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1 Introduction 

The classical methods are not always successful, be-

cause the uncertainties appearing in these domains may be 

of various types. While a wide range of theories, such as 

probability theory, fuzzy set theory, intuitionistic fuzzy set 

theory, rough set theory, vague set theory, and interval 

mathematics, are well-known mathematical approaches to 

modelling uncertainty, each of this theories has its inherent 

difficulties, as pointed out by Molodtsov [21]. The possible 

reason for their inconveniences is the inadequacy of the pa-

rameterization tool. Consequently, Molodtsov initiated the 

soft set theory as a completely new approach for modelling 

vagueness and uncertainty, free from the ponderosity af-

fecting existing methods [20]. This theory has been useful 

in many different fields, such as decision making [7, 8, 10, 

13, 15, 23] or data analysis [32]. 

Up to date, the research on soft sets has been very ac-

tive and many important results have been achieved in the-

ory. The concept and basic properties of soft set theory 

were presented in [14, 21]. Practically, Maji et al. intro-

duced several algebraic operations in soft set theory and 

published a detailed theoretical study. Firstly, Maji et al. 

[15] applied soft sets to solve the decision making problem 

with the help of rough approach. Arockiarani et al. [4] ex-

tended the (classical) soft sets to single valued neutrosoph-

ic (fuzzy neutrosophic) soft sets. Zadeh introduced the de-

gree of membership/truth (t), in 1965, and defined the 

fuzzy set. Atanassov introduced the degree of nonmember-

ship/falsehood (f), in 1986, and defined the intuitionistic 

fuzzy set. Smarandache introduced the degree of indeter-

minacy / neutrality (i) as an independent component, in 

1995 (published in 1998), and he defined the neutrosophic 

set on three independent components (t,i,f) = (truth, inde-

terminacy, falsehood). He coined/invented the words “neu-

trosophy”, and its derivative - “neutrosophic”, whose ety-

mology is: Neutrosophy (from Latin "neuter" - neutral, 
Greek "sophia" – skill / wisdom), as a branch of philoso-

phy, studying the origin, nature, and scope of neutralities, 

as well as their interactions with different ideational spec-

tra. Neutrosophy considers a proposition, theory, event, 

concept, or entity "A" in relation to its opposite, "Anti-A", 

and that which is not "A", "Non-A", and that which is nei-

ther "A", nor "Anti-A", denoted by "Neut-A". Neutrosophy 

is thus a generalization of dialectics. Neutrosophy is the 

basis of neutrosophic logic, neutrosophic set, neutrosophic 

set, neutrosophic probability and neutrosophic statistics. In 

2013, Smarandache refined the single valued neutrosophic 

set to n components: t1, t2, ...; i1, i2, ...; f1, f2, ... . 

In this paper, we present an adjustable approach and 

mean potentiality approach to single valued neutrosophic 

soft sets by using single valued neutrosophic level soft sets, 

and give some illustrative examples. The properties of lev-

el soft sets are as well discussed. Also, we introduce the 

weighted single valued neutrosophic soft sets and investi-

gate its application in decision making. 

2 Preliminaries 

Definition 2.1 [11] 

Let X be a space of points (objects), with a generic el-

ement in X denoted by x. A single valued neutrosophic set 

(SVNS) A in X is characterized by truth-membership func-

tion TA, indeterminacy-membership function IA and falsity-

membership function FA.  

For each point x in X, TA(x), IA(x), FA(x) ∈ [0,1]. When 

X is continuous, a SVNS A can be written as A, 

XxxxFxIxT
X

AAA  ,/)(),(),( . 
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When X is discrete, a SVNS A can be written as 

XxxxFxIxTA ii

n

i

iii 


,/)(),(),(
1

Definition 2.2 [20] 

Let U be the initial universe set and E be a set of pa-

rameters. Let P(U) denote the power set of U. Consider a 

non-empty set A, A  E. A pair (F, A) is called a soft set 

over U, where F is a mapping given by F: A   P(U). 

Definition 2.3 [4] 

Let U be the initial universe set and E be a set of pa-

rameters. Consider a non-empty set A, A  E. Let P(U) de-

note the set of all single valued neutrosophic (fuzzy neu-

trosophic) sets of U. The collection (F, A) is termed to be 

the (fuzzy neutrosophic) single valued neutrosophic soft 

set over U, where F is a mapping given by F: A   P(U). 

3 An adjustable approach to single valued neu-

trosophic soft sets based decision making   

Definition 3.1 

Let AF ,  be a single valued neutrosophic soft set 

over U, where  EA   and E is a set of parameters. For 

]1,0[,, tsr , the ),,( tsr - level soft set of    is a crisp soft 

set ),,;( tsrL  = F(r,s,t),A defined by F(r,s,t)(e) = 

L(F(e);r,s,t) )={xU / TF(e)(x) ≥ r, IF(e)(x) ≥ s, FF(e)(x) ≤ t}, 

for all Ae  . 

