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Fermi’s golden rule: its derivation and breakdown by an ideal model
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Fermi’s golden rule is of great importance in quantum dynamics. However, in many textbooks on
quantum mechanics, its content and limitation are obscured by the approximations and arguments
in the derivation, which are inevitable because of the generic setting considered. Here we propose
to introduce it by an ideal model, in which the quasi-continuum band consists of equaldistant levels
extending from −∞ to +∞, and each of them couples to the discrete level with the same strength.
For this model, the transition probability in the first order perturbation approximation can be
calculated analytically by invoking the Poisson summation formula. It turns out to be a piecewise

linear function of time, demonstrating on one hand the key features of Fermi’s golden rule, and on
the other hand that the rule breaks down beyond the Heisenberg time, even when the first order
perturbation approximation itself is still valid.

I. INTRODUCTION

As an example of Stigler’s law of eponymy, the so-
called Fermi’s golden rule was actually first derived by
Dirac5 instead of Fermi, although the title “golden” was
given by the latter.2 It is no wonder that Fermi considered
the rule a golden one in view of its instrumental role in
his theory of Beta decay.3,4

As a nontrivial result of the lowest order time-
dependent perturbation theory, Fermi’s golden rule is
introduced in almost every textbook on quantum me-
chanics. It is about the transition dynamics for such a
scenario. Initially, the system is in some eigenstate |b〉
of an unperturbed Hamiltonian H0 with eigenenergy Eb.
Besides the level |b〉, H0 has a quasi-continuum {|n〉}
with eigenenergies {En}. It is assumed that En is non-
degenerate and increases with n, and that the quasi-
continuum covers an interval [a, b], to which Eb belongs,
i.e., a < Eb < b. Then at t = 0 a perturbation V is
turned on, which couples |b〉 and {|n〉} (and possibly,
states within the continuum band too, say |n1〉 and |n2〉)
with strength gn = 〈n|V |b〉. It is assumed that gn is
a slowly varying function of n, and therefore, it is le-
gitimate to introduce a continuous function g(E) such
that gn = g(En). Because of the newly introduced cou-
pling, the system transits towards the quasi-continuum.
Fermi’s golden rule then states that, in the first order per-
turbation theory, the probability P of finding the system
in the continuum grows linearly in time, and the rate of
increase, the so-called transition rate, is of the expression

w =
dP

dt
=

2π

~
|g(Eb)|

2ρ(Eb). (1)

Here ρ(·) is the density of states of the quasi-continuum.
It is defined as ρ(E)dE is the number of levels in the
interval [E,E + dE].

In many textbooks on quantum mechanics, formula (1)
is derived for a generic case. In other words, no concrete
constraint is placed on the quasi-continuum spectrum

{En} or the couplings {gn}, except for the conditions
above, which are either implicitly or explicitly assumed.
The generality of this approach is definitely appreciable,
but exactly because of its generality, many approxima-
tions and arguments (within the first order perturbation
framework) are inevitable, which obscure the content and
limitation of the rule, especially for a novice. For exam-
ple, in deriving (1), in most if not all textbooks,5–14 the
limit of t→ ∞ is taken. However, intuitively, one would
not expect the first order perturbation theory to hold any
more in the long time limit of t → ∞. Actually, to be
consistent with the first order perturbation theory, the
condition P ≪ 1 should be satisfied, and the linear be-
havior of (1) cannot last forever. Although this dilemma
is just superficial (the t→ ∞ limit is essentially achieved
already for a short and finite t), it does stand as an ob-
stacle for the beginners.

