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Abstract. Periodic (5.9 year) oscillations  are observed in Newton's gravitational  constant G 
which coincide with length of day (LOD) data obtained from the International Earth Rotation 
and Reference System (IERS). It is shown that the oscillations in G are dualistic with Gauss' 
gravitational constant k due to variations in the Earth's mean motion during the 5.9 year period. 
Falsifiable predictions are submitted to test the G/k duality hypothesis.



Introduction

     Measurements [1, 2] of G oscillate between 6.672 × 10−11 and 6.675 × 10−11 N·(m/kg)2  with a 
periodicity of 5.9 years (a difference of 10-4 %). Scientists studying this recently discovered 
(2015) anomaly have found that the variations can be predicted from length of day (LOD) data 
obtained from IERS [3]. Although the G/LOD correlation is intriguing, it cannot explain the full 
10-4 % variations observed in G.

Fig. 1: The solid curve is a CODATA set of  G measurements and periodic oscillations in length of day (LOD) 
measurements are represented by the dashed curve. The green dot, with its one−sigma error bar, is the mean value 
between the G/LOD measurements. The LENS−13 outlier conducted in 2013 by the MAGIA collaboration was the 

only measurement which utilized quantum interferometry, while the other 12 measurements were determined 
macroscopically.    

     A modern version of Kepler's 3rd law of planetary motion is

                                                                                                                      (1)

where G is the gravitational constant, M is the mass of a primary, m is the mass of a secondary, 
a is the semi-major axis of the orbit, and T is a secondary's sidereal period. Since the mean 
motion n of an orbit is

                                                                                                                                                     (2)



Eq. 1 can be rearranged and condensed into

                                                                                                                                                     (3)
                           

where v is the secondary's velocity. Note, however, that this is the same formula for a circular 
orbit, in which case the semi−major axis a is substituted with the radius r.

     The Gaussian gravitational constant k is  

                                                                                                                                                     (4)

Rearranging Eq. 4 and squaring it, 

n2  = k2(M + m).                                                                                                                           (5) 

Substituting n2 in Eq. 3 with the definition above (where a is in astronomical units),

G = k2a3.                                                                                                                                       (6)

The Duality Between Newton's Constant and Gauss' Constant

     From Kepler's 2nd law we know that a secondary's areal velocity is constant, 

                                                                                                                                                     (7)

The mean motion n in Eq. 3 assumes a constant speed in a circular orbit, which leads to a 
contradiction between Kepler's 2nd law and the modern version of his 3rd law in Eq. 1. 

Fig. 2: The mean motion cirumference is represented by the dashed circle. During a secondary's periapsis transit 
(A, B) it takes less time for the semi−major axis (white) to sweep out a constant sector relative to its areal velocity. 

During its apoapsis transit (C, D) the opposite is true.



     After taking into account the Earth's eccentricity, obliquity, and hysteresis due to its inertia 
(graphed in the conclusion), it is hypothesized that G will vary according to Kepler's 2nd law by

                                                                                                                                                     (8)

where h is the Earth's specific relative angular momentum. 

     From Einstein's general theory of relativity, ΔG in Eq. 8 can be interpreted as a 
frame−dragging (gravitomagnetic) effect. The gravitomagnetic field Bg of a rotating body is, 

                                                                                                                                                     (9)

where c is the velocity of light, LS is the body's spin angular momentum, and rE is its equitorial 
radius. Each of these quantities would remain constant in a torque free orbit, but since we know 
G varies periodically [2], Bg, L, and rE must also vary. The constant of proportionality between 
these quantities is 2c2. ΔG can therefore be determined relative to a secondary's spin by 

                                                                                                                                                   (10)

where τS is the periodic torque on the Earth's spin (τ = ΔL / t) due to gravitomagnetic induction. 
We know from the law of conservation of angular momentum that any change in a secondary's 
spin must be accompanied by a change in its distance from the center of mass (spin−orbit 
coupling), hence the definition of ΔG in Eq. 8. Combining Eq. 8 with Eq. 10, the total change in 
G can be determined by

                                                                                                                                                   (11)

     At this point, it is important to note the difference between the Newtonian constant G and the 
Gaussian constant k since G and k2 are currently assumed to be equivalent. From Eq. 9 we can 
see that Bg is directly proportional to LS. The magnitude of LS for a  ball−shaped body is 

LS = IωS,                                                                                                                                     (12)

where I is the moment of inertia of the body and ωS is the angular velocity of its spin, 

                                                                                                                                                   (13)

where TS is the spin period. Notice that this definition of angular velocity is equivalent to the 
mean motion n given in Eq. 2 when T is substituted with TS. From Eq. 4 and Eq. 6 we can see 



that the Gaussian costant k is directly proportional to n while being inversely proportional to a3. 
On the other hand, the Newtonian constant G is directly proportional to a3 while being inversely 
proportional to the square of n. The Newtonian constant is spatially dependent and the Gaussian 
constant is temporally dependent.

Conclusion

      It is hypothesized that k will change inversely with the square root of G when k2 and G are 
measured with the same dimensions. This G/k duality hypothesis should be relatively simple to 
test experimentally by graphing ΔG and Δk2 simultaneously and superimposing the outcome.
It is proposed that the outlier measurement of ΔG conducted with quantum interferometry by 
LENS−14 in Fig. 1 is accurate, even though it is inverted relative to the Earth's rotation rate. 
The macroscopic methods are synchronous with the Earth's rotation rate, indicating they are 
better for k2 measurements. Spin−orbit coupling could explain the G/LOD synchronicity: 

Fig. 3: Positive time values indicate an accurate clock ticking faster than a sundial and negative values indicate the 
opposite (in minutes throughout a year). Taking into account the Earth's obliquity (mauve dashed curve), 

eccentricity (blue dash−dot curve), and hysteresis (orange curve), projected variations in k2 (red curve) are 
hypothesized to be greatest on the dates marked by the green dots. G > k2 is predicted around 12 FEB and 
G < k2  around 3 NOV (assuming the measurements are made simultaneously and proximal to the equator).
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