for i in range(0, number_removed):

7 # This for-loop exactly maintains the population size.

8 parent = random.choice(survivors)

9 # Pick a parent from the survivors



14 ROBERT MARTIN

10 estranged_father = parent[int(network_size/2):network_size]

11 random.shuffle(estranged_father)

12 child = parent[0:int(network_size/2)] + estranged_father

13 # The above code takes the first half of a parent,

14 # then shuffles the rest to make a child

15

16 next_generation.append(child)

17 # The child is welcomed to the new generation.

The drawback of this method is reasonably obvious. We are not properly
‘crossing over’ genetic material; in fact, what we have done here is merely a
glorified form of mutation. It will be left to the reader to invent any more
suitable means of reproducing two arrangements without forming duplicates.

5.6. Mutation. Mutations are random changes to the genetic material.
With regard to seating arrangements, we will consider a mutation to be the
swapping of any two members within the arrangement.

A required parameter is the mutation rate, which encodes how often mu-
tations should occur. A value of 0.05 (which is what we shall use) means
that, on average, five in every 100 phenotypes will contain a swap.

1 mutation_rate = 0.05

2

3 for i in range(0, population_size):

4 if random.random() < mutation_rate:

5 # random.random() returns a float between 0 and 1,

6 # so this if-statement results in a probability

7 # equal to the mutation rate

8

9 to_swap = random.sample(range(network_size), 2)

10 a, b = to_swap[0], to_swap[1]

11 population[i][b], population[i][a] =

12 population[i][a], population[i][b]

13 # Picks two elements at random from an arrangement

14 # and swaps them.

5.7. Iteration. The iteration step is the most simple. We simply repeat
the process of survival, crossover, and mutation over a number of genera-
tions. This can be quite easily done with a for-loop in python. However, a
comment must be made regarding the code.

In Sections 5.2 and 5.3, we wrote python functions, which need to be
called when running the program. However, to aid understanding, we did



OPTIMISING LINEAR SEATING ARRANGEMENTS 15

not do this for the remaining blocks of code. For example, in Section 5.4,
no function was defined. The final program has been written slightly dif-
ferently, though the content is practically the same. An example of the
difference is that survival and crossover have been merged into one function
named survive_and_reproduce(). The full code has been relegated to Ap-
pendix A.

5.8. Application to the XKCD network. In Section 5.1, we discussed
how the network needs to be entered into the program (we even used the
data for the XKCD network). All that remains to be done is choosing suit-
able values for the parameters. In the past, population sizes of around 100
have been chosen [Sarmady(2007)], but a more recent analysis has suggested
that a population size of 16 is optimal [Haupt(2000)]. This is the value we
shall use.

Running the program a few times with a population size of 16 and a
generation number of 100 did not yield a consistent optimal arrangement.
Final values of εtotal ranged between 15 and 17. Figure 6 shows a graph of
one possible convergence, which was accompanied by the following output:

The optimal arrangement is: [5, 6, 4, 3, 7, 1, 2, 8],

with an etotal of: 17.

Figure 6. population size = 16, generation number = 100

We can improve this by increasing the generation number, which prob-
abilistically ensures that the optimum will be reached. It is an interesting
exercise to make changes to the parameters and observe the results. From a



16 ROBERT MARTIN

cursory glance, decreasing the population size tends to increase the volatil-
ity of the εtotal values. Increasing the population size seems to cause the
values to converge faster. This can be seen in Figure 7, which converges on
εtotal = 17 at around the 30th generation.

Figure 7. population size = 100, generation number = 100

6. Conclusion

It is of the author’s belief that the methods outlined in this investigation
are sufficiently robust as to deal with larger networks. One of the reasons
for this is that the parameters can be adjusted as required, so for larger
networks, perhaps a larger population size and a greater generation number
would be required.

This said, genetic algorithms may not be the best tool for finding the op-
timal arrangement. In fact, it is not certain that the method implemented
here may even be considered a true genetic algorithm, because of the prob-
lems with implementing the crossover (see Section 5.5).