It is therefore desirable to have a model for which the
calculation can be done as rigorously and as straightfor-
wardly as possible. Such a model indeed exists, and as
a matter of fact, it has been known for decades.16 Yet,
unfortunately, to the best knowledge of the author, it has
not been introduced into any quantum mechanics text-
book, neither in the main text nor in the exercise part.
The model is very simple—in hindsight, it can actually
be motivated by the expression (1). The transition rate
w is proportional to the local values of the density of
states and the coupling strength squared. Hence, in the
model, the level spacing En+1 − En and the coupling gn
are simply taken as constant. For this model, the tran-
sition probability in the first order approximation can
be calculated rigorously for arbitrary time t. It is ac-
tually a piecewise linear function of time, showing kinks
with a period of tH, the Heisenberg time associated with
the spectrum. Therefore, on one hand, the approxima-
tions and arguments in the general case, in particular, the
t→ ∞ limit, are avoided; on the other hand, it presents
an example demonstrating vividly that Fermi’s golden
rule breaks down beyond the Heisenberg time, even when
the first order approximation itself is still valid. As far
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as the author knows, the Heisenberg time as an upper
bound for the validity domain of Fermi’s golden rule is
pointed out only by Baym.14 In many books, it is simply
given by the non-depletion condition t≪ 1/w.5,6,8,12

In the following, we shall first present the general for-
malism of the first order time-dependent perturbation
theory and derive Fermi’s golden rule in the generic case
in Sec. II. Then, we proceed to consider the special case of
the ideal model in Sec. III. It is interesting that the model
is not only solvable up to the first order approximation,
but can be solved exactly by summing up all orders of
terms. For completeness, this is done in Sec. IV.

II. THE GENERIC CASE

Let us first review the derivation of (1) in the generic
case. The time dependent Schrödinger equation is

i~
∂|ψ〉

∂t
= (H0 + λV )|ψ〉. (2)

The initial condition is |ψ(t = 0)〉 = |b〉. Here we have
introduced a control parameter λ, whose value will be set
to 1 in the end. Expand the wave function |ψ(t;λ)〉 as a
power series of λ,

|ψ(t;λ)〉 =

∞
∑

s=0

λs|ψs(t)〉. (3)

By the initial condition of |ψ〉, we have |ψ0(0)〉 = |b〉 and
|ψs(0)〉 = 0 for s ≥ 1. Plugging (3) into (2), and equating
the coefficients of the powers of λ, we get up to s = 1,

i~
∂|ψ0〉

∂t
= H0|ψ0〉, (4a)

i~
∂|ψ1〉

∂t
= H0|ψ1〉+ V |ψ0〉. (4b)

From (4a) we solve |ψ0(t)〉 = e−iEbt/~|b〉. Substituting
this result into (4b), and projecting both sides of (4b)
onto |n〉, we get

i~
∂

∂t
〈n|ψ1〉 = En〈n|ψ1〉+ gne

−iEbt/~. (5)

By Duhamel’s principle,15 we then easily solve

〈n|ψ1(t)〉 =
1

i~

∫ t

0

dτgne
−iEbτ/~e−iEn(t−τ)/~

= gn
1− ei(En−Eb)t/~

En − Eb
e−iEnt/~. (6)

Therefore, to the first order approximation, the proba-
bility of finding the system in the quasi-continuum band

is

P =
∑

n

|〈n|ψ1(t)〉|
2

=
∑

n

|gn|
2 4 sin

2((En − Eb)t/2~)

(En − Eb)2

=
2t

~

∑

n

|gn|
2 sin

2((En − Eb)t/2~)

(En − Eb)2(t/2~)
. (7)

Under certain condition, the summation can be approx-
imated by an integral

P =
2t

~

∫ b

a

dǫρ(ǫ)|g(ǫ)|2
sin2((ǫ − Eb)t/2~)

(ǫ− Eb)2(t/2~)
. (8)

The weight function (as a function of ǫ) in the integral

sin2((ǫ − Eb)t/2~)

(ǫ − Eb)2(t/2~)
(9)

consists of lumps whose width scales as 1/t, and whose
height scales as t. In the limit of t → ∞, it converges to
the delta function πδ(ǫ − Eb). In this limit,

P =
2πt

~
ρ(Eb)|g(Eb)|

2. (10)