Here ]1,0[r can be viewed as a given least threshold 

on membership values, ]1,0[s  can be viewed as a given 

least threshold on indeterministic values, and ]1,0[t  can 

be viewed as a given greatest threshold on non-

membership values. 

For real-life applications of single valued neutrosophic 

soft sets based decision making, usually the thresholds 

tsr ,,  are chosen in advance by decision makers and repre-

sent their requirements on “membership levels”, “indeter-

ministic levels” and “non-membership levels” respectively. 

To illustrate this idea, let us consider the following ex-

ample.  

Example 3.2 

Let us consider a single valued neutrosophic soft set 

AF ,  which describes the “features of the air condi-

tioners” that Mr. X is considering for purchase. Suppose 

that there are five air conditioners produced by different 

companies in the domain  5,4,3,2,1 XXXXXU   under con-

sideration, and that  4,3,2,1 eeeeA   is a set of decision

parameters. The )4,3,2,1( iie stands for the parameters

“branded”, “expensive”, “cooling speed” and “after sale 

product service”, respectively. 

Suppose that F(e1) = {<X1,0.7,0.3,0.1>, <X2,0.8,0.3, 

0.1>, <X3,0.9,0.4,0.05>, <X4,0.6,0.3,0.2>, <X5,0.5,0.4, 

0.2>}, F(e2) = {<X1,0.6,0.25,0.1>, <X2,0.9,0.3,0.05>, <X3, 

0.8,0.3,0.05>, <X4,0.6,0.2,0.4>, < X5, 0.7,0.2,0.3>}, F(e3) = 

{<X1,0.75,0.35,0.1>, <X2,0.7,0.4,0.15>, <X3,0.85,0.5, 0.1>, 

<X4,0.5,0.4,0.3>, <X5,0.6,0.45,0.2>}, F(e4) = {<X1,0.65,0.3, 

0.2>, <X2,0.85,0.5,0.15>, <X3,0.9,0.6,0.1>, <X4,0.7,0.4, 

0.2>, <X5,0.6,0.3,0.1>}. 

The single valued neutrosophic soft set AF ,  is a 

parameterized family {F(ei), i=1,2,3,4} of single valued 

neutrosophic sets on U and  F, A = {branded air condi-

tioners = F(e1), expensive air conditioners = F(e2), High 

cooling speed air conditioners = F(e3), Good after sale 

product service = F(e4)}. Table 1 gives the tabular repre-

sentation of the single valued neutrosophic soft set 

AF , . 

U e1 e2 e3 e4

X1 (0.7,0.3,0.1) (0.6,0.25,0.1) (0.75,0.35,0.1) (0.65,0.3,0.2) 

X2 (0.8,0.3,0.1) (0.9,0.3,0.05) (0.7,0.4,0.15) (0.85,0.5,0.15) 

X3 (0.9,0.4,0.05) (0.8,0.3,0.05) (0.85,0.5,0.1) (0.9,0.6,0.1) 

X4 (0.6,0.3,0.2) (0.6,0.2,0.4)   (0.5,0.4,0.3) (0.7,0.4,0.2) 

X5 (0.5,0.4,0.2) (0.7,0.2,0.3) (0.6,0.45,0.2) (0.6,0.3,0.1) 

Table 1: Tabular representation of the single valued neutrosophic soft set 

AF , . 

Now we take r = 0.7, s = 0.3, t = 0.2, then we have the 

following: 

L(F(e1);0.7,0.3,0.2) = {X1, X2, X3}, 

L(F(e2);0.7,0.3,0.2) = {X2, X3},  

L(F(e3);0.7,0.3,0.2) = {X1, X2, X3}, 

L(F(e4);0.7,0.3,0.2) = {X2, X3, X4}. 

Hence, the (0.7,0.3,0.2)-level soft set of AF ,  is

)2.0,3.0,7.0;(L  = F(0.7,0.3,0.2),A, where  the set-valued 

mapping F(0.7,0.3,0.2): A→P(U) is defined by F(0.7,0.3,0.2)(ei) = 

L(F(ei);0.7,0.3,0.2), for  i=1,2,3,4. Table 2 gives the tabular 

representation of the (0.7,0.3, 0.2)-level soft set of  

)2.0,3.0,7.0;(L . 
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U e1 e2 e3 e4 

X1 1 0 1 0 

X2 1 1 1 1 

X3 1 1 1 1 

X4 0 0 0 1 

X5 0 0 0 0 

Table 2: Tabular representation of the (0.7,0.3,0.2)-level soft set of  

)2.0,3.0,7.0;(L  

Now, we show some properties of the ),,( tsr - level 

soft sets. 