Despite this, we saw that acceptable results were produced, at least for
the XKCD network. It would be interesting, if unscientific, to make further
observations concerning the optimal solution. For example, we see that in
the optimal arrangement, the mutual crushes are grouped together as cou-
ples – which makes intuitive sense. Facts like these could, in future, be used
to improve the optimisation method.



OPTIMISING LINEAR SEATING ARRANGEMENTS 17

6.1. On the possibility of an analytical solution. It is not inconceiv-
able that, for the problem of optimising linear seating arrangements, there
exists an analytical solution, such that by incorporating the network vectors
x1, x2, . . . xn into a suitable deterministic formula, the result would be the
arrangement maximising the εtotal.

The author suspects that this problem would fall under the realm of graph
theory, as indeed the social networks presented such as in Figure 3 are,
mathematically speaking, termed weighted graphs [Peter Fletcher(1991)].
This may well be a cousin of the Travelling Salesman Problem, as we could
interpret our investigation as trying to find the optimal route through the
social network.

6.2. Extensions. It is true that the problem considered by this investi-
gation was rather narrow: there are only a few situations wherein a social
group has to sit in a line. That being said, one possible extension could be
to deal with circular arrangements, which are far more common. This could
have a tangible application when organising seating plans for meal times
or large functions such as weddings. Obviously the problem would not be
identical, but the key elements are the same. The total enjoyment would be
a function of the arrangement, so we would just have to optimise this.

Another potential criticism is that we classified all forms of social interac-
tions into four types (five including strangers), as seen in Figure 2. This is,
in fact, one of the easier things to extend. We can have as many friendship
types as required, or even make a continuous spectrum of it. All that would
change is the composition of the network vectors. Instead of saying that a
friend causes an enjoyment of 1, you could be more specific and assign a
value of 1.2 to friend A, 0.9 to friend B, etc. This would only affect the
input of the network into the program; the program itself would run just
as before. Again, this does not ameliorate the issue of quantifying differ-
ent social relationships. But let this be something for sociologists to discuss.

Author’s address

martin.robertandrew@gmail.com

mailto:martin.robertandrew@gmail.com


18 ROBERT MARTIN

References

[Haupt(2000)] Haupt, R. L. (2000). Optimum population size and mutation rate for a

simple real genetic algorithm that optimizes array factors. Antennas and Propagation

Society International Symposium, 2000. IEEE , 2 , 1034–1037 vol.2.

[Mitchell(1996)] Mitchell, M. (1996). An Introduction to Genetic Algorithms.

9780585030944. Cambridge, MA: MIT Press.

[Munroe(2006)] Munroe, R. (2006). Movie seating. https://xkcd.com/173/.

[Peter Fletcher(1991)] Peter Fletcher, C. W. P., Hughes Hoyle (1991). Foundations of

Discrete Mathematics. 0-53492-373-9. PWS-KENT Pub. Co., international student ed

ed.

[Random.org(2016)] Random.org (2016). Random sequence. https://www.random.org/

sequences/.

[Sarmady(2007)] Sarmady, S. (2007). An investigation on genetic algorithm parameters.

[Weisstein(2016)] Weisstein, E. W. (2016). Big-theta notation. MathWorld – A Wolfram

Web Resource.

URL http://mathworld.wolfram.com/Big-ThetaNotation.html

[Whitley(1994)] Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Comput-

ing , 4 (2), 65–85.

https://xkcd.com/173/
https://www.random.org/sequences/
https://www.random.org/sequences/
http://mathworld.wolfram.com/Big-ThetaNotation.html


OPTIMISING LINEAR SEATING ARRANGEMENTS 19

Appendix A. The complete program

1 import random

2 import statistics

3 import matplotlib.pyplot as plt

4

5 # Required parameters

6 network_size = 20

7 population_size = 100

8 gen_number = 1000 # the number of iterations

9 network = [] # Input formatted as in Section 5.1

10

11 population = []

12 progress_list = []

13 # Used to track the iterations

14 hall_of_fame = []