We then get the golden rule (1). Here we have invoked
two approximations ensuing (7), which is an approxima-
tion by itself. From (7) to (8), in replacing the summa-
tion by an integral, the sampling step-length (i.e., level
spacing En+1 − En) should be much smaller than the
characteristic length of variation of the function, which
is 2π~/t. That is,

t ≪ 2π~ρ(Eb). (11)

From (8) to (10), in replacing the weight function (9) by
the delta function πδ(ǫ − Eb), the width of the lumps of
the former should be much smaller than the width of the
interval [a, b], or more accurately,

2π~

min{|a− Eb|, |b− Eb|}
≪ t. (12)

Both conditions of (11) and (12) are within the first order
perturbation approximation itself, and can be satisfied si-
multaneously. We note that while condition (12) is men-
tioned in many books,5,6,8,14 condition (11) is pointed out
only by Baym.14 As we shall see in the ideal model below,
the right hand side of (11) defines sharply the boundary
beyond which Fermi’s golden rule breaks down.

III. THE IDEAL MODEL

In retrospect, the ideal model can be motivated by the
expression of the golden rule (1) or (10). The transi-
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FIG. 1: (Color online) Periodic sampling and summation of
the function sinc2 x ≡ sin2 x/x2, which is the essential part in
the definition of Wα(T ) [see Eq. (16)]. The sampling period
is T , and the shift is determined by α. In this figure, α = 3/7.

tion rate is proportional to the local values of the density
of state ρ(E) and the square of the coupling |g(E)|2 at
E = Eb. In the ideal model, both functions are simply
taken as constant. That is, En = n∆ with ∆ being the
spacing between two adjacent levels, and gn = g. More
specifically, the unperturbed Hamiltonian and the cou-
pling are, respectively,16

H0 = Eb|b〉〈b|+

∞
∑

n=−∞

n∆|n〉〈n|, (13a)

V = g

∞
∑

n=−∞

(|b〉〈n|+ |n〉〈b|). (13b)

Note that the quasi-continuum extends from −∞ to +∞,
and we have assumed that the coupling strength g is real,
which is always achievable by adjusting the phases of the
levels |n〉. This model can be approximately realized with
a two-level atom in a multi-mode cavity.17–20 In this sys-
tem, the discrete level |b〉 corresponds to the atom in
the excited state and all cavity modes empty, while each
|n〉 corresponds to the atom in the ground state and the
nth cavity mode being excited. The mode spacing and
the atom-mode couplings (if the atom is appropriately lo-
cated) are, to a good extent, constant. Only those modes
near resonant with the atomic resonance frequency par-
ticipate significantly in the dynamics. Therefore, it is
legitimate to assume that there are infinite number of
cavity modes extending from −∞ to +∞.

For the concrete model (13), the general formula (7)
reduces to periodic sampling and summation of the func-
tion sinc2 x ≡ sin2 x/x2. Specifically, introducing the
dimensionless time T ≡ ∆t/2~ and the offset parameter
(here ⌊·⌋ is the floor function)

α = Eb/∆− ⌊Eb/∆⌋, (14)

which characterizes the location of Eb relative to the
quasi-continuum spectrum, the transition probability can
be written as

P =

(

4g2

∆2

)

Wα(T ). (15)

Here the function Wα is defined as

Wα(T ) ≡ T 2
∞
∑

m=−∞

sinc2[(m− α)T ], (16)

where the infinite summation is a very regular one—it
samples the sinc2 x function uniformly with the period
given by T and the offset determined by α (see Fig. 1).
It is apparent that Wα = W−α = W1−α, i.e., Wα is an
even and periodic function of α. Note that in (15), the
time dependence is only through the function Wα and
the coupling strength g appears only in the prefactor.