Theorem 3.3 

Let AF ,  be a single valued neutrosophic soft set 

over U, where EA   and E is a set of parameters. Let 

)
1

,
1

,
1

;( tsrL   and )
2

,
2

,
2

;( tsrL   be (r1, s1, t1)- level 

soft set, and (r2, s2 ,t2)- level soft set of  respectively, 

where r1,s1,t1 , r2,s2,t2  [0,1]. If r2≤ r1, s2≤ s1 and t2≥ t1, 

then we have )
1

,
1

,
1

;( tsrL  ~ )
2

,
2

,
2

;( tsrL  .      

Proof 

Let )
1

,
1

,
1

;( tsrL  =<F( r1,s1,t1), A>, where F( r1,s1,t1)(e) 

= )
1

,
1

,
1

);(( tsreFL = {xU /TF(e)(x)≥ r1, IF(e)(x)≥ s1, FF(e)(x) 

≤ t1} for all eA. 

Let )
2

,
2

,
2

;( tsrL  =<F(r2,s2,t2), A> where F(r2,s2,t2)(e) 

= )
2

,
2

,
2

);(( tsreFL ={xU /TF(e)(x)≥ r2, IF(e)(x)≥ s2, FF(e)(x)≤ 

t2} for all eA. Obviously, A A. 

In the following, we will prove that for all eA, 

F( r1,s1,t1)(e)  F(r2,s2,t2)(e). Since r2 ≤ r1 ,s2 ≤ s1 and t2 ≥ t1 , 

then, for all eA, we have the following {xU /TF(e)(x)≥ r1, 

IF(e)(x)≥ s1, FF(e)(x)≤ t1}  {xU /TF(e)(x)≥ r2, IF(e)(x)≥ s2, 

FF(e)(x)≤ t2}. Since F(r1,s1,t1)(e)={xU /TF(e)(x)≥ r1, IF(e)(x)≥ 

s1, FF(e)(x)≤ t1} and  F(r2,s2,t2)(e)={xU /TF(e)(x)≥ r2, 

IF(e)(x)≥ s2, FF(e)(x)≤ t2}, thus we have F( r1,s1,t1)(e)  

F(r2,s2,t2)(e). Therefore, )
1

,
1

,
1

;( tsrL  ~ )
2

,
2

,
2

;( tsrL  .

Theorem 3.4 

Let AF , and AG,  be a single valued neu-

trosophic soft sets over U, where EA   and E is a set of 

parameters. ),,;( tsrL   and ),,;( tsrL  are ),,( tsr - level 

soft sets of   and  , respectively, where r, s, t [0,1]. If 

 ~ then we have ~),,;( tsrL  ),,;( tsrL  . 

Proof 

),,;( tsrL  <F(r,s,t),A>, where F(r,s,t)(e) = L(F(e);r,s,t) 

={xU / TF(e)(x) ≥ r, IF(e)(x) ≥ s, FF(e)(x) ≤ t}, for all eA. 

Let ),,;( tsrL  <G(r,s,t),A> where G(r,s,t)(e) = L(G(e);r,s,t) 

={xU / TG(e)(x) ≥ r, IG(e)(x) ≥ s, FG(e)(x) ≤ t}, for all eA. 

Obviously, A A. 

In the following, we will prove that, for all eA, 

F(r,s,t)(e)  G(r,s,t)(e). Since  ~ , then we have the fol-

lowing TF(e)(x) ≤ TG(e)(x), IF(e)(x) ≤ IG(e)(x), FF(e)(x)≥ FG(e)(x) 

for all xU and eA. Assume that  xF(r,s,t)(e). Since 

F(r,s,t)(e) = {xU / TF(e)(x) ≥ r, IF(e)(x) ≥ s, FF(e)(x) ≤ t}, then 

we have that TF(e)(x) ≥ r, IF(e)(x) ≥ s, FF(e)(x) ≤ t. Since 

TF(e)(x) ≤ TG(e)(x), IF(e)(x) ≤ IG(e)(x), FF(e)(x)≥ FG(e)(x), thus 

TG(e)(x) ≥ r, IG(e)(x) ≥ s, FG(e)(x) ≤ t. Hence, x{xU / 

TG(e)(x) ≥ r, IG(e)(x) ≥ s, FG(e)(x) ≤ t}. Since G(r,s,t)(e) = {xU 

/ TG(e)(x) ≥ r, IG(e)(x) ≥ s, FG(e)(x) ≤ t}, then we have x 

G(r,s,t)(e). Thus, we have that F(r,s,t)(e)  G(r,s,t)(e). Conse-

quently, ~),,;( tsrL  ),,;( tsrL  . 