15 #contains the best arrangements from each generation

16

17

18 def generate_population(network_size, population_size):

19 test_phenotype = []

20

21 for i in range(1, network_size + 1):

22 test_phenotype.append(i)

23 for i in range(1, population_size + 1):

24 random.shuffle(test_phenotype)

25 population.append(list(test_phenotype))

26

27

28 def evaluate_etotal(arrangement):

29 etotal = 0

30

31 for r in range(0, network_size - 1):

32 u_r = arrangement[r] - 1

33 u_r1 = arrangement[r + 1] - 1

34 epair = network[u_r][u_r1] + network[u_r1][u_r]

35 etotal += epair

36

37 return (etotal)

38

39

40 def survive_and_reproduce(end=False):

41 population_fitness = []

42

43 for phenotype in population:



20 ROBERT MARTIN

44 phenotype_fitness = evaluate_etotal(phenotype)

45 population_fitness.append(phenotype_fitness)

46

47 progress_list.append(max(population_fitness))

48 max_location = population_fitness.index(

49 max(population_fitness))

50 hall_of_fame.append(

51 population[max_location])

52 # Add the generation’s champion to the progress_list

53

54 if end:

55 champion_location = progress_list.index(

56 max(progress_list))

57

58 print("The optimal arrangement is: ",

59 hall_of_fame[champion_location],

60 ", with an etotal of: ",

61 max(progress_list))

62 # We print the overall best arrangement, and its etotal.

63

64 median = statistics.median(population_fitness)

65

66 elements_to_remove = []

67

68 for i in range(0, len(population)):

69 if population_fitness[i] < median:

70 elements_to_remove.append(i)

71

72 survivors = [i for j, i in enumerate(population)

73 if j not in elements_to_remove]

74 number_removed = len(elements_to_remove)

75

76 next_generation = survivors

77

78 for i in range(0, number_removed):

79 parent = random.choice(survivors)

80 estranged_father = parent[

81 int(network_size / 2):network_size]

82 random.shuffle(estranged_father)

83 child = parent[0:int(network_size / 2)] \

84 + estranged_father

85 next_generation.append(child)

86

87 return next_generation



OPTIMISING LINEAR SEATING ARRANGEMENTS 21

88 def mutate(generation):

89 mutation_rate = 0.05

90

91 for i in range(0, len(generation)):

92 if random.random() < mutation_rate:

93 to_swap = random.sample(range(network_size), 2)

94 a, b = to_swap[0], to_swap[1]

95 generation[i][b], generation[i][a] = \

96 generation[i][a], generation[i][b]

97

98

99 generate_population(network_size, population_size)

100

101 for i in range(0, gen_number + 1):

102 if i != gen_number:

103 next_generation = survive_and_reproduce()

104 mutate(next_generation)

105 population = next_generation

106 else:

107 survive_and_reproduce(True)

108 # On the last iteration, we print the overall winner.

109

110

111 # Optional code to graph the change in etotal

112 # as a function of generation number

113 plt.plot(progress_list)

114 plt.title(’Evolution of etotal’)

115 plt.xlabel(’Generation number’)

116 plt.ylabel(r’$\epsilon$ total’)

117 plt.axis([0, gen_number, 0, 1.3*max(progress_list)])

118 plt.savefig(’etotal_graph.png’)

Author’s Address
martin.robertandrew@gmail.com


	1. Introduction
	2. Developing the initial model
	2.1. Examining a social network
	2.2. An example application

	3. Refining the model
	3.1. The total enjoyment for a general arrangement
	3.2. Application to an example arrangement

	4. Programming
	4.1. Overview of the program
	4.2. Genetic algorithms

	5. Implementation in python
	5.1. Input
	5.2. Generating the population
	5.3. Evaluating a phenotype's fitness
	5.4. Survival of the fittest
	5.5. Crossover
	5.6. Mutation
	5.7. Iteration
	5.8. Application to the XKCD network

	6. Conclusion
	6.1. On the possibility of an analytical solution
	6.2. Extensions

	References
	Appendix A. The complete program