The primary concern is to calculate Wα. For this pur-
pose, we have the standard tool of Poisson summation
formula.21 By this formula, a periodic sampling and sum-
mation of a function f(x),

I =

+∞
∑

n=−∞

f(a+ nT ) (17)

can be converted to a weighted periodic sampling of its
Fourier transform

F (q) =

∫ +∞

−∞

dxf(x)e−iqx. (18)

That is,

I =
1

T

+∞
∑

n=−∞

F

(

2πn

T

)

exp

(

i2πna

T

)

. (19)

In our case, we need to calculate the Fourier transform
of the function sinc2 x. For those who are familiar with
the Fraunhofer diffraction of a single slit,22 it is a basic
mathematical fact that the Fourier transform F1 of the
function sincx is the window function.23,24 Namely,

F1(q) =

{

π, |q| ≤ 1,

0, |q| > 1.
(20)

By the convolution theorem, the Fourier transform F2 of
sinc2 x is then simply the self-convolution of F1,

F2(q) =
1

2π

∫ +∞

−∞

dpF1(p)F1(q − p)

=

{

π
2 (2 − |q|), |q| ≤ 2,

0, |q| > 2,
(21)

which is a triangle function nonvanishing only on the
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support [−2, 2]. The fact that the Fourier transform of
sinc2 x has only a finite support is actually a consequence
of the Paley-Wiener theorem.25 The function sinc2 x is
an entire function and is of exponential type 2.26 Hence,
by the Paley-Wiener theorem, its Fourier transform is
supported on [−2, 2].

The fact that F2 is nonvanishing only on a finite in-
terval means that invoking the Poisson summation for-
mula really simplifies the original summation problem in
(16), because in (19) there will be only a finite number
of nonzero terms. For example, if 0 < T ≤ π, only the
n = 0 term is nonzero, and consequently, in this interval,

Wα(T ) = πT, (22)

regardless of the value of α. In terms of the real time t,
the result is that, for 0 < t < tH ≡ 2π~/∆, the Heisen-
berg time,

P =
2π

~

(

g2

∆

)

t. (23)

This is nothing but Fermi’s golden rule. We have ob-
tained it without using any approximation or argument.
The fact that it is independent of the parameter α is in
accord with the coarse-graining spirit implicitly assumed
in the usual derivation of the rule.

However, in the more general case of mπ < T ≤ (m+
1)π, there are 2m+ 1 nonzero terms in the summation.
It is straightforward to get (θ ≡ 2πα)

Wα(T ) = π

(

m
∑

n=−m

exp(inθ)

)

T − 2π2
m
∑

n=1

n cos(nθ)

= π
sin (2m+1)θ

2

sin θ
2

T − 2π2 ∂

∂θ

(

m
∑

n=1

sinnθ

)

= π
sin (2m+1)θ

2

sin θ
2

(T −mπ) + π2 sin
2 mθ

2

sin2 θ
2

. (24)

This formula was first obtained by Kyrölä using a differ-
ent method.27 We see that Wα is still a linear function
of T on the interval [mπ, (m + 1)π], but its slope now
depends on both the interval and the offset parameter
α. Therefore, Wα is a piecewise linear function of T and
has kinks at T = mπ (correspondingly, t = mtH) period-
ically. The point is that, it is continuous but nonsmooth.
Apparently, by making g sufficiently weak, one can make
P arbitrarily small at an arbitrary time t. Therefore, for
a sufficiently small g, the first order perturbation approx-
imation can be valid far beyond the critical time tH. Yet,
Fermi’s golden rule is no longer valid there.

In Fig. 2, the function Wα(T ) is plotted for four differ-
ent values of α. Before tH, all curves coincide as (22) says;
but beyond tH, the curves fan out and have completely
different trajectories. Except for the case of α = 0,
namely when Eb is degenerate with a certain level |n〉,
Wα shows collapses and revivals. Actually, by (24), at

0 1 2 3 4 5
0

1

2

3

4

5

T/π

W
α
(T

)/
π
2

 

 

α = 0
α = 0.15
α = 0.3
α = 0.5

FIG. 2: (Color online) The function Wα(T ) [see Eq. (16)] for
four different values of α. Each curve is piecewise linear and
all the curves coincide in the first interval of 0 ≤ T ≤ π. Note
the two particular cases of α = 0 and α = 0.5. For the former,
Wα diverges quadratically with T ; for the latter, Wα returns
to zero (as a phenomenon of collapse and revival) repeatedly.