Note 3.5 

In the definition of ),,( tsr - level soft sets of single 

valued neutrosophic soft sets, the level triplet (or threshold 

triplet) assigned to each parameter has always constant 

values r,s,t[0,1]. However, in some decision making 

problems, it may happen that decision makers would like 

to improve different threshold triplets on different parame-

ters. To cope with such problems, we need to use a func-

tion instead of a constant value triplet as the thresholds on 

membership values, indeterministic values and non-

membership values respectively. 

Definition 3.6 

Let AF ,  be a single valued neutrosophic soft set 

over U, where EA   and E is a set of parameters. Let : 

AI3 (I= [0,1]) be a single valued neutrosophic set in A 

which is called a threshold single valued neutrosophic  set. 

The level soft set of   with respect to  is a crisp soft set 

AFL ,);(


   defined by F(e) = L(F(e);(e)) = {xU 

/ TF(e)(x) ≥ T(e), IF(e)(x) ≥ I(e), FF(e)(x) ≤ F(e)}, for all 

eA. To illustrate this idea, let us consider the following 

examples. 

Example 3.7 

Based on the single valued neutrosophic soft set 

AF , , we can define a single valued neutrosophic set 

mid:A[0,1]3  , by

14
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


 

for all eA. 

The single valued neutrosophic set mid  is called the 

mid-threshold single valued neutrosophic soft set  . Fur-

ther, the level soft set of   with respect to the mid-

threshold single valued neutrosophic set mid , namely 

);(


 midL  is called the mid-level soft set of  and 

simply denoted by );( midL  . 

Consider the problem in Example 3.2 with its tabular 

representation given by Table 1. It is clear that the mid-

threshold of <F,A>  is a single valued neutrosophic set 

mid<F,A>={<e1,0.7,0.34,0.13>,<e2,0.72,0.25,0.18>, 

< e3,0.68,0.42,0.17> < e4,0.74,0.42,0.15>}.  

The mid-level soft set of <F,A> is a soft set L(<F,A>;mid) 

and its tabular representation is given by Table 3. 

U e1 e2 e3 e4 

X1 0 0 0 0 

X2 0 1 0 1 

X3 1 1 1 1 

X4 0 0 0 0 

X5 0 0 0 0 

Table 3: Tabular representation of mid-level soft set LF,A,mid) 

Example 3.8 

Let AF ,  be a single valued neutrosophic soft set 

over U, where EA   and E is a set of parameters. Then, 

we can define:  

(i)  a single valued neutrosophic set topbottom : AI3

T topbottom(e)=
Ux

max TF(e)(x), Itopbottom(e)=
Ux

max IF(e)(x), 

Ftopbottom(e)=
Ux

min FF(e)(x) for all eA. 

(ii) a single valued neutrosophic set toptop : AI3

T toptop(e)=
Ux

max TF(e)(x), Itoptop(e)=
Ux

max IF(e)(x), 

Ftoptop(e)=
Ux

max FF(e)(x) for all eA. 

(iii) a single valued neutrosophic set bottombottom : 

AI3 

T bottombottom(e)=
Ux

min TF(e)(x), I bottombottom(e)=
Ux

min IF(e)(x), 

F bottombottom(e)=
Ux

min FF(e)(x) for all eA, where I=[0,1] 

The single valued neutrosophic set topbottom  is 

called the top-bottom-threshold of the single valued neu-

trosophic soft set  , the single valued neutrosophic set 

toptop  is called the top-top-threshold of the single valued 

neutrosophic soft set  , the single valued neutrosophic set 

bottombottom  is called the bottom-bottom-threshold of 

the single valued neutrosophic soft set  . 

In addition, the level soft set of   with respect to the 

top-bottom-threshold of the single valued neutrosophic soft 

set  , namely );(


 topbottomL is called the top-bottom-

level soft set of  and simply denoted by );( topbottomL  . 

Similarly, the top-top-level soft set of  is denoted by 

);( toptopL  and the bottom-bottom-level soft set of  is 

denoted by );( ombottombottL  . 

Let us consider the problem in Example 3.2 with its 

tabular representation given by Table 1. Here, 

topbottom<F,A>={<e1,0.9,0.4,0.05>, <e2,0.9,0.3,0.05>, 

< e3,0.85,0.5,0.1> < e4,0.9,0.6,0.1>  

is a single valued neutrosophic set and the top-bottom-

level soft set of  F,A is );,( topbottomAFL  , see below. 

