On the wave mechanics of galaxies

Brent Jarvis JarvisB@my.erau.edu

Abstract

The consistency in stellar orbital speeds, independent upon their distance from galactic nuclei, is shown to be due to an increase in their angular frequencies.

1. Introduction

The standard gravitational parameter μ for a circular orbit can be determined by

[1]
$$\mu = G(M + m) = rv^2 = r^3n^2$$
,

where G is the gravitational constant, M is the mass of a primary, m is the mass of a secondary, r is the radius of the orbit, v is the secondary's velocity, and n is its mean motion,

$$[2] n = \frac{2\pi}{T}$$

where T is a secondary's period. Setting M to M_{\odot} (one solar mass) and r to an astronomical unit,

$$[3] G = \frac{n^2}{(M_{\theta} + m)}$$

What does this tell us about the gravitational constant? When $M_{\odot} >> m$, as in the case with the bodies in our solar system, the gravitational constant $G \approx n^2$. Since the Gaussian gravitational constant is

$$[4] \mathbf{k} = \frac{2\pi}{\mathbf{T}} \approx n \approx \sqrt{\mathbf{G}}$$

(in radians per day), $G \approx n^2$ is valid under these conditions. Setting G to unity results in T = 2π , and

when T is set to a sidereal year, $k \approx 2\pi$. G and k are evidently linked to time (being dependent upon the sum of the masses in a 2–body system).

2. The Sun's angular frequency

According to geological evidence^[1], the Sun oscillates perpendicular to the galactic plane in 33 ± 1 Myr cycles during its estimated 225–250 Myr revolution period (the duration of its nodal (draconic) period is significantly less than its revolution (sidereal) period). The Sun's angular frequency ω is therefore

$$[5] \omega \approx \frac{2\pi}{66\pm 2 \text{ Myr}},$$

 $(33\pm1 \text{ Myr} \text{ is half of the Sun's nodal period})$. Revisiting equation [3], T = 2π when the gravitational constant G is set to unity, i.e. T = 1 cycle. A wave mechanical version of equation [1] can be given as,

$$[6] \mathbf{G'} \sum_{i=1}^{n} (\gamma \mathbf{M}_{0i} + \gamma \mathbf{m}_{0}) = \overrightarrow{\mathbf{r}} (\mathbf{t}_{1}, \mathbf{t}_{2})^{3},$$

where t_1 and t_2 are temporal dimensions relative to a star's revolution and nodal periods (discussed further in the conclusion), the Lorentz factor γ indicates the relativistic masses of the bodies (the *n* in the summation indicates 1, 2, 3... *n* and not mean motion), and

$$[7] G' = \frac{(Nn)^2}{\omega^2} = 1$$

where N is a star's wave quantity (the ratio between its revolution and nodal periods respectively), *n* is its mean motion, and ω is its angular frequency. According to the estimates given previously, the Sun's wave quantity N \approx 3.7. Note, however, that the nodal period was chosen arbitrarily for galactic systems since it can be deduced from physical evidence^[1].

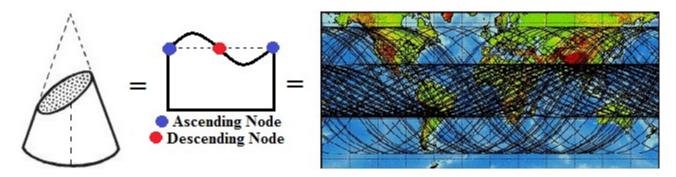


FIG. 1: An elliptical conic section is a wave with N \approx 1:1 relative to a 2D plane of reference.

3. Conclusion

It is hypothesized that stellar positions will be observed to change helically over time by

[8]
$$\vec{r}(t_1, t_2) = (r_1 + r_2 \cos(t_2)) \cos(t_1)x + (r_1 + r_2 \cos(t_2)) \sin(t_1)y + r_2 \sin(t_2)z$$
,

where r_1 is a star's revolution radius, r_2 is its nodal radius (amplitude), $t_1 \in (0, T_R)$, and $t_2 \in (0, T_N)$, where T_R and T_N are the revolution and nodal periods. Notice that the spacetime dimensions in equations [8] match the spacetime dimensions of the gravitational constant (three spatial and two temporal), whereas Kepler's parametric equations are three dimensional (two spatial and one temporal). The temporal dimension $t_2 = it_1$ (i.e. it is orthogonal to t_1) and $(0 \le t_2 \le T_R)$ in a bound orbit. Since stars furthest from a galaxy's nucleus have higher angular frequencies according to equation [6], their relativistic mass should also be greater, which may shed light on dark matter.

Dedication

This paper is dedicated to Cynthia Cashman Lett, without whom it would not have been possible.

Reference

[1] M.R. Rampino and R.B. Stothers (1984). "*Terrestrial mass extinctions, cometary impacts, and the Sun's motion perpendicular to the galactic plane,*" Nature 308, 709 – 712.