T = mπ,

Wα(mπ) = π2 1− cosmθ

1− cos θ
. (25)

Thus for a generic value of α, Wα(mπ) is an almost pe-
riodic function of m.

We note that the piecewise linear behavior of the tran-
sition probability as illustrated in Fig. 2 has been nu-
merically observed in the contexts of photoexcitation of
a molecule,27 spontaneous decay of a two-level atom in
a multi-mode optical cavity,17,18 and transition dynam-
ics of a Bloch state in a periodically driven tight binding
model.28 In the third of these systems, the model (13)
is actually not realized exactly. Except for the superfi-
cial time dependence, the perturbation V contains intra-
continuum terms, and the level spacing is not strictly
constant. But to the first order of g, the intra-continuum
couplings do not enter the dynamics, and only the Bloch
states near resonance play an important in the dynam-
ics, for which the equaldistant level spacing condition is a
good approximation. Therefore, the perturbation theory
above still holds.

IV. EXACT SOLUTION OF THE TRANSITION

PROBLEM

The transition problem for the ideal model can actu-
ally be solved exactly. This was originally done by Stey
and Gibberd using the Laplace transform technique16

and later by Lefebvre and Savolainen using the memory
function method.29 In the following, a solution in line
with the perturbation expansion (3) will be presented.

To determine |ψs(t)〉 in (3), let us transform into the in-
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teraction picture.10 Define |ψ(t)〉 = e−iH0t/~|ψ̃(t)〉. The

time evolution equation for |ψ̃(t)〉 is

i~
∂

∂t
|ψ̃(t)〉 = Ṽ (t)|ψ̃(t)〉, (26)

with

Ṽ (t) = eiH0t/~V e−iH0t/~

= g

∞
∑

n=−∞

(

|b〉〈n|ei(Eb−En)t/~ + h.c.
)

. (27)

The time evolution operator in the interaction picture
can be constructed formally as

S(t) = I +

∫ t

0

dt1

(

1

i~
Ṽ (t1)

)

+

∫ t

0

dt1

∫ t

t1

dt2

(

1

i~
Ṽ (t2)

)(

1

i~
Ṽ (t1)

)

+ · · · . (28)

This is the so-called Dyson series, in which the sth term
corresponds to the sth term in (3). The matrix element
Sbb(t) ≡ 〈b|S(t)|b〉 is of the form

Sbb(t) =

∞
∑

n=0

( g

i~

)2n

Cn, (29)

with

Cn =

∞
∑

m1=−∞

· · ·

∞
∑

mn=−∞

∫ t

0

dt1

∫ t

t1

dt2 · · ·

∫ t

t2n−1

dt2ne
i
∑n

j=1
(Eb−Emj

)(t2j−t2j−1)/~

=

∫ t

0

dt1

∫ t

t1

dt2 · · ·

∫ t

t2n−1

dt2n

∞
∑

m1=−∞

· · ·
∞
∑

mn=−∞

ei
∑

n
j=1

(Eb−Emj
)(t2j−t2j−1)/~. (30)

Note that in (29) the odd terms in g drop out. The
reason is simply that the system has to jump even times
between the discrete level and the quasi-continuum band
to return to the discrete level. Once we have calculated
Sbb(t), we obtain the survival probability Pi as

Pi = |〈b|e−iHt/~|b〉|2 = |〈b|e−iH0t/~S(t)|b〉|2

= |〈b|e−iEbt/~S(t)|b〉|2 = |Sbb(t)|
2. (31)