U e1 e2 e3 e4

X1 0 0 0 0 

X2 0 1 0 0 

X3 1 0 1 1 

X4 0 0 0 0 

X5 0 0 0 0 

Table 4: Tabular representation of top-bottom-level soft set 

L(F,A;topbottom)

Also, the top-top-threshold of F,A is a single valued 

neutrosophic set toptopF,A={<e1,0.9,0.4,0.2>, <e2,0.9,0.3, 

0.4>, <e3,0.85,0.5,0.3>, <e4,0.9,0.6,0.2>} and the top-top-

level soft set  of  F,A is );,( toptopAFL  . 

Its tabular representation is given by Table 5. 

U e1 e2 e3 e4

X1 0 0 0 0 

X2 0 1 0 0 

X3 1 0 1 1 

X4 0 0 0 0 

X5 0 0 0 0 

Table 5: Tabular representation of top-top-level soft set L(F,Atoptop) 
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It is clear that the bottom-bottom-threshold of F,A is 

a single valued neutrosophic set bottombotttom 

<F,A>={<e1,0.5,0.3,0.05>, <e2,0.6,0.2,0.05>, <e3,0.5,0.35, 

0.1>, < e4,0.6,0.3,0.1>} and the bottom-bottom level soft 

set  of  F,A is );,( ombottombottAFL  . 

Its tabular representation is given by Table 6. 

U e1 e2 e3 e4 

X1 0 0 1 0 

X2 0 1 0 0 

X3 1 1 1 1 

X4 0 0 0 0 

X5 0 0 0 1 

Table 6: Tabular representation of bottom-bottom-level soft set

L(F,A;bottombottom)

Remark 3.9 

In Example 3.8, we do not define the bottom-top-level 

soft set of a single valued neutrosophic soft set, that is, we 

do not define the following single valued neutrosophic set   

bottomtop : AI3 ,

T bottomtop(e)=
Ux

min TF(e)(x), I bottomtop(e)=
Ux

min IF(e)(x), 

F bottomtop(e)=
Ux

max FF(e)(x) for all eA. 

The reason is the following: The bottom-top threshold 

is dispensable since it indeed consists of a lower bound of 

the degree of membership and indeterministic values and 

together with an upperbound of the degree of non-

membership values. Thus, the bottom–top–threshold can 

always be satisfied. 

Let us consider the Example 3.2, where the bottom–

top–threshold of F,A is a single valued neutrosophic set 

bottomtop<F,A>={<e1,0.5,0.3,0.2>, <e2,0.6,0.2,0.4>, <e3,0.5, 

0.35,0.3>, < e4,0.6,0.3,0.2>} and the bottom-top-level soft 

set of  F,A is a soft set );,( bottomtopAFL   with its 

tabular representation given by Table 7. 

U e1 e2 e3 e4 

X1 1 1 1 1 
X2 1 1 1 1 
X3 1 1 1 1 
X4 1 1 1 1 
X5 1 1 1 1 

Table 7: Tabular representation of bottom-top-level soft set

L(F,A;bottomtop) 

From Table 7, we can see that all the tabular entries are 

equal to 1. In other words, the bottom-top-threshold can 

always be satisfied. 

Now, we show some properties of level soft sets with 

respect to a single valued neutrosophic soft set. 

Theorem 3.10 

Let AF , be a single valued neutrosophic soft set 

over U, where EA   and E is a set of parameters. Let 1: 

AI3 (I=[0,1]) and 2: AI3 (I=[0,1]) be two threshold

single valued neutrosophic sets. L(;1) = F1,A and 

L(;2) = F2,A are the level soft sets of  with respect 

to 1 and  2 , respectively. If T2(e) ≤ T1(e), I2(e) ≤ I1(e) 

and F2(e) ≥ F1(e), for all eA, then we have L(;1)  
~

L(;2) . 

Proof 

The proof is similar to Theorem 3.3. 

Theorem 3.11 

Let AF , and AG,  be two single valued neu-

trosophic soft sets over U, where EA   and E is a set of 

parameters.  

Let : AI3 (I=[0,1]) be a threshold single valued neu-

trosophic set.   AFL ,;   and    AGL ,;    are the 

level soft sets of  and  with respect to  respectively. If 

 ~  , then we have L(;) ~  L(;).

Proof 

The proof is similar to  Theorem 3.4. 

Theorem 3.12 

Let AG,  be a single valued neutrosophic soft set 

over U, where EA   and E be a set of parameters. 

);( midL  , );( topbottomL  , );( toptopL  , 

);( ombottombottL  are the mid–level soft set, the top-

bottom-level soft set, the top-top-level soft set and the bot-

tom-bottom-level soft set of  , respectively. Then, we 

have the following properties: 

(i) );( topbottomL  ~ );( midL  . 

(ii) );( topbottomL  ~ );( toptopL  . 

(iii) );( topbottomL  ~ );( ombottombottL  . 

Proof 

(i) Let );( topbottomL  =Gtopbottom,A,where 

T topbottom(e)=
Ux

max TG(e)(x), Itopbottom(e)=
Ux

max IG(e)(x), 

Ftopbottom(e)=
Ux

min FG(e)(x) for all eA. 

Let );( midL  =Gmid,A, where 
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for all eA. Obviously, A A. 

In the following we will prove that for all eA. 

Gtopbottom(e)  Gmid(e). 

Since 
Ux

max TG(e)(x) ≥ )()(
||

1
x

Ux eGT
U




,
Ux

max IG(e)(x) ≥

)()(
||

1
x

Ux eGI
U




, FG(e)(x) ≤ )()(
||

1
x

Ux eGF
U




, 

then for al l eA we have Ttopbottom(e) ≥ Tmid(e), Itopbottom(e) 

≥ Imid(e), Ftopbottom(e) ≤ Fmid(e). Thus, we have the following 

{xU  / TG(e)(x) ≥ Ttopbottom(e), IG(e)(x) ≥ Itopbottom(e), FG(e)(x) 

≤ Ftopbottom(e)} {xU  / TG(e)(x) ≥ Tmid(e), IG(e)(x) ≥ Imid(e), 

FG(e)(x) ≤ Fmid(e)}. Since Gtopbottom(e)= {xU  / TG(e)(x) ≥ 

Ttopbottom(e), IG(e)(x) ≥ Itopbottom(e), FG(e)(x) ≤ Ftopbottom(e)} and 

Gmid(e)= {xU  / TG(e)(x) ≥ Tmid(e), IG(e)(x) ≥ Imid(e), FG(e)(x) 

≤ Fmid(e)}, then we have the following Gtopbottom(e)  

Gmid(e).  Therefore );( topbottomL  ~ );( midL  . 

Proof of (ii) and (iii) are analogous to proof (i). 

Now, we show the adjustable approach to single valued 

neutrosophic soft sets based decision making by using lev-

el soft sets. 

Algorithm 3.13 

Step 1: Input the (resultant) single valued neutrosophic 

soft set =F,A. 

Step 2: Input the threshold single valued neutrosophic set  

: AI3  (I=[0,1]) (or give a threshold value triplet (r, s, t)

 I3 (I=[0,1]); or choose the mid-level decision rule; or 

choose the top-bottom-level decision rule; or choose the 

top-top-level decision rule; or choose the bottom-bottom-

level decision rule) for decision making. 

Step 3: Compute the level soft set L(;) with the thresh-

old single valued neutrosophic set  (or the (r, s, t)–level 

soft set L(;r,s,t)  ; or the mid-level soft set L(;mid); or 

choose the top-bottom-level soft set L(;topbottom) ; or 

choose the top-top-level soft set L(;toptop); or choose the 

bottom-bottom-level soft set L(;bottombottom)) 

Step 4: Present the level soft L(;)(or L(;r,s,t); 

L(;mid); L(;topbottom), L(;bottombottom)) in tabular 

form and compute the choice value ci of oi , for all i. 

Step 5: The optimal decision is to select ok  if ck= .max
i

c
i

Step 6: If k has more than one value, then any of ok  may 

be chosen. 

Note 3.14 

In the last step of Algorithm 3.13, one may go back to 

the second step and change the previously used threshold 

(or decision rule), as to adjust the final optimal decision, 

especially when there are too many “optimal choices” to be 

chosen. 

To illustrate the basic idea of Algorithm 3.13, let us 

consider the following example. 

Example 3.15 

Let us consider the decision making problem (Example 

3.2) involving the single valued neutrosophic soft set 

=F,A with its tabular representation given by Table 1.

If we deal with this problem by mid-level decision rule, 

we shall use the mid-threshold midF,A and thus obtain the 

mid-level soft set L(F,A,mid) with choice values having 

their tabular representation in Table 8. 

U e1 e2 e3 e4 Choice values 

X1 0 0 0 0 c1=0 

X2 0 1 0 1 c2=2 

X3 1 1 1 1 c3=4 

X4 0 0 0 0 c4=0 

X5 0 0 0 0 c5=0 

Table 8: Tabular representation of mid-level soft set L(<F,A>;mid) with

choice values 

From Table 8, it follows that the maximum choice val-

ue is c3=4, so the optimal decision is to select X3.  

At the same time, if we deal with this problem by top-

bottom-level soft set L(F,A,topbottom) we obtain the 

choice values given by Table 9. 