It is ready to see that the dependence of Pi on Eb should
be through the parameter α.
In the second line of (30), we need to do the summation

∞
∑

m=−∞

eim∆t/~. (32)

Again, the Poisson summation formula is useful. The

function relevant is f(x) = eix, which is sampled with a
period of ∆t/~. The Fourier transform of f is

F (q) =

∫

∞

−∞

dxeixe−iqx = 2πδ(q − 1). (33)

Therefore by the formula (19) (tH = 2π~/∆),

∞
∑

m=−∞

eim∆t/~ =
~

∆t

∞
∑

m=−∞

2πδ

(

2πm~

∆t
− 1

)

= tH

∞
∑

m=−∞

δ(t−mtH). (34)

Substituting (34) into (30), we get
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Cn = tnH

∫ t

0

dt1

∫ t

t1

dt2 · · ·

∫ t

t2n−1

dt2n

n
∏

j=1



eiEb(t2j−t2j−1)/~
∞
∑

mj=−∞

δ[(t2j − t2j−1)−mjtH]





= tnH

∫ t

0

dt1

∫ t

t1

dt2 · · ·

∫ t

t2n−1

dt2n

n
∏

j=1



eiEb(t2j−t2j−1)/~
∞
∑

mj=0

δ[(t2j − t2j−1)−mjtH]





= tnH

∞
∑

m1=0

∞
∑

m2=0

· · ·

∞
∑

mn=0

∫ t

0

dt1

∫ t

t1

dt2 · · ·

∫ t

t2n−1

dt2n

n
∏

j=1

(

eiEb(t2j−t2j−1)/~δ[(t2j − t2j−1)−mjtH]
)

. (35)

Now suppose 0 < t < tH. In this case, 0 ≤ t2j − t2j−1 <
tH, and hence the only contributing term would be
mj = 0, j = 1, . . . , n. Integrating out t2j and noting
that

∫

∞

0
dtδ(t) = 1/2, we get

Cn = tnH

∫ t

0

dt1

∫ t

t1

dt3 · · ·

∫ t

t2n−3

dt2n−1

(

1

2

)n

=
1

n!

(

tHt

2

)n

. (36)

By (29), this leads to

Sbb(t) = exp

(

−
πg2

∆~
t

)

= exp
(

−
γ

2
t
)

, (37)

where γ ≡ 2πg2/∆~. It is purely exponential. Note that
as in (22), there is no dependence on α.

Next suppose tH < t < 2tH. In this case, besides
the possibility of mj ≡ 0 for all j, one mj can be 1.
The contribution of the first possibility to Cn is given by
(37). In the second possibility, we make the change of
variables, (t1, t2, . . . , t2n) → (s1, s2, . . . , s2n),

si = ti, i ≤ 2j − 1, (38a)

si = ti − tH, i > 2j − 1. (38b)

The Jacobian is apparently 1. The corresponding contri-
bution to Cn, after integrating out s2j , is (θ = 2πα)

ntnH

∫ t−tH

0

ds1 · · ·

∫ t−tH

s2n−3

ds2n−1

(

1

2

)n−1

eiEbtH/~

=
tnH(t− tH)

n

(n− 1)!2n−1
eiθ. (39)

By (29), the corresponding contribution to 〈b|S(t)|b〉 is
then

− γ(t− tH)e
−γ(t−tH)/2eiθ. (40)

In total, in the interval of tH < t < 2tH,

Sbb(t) = e−γt/2 − γ(t− tH)e
−γ(t−tH)/2eiθ. (41)

Therefore, beyond tH, Pi is no longer purely exponential
and is dependent on α. Comparing (37) and (41), we see
that Pi has a cusp at t = tH.