U e1 e2 e3 e4 Choice values 

X1 0 0 0 0 c1=0 

X2 0 1 0 0 c2=1 

X3 1 0 1 1 c3=3 

X4 0 0 0 0 c4=0 

X5 0 0 0 0 c5=0 

Table 9: Tabular representation of top-bottom-level soft set 

L(<F,A>;topbottom) with choice values 

From Table 9, it is clear that the maximum choice val-

ue is c3=3, so the optimal decision is to select X3. 
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4 Weighted single valued neutrosophic soft sets 

based decision making 

In this section, we will present an adjustable approach 

to weighted single valued neutrosophic soft sets based de-

cision making problems. 

Definition 4.1 

Let FN(U) be the set of all single valued neutrosophic 

sets in the universe U. Let EA   and E be a set of param-

eters. A weighted single valued neutrosophic soft set is a 

triple =F, A, , where F, A  is a single valued neutro-

sophic soft set over U , :A[0,1] is a weight function 

specifying the weight wj=(ej) for each attribute ejA. 

By definition, every single valued neutrosophic soft set 

can be considered as a weighted fuzzy soft set. The notion 

of weighted single valued neutrosophic soft sets provides a 

mathematical framework for modelling and analyzing the 

decision making problems in which all the choice parame-

ters may not be of equal importance. These differences be-

tween the importance of parameters are characterized by 

the weight function in a weighted single valued neutro-

sophic soft set. 

Algorithm 4.2 (an adjustable approach to weighted sin-

gle valued neutrosophic soft sets based decision making 

problems) 

Step 1: Input the weighted single valued neutrosophic soft 

set =F, A, . 

Step 2: Input the threshold single valued neutrosophic set  

: AI3 (or give a threshold value triplet (r, s, t)  I3; or

choose the mid-level decision rule; or choose the top-

bottom-level decision rule; or choose the top-top-level de-

cision rule; or choose the bottom -bottom-level decision 

rule) for decision making. 

Step 3: Compute the level soft set L(F,A;) of  with re-

spect to  the threshold single valued neutrosophic set  (or 

the (r, s, t)–level soft set L(F,A;r,s,t)  ; or the mid-level 

soft set L(F,A;mid); or choose the top-bottom-level soft 

set L(F,A;topbottom) ; or choose the top-top-level soft 

set L(F,A;toptop); or choose the bottom-bottom-level 

soft set L(F,A;bottombottom)). 

Step 4: Present the level soft L(F,A;)(or L(F,A;r,s,t); 

L(F,A;mid);L(F,A;topbottom), L(F,A;bottombottom)) 

in tabular form and compute the choice value c’i of oi , for 

all i. 

Step 5: The optimal decision is to select ok if c’k= .'max
i

c
i

 

Step 6: If k has more than one value then any of ok  may be 

chosen. 

Note 4.3 

In the last step of Algorithm 4.2, one may go back to 

the second step and change the previously used threshold 

(or decision rule), as to adjust the final optimal decision, 

especially when there are too many “optimal choices” to be 

chosen. 

To illustrate the basic idea of Algorithm 4.2, let us 

consider the following example. 

Example 4.3 

Let us consider the decision making problem (Example 

3.2). Suppose that Mr. X has imposed the following 

weights for the parameters in A: for the parameter “brand-

ed”, w1=0.8, for the parameter “expensive”, w2=0.6, for 

the parameter “cooling speed”, w3=0.9, and for the parame-

ter “after sale product service”, w4=0.7. Thus, we have a 

weight function :A[0,1], and the single valued neutro-

sophic soft set =F, A in Example 3.2 is changed into a 

weighted single valued neutrosophic soft set =F, A, . 

Its tabular representation is given by Table 10. 

U e1,w1=0.8 e2,w2=0.6 e3,w3=0.9 e4,w4=0.7

X1 (0.7,0.3,0.1) ( 0.6,0.25,0.1) ( 0.75,0.35,0.1) (0.65,0.3,0.2) 

X2 (0.8,0.3,0.1) (0.9,0.3,0.05) (0.7,0.4,0.15) (0.85,0.5,0.15) 

X3 (0.9,0.4,0.05) (0.8,0.3,0.05) (0.85,0.5,0.1) (0.9,0.6,0.1) 

X4 (0.6,0.3,0.2) (0.6,0.2,0.4) ( 0.5,0.4,0.3) (0.7,0.4,0.2) 

X5 (0.5,0.4,0.2) (0.7,0.2,0.3) (0.6,0.45,0.2) (0.6,0.3,0.1) 

Table 10: Tabular representation of weighted single valued neutrosophic 

soft set =F, A, . 