Next consider 2tH < t < 3tH. In this case, there are
four types of contributing terms: (i) mj = 0 for all j; (ii)
mj = 1 for one j, while 0 for all other j; (iii) mj = 2
for one j while 0 for all other j; (iv) mj = 1 for two j,
while 0 for all other j. The contributions of (i) and (ii) to
〈b|S(t)|b〉 are given by (37) and (41), respectively. The
contribution of (iii) is given by

∞
∑

n=0

(

−
g2

~2

)n

tnH

(

1

2

)n−1

ei2θ
(t− 2tH)

n

n!
n

= −γ(t− 2tH)e
−γ(t−2tH)/2ei2θ. (42)

The contribution of (iv) is

∞
∑

n=0

(

−
g2

~2

)n

tnH

(

1

2

)n−2

ei2θ
(t− 2tH)

n

n!

n(n− 1)

2

=
1

2
γ2(t− 2tH)

2e−γ(t−2tH)/2ei2θ. (43)

In total, for 2tH < t < 3tH,

Sbb(t) = e−γt/2 − γ(t− tH)e
−γ(t−tH)/2eiθ

+

[

1

2
γ2(t− 2tH)

2 − γ(t− 2tH)

]

e−γ(t−2tH)/2ei2θ. (44)

Again, Pi shows a cusp at t = 2tH.

Similarly, we can determine the expression of Sbb(t) for
later intervals. For those interested, closed explicit ex-
pressions of Sbb(t) for an arbitrary interval can be found
in Refs. 16 and 29. But it is not hard to persuade oneself
that in each interval, there will be extra terms contribut-
ing to Cn than in the proceeding interval, hence extra
terms in Sbb(t). Therefore, Pi shows a cusp each time
t is an integral multiplier of the Heisenberg time tH. In
Fig. 3, the trajectories of Pi are shown for the same four
values of α as in Fig. 2. We see that when all orders
of terms in (3) are taken into account, many features in
Fig. 2, which contains only the first order term, are still
preserved. For example, the periodic singularities persist
and the period is unchanged, moreover, there is still no
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FIG. 3: (Color online) The survival probability Pi on the
discrete level |b〉 in the exact solution. It shows cusps period-
ically and the period is the Heisenberg time tH = 2π~/∆. In
the first period, Pi(t) = exp(−γt), with γ = 2πg2/∆~. In this
period, it is independent of the value of α. But afterwards, it
is sensitive to the value of α. The parameters are chosen such
that g/∆ = 0.15.

α-dependence in the first interval 0 < t ≤ tH.

V. CONCLUSIONS AND DISCUSSIONS

We consider the model (13) as of great pedagogi-
cal value. First, the model allows a lucid derivation
of Fermi’s golden rule. The calculation can be carried
out straightforwardly without invoking any approxima-
tion or argument. It illustrates the two key features of
Fermi’s golden rule very well, namely, the transition rate
is proportional to the density of states and the coupling

squared. Second, it demonstrates in a vivid way how the
rule might break down beyond the Heisenberg time, a
point less emphasized in quantum mechanics textbooks.
One reason might be that many authors have in mind
a true continuum, for which the Heisenberg time is in-
finite and thus irrelevant. However, a quasi-continuum
with finite level spacings or finite Heisenberg times, is
a reality in many systems. This is the case, for exam-
ple, in a molecule,27 in a multi-mode optical cavity,17,18

or in a one-dimensional tight binding model,28 where the
piecewise linear behavior of the transition probability was
observed.

Interestingly, the transition dynamics of the model can
actually be solved exactly by collecting all orders of terms
in the Dyson series, which in many quantum mechanics
textbooks is introduced formally but not put into full
use. The rigorous exponential decay in the first interval
is rare instead of common. The periodic cusps imply that
the kinks in the first order perturbation approximation
is not mere artifact—they are modified but not smeared
out completely in the exact solution. Recently, cusps
(periodic or not) have been found also in the quench dy-
namics of the transverse Ising model,30 the tight binding
model,31 a generalized XY spin chain,32 and some non-
integrable models.33 The mechanism varies from case to
case. In view of these new progresses, why and when can
the time evolution of some quantity be singular is now a
problem worth consideration.
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