As an adjustable approach, one can use different rules 

in decision making problem. For example, if we deal with 

this problem by mid-level decision rule, we shall use the 

mid-threshold midF,A  and thus obtain the mid-level soft 

set L(F,A,mid) with weighted choice values having tabu-

lar representation in Table 11. 

Table 11: Tabular representation of mid-level soft set L(<F,A>;mid) with 

weighted choice values 

It follows that the maximum weighted choice value is 

c‘3=3.2, so the optimal decision is to select X3. 

U e1,w1=0.8 e2,w2=0.6 e3,w3=0.9 e4,w4=0.7 weighted choice 

value 

X1 0 0 0 0 c’1=0 

X2 0 1 0 1 c‘2=1.3 

X3 1 1 1 1 c‘3=3.2 

X4 0 0 0 0 c‘4=0 

X5 0 0 0 0 c‘5=0 
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5 Mean potentiality approach 

Definition 5.1 

The potentiality of a single valued neutrosophic soft set 

(pfns) is defined as the sum of all membership, indetermin-

istic and non-membership values of all objects with respect 

to all parameters. Mathematically, it is defined as 














 
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i

n
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ij

m

i
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ij
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n

j

ijfns FITp
1 11 11 1

,,  

where Tij ,  Iij, Fij are the membership, indeterministic and 

non-membership values of  the ith  object with respect to 

the jth parameter respectively, m is the number of objects 

and n is the number of parameters. 

Definition 5.2 

The mean potentiality (mp) of the single valued neutro-

sophic soft set is defined as its average weight among the 

total potentiality.Mathematically, it is defined as 

nm

fnsp

pm


 . 

Algorithm 5.3 

Step 1: Input the (resultant) single valued neutrosophic 

soft set =F,A. 

Step 2: Compute the potentiality (pfns) of the single valued 

neutrosophic soft set. 

Step 3: Find out the mean potentiality (mp) of the single 

valued neutrosophic soft set. 

Step 4: Form mp-level soft soft set of the single valued 

neutrosophic soft set in tabular form, then  compute the 

choice value ci of oi , for all i. 

Step 5: The optimal decision is to select ok  if ck= .max
i

c
i

Step 6: If k has more than one value, then any of ok  may 

be chosen. 

Example 5.4 

Let us consider the problem in Example 3.2 with its tabular 

representation in Table 1. 

U e1 e2 e3 e4 Choice value 

X1 (0.7,0.3,0.1) (0.6,0.25,0.1)  (0.75,0.35,0.1) (0.65,0.3,0.2) (2.7,1.2,0.5) 

X2 (0.8,0.3,0.1) (0.9,0.3,0.05) (0.7,0.4,0.15) (0.85,0.5,0.15) (3.25,1.5,0.45) 

X3 (0.9,0.4,0.05) (0.8,0.3,0.05) (0.85,0.5,0.1) (0.9,0.6,0.1) (3.45,1.8,0.3) 

X4 (0.6,0.3,0.2) (0.6,0.2,0.4) (0.5,0.4,0.3) (0.7,0.4,0.2) (2.4,1.3,1.1) 

X5 (0.5,0.4,0.2) (0.7,0.2,0.3) (0.6,0.45,0.2) (0.6,0.3,0.1) (2.4,1.35,0.8) 

Table 12: Tabular representation of single valued neutrosophic soft set 

with choice values. 

So, the potentiality is fnsp = (14.2,7.15,3.15).

The Mean potentiality 
nm

fnsp

pm


  is: 













45

15.3
,

45

15.7
,

45

2.14

pm = (0.71, 0.36, 0.16). 

Using this triplet, we can form the pm -level soft set,

which is shown by Table 13. 

U e1 e2 e3 e4 Choice values 

X1 0 0 0 0 c1=0 

X2 0 0 0 1 c2=1 

X3 1 0 1 1 c3=3 

X4 0 0 0 0 c4=0 

X5 0 0 0 0 c5=0 

Table 13: Tabular representation of  mp-level soft set with choice values. 

From Table 13, it is clear that the maximum choice 

value is c3=3, so the optimal decision is to select X3. 

Conclusion 

In this paper, we introduced an adjustable and mean 

potentiality approach by means of neutrosophic level soft 

sets. Different level soft sets were derived by considering 

different types of thresholds, namely, mid, topbottom, top-

top, bottombottom. In general, the final optimal decisions 

based on different level soft sets could be different. Thus, 

the approach discussed in this paper captures an important 

feature for decision making in an imprecise environment. 

Some of these problems are essentially humanistic, and 

thus, subjective in nature; there actually isn’t a unique or 

uniform criterion for evaluating the alternatives. Hence, the 

decision making models presented in this paper make the 

approaches to single valued neutrosophic level soft sets 

based decision making more appropriate for many real 

world applications. 